1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <net/ip.h>
18 #include <net/checksum.h>
19 #include "net_driver.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "selftest.h"
23 #include "workarounds.h"
24 
25 /* Number of RX descriptors pushed at once. */
26 #define EFX_RX_BATCH  8
27 
28 /* Maximum size of a buffer sharing a page */
29 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
30 
31 /* Size of buffer allocated for skb header area. */
32 #define EFX_SKB_HEADERS  64u
33 
34 /*
35  * rx_alloc_method - RX buffer allocation method
36  *
37  * This driver supports two methods for allocating and using RX buffers:
38  * each RX buffer may be backed by an skb or by an order-n page.
39  *
40  * When GRO is in use then the second method has a lower overhead,
41  * since we don't have to allocate then free skbs on reassembled frames.
42  *
43  * Values:
44  *   - RX_ALLOC_METHOD_AUTO = 0
45  *   - RX_ALLOC_METHOD_SKB  = 1
46  *   - RX_ALLOC_METHOD_PAGE = 2
47  *
48  * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
49  * controlled by the parameters below.
50  *
51  *   - Since pushing and popping descriptors are separated by the rx_queue
52  *     size, so the watermarks should be ~rxd_size.
53  *   - The performance win by using page-based allocation for GRO is less
54  *     than the performance hit of using page-based allocation of non-GRO,
55  *     so the watermarks should reflect this.
56  *
57  * Per channel we maintain a single variable, updated by each channel:
58  *
59  *   rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
60  *                      RX_ALLOC_FACTOR_SKB)
61  * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
62  * limits the hysteresis), and update the allocation strategy:
63  *
64  *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
65  *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
66  */
67 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
68 
69 #define RX_ALLOC_LEVEL_GRO 0x2000
70 #define RX_ALLOC_LEVEL_MAX 0x3000
71 #define RX_ALLOC_FACTOR_GRO 1
72 #define RX_ALLOC_FACTOR_SKB (-2)
73 
74 /* This is the percentage fill level below which new RX descriptors
75  * will be added to the RX descriptor ring.
76  */
77 static unsigned int rx_refill_threshold = 90;
78 
79 /* This is the percentage fill level to which an RX queue will be refilled
80  * when the "RX refill threshold" is reached.
81  */
82 static unsigned int rx_refill_limit = 95;
83 
84 /*
85  * RX maximum head room required.
86  *
87  * This must be at least 1 to prevent overflow and at least 2 to allow
88  * pipelined receives.
89  */
90 #define EFX_RXD_HEAD_ROOM 2
91 
92 /* Offset of ethernet header within page */
efx_rx_buf_offset(struct efx_nic * efx,struct efx_rx_buffer * buf)93 static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx,
94 					     struct efx_rx_buffer *buf)
95 {
96 	/* Offset is always within one page, so we don't need to consider
97 	 * the page order.
98 	 */
99 	return (((__force unsigned long) buf->dma_addr & (PAGE_SIZE - 1)) +
100 		efx->type->rx_buffer_hash_size);
101 }
efx_rx_buf_size(struct efx_nic * efx)102 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
103 {
104 	return PAGE_SIZE << efx->rx_buffer_order;
105 }
106 
efx_rx_buf_eh(struct efx_nic * efx,struct efx_rx_buffer * buf)107 static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf)
108 {
109 	if (buf->is_page)
110 		return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf);
111 	else
112 		return ((u8 *)buf->u.skb->data +
113 			efx->type->rx_buffer_hash_size);
114 }
115 
efx_rx_buf_hash(const u8 * eh)116 static inline u32 efx_rx_buf_hash(const u8 *eh)
117 {
118 	/* The ethernet header is always directly after any hash. */
119 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
120 	return __le32_to_cpup((const __le32 *)(eh - 4));
121 #else
122 	const u8 *data = eh - 4;
123 	return ((u32)data[0]       |
124 		(u32)data[1] << 8  |
125 		(u32)data[2] << 16 |
126 		(u32)data[3] << 24);
127 #endif
128 }
129 
130 /**
131  * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
132  *
133  * @rx_queue:		Efx RX queue
134  *
135  * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
136  * struct efx_rx_buffer for each one. Return a negative error code or 0
137  * on success. May fail having only inserted fewer than EFX_RX_BATCH
138  * buffers.
139  */
efx_init_rx_buffers_skb(struct efx_rx_queue * rx_queue)140 static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
141 {
142 	struct efx_nic *efx = rx_queue->efx;
143 	struct net_device *net_dev = efx->net_dev;
144 	struct efx_rx_buffer *rx_buf;
145 	struct sk_buff *skb;
146 	int skb_len = efx->rx_buffer_len;
147 	unsigned index, count;
148 
149 	for (count = 0; count < EFX_RX_BATCH; ++count) {
150 		index = rx_queue->added_count & rx_queue->ptr_mask;
151 		rx_buf = efx_rx_buffer(rx_queue, index);
152 
153 		rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len);
154 		if (unlikely(!skb))
155 			return -ENOMEM;
156 
157 		/* Adjust the SKB for padding and checksum */
158 		skb_reserve(skb, NET_IP_ALIGN);
159 		rx_buf->len = skb_len - NET_IP_ALIGN;
160 		rx_buf->is_page = false;
161 		skb->ip_summed = CHECKSUM_UNNECESSARY;
162 
163 		rx_buf->dma_addr = pci_map_single(efx->pci_dev,
164 						  skb->data, rx_buf->len,
165 						  PCI_DMA_FROMDEVICE);
166 		if (unlikely(pci_dma_mapping_error(efx->pci_dev,
167 						   rx_buf->dma_addr))) {
168 			dev_kfree_skb_any(skb);
169 			rx_buf->u.skb = NULL;
170 			return -EIO;
171 		}
172 
173 		++rx_queue->added_count;
174 		++rx_queue->alloc_skb_count;
175 	}
176 
177 	return 0;
178 }
179 
180 /**
181  * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
182  *
183  * @rx_queue:		Efx RX queue
184  *
185  * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
186  * and populates struct efx_rx_buffers for each one. Return a negative error
187  * code or 0 on success. If a single page can be split between two buffers,
188  * then the page will either be inserted fully, or not at at all.
189  */
efx_init_rx_buffers_page(struct efx_rx_queue * rx_queue)190 static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
191 {
192 	struct efx_nic *efx = rx_queue->efx;
193 	struct efx_rx_buffer *rx_buf;
194 	struct page *page;
195 	void *page_addr;
196 	struct efx_rx_page_state *state;
197 	dma_addr_t dma_addr;
198 	unsigned index, count;
199 
200 	/* We can split a page between two buffers */
201 	BUILD_BUG_ON(EFX_RX_BATCH & 1);
202 
203 	for (count = 0; count < EFX_RX_BATCH; ++count) {
204 		page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
205 				   efx->rx_buffer_order);
206 		if (unlikely(page == NULL))
207 			return -ENOMEM;
208 		dma_addr = pci_map_page(efx->pci_dev, page, 0,
209 					efx_rx_buf_size(efx),
210 					PCI_DMA_FROMDEVICE);
211 		if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
212 			__free_pages(page, efx->rx_buffer_order);
213 			return -EIO;
214 		}
215 		page_addr = page_address(page);
216 		state = page_addr;
217 		state->refcnt = 0;
218 		state->dma_addr = dma_addr;
219 
220 		page_addr += sizeof(struct efx_rx_page_state);
221 		dma_addr += sizeof(struct efx_rx_page_state);
222 
223 	split:
224 		index = rx_queue->added_count & rx_queue->ptr_mask;
225 		rx_buf = efx_rx_buffer(rx_queue, index);
226 		rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
227 		rx_buf->u.page = page;
228 		rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
229 		rx_buf->is_page = true;
230 		++rx_queue->added_count;
231 		++rx_queue->alloc_page_count;
232 		++state->refcnt;
233 
234 		if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
235 			/* Use the second half of the page */
236 			get_page(page);
237 			dma_addr += (PAGE_SIZE >> 1);
238 			page_addr += (PAGE_SIZE >> 1);
239 			++count;
240 			goto split;
241 		}
242 	}
243 
244 	return 0;
245 }
246 
efx_unmap_rx_buffer(struct efx_nic * efx,struct efx_rx_buffer * rx_buf)247 static void efx_unmap_rx_buffer(struct efx_nic *efx,
248 				struct efx_rx_buffer *rx_buf)
249 {
250 	if (rx_buf->is_page && rx_buf->u.page) {
251 		struct efx_rx_page_state *state;
252 
253 		state = page_address(rx_buf->u.page);
254 		if (--state->refcnt == 0) {
255 			pci_unmap_page(efx->pci_dev,
256 				       state->dma_addr,
257 				       efx_rx_buf_size(efx),
258 				       PCI_DMA_FROMDEVICE);
259 		}
260 	} else if (!rx_buf->is_page && rx_buf->u.skb) {
261 		pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
262 				 rx_buf->len, PCI_DMA_FROMDEVICE);
263 	}
264 }
265 
efx_free_rx_buffer(struct efx_nic * efx,struct efx_rx_buffer * rx_buf)266 static void efx_free_rx_buffer(struct efx_nic *efx,
267 			       struct efx_rx_buffer *rx_buf)
268 {
269 	if (rx_buf->is_page && rx_buf->u.page) {
270 		__free_pages(rx_buf->u.page, efx->rx_buffer_order);
271 		rx_buf->u.page = NULL;
272 	} else if (!rx_buf->is_page && rx_buf->u.skb) {
273 		dev_kfree_skb_any(rx_buf->u.skb);
274 		rx_buf->u.skb = NULL;
275 	}
276 }
277 
efx_fini_rx_buffer(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf)278 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
279 			       struct efx_rx_buffer *rx_buf)
280 {
281 	efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
282 	efx_free_rx_buffer(rx_queue->efx, rx_buf);
283 }
284 
285 /* Attempt to resurrect the other receive buffer that used to share this page,
286  * which had previously been passed up to the kernel and freed. */
efx_resurrect_rx_buffer(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf)287 static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
288 				    struct efx_rx_buffer *rx_buf)
289 {
290 	struct efx_rx_page_state *state = page_address(rx_buf->u.page);
291 	struct efx_rx_buffer *new_buf;
292 	unsigned fill_level, index;
293 
294 	/* +1 because efx_rx_packet() incremented removed_count. +1 because
295 	 * we'd like to insert an additional descriptor whilst leaving
296 	 * EFX_RXD_HEAD_ROOM for the non-recycle path */
297 	fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
298 	if (unlikely(fill_level > rx_queue->max_fill)) {
299 		/* We could place "state" on a list, and drain the list in
300 		 * efx_fast_push_rx_descriptors(). For now, this will do. */
301 		return;
302 	}
303 
304 	++state->refcnt;
305 	get_page(rx_buf->u.page);
306 
307 	index = rx_queue->added_count & rx_queue->ptr_mask;
308 	new_buf = efx_rx_buffer(rx_queue, index);
309 	new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
310 	new_buf->u.page = rx_buf->u.page;
311 	new_buf->len = rx_buf->len;
312 	new_buf->is_page = true;
313 	++rx_queue->added_count;
314 }
315 
316 /* Recycle the given rx buffer directly back into the rx_queue. There is
317  * always room to add this buffer, because we've just popped a buffer. */
efx_recycle_rx_buffer(struct efx_channel * channel,struct efx_rx_buffer * rx_buf)318 static void efx_recycle_rx_buffer(struct efx_channel *channel,
319 				  struct efx_rx_buffer *rx_buf)
320 {
321 	struct efx_nic *efx = channel->efx;
322 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
323 	struct efx_rx_buffer *new_buf;
324 	unsigned index;
325 
326 	if (rx_buf->is_page && efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
327 	    page_count(rx_buf->u.page) == 1)
328 		efx_resurrect_rx_buffer(rx_queue, rx_buf);
329 
330 	index = rx_queue->added_count & rx_queue->ptr_mask;
331 	new_buf = efx_rx_buffer(rx_queue, index);
332 
333 	memcpy(new_buf, rx_buf, sizeof(*new_buf));
334 	rx_buf->u.page = NULL;
335 	++rx_queue->added_count;
336 }
337 
338 /**
339  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
340  * @rx_queue:		RX descriptor queue
341  * This will aim to fill the RX descriptor queue up to
342  * @rx_queue->@fast_fill_limit. If there is insufficient atomic
343  * memory to do so, a slow fill will be scheduled.
344  *
345  * The caller must provide serialisation (none is used here). In practise,
346  * this means this function must run from the NAPI handler, or be called
347  * when NAPI is disabled.
348  */
efx_fast_push_rx_descriptors(struct efx_rx_queue * rx_queue)349 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
350 {
351 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
352 	unsigned fill_level;
353 	int space, rc = 0;
354 
355 	/* Calculate current fill level, and exit if we don't need to fill */
356 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
357 	EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
358 	if (fill_level >= rx_queue->fast_fill_trigger)
359 		goto out;
360 
361 	/* Record minimum fill level */
362 	if (unlikely(fill_level < rx_queue->min_fill)) {
363 		if (fill_level)
364 			rx_queue->min_fill = fill_level;
365 	}
366 
367 	space = rx_queue->fast_fill_limit - fill_level;
368 	if (space < EFX_RX_BATCH)
369 		goto out;
370 
371 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
372 		   "RX queue %d fast-filling descriptor ring from"
373 		   " level %d to level %d using %s allocation\n",
374 		   efx_rx_queue_index(rx_queue), fill_level,
375 		   rx_queue->fast_fill_limit,
376 		   channel->rx_alloc_push_pages ? "page" : "skb");
377 
378 	do {
379 		if (channel->rx_alloc_push_pages)
380 			rc = efx_init_rx_buffers_page(rx_queue);
381 		else
382 			rc = efx_init_rx_buffers_skb(rx_queue);
383 		if (unlikely(rc)) {
384 			/* Ensure that we don't leave the rx queue empty */
385 			if (rx_queue->added_count == rx_queue->removed_count)
386 				efx_schedule_slow_fill(rx_queue);
387 			goto out;
388 		}
389 	} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
390 
391 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
392 		   "RX queue %d fast-filled descriptor ring "
393 		   "to level %d\n", efx_rx_queue_index(rx_queue),
394 		   rx_queue->added_count - rx_queue->removed_count);
395 
396  out:
397 	if (rx_queue->notified_count != rx_queue->added_count)
398 		efx_nic_notify_rx_desc(rx_queue);
399 }
400 
efx_rx_slow_fill(unsigned long context)401 void efx_rx_slow_fill(unsigned long context)
402 {
403 	struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
404 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
405 
406 	/* Post an event to cause NAPI to run and refill the queue */
407 	efx_nic_generate_fill_event(channel);
408 	++rx_queue->slow_fill_count;
409 }
410 
efx_rx_packet__check_len(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf,int len,bool * discard,bool * leak_packet)411 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
412 				     struct efx_rx_buffer *rx_buf,
413 				     int len, bool *discard,
414 				     bool *leak_packet)
415 {
416 	struct efx_nic *efx = rx_queue->efx;
417 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
418 
419 	if (likely(len <= max_len))
420 		return;
421 
422 	/* The packet must be discarded, but this is only a fatal error
423 	 * if the caller indicated it was
424 	 */
425 	*discard = true;
426 
427 	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
428 		if (net_ratelimit())
429 			netif_err(efx, rx_err, efx->net_dev,
430 				  " RX queue %d seriously overlength "
431 				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
432 				  efx_rx_queue_index(rx_queue), len, max_len,
433 				  efx->type->rx_buffer_padding);
434 		/* If this buffer was skb-allocated, then the meta
435 		 * data at the end of the skb will be trashed. So
436 		 * we have no choice but to leak the fragment.
437 		 */
438 		*leak_packet = !rx_buf->is_page;
439 		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
440 	} else {
441 		if (net_ratelimit())
442 			netif_err(efx, rx_err, efx->net_dev,
443 				  " RX queue %d overlength RX event "
444 				  "(0x%x > 0x%x)\n",
445 				  efx_rx_queue_index(rx_queue), len, max_len);
446 	}
447 
448 	efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
449 }
450 
451 /* Pass a received packet up through the generic GRO stack
452  *
453  * Handles driverlink veto, and passes the fragment up via
454  * the appropriate GRO method
455  */
efx_rx_packet_gro(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,const u8 * eh,bool checksummed)456 static void efx_rx_packet_gro(struct efx_channel *channel,
457 			      struct efx_rx_buffer *rx_buf,
458 			      const u8 *eh, bool checksummed)
459 {
460 	struct napi_struct *napi = &channel->napi_str;
461 	gro_result_t gro_result;
462 
463 	/* Pass the skb/page into the GRO engine */
464 	if (rx_buf->is_page) {
465 		struct efx_nic *efx = channel->efx;
466 		struct page *page = rx_buf->u.page;
467 		struct sk_buff *skb;
468 
469 		rx_buf->u.page = NULL;
470 
471 		skb = napi_get_frags(napi);
472 		if (!skb) {
473 			put_page(page);
474 			return;
475 		}
476 
477 		if (efx->net_dev->features & NETIF_F_RXHASH)
478 			skb->rxhash = efx_rx_buf_hash(eh);
479 
480 		skb_shinfo(skb)->frags[0].page = page;
481 		skb_shinfo(skb)->frags[0].page_offset =
482 			efx_rx_buf_offset(efx, rx_buf);
483 		skb_shinfo(skb)->frags[0].size = rx_buf->len;
484 		skb_shinfo(skb)->nr_frags = 1;
485 
486 		skb->len = rx_buf->len;
487 		skb->data_len = rx_buf->len;
488 		skb->truesize += rx_buf->len;
489 		skb->ip_summed =
490 			checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
491 
492 		skb_record_rx_queue(skb, channel->channel);
493 
494 		gro_result = napi_gro_frags(napi);
495 	} else {
496 		struct sk_buff *skb = rx_buf->u.skb;
497 
498 		EFX_BUG_ON_PARANOID(!checksummed);
499 		rx_buf->u.skb = NULL;
500 
501 		gro_result = napi_gro_receive(napi, skb);
502 	}
503 
504 	if (gro_result == GRO_NORMAL) {
505 		channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
506 	} else if (gro_result != GRO_DROP) {
507 		channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO;
508 		channel->irq_mod_score += 2;
509 	}
510 }
511 
efx_rx_packet(struct efx_rx_queue * rx_queue,unsigned int index,unsigned int len,bool checksummed,bool discard)512 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
513 		   unsigned int len, bool checksummed, bool discard)
514 {
515 	struct efx_nic *efx = rx_queue->efx;
516 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
517 	struct efx_rx_buffer *rx_buf;
518 	bool leak_packet = false;
519 
520 	rx_buf = efx_rx_buffer(rx_queue, index);
521 
522 	/* This allows the refill path to post another buffer.
523 	 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
524 	 * isn't overwritten yet.
525 	 */
526 	rx_queue->removed_count++;
527 
528 	/* Validate the length encoded in the event vs the descriptor pushed */
529 	efx_rx_packet__check_len(rx_queue, rx_buf, len,
530 				 &discard, &leak_packet);
531 
532 	netif_vdbg(efx, rx_status, efx->net_dev,
533 		   "RX queue %d received id %x at %llx+%x %s%s\n",
534 		   efx_rx_queue_index(rx_queue), index,
535 		   (unsigned long long)rx_buf->dma_addr, len,
536 		   (checksummed ? " [SUMMED]" : ""),
537 		   (discard ? " [DISCARD]" : ""));
538 
539 	/* Discard packet, if instructed to do so */
540 	if (unlikely(discard)) {
541 		if (unlikely(leak_packet))
542 			channel->n_skbuff_leaks++;
543 		else
544 			efx_recycle_rx_buffer(channel, rx_buf);
545 
546 		/* Don't hold off the previous receive */
547 		rx_buf = NULL;
548 		goto out;
549 	}
550 
551 	/* Release card resources - assumes all RX buffers consumed in-order
552 	 * per RX queue
553 	 */
554 	efx_unmap_rx_buffer(efx, rx_buf);
555 
556 	/* Prefetch nice and early so data will (hopefully) be in cache by
557 	 * the time we look at it.
558 	 */
559 	prefetch(efx_rx_buf_eh(efx, rx_buf));
560 
561 	/* Pipeline receives so that we give time for packet headers to be
562 	 * prefetched into cache.
563 	 */
564 	rx_buf->len = len - efx->type->rx_buffer_hash_size;
565 out:
566 	if (channel->rx_pkt)
567 		__efx_rx_packet(channel,
568 				channel->rx_pkt, channel->rx_pkt_csummed);
569 	channel->rx_pkt = rx_buf;
570 	channel->rx_pkt_csummed = checksummed;
571 }
572 
573 /* Handle a received packet.  Second half: Touches packet payload. */
__efx_rx_packet(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,bool checksummed)574 void __efx_rx_packet(struct efx_channel *channel,
575 		     struct efx_rx_buffer *rx_buf, bool checksummed)
576 {
577 	struct efx_nic *efx = channel->efx;
578 	struct sk_buff *skb;
579 	u8 *eh = efx_rx_buf_eh(efx, rx_buf);
580 
581 	/* If we're in loopback test, then pass the packet directly to the
582 	 * loopback layer, and free the rx_buf here
583 	 */
584 	if (unlikely(efx->loopback_selftest)) {
585 		efx_loopback_rx_packet(efx, eh, rx_buf->len);
586 		efx_free_rx_buffer(efx, rx_buf);
587 		return;
588 	}
589 
590 	if (!rx_buf->is_page) {
591 		skb = rx_buf->u.skb;
592 
593 		prefetch(skb_shinfo(skb));
594 
595 		skb_reserve(skb, efx->type->rx_buffer_hash_size);
596 		skb_put(skb, rx_buf->len);
597 
598 		if (efx->net_dev->features & NETIF_F_RXHASH)
599 			skb->rxhash = efx_rx_buf_hash(eh);
600 
601 		/* Move past the ethernet header. rx_buf->data still points
602 		 * at the ethernet header */
603 		skb->protocol = eth_type_trans(skb, efx->net_dev);
604 
605 		skb_record_rx_queue(skb, channel->channel);
606 	}
607 
608 	if (likely(checksummed || rx_buf->is_page)) {
609 		efx_rx_packet_gro(channel, rx_buf, eh, checksummed);
610 		return;
611 	}
612 
613 	/* We now own the SKB */
614 	skb = rx_buf->u.skb;
615 	rx_buf->u.skb = NULL;
616 
617 	/* Set the SKB flags */
618 	skb_checksum_none_assert(skb);
619 
620 	/* Pass the packet up */
621 	netif_receive_skb(skb);
622 
623 	/* Update allocation strategy method */
624 	channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
625 }
626 
efx_rx_strategy(struct efx_channel * channel)627 void efx_rx_strategy(struct efx_channel *channel)
628 {
629 	enum efx_rx_alloc_method method = rx_alloc_method;
630 
631 	/* Only makes sense to use page based allocation if GRO is enabled */
632 	if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
633 		method = RX_ALLOC_METHOD_SKB;
634 	} else if (method == RX_ALLOC_METHOD_AUTO) {
635 		/* Constrain the rx_alloc_level */
636 		if (channel->rx_alloc_level < 0)
637 			channel->rx_alloc_level = 0;
638 		else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
639 			channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
640 
641 		/* Decide on the allocation method */
642 		method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ?
643 			  RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
644 	}
645 
646 	/* Push the option */
647 	channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
648 }
649 
efx_probe_rx_queue(struct efx_rx_queue * rx_queue)650 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
651 {
652 	struct efx_nic *efx = rx_queue->efx;
653 	unsigned int entries;
654 	int rc;
655 
656 	/* Create the smallest power-of-two aligned ring */
657 	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
658 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
659 	rx_queue->ptr_mask = entries - 1;
660 
661 	netif_dbg(efx, probe, efx->net_dev,
662 		  "creating RX queue %d size %#x mask %#x\n",
663 		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
664 		  rx_queue->ptr_mask);
665 
666 	/* Allocate RX buffers */
667 	rx_queue->buffer = kzalloc(entries * sizeof(*rx_queue->buffer),
668 				   GFP_KERNEL);
669 	if (!rx_queue->buffer)
670 		return -ENOMEM;
671 
672 	rc = efx_nic_probe_rx(rx_queue);
673 	if (rc) {
674 		kfree(rx_queue->buffer);
675 		rx_queue->buffer = NULL;
676 	}
677 	return rc;
678 }
679 
efx_init_rx_queue(struct efx_rx_queue * rx_queue)680 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
681 {
682 	struct efx_nic *efx = rx_queue->efx;
683 	unsigned int max_fill, trigger, limit;
684 
685 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
686 		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
687 
688 	/* Initialise ptr fields */
689 	rx_queue->added_count = 0;
690 	rx_queue->notified_count = 0;
691 	rx_queue->removed_count = 0;
692 	rx_queue->min_fill = -1U;
693 
694 	/* Initialise limit fields */
695 	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
696 	trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
697 	limit = max_fill * min(rx_refill_limit, 100U) / 100U;
698 
699 	rx_queue->max_fill = max_fill;
700 	rx_queue->fast_fill_trigger = trigger;
701 	rx_queue->fast_fill_limit = limit;
702 
703 	/* Set up RX descriptor ring */
704 	efx_nic_init_rx(rx_queue);
705 }
706 
efx_fini_rx_queue(struct efx_rx_queue * rx_queue)707 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
708 {
709 	int i;
710 	struct efx_rx_buffer *rx_buf;
711 
712 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
713 		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
714 
715 	del_timer_sync(&rx_queue->slow_fill);
716 	efx_nic_fini_rx(rx_queue);
717 
718 	/* Release RX buffers NB start at index 0 not current HW ptr */
719 	if (rx_queue->buffer) {
720 		for (i = 0; i <= rx_queue->ptr_mask; i++) {
721 			rx_buf = efx_rx_buffer(rx_queue, i);
722 			efx_fini_rx_buffer(rx_queue, rx_buf);
723 		}
724 	}
725 }
726 
efx_remove_rx_queue(struct efx_rx_queue * rx_queue)727 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
728 {
729 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
730 		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
731 
732 	efx_nic_remove_rx(rx_queue);
733 
734 	kfree(rx_queue->buffer);
735 	rx_queue->buffer = NULL;
736 }
737 
738 
739 module_param(rx_alloc_method, int, 0644);
740 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
741 
742 module_param(rx_refill_threshold, uint, 0444);
743 MODULE_PARM_DESC(rx_refill_threshold,
744 		 "RX descriptor ring fast/slow fill threshold (%)");
745 
746