1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 	Written 1996-1999 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms
6 	of the GNU General Public License, incorporated herein by reference.
7 
8 	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 	and the EtherLink XL 3c900 and 3c905 cards.
11 
12 	Problem reports and questions should be directed to
13 	vortex@scyld.com
14 
15 	The author may be reached as becker@scyld.com, or C/O
16 	Scyld Computing Corporation
17 	410 Severn Ave., Suite 210
18 	Annapolis MD 21403
19 
20 */
21 
22 /*
23  * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
24  * as well as other drivers
25  *
26  * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27  * due to dead code elimination.  There will be some performance benefits from this due to
28  * elimination of all the tests and reduced cache footprint.
29  */
30 
31 
32 #define DRV_NAME	"3c59x"
33 
34 
35 
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE	16
39 #define RX_RING_SIZE	32
40 #define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
41 
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44    Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49    transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58 
59 /* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
60  * of possible Tx stalls if the system is blocking interrupts
61  * somewhere else.  Undefine this to disable.
62  */
63 #define tx_interrupt_mitigation 1
64 
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72 
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h>			/* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
96 
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98    This is only in the support-all-kernels source code. */
99 
100 #define RUN_AT(x) (jiffies + (x))
101 
102 #include <linux/delay.h>
103 
104 
105 static const char version[] __devinitconst =
106 	DRV_NAME ": Donald Becker and others.\n";
107 
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111 
112 
113 /* Operational parameter that usually are not changed. */
114 
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116    runtime register window, window 1, is now always mapped in.
117    The Boomerang size is twice as large as the Vortex -- it has additional
118    bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121 
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123    This only set with the original DP83840 on older 3c905 boards, so the extra
124    code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126 
127 #define PFX DRV_NAME ": "
128 
129 
130 
131 /*
132 				Theory of Operation
133 
134 I. Board Compatibility
135 
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
138 versions of the FastEtherLink cards.  The supported product IDs are
139   3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140 
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143     cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144 
145 II. Board-specific settings
146 
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board.  The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150 
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154 
155 III. Driver operation
156 
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series.  The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160 
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166 
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters.  On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability.  There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads.  Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175 
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180 
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187 
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control.  One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag.  The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193 
194 IV. Notes
195 
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon".  According to Terry these names come
200 from rides at the local amusement park.
201 
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206 
207 /* This table drives the PCI probe routines.  It's mostly boilerplate in all
208    of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 	PCI_USES_MASTER=4,
212 };
213 
214 enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220 
221 enum vortex_chips {
222 	CH_3C590 = 0,
223 	CH_3C592,
224 	CH_3C597,
225 	CH_3C595_1,
226 	CH_3C595_2,
227 
228 	CH_3C595_3,
229 	CH_3C900_1,
230 	CH_3C900_2,
231 	CH_3C900_3,
232 	CH_3C900_4,
233 
234 	CH_3C900_5,
235 	CH_3C900B_FL,
236 	CH_3C905_1,
237 	CH_3C905_2,
238 	CH_3C905B_TX,
239 	CH_3C905B_1,
240 
241 	CH_3C905B_2,
242 	CH_3C905B_FX,
243 	CH_3C905C,
244 	CH_3C9202,
245 	CH_3C980,
246 	CH_3C9805,
247 
248 	CH_3CSOHO100_TX,
249 	CH_3C555,
250 	CH_3C556,
251 	CH_3C556B,
252 	CH_3C575,
253 
254 	CH_3C575_1,
255 	CH_3CCFE575,
256 	CH_3CCFE575CT,
257 	CH_3CCFE656,
258 	CH_3CCFEM656,
259 
260 	CH_3CCFEM656_1,
261 	CH_3C450,
262 	CH_3C920,
263 	CH_3C982A,
264 	CH_3C982B,
265 
266 	CH_905BT4,
267 	CH_920B_EMB_WNM,
268 };
269 
270 
271 /* note: this array directly indexed by above enums, and MUST
272  * be kept in sync with both the enums above, and the PCI device
273  * table below
274  */
275 static struct vortex_chip_info {
276 	const char *name;
277 	int flags;
278 	int drv_flags;
279 	int io_size;
280 } vortex_info_tbl[] __devinitdata = {
281 	{"3c590 Vortex 10Mbps",
282 	 PCI_USES_MASTER, IS_VORTEX, 32, },
283 	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
284 	 PCI_USES_MASTER, IS_VORTEX, 32, },
285 	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
286 	 PCI_USES_MASTER, IS_VORTEX, 32, },
287 	{"3c595 Vortex 100baseTx",
288 	 PCI_USES_MASTER, IS_VORTEX, 32, },
289 	{"3c595 Vortex 100baseT4",
290 	 PCI_USES_MASTER, IS_VORTEX, 32, },
291 
292 	{"3c595 Vortex 100base-MII",
293 	 PCI_USES_MASTER, IS_VORTEX, 32, },
294 	{"3c900 Boomerang 10baseT",
295 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 	{"3c900 Boomerang 10Mbps Combo",
297 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
299 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 	{"3c900 Cyclone 10Mbps Combo",
301 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302 
303 	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
304 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 	{"3c900B-FL Cyclone 10base-FL",
306 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 	{"3c905 Boomerang 100baseTx",
308 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 	{"3c905 Boomerang 100baseT4",
310 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 	{"3C905B-TX Fast Etherlink XL PCI",
312 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 	{"3c905B Cyclone 100baseTx",
314 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315 
316 	{"3c905B Cyclone 10/100/BNC",
317 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 	{"3c905B-FX Cyclone 100baseFx",
319 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 	{"3c905C Tornado",
321 	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 	{"3c980 Cyclone",
325 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326 
327 	{"3c980C Python-T",
328 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 	{"3cSOHO100-TX Hurricane",
330 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 	{"3c555 Laptop Hurricane",
332 	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 	{"3c556 Laptop Tornado",
334 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 									HAS_HWCKSM, 128, },
336 	{"3c556B Laptop Hurricane",
337 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339 
340 	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
341 	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 	{"3c575 Boomerang CardBus",
343 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 	{"3CCFE575BT Cyclone CardBus",
345 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 	{"3CCFE575CT Tornado CardBus",
348 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 	{"3CCFE656 Cyclone CardBus",
351 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
353 
354 	{"3CCFEM656B Cyclone+Winmodem CardBus",
355 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
358 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
361 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 	{"3c920 Tornado",
363 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 	{"3c982 Hydra Dual Port A",
365 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366 
367 	{"3c982 Hydra Dual Port B",
368 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 	{"3c905B-T4",
370 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 	{"3c920B-EMB-WNM Tornado",
372 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373 
374 	{NULL,}, /* NULL terminated list. */
375 };
376 
377 
378 static DEFINE_PCI_DEVICE_TABLE(vortex_pci_tbl) = {
379 	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384 
385 	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390 
391 	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397 
398 	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404 
405 	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410 
411 	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416 
417 	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422 
423 	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425 
426 	{0,}						/* 0 terminated list. */
427 };
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429 
430 
431 /* Operational definitions.
432    These are not used by other compilation units and thus are not
433    exported in a ".h" file.
434 
435    First the windows.  There are eight register windows, with the command
436    and status registers available in each.
437    */
438 #define EL3_CMD 0x0e
439 #define EL3_STATUS 0x0e
440 
441 /* The top five bits written to EL3_CMD are a command, the lower
442    11 bits are the parameter, if applicable.
443    Note that 11 parameters bits was fine for ethernet, but the new chip
444    can handle FDDI length frames (~4500 octets) and now parameters count
445    32-bit 'Dwords' rather than octets. */
446 
447 enum vortex_cmd {
448 	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449 	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450 	UpStall = 6<<11, UpUnstall = (6<<11)+1,
451 	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452 	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453 	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454 	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455 	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456 	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457 	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458 
459 /* The SetRxFilter command accepts the following classes: */
460 enum RxFilter {
461 	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462 
463 /* Bits in the general status register. */
464 enum vortex_status {
465 	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466 	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467 	IntReq = 0x0040, StatsFull = 0x0080,
468 	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469 	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
470 	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
471 };
472 
473 /* Register window 1 offsets, the window used in normal operation.
474    On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475 enum Window1 {
476 	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
477 	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
478 	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479 };
480 enum Window0 {
481 	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
482 	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
483 	IntrStatus=0x0E,		/* Valid in all windows. */
484 };
485 enum Win0_EEPROM_bits {
486 	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487 	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
488 	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
489 };
490 /* EEPROM locations. */
491 enum eeprom_offset {
492 	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493 	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494 	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495 	DriverTune=13, Checksum=15};
496 
497 enum Window2 {			/* Window 2. */
498 	Wn2_ResetOptions=12,
499 };
500 enum Window3 {			/* Window 3: MAC/config bits. */
501 	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502 };
503 
504 #define BFEXT(value, offset, bitcount)  \
505     ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506 
507 #define BFINS(lhs, rhs, offset, bitcount)					\
508 	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
509 	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510 
511 #define RAM_SIZE(v)		BFEXT(v, 0, 3)
512 #define RAM_WIDTH(v)	BFEXT(v, 3, 1)
513 #define RAM_SPEED(v)	BFEXT(v, 4, 2)
514 #define ROM_SIZE(v)		BFEXT(v, 6, 2)
515 #define RAM_SPLIT(v)	BFEXT(v, 16, 2)
516 #define XCVR(v)			BFEXT(v, 20, 4)
517 #define AUTOSELECT(v)	BFEXT(v, 24, 1)
518 
519 enum Window4 {		/* Window 4: Xcvr/media bits. */
520 	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521 };
522 enum Win4_Media_bits {
523 	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
524 	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
525 	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
526 	Media_LnkBeat = 0x0800,
527 };
528 enum Window7 {					/* Window 7: Bus Master control. */
529 	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530 	Wn7_MasterStatus = 12,
531 };
532 /* Boomerang bus master control registers. */
533 enum MasterCtrl {
534 	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535 	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536 };
537 
538 /* The Rx and Tx descriptor lists.
539    Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
540    alignment contraint on tx_ring[] and rx_ring[]. */
541 #define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
542 #define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
543 struct boom_rx_desc {
544 	__le32 next;					/* Last entry points to 0.   */
545 	__le32 status;
546 	__le32 addr;					/* Up to 63 addr/len pairs possible. */
547 	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
548 };
549 /* Values for the Rx status entry. */
550 enum rx_desc_status {
551 	RxDComplete=0x00008000, RxDError=0x4000,
552 	/* See boomerang_rx() for actual error bits */
553 	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554 	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555 };
556 
557 #ifdef MAX_SKB_FRAGS
558 #define DO_ZEROCOPY 1
559 #else
560 #define DO_ZEROCOPY 0
561 #endif
562 
563 struct boom_tx_desc {
564 	__le32 next;					/* Last entry points to 0.   */
565 	__le32 status;					/* bits 0:12 length, others see below.  */
566 #if DO_ZEROCOPY
567 	struct {
568 		__le32 addr;
569 		__le32 length;
570 	} frag[1+MAX_SKB_FRAGS];
571 #else
572 		__le32 addr;
573 		__le32 length;
574 #endif
575 };
576 
577 /* Values for the Tx status entry. */
578 enum tx_desc_status {
579 	CRCDisable=0x2000, TxDComplete=0x8000,
580 	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581 	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
582 };
583 
584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586 
587 struct vortex_extra_stats {
588 	unsigned long tx_deferred;
589 	unsigned long tx_max_collisions;
590 	unsigned long tx_multiple_collisions;
591 	unsigned long tx_single_collisions;
592 	unsigned long rx_bad_ssd;
593 };
594 
595 struct vortex_private {
596 	/* The Rx and Tx rings should be quad-word-aligned. */
597 	struct boom_rx_desc* rx_ring;
598 	struct boom_tx_desc* tx_ring;
599 	dma_addr_t rx_ring_dma;
600 	dma_addr_t tx_ring_dma;
601 	/* The addresses of transmit- and receive-in-place skbuffs. */
602 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
603 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
604 	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
605 	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
606 	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
607 	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
608 	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
609 
610 	/* PCI configuration space information. */
611 	struct device *gendev;
612 	void __iomem *ioaddr;			/* IO address space */
613 	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
614 
615 	/* Some values here only for performance evaluation and path-coverage */
616 	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 	int card_idx;
618 
619 	/* The remainder are related to chip state, mostly media selection. */
620 	struct timer_list timer;			/* Media selection timer. */
621 	struct timer_list rx_oom_timer;		/* Rx skb allocation retry timer */
622 	int options;						/* User-settable misc. driver options. */
623 	unsigned int media_override:4, 		/* Passed-in media type. */
624 		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
625 		full_duplex:1, autoselect:1,
626 		bus_master:1,					/* Vortex can only do a fragment bus-m. */
627 		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
628 		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
629 		partner_flow_ctrl:1,			/* Partner supports flow control */
630 		has_nway:1,
631 		enable_wol:1,					/* Wake-on-LAN is enabled */
632 		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
633 		open:1,
634 		medialock:1,
635 		must_free_region:1,				/* Flag: if zero, Cardbus owns the I/O region */
636 		large_frames:1,			/* accept large frames */
637 		handling_irq:1;			/* private in_irq indicator */
638 	/* {get|set}_wol operations are already serialized by rtnl.
639 	 * no additional locking is required for the enable_wol and acpi_set_WOL()
640 	 */
641 	int drv_flags;
642 	u16 status_enable;
643 	u16 intr_enable;
644 	u16 available_media;				/* From Wn3_Options. */
645 	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
646 	u16 advertising;					/* NWay media advertisement */
647 	unsigned char phys[2];				/* MII device addresses. */
648 	u16 deferred;						/* Resend these interrupts when we
649 										 * bale from the ISR */
650 	u16 io_size;						/* Size of PCI region (for release_region) */
651 
652 	/* Serialises access to hardware other than MII and variables below.
653 	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
654 	spinlock_t lock;
655 
656 	spinlock_t mii_lock;		/* Serialises access to MII */
657 	struct mii_if_info mii;		/* MII lib hooks/info */
658 	spinlock_t window_lock;		/* Serialises access to windowed regs */
659 	int window;			/* Register window */
660 };
661 
window_set(struct vortex_private * vp,int window)662 static void window_set(struct vortex_private *vp, int window)
663 {
664 	if (window != vp->window) {
665 		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
666 		vp->window = window;
667 	}
668 }
669 
670 #define DEFINE_WINDOW_IO(size)						\
671 static u ## size							\
672 window_read ## size(struct vortex_private *vp, int window, int addr)	\
673 {									\
674 	unsigned long flags;						\
675 	u ## size ret;							\
676 	spin_lock_irqsave(&vp->window_lock, flags);			\
677 	window_set(vp, window);						\
678 	ret = ioread ## size(vp->ioaddr + addr);			\
679 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
680 	return ret;							\
681 }									\
682 static void								\
683 window_write ## size(struct vortex_private *vp, u ## size value,	\
684 		     int window, int addr)				\
685 {									\
686 	unsigned long flags;						\
687 	spin_lock_irqsave(&vp->window_lock, flags);			\
688 	window_set(vp, window);						\
689 	iowrite ## size(value, vp->ioaddr + addr);			\
690 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
691 }
692 DEFINE_WINDOW_IO(8)
693 DEFINE_WINDOW_IO(16)
694 DEFINE_WINDOW_IO(32)
695 
696 #ifdef CONFIG_PCI
697 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
698 #else
699 #define DEVICE_PCI(dev) NULL
700 #endif
701 
702 #define VORTEX_PCI(vp)							\
703 	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
704 
705 #ifdef CONFIG_EISA
706 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
707 #else
708 #define DEVICE_EISA(dev) NULL
709 #endif
710 
711 #define VORTEX_EISA(vp)							\
712 	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
713 
714 /* The action to take with a media selection timer tick.
715    Note that we deviate from the 3Com order by checking 10base2 before AUI.
716  */
717 enum xcvr_types {
718 	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
719 	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
720 };
721 
722 static const struct media_table {
723 	char *name;
724 	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
725 		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
726 		next:8;						/* The media type to try next. */
727 	int wait;						/* Time before we check media status. */
728 } media_tbl[] = {
729   {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
730   { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
731   { "undefined", 0,			0x80, XCVR_10baseT, 10000},
732   { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
733   { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
734   { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
735   { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
736   { "undefined", 0,			0x01, XCVR_10baseT, 10000},
737   { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
738   { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
739   { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
740 };
741 
742 static struct {
743 	const char str[ETH_GSTRING_LEN];
744 } ethtool_stats_keys[] = {
745 	{ "tx_deferred" },
746 	{ "tx_max_collisions" },
747 	{ "tx_multiple_collisions" },
748 	{ "tx_single_collisions" },
749 	{ "rx_bad_ssd" },
750 };
751 
752 /* number of ETHTOOL_GSTATS u64's */
753 #define VORTEX_NUM_STATS    5
754 
755 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
756 				   int chip_idx, int card_idx);
757 static int vortex_up(struct net_device *dev);
758 static void vortex_down(struct net_device *dev, int final);
759 static int vortex_open(struct net_device *dev);
760 static void mdio_sync(struct vortex_private *vp, int bits);
761 static int mdio_read(struct net_device *dev, int phy_id, int location);
762 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
763 static void vortex_timer(unsigned long arg);
764 static void rx_oom_timer(unsigned long arg);
765 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
766 				     struct net_device *dev);
767 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
768 					struct net_device *dev);
769 static int vortex_rx(struct net_device *dev);
770 static int boomerang_rx(struct net_device *dev);
771 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
772 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
773 static int vortex_close(struct net_device *dev);
774 static void dump_tx_ring(struct net_device *dev);
775 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
776 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
777 static void set_rx_mode(struct net_device *dev);
778 #ifdef CONFIG_PCI
779 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
780 #endif
781 static void vortex_tx_timeout(struct net_device *dev);
782 static void acpi_set_WOL(struct net_device *dev);
783 static const struct ethtool_ops vortex_ethtool_ops;
784 static void set_8021q_mode(struct net_device *dev, int enable);
785 
786 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
787 /* Option count limit only -- unlimited interfaces are supported. */
788 #define MAX_UNITS 8
789 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
790 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
794 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
795 static int global_options = -1;
796 static int global_full_duplex = -1;
797 static int global_enable_wol = -1;
798 static int global_use_mmio = -1;
799 
800 /* Variables to work-around the Compaq PCI BIOS32 problem. */
801 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
802 static struct net_device *compaq_net_device;
803 
804 static int vortex_cards_found;
805 
806 module_param(debug, int, 0);
807 module_param(global_options, int, 0);
808 module_param_array(options, int, NULL, 0);
809 module_param(global_full_duplex, int, 0);
810 module_param_array(full_duplex, int, NULL, 0);
811 module_param_array(hw_checksums, int, NULL, 0);
812 module_param_array(flow_ctrl, int, NULL, 0);
813 module_param(global_enable_wol, int, 0);
814 module_param_array(enable_wol, int, NULL, 0);
815 module_param(rx_copybreak, int, 0);
816 module_param(max_interrupt_work, int, 0);
817 module_param(compaq_ioaddr, int, 0);
818 module_param(compaq_irq, int, 0);
819 module_param(compaq_device_id, int, 0);
820 module_param(watchdog, int, 0);
821 module_param(global_use_mmio, int, 0);
822 module_param_array(use_mmio, int, NULL, 0);
823 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
824 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
825 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
826 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
827 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
828 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
829 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
830 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
831 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
832 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
833 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
834 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
835 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
836 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
837 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
838 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
839 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
840 
841 #ifdef CONFIG_NET_POLL_CONTROLLER
poll_vortex(struct net_device * dev)842 static void poll_vortex(struct net_device *dev)
843 {
844 	struct vortex_private *vp = netdev_priv(dev);
845 	unsigned long flags;
846 	local_irq_save(flags);
847 	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
848 	local_irq_restore(flags);
849 }
850 #endif
851 
852 #ifdef CONFIG_PM
853 
vortex_suspend(struct device * dev)854 static int vortex_suspend(struct device *dev)
855 {
856 	struct pci_dev *pdev = to_pci_dev(dev);
857 	struct net_device *ndev = pci_get_drvdata(pdev);
858 
859 	if (!ndev || !netif_running(ndev))
860 		return 0;
861 
862 	netif_device_detach(ndev);
863 	vortex_down(ndev, 1);
864 
865 	return 0;
866 }
867 
vortex_resume(struct device * dev)868 static int vortex_resume(struct device *dev)
869 {
870 	struct pci_dev *pdev = to_pci_dev(dev);
871 	struct net_device *ndev = pci_get_drvdata(pdev);
872 	int err;
873 
874 	if (!ndev || !netif_running(ndev))
875 		return 0;
876 
877 	err = vortex_up(ndev);
878 	if (err)
879 		return err;
880 
881 	netif_device_attach(ndev);
882 
883 	return 0;
884 }
885 
886 static const struct dev_pm_ops vortex_pm_ops = {
887 	.suspend = vortex_suspend,
888 	.resume = vortex_resume,
889 	.freeze = vortex_suspend,
890 	.thaw = vortex_resume,
891 	.poweroff = vortex_suspend,
892 	.restore = vortex_resume,
893 };
894 
895 #define VORTEX_PM_OPS (&vortex_pm_ops)
896 
897 #else /* !CONFIG_PM */
898 
899 #define VORTEX_PM_OPS NULL
900 
901 #endif /* !CONFIG_PM */
902 
903 #ifdef CONFIG_EISA
904 static struct eisa_device_id vortex_eisa_ids[] = {
905 	{ "TCM5920", CH_3C592 },
906 	{ "TCM5970", CH_3C597 },
907 	{ "" }
908 };
909 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
910 
vortex_eisa_probe(struct device * device)911 static int __init vortex_eisa_probe(struct device *device)
912 {
913 	void __iomem *ioaddr;
914 	struct eisa_device *edev;
915 
916 	edev = to_eisa_device(device);
917 
918 	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
919 		return -EBUSY;
920 
921 	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
922 
923 	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
924 					  edev->id.driver_data, vortex_cards_found)) {
925 		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
926 		return -ENODEV;
927 	}
928 
929 	vortex_cards_found++;
930 
931 	return 0;
932 }
933 
vortex_eisa_remove(struct device * device)934 static int __devexit vortex_eisa_remove(struct device *device)
935 {
936 	struct eisa_device *edev;
937 	struct net_device *dev;
938 	struct vortex_private *vp;
939 	void __iomem *ioaddr;
940 
941 	edev = to_eisa_device(device);
942 	dev = eisa_get_drvdata(edev);
943 
944 	if (!dev) {
945 		pr_err("vortex_eisa_remove called for Compaq device!\n");
946 		BUG();
947 	}
948 
949 	vp = netdev_priv(dev);
950 	ioaddr = vp->ioaddr;
951 
952 	unregister_netdev(dev);
953 	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
954 	release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
955 
956 	free_netdev(dev);
957 	return 0;
958 }
959 
960 static struct eisa_driver vortex_eisa_driver = {
961 	.id_table = vortex_eisa_ids,
962 	.driver   = {
963 		.name    = "3c59x",
964 		.probe   = vortex_eisa_probe,
965 		.remove  = __devexit_p(vortex_eisa_remove)
966 	}
967 };
968 
969 #endif /* CONFIG_EISA */
970 
971 /* returns count found (>= 0), or negative on error */
vortex_eisa_init(void)972 static int __init vortex_eisa_init(void)
973 {
974 	int eisa_found = 0;
975 	int orig_cards_found = vortex_cards_found;
976 
977 #ifdef CONFIG_EISA
978 	int err;
979 
980 	err = eisa_driver_register (&vortex_eisa_driver);
981 	if (!err) {
982 		/*
983 		 * Because of the way EISA bus is probed, we cannot assume
984 		 * any device have been found when we exit from
985 		 * eisa_driver_register (the bus root driver may not be
986 		 * initialized yet). So we blindly assume something was
987 		 * found, and let the sysfs magic happened...
988 		 */
989 		eisa_found = 1;
990 	}
991 #endif
992 
993 	/* Special code to work-around the Compaq PCI BIOS32 problem. */
994 	if (compaq_ioaddr) {
995 		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
996 			      compaq_irq, compaq_device_id, vortex_cards_found++);
997 	}
998 
999 	return vortex_cards_found - orig_cards_found + eisa_found;
1000 }
1001 
1002 /* returns count (>= 0), or negative on error */
vortex_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1003 static int __devinit vortex_init_one(struct pci_dev *pdev,
1004 				      const struct pci_device_id *ent)
1005 {
1006 	int rc, unit, pci_bar;
1007 	struct vortex_chip_info *vci;
1008 	void __iomem *ioaddr;
1009 
1010 	/* wake up and enable device */
1011 	rc = pci_enable_device(pdev);
1012 	if (rc < 0)
1013 		goto out;
1014 
1015 	unit = vortex_cards_found;
1016 
1017 	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1018 		/* Determine the default if the user didn't override us */
1019 		vci = &vortex_info_tbl[ent->driver_data];
1020 		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1021 	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1022 		pci_bar = use_mmio[unit] ? 1 : 0;
1023 	else
1024 		pci_bar = global_use_mmio ? 1 : 0;
1025 
1026 	ioaddr = pci_iomap(pdev, pci_bar, 0);
1027 	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1028 		ioaddr = pci_iomap(pdev, 0, 0);
1029 	if (!ioaddr) {
1030 		pci_disable_device(pdev);
1031 		rc = -ENOMEM;
1032 		goto out;
1033 	}
1034 
1035 	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1036 			   ent->driver_data, unit);
1037 	if (rc < 0) {
1038 		pci_iounmap(pdev, ioaddr);
1039 		pci_disable_device(pdev);
1040 		goto out;
1041 	}
1042 
1043 	vortex_cards_found++;
1044 
1045 out:
1046 	return rc;
1047 }
1048 
1049 static const struct net_device_ops boomrang_netdev_ops = {
1050 	.ndo_open		= vortex_open,
1051 	.ndo_stop		= vortex_close,
1052 	.ndo_start_xmit		= boomerang_start_xmit,
1053 	.ndo_tx_timeout		= vortex_tx_timeout,
1054 	.ndo_get_stats		= vortex_get_stats,
1055 #ifdef CONFIG_PCI
1056 	.ndo_do_ioctl 		= vortex_ioctl,
1057 #endif
1058 	.ndo_set_multicast_list = set_rx_mode,
1059 	.ndo_change_mtu		= eth_change_mtu,
1060 	.ndo_set_mac_address 	= eth_mac_addr,
1061 	.ndo_validate_addr	= eth_validate_addr,
1062 #ifdef CONFIG_NET_POLL_CONTROLLER
1063 	.ndo_poll_controller	= poll_vortex,
1064 #endif
1065 };
1066 
1067 static const struct net_device_ops vortex_netdev_ops = {
1068 	.ndo_open		= vortex_open,
1069 	.ndo_stop		= vortex_close,
1070 	.ndo_start_xmit		= vortex_start_xmit,
1071 	.ndo_tx_timeout		= vortex_tx_timeout,
1072 	.ndo_get_stats		= vortex_get_stats,
1073 #ifdef CONFIG_PCI
1074 	.ndo_do_ioctl 		= vortex_ioctl,
1075 #endif
1076 	.ndo_set_multicast_list = set_rx_mode,
1077 	.ndo_change_mtu		= eth_change_mtu,
1078 	.ndo_set_mac_address 	= eth_mac_addr,
1079 	.ndo_validate_addr	= eth_validate_addr,
1080 #ifdef CONFIG_NET_POLL_CONTROLLER
1081 	.ndo_poll_controller	= poll_vortex,
1082 #endif
1083 };
1084 
1085 /*
1086  * Start up the PCI/EISA device which is described by *gendev.
1087  * Return 0 on success.
1088  *
1089  * NOTE: pdev can be NULL, for the case of a Compaq device
1090  */
vortex_probe1(struct device * gendev,void __iomem * ioaddr,int irq,int chip_idx,int card_idx)1091 static int __devinit vortex_probe1(struct device *gendev,
1092 				   void __iomem *ioaddr, int irq,
1093 				   int chip_idx, int card_idx)
1094 {
1095 	struct vortex_private *vp;
1096 	int option;
1097 	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1098 	int i, step;
1099 	struct net_device *dev;
1100 	static int printed_version;
1101 	int retval, print_info;
1102 	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1103 	const char *print_name = "3c59x";
1104 	struct pci_dev *pdev = NULL;
1105 	struct eisa_device *edev = NULL;
1106 
1107 	if (!printed_version) {
1108 		pr_info("%s", version);
1109 		printed_version = 1;
1110 	}
1111 
1112 	if (gendev) {
1113 		if ((pdev = DEVICE_PCI(gendev))) {
1114 			print_name = pci_name(pdev);
1115 		}
1116 
1117 		if ((edev = DEVICE_EISA(gendev))) {
1118 			print_name = dev_name(&edev->dev);
1119 		}
1120 	}
1121 
1122 	dev = alloc_etherdev(sizeof(*vp));
1123 	retval = -ENOMEM;
1124 	if (!dev) {
1125 		pr_err(PFX "unable to allocate etherdev, aborting\n");
1126 		goto out;
1127 	}
1128 	SET_NETDEV_DEV(dev, gendev);
1129 	vp = netdev_priv(dev);
1130 
1131 	option = global_options;
1132 
1133 	/* The lower four bits are the media type. */
1134 	if (dev->mem_start) {
1135 		/*
1136 		 * The 'options' param is passed in as the third arg to the
1137 		 * LILO 'ether=' argument for non-modular use
1138 		 */
1139 		option = dev->mem_start;
1140 	}
1141 	else if (card_idx < MAX_UNITS) {
1142 		if (options[card_idx] >= 0)
1143 			option = options[card_idx];
1144 	}
1145 
1146 	if (option > 0) {
1147 		if (option & 0x8000)
1148 			vortex_debug = 7;
1149 		if (option & 0x4000)
1150 			vortex_debug = 2;
1151 		if (option & 0x0400)
1152 			vp->enable_wol = 1;
1153 	}
1154 
1155 	print_info = (vortex_debug > 1);
1156 	if (print_info)
1157 		pr_info("See Documentation/networking/vortex.txt\n");
1158 
1159 	pr_info("%s: 3Com %s %s at %p.\n",
1160 	       print_name,
1161 	       pdev ? "PCI" : "EISA",
1162 	       vci->name,
1163 	       ioaddr);
1164 
1165 	dev->base_addr = (unsigned long)ioaddr;
1166 	dev->irq = irq;
1167 	dev->mtu = mtu;
1168 	vp->ioaddr = ioaddr;
1169 	vp->large_frames = mtu > 1500;
1170 	vp->drv_flags = vci->drv_flags;
1171 	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1172 	vp->io_size = vci->io_size;
1173 	vp->card_idx = card_idx;
1174 	vp->window = -1;
1175 
1176 	/* module list only for Compaq device */
1177 	if (gendev == NULL) {
1178 		compaq_net_device = dev;
1179 	}
1180 
1181 	/* PCI-only startup logic */
1182 	if (pdev) {
1183 		/* EISA resources already marked, so only PCI needs to do this here */
1184 		/* Ignore return value, because Cardbus drivers already allocate for us */
1185 		if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1186 			vp->must_free_region = 1;
1187 
1188 		/* enable bus-mastering if necessary */
1189 		if (vci->flags & PCI_USES_MASTER)
1190 			pci_set_master(pdev);
1191 
1192 		if (vci->drv_flags & IS_VORTEX) {
1193 			u8 pci_latency;
1194 			u8 new_latency = 248;
1195 
1196 			/* Check the PCI latency value.  On the 3c590 series the latency timer
1197 			   must be set to the maximum value to avoid data corruption that occurs
1198 			   when the timer expires during a transfer.  This bug exists the Vortex
1199 			   chip only. */
1200 			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1201 			if (pci_latency < new_latency) {
1202 				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1203 					print_name, pci_latency, new_latency);
1204 				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1205 			}
1206 		}
1207 	}
1208 
1209 	spin_lock_init(&vp->lock);
1210 	spin_lock_init(&vp->mii_lock);
1211 	spin_lock_init(&vp->window_lock);
1212 	vp->gendev = gendev;
1213 	vp->mii.dev = dev;
1214 	vp->mii.mdio_read = mdio_read;
1215 	vp->mii.mdio_write = mdio_write;
1216 	vp->mii.phy_id_mask = 0x1f;
1217 	vp->mii.reg_num_mask = 0x1f;
1218 
1219 	/* Makes sure rings are at least 16 byte aligned. */
1220 	vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1221 					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1222 					   &vp->rx_ring_dma);
1223 	retval = -ENOMEM;
1224 	if (!vp->rx_ring)
1225 		goto free_region;
1226 
1227 	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1228 	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1229 
1230 	/* if we are a PCI driver, we store info in pdev->driver_data
1231 	 * instead of a module list */
1232 	if (pdev)
1233 		pci_set_drvdata(pdev, dev);
1234 	if (edev)
1235 		eisa_set_drvdata(edev, dev);
1236 
1237 	vp->media_override = 7;
1238 	if (option >= 0) {
1239 		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1240 		if (vp->media_override != 7)
1241 			vp->medialock = 1;
1242 		vp->full_duplex = (option & 0x200) ? 1 : 0;
1243 		vp->bus_master = (option & 16) ? 1 : 0;
1244 	}
1245 
1246 	if (global_full_duplex > 0)
1247 		vp->full_duplex = 1;
1248 	if (global_enable_wol > 0)
1249 		vp->enable_wol = 1;
1250 
1251 	if (card_idx < MAX_UNITS) {
1252 		if (full_duplex[card_idx] > 0)
1253 			vp->full_duplex = 1;
1254 		if (flow_ctrl[card_idx] > 0)
1255 			vp->flow_ctrl = 1;
1256 		if (enable_wol[card_idx] > 0)
1257 			vp->enable_wol = 1;
1258 	}
1259 
1260 	vp->mii.force_media = vp->full_duplex;
1261 	vp->options = option;
1262 	/* Read the station address from the EEPROM. */
1263 	{
1264 		int base;
1265 
1266 		if (vci->drv_flags & EEPROM_8BIT)
1267 			base = 0x230;
1268 		else if (vci->drv_flags & EEPROM_OFFSET)
1269 			base = EEPROM_Read + 0x30;
1270 		else
1271 			base = EEPROM_Read;
1272 
1273 		for (i = 0; i < 0x40; i++) {
1274 			int timer;
1275 			window_write16(vp, base + i, 0, Wn0EepromCmd);
1276 			/* Pause for at least 162 us. for the read to take place. */
1277 			for (timer = 10; timer >= 0; timer--) {
1278 				udelay(162);
1279 				if ((window_read16(vp, 0, Wn0EepromCmd) &
1280 				     0x8000) == 0)
1281 					break;
1282 			}
1283 			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1284 		}
1285 	}
1286 	for (i = 0; i < 0x18; i++)
1287 		checksum ^= eeprom[i];
1288 	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1289 	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1290 		while (i < 0x21)
1291 			checksum ^= eeprom[i++];
1292 		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1293 	}
1294 	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1295 		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1296 	for (i = 0; i < 3; i++)
1297 		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1298 	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1299 	if (print_info)
1300 		pr_cont(" %pM", dev->dev_addr);
1301 	/* Unfortunately an all zero eeprom passes the checksum and this
1302 	   gets found in the wild in failure cases. Crypto is hard 8) */
1303 	if (!is_valid_ether_addr(dev->dev_addr)) {
1304 		retval = -EINVAL;
1305 		pr_err("*** EEPROM MAC address is invalid.\n");
1306 		goto free_ring;	/* With every pack */
1307 	}
1308 	for (i = 0; i < 6; i++)
1309 		window_write8(vp, dev->dev_addr[i], 2, i);
1310 
1311 	if (print_info)
1312 		pr_cont(", IRQ %d\n", dev->irq);
1313 	/* Tell them about an invalid IRQ. */
1314 	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1315 		pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1316 			   dev->irq);
1317 
1318 	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1319 	if (print_info) {
1320 		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1321 			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1322 			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1323 	}
1324 
1325 
1326 	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1327 		unsigned short n;
1328 
1329 		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1330 		if (!vp->cb_fn_base) {
1331 			retval = -ENOMEM;
1332 			goto free_ring;
1333 		}
1334 
1335 		if (print_info) {
1336 			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1337 				print_name,
1338 				(unsigned long long)pci_resource_start(pdev, 2),
1339 				vp->cb_fn_base);
1340 		}
1341 
1342 		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1343 		if (vp->drv_flags & INVERT_LED_PWR)
1344 			n |= 0x10;
1345 		if (vp->drv_flags & INVERT_MII_PWR)
1346 			n |= 0x4000;
1347 		window_write16(vp, n, 2, Wn2_ResetOptions);
1348 		if (vp->drv_flags & WNO_XCVR_PWR) {
1349 			window_write16(vp, 0x0800, 0, 0);
1350 		}
1351 	}
1352 
1353 	/* Extract our information from the EEPROM data. */
1354 	vp->info1 = eeprom[13];
1355 	vp->info2 = eeprom[15];
1356 	vp->capabilities = eeprom[16];
1357 
1358 	if (vp->info1 & 0x8000) {
1359 		vp->full_duplex = 1;
1360 		if (print_info)
1361 			pr_info("Full duplex capable\n");
1362 	}
1363 
1364 	{
1365 		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1366 		unsigned int config;
1367 		vp->available_media = window_read16(vp, 3, Wn3_Options);
1368 		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1369 			vp->available_media = 0x40;
1370 		config = window_read32(vp, 3, Wn3_Config);
1371 		if (print_info) {
1372 			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1373 				config, window_read16(vp, 3, Wn3_Options));
1374 			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1375 				   8 << RAM_SIZE(config),
1376 				   RAM_WIDTH(config) ? "word" : "byte",
1377 				   ram_split[RAM_SPLIT(config)],
1378 				   AUTOSELECT(config) ? "autoselect/" : "",
1379 				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1380 				   media_tbl[XCVR(config)].name);
1381 		}
1382 		vp->default_media = XCVR(config);
1383 		if (vp->default_media == XCVR_NWAY)
1384 			vp->has_nway = 1;
1385 		vp->autoselect = AUTOSELECT(config);
1386 	}
1387 
1388 	if (vp->media_override != 7) {
1389 		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1390 				print_name, vp->media_override,
1391 				media_tbl[vp->media_override].name);
1392 		dev->if_port = vp->media_override;
1393 	} else
1394 		dev->if_port = vp->default_media;
1395 
1396 	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1397 		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1398 		int phy, phy_idx = 0;
1399 		mii_preamble_required++;
1400 		if (vp->drv_flags & EXTRA_PREAMBLE)
1401 			mii_preamble_required++;
1402 		mdio_sync(vp, 32);
1403 		mdio_read(dev, 24, MII_BMSR);
1404 		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1405 			int mii_status, phyx;
1406 
1407 			/*
1408 			 * For the 3c905CX we look at index 24 first, because it bogusly
1409 			 * reports an external PHY at all indices
1410 			 */
1411 			if (phy == 0)
1412 				phyx = 24;
1413 			else if (phy <= 24)
1414 				phyx = phy - 1;
1415 			else
1416 				phyx = phy;
1417 			mii_status = mdio_read(dev, phyx, MII_BMSR);
1418 			if (mii_status  &&  mii_status != 0xffff) {
1419 				vp->phys[phy_idx++] = phyx;
1420 				if (print_info) {
1421 					pr_info("  MII transceiver found at address %d, status %4x.\n",
1422 						phyx, mii_status);
1423 				}
1424 				if ((mii_status & 0x0040) == 0)
1425 					mii_preamble_required++;
1426 			}
1427 		}
1428 		mii_preamble_required--;
1429 		if (phy_idx == 0) {
1430 			pr_warning("  ***WARNING*** No MII transceivers found!\n");
1431 			vp->phys[0] = 24;
1432 		} else {
1433 			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1434 			if (vp->full_duplex) {
1435 				/* Only advertise the FD media types. */
1436 				vp->advertising &= ~0x02A0;
1437 				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1438 			}
1439 		}
1440 		vp->mii.phy_id = vp->phys[0];
1441 	}
1442 
1443 	if (vp->capabilities & CapBusMaster) {
1444 		vp->full_bus_master_tx = 1;
1445 		if (print_info) {
1446 			pr_info("  Enabling bus-master transmits and %s receives.\n",
1447 			(vp->info2 & 1) ? "early" : "whole-frame" );
1448 		}
1449 		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1450 		vp->bus_master = 0;		/* AKPM: vortex only */
1451 	}
1452 
1453 	/* The 3c59x-specific entries in the device structure. */
1454 	if (vp->full_bus_master_tx) {
1455 		dev->netdev_ops = &boomrang_netdev_ops;
1456 		/* Actually, it still should work with iommu. */
1457 		if (card_idx < MAX_UNITS &&
1458 		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1459 				hw_checksums[card_idx] == 1)) {
1460 			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1461 		}
1462 	} else
1463 		dev->netdev_ops =  &vortex_netdev_ops;
1464 
1465 	if (print_info) {
1466 		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1467 				print_name,
1468 				(dev->features & NETIF_F_SG) ? "en":"dis",
1469 				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1470 	}
1471 
1472 	dev->ethtool_ops = &vortex_ethtool_ops;
1473 	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1474 
1475 	if (pdev) {
1476 		vp->pm_state_valid = 1;
1477  		pci_save_state(VORTEX_PCI(vp));
1478  		acpi_set_WOL(dev);
1479 	}
1480 	retval = register_netdev(dev);
1481 	if (retval == 0)
1482 		return 0;
1483 
1484 free_ring:
1485 	pci_free_consistent(pdev,
1486 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
1487 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1488 						vp->rx_ring,
1489 						vp->rx_ring_dma);
1490 free_region:
1491 	if (vp->must_free_region)
1492 		release_region(dev->base_addr, vci->io_size);
1493 	free_netdev(dev);
1494 	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1495 out:
1496 	return retval;
1497 }
1498 
1499 static void
issue_and_wait(struct net_device * dev,int cmd)1500 issue_and_wait(struct net_device *dev, int cmd)
1501 {
1502 	struct vortex_private *vp = netdev_priv(dev);
1503 	void __iomem *ioaddr = vp->ioaddr;
1504 	int i;
1505 
1506 	iowrite16(cmd, ioaddr + EL3_CMD);
1507 	for (i = 0; i < 2000; i++) {
1508 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1509 			return;
1510 	}
1511 
1512 	/* OK, that didn't work.  Do it the slow way.  One second */
1513 	for (i = 0; i < 100000; i++) {
1514 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1515 			if (vortex_debug > 1)
1516 				pr_info("%s: command 0x%04x took %d usecs\n",
1517 					   dev->name, cmd, i * 10);
1518 			return;
1519 		}
1520 		udelay(10);
1521 	}
1522 	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1523 			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1524 }
1525 
1526 static void
vortex_set_duplex(struct net_device * dev)1527 vortex_set_duplex(struct net_device *dev)
1528 {
1529 	struct vortex_private *vp = netdev_priv(dev);
1530 
1531 	pr_info("%s:  setting %s-duplex.\n",
1532 		dev->name, (vp->full_duplex) ? "full" : "half");
1533 
1534 	/* Set the full-duplex bit. */
1535 	window_write16(vp,
1536 		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1537 		       (vp->large_frames ? 0x40 : 0) |
1538 		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1539 			0x100 : 0),
1540 		       3, Wn3_MAC_Ctrl);
1541 }
1542 
vortex_check_media(struct net_device * dev,unsigned int init)1543 static void vortex_check_media(struct net_device *dev, unsigned int init)
1544 {
1545 	struct vortex_private *vp = netdev_priv(dev);
1546 	unsigned int ok_to_print = 0;
1547 
1548 	if (vortex_debug > 3)
1549 		ok_to_print = 1;
1550 
1551 	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1552 		vp->full_duplex = vp->mii.full_duplex;
1553 		vortex_set_duplex(dev);
1554 	} else if (init) {
1555 		vortex_set_duplex(dev);
1556 	}
1557 }
1558 
1559 static int
vortex_up(struct net_device * dev)1560 vortex_up(struct net_device *dev)
1561 {
1562 	struct vortex_private *vp = netdev_priv(dev);
1563 	void __iomem *ioaddr = vp->ioaddr;
1564 	unsigned int config;
1565 	int i, mii_reg1, mii_reg5, err = 0;
1566 
1567 	if (VORTEX_PCI(vp)) {
1568 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1569 		if (vp->pm_state_valid)
1570 			pci_restore_state(VORTEX_PCI(vp));
1571 		err = pci_enable_device(VORTEX_PCI(vp));
1572 		if (err) {
1573 			pr_warning("%s: Could not enable device\n",
1574 				dev->name);
1575 			goto err_out;
1576 		}
1577 	}
1578 
1579 	/* Before initializing select the active media port. */
1580 	config = window_read32(vp, 3, Wn3_Config);
1581 
1582 	if (vp->media_override != 7) {
1583 		pr_info("%s: Media override to transceiver %d (%s).\n",
1584 			   dev->name, vp->media_override,
1585 			   media_tbl[vp->media_override].name);
1586 		dev->if_port = vp->media_override;
1587 	} else if (vp->autoselect) {
1588 		if (vp->has_nway) {
1589 			if (vortex_debug > 1)
1590 				pr_info("%s: using NWAY device table, not %d\n",
1591 								dev->name, dev->if_port);
1592 			dev->if_port = XCVR_NWAY;
1593 		} else {
1594 			/* Find first available media type, starting with 100baseTx. */
1595 			dev->if_port = XCVR_100baseTx;
1596 			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1597 				dev->if_port = media_tbl[dev->if_port].next;
1598 			if (vortex_debug > 1)
1599 				pr_info("%s: first available media type: %s\n",
1600 					dev->name, media_tbl[dev->if_port].name);
1601 		}
1602 	} else {
1603 		dev->if_port = vp->default_media;
1604 		if (vortex_debug > 1)
1605 			pr_info("%s: using default media %s\n",
1606 				dev->name, media_tbl[dev->if_port].name);
1607 	}
1608 
1609 	init_timer(&vp->timer);
1610 	vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1611 	vp->timer.data = (unsigned long)dev;
1612 	vp->timer.function = vortex_timer;		/* timer handler */
1613 	add_timer(&vp->timer);
1614 
1615 	init_timer(&vp->rx_oom_timer);
1616 	vp->rx_oom_timer.data = (unsigned long)dev;
1617 	vp->rx_oom_timer.function = rx_oom_timer;
1618 
1619 	if (vortex_debug > 1)
1620 		pr_debug("%s: Initial media type %s.\n",
1621 			   dev->name, media_tbl[dev->if_port].name);
1622 
1623 	vp->full_duplex = vp->mii.force_media;
1624 	config = BFINS(config, dev->if_port, 20, 4);
1625 	if (vortex_debug > 6)
1626 		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1627 	window_write32(vp, config, 3, Wn3_Config);
1628 
1629 	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1630 		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1631 		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1632 		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1633 		vp->mii.full_duplex = vp->full_duplex;
1634 
1635 		vortex_check_media(dev, 1);
1636 	}
1637 	else
1638 		vortex_set_duplex(dev);
1639 
1640 	issue_and_wait(dev, TxReset);
1641 	/*
1642 	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1643 	 */
1644 	issue_and_wait(dev, RxReset|0x04);
1645 
1646 
1647 	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1648 
1649 	if (vortex_debug > 1) {
1650 		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1651 			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1652 	}
1653 
1654 	/* Set the station address and mask in window 2 each time opened. */
1655 	for (i = 0; i < 6; i++)
1656 		window_write8(vp, dev->dev_addr[i], 2, i);
1657 	for (; i < 12; i+=2)
1658 		window_write16(vp, 0, 2, i);
1659 
1660 	if (vp->cb_fn_base) {
1661 		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1662 		if (vp->drv_flags & INVERT_LED_PWR)
1663 			n |= 0x10;
1664 		if (vp->drv_flags & INVERT_MII_PWR)
1665 			n |= 0x4000;
1666 		window_write16(vp, n, 2, Wn2_ResetOptions);
1667 	}
1668 
1669 	if (dev->if_port == XCVR_10base2)
1670 		/* Start the thinnet transceiver. We should really wait 50ms...*/
1671 		iowrite16(StartCoax, ioaddr + EL3_CMD);
1672 	if (dev->if_port != XCVR_NWAY) {
1673 		window_write16(vp,
1674 			       (window_read16(vp, 4, Wn4_Media) &
1675 				~(Media_10TP|Media_SQE)) |
1676 			       media_tbl[dev->if_port].media_bits,
1677 			       4, Wn4_Media);
1678 	}
1679 
1680 	/* Switch to the stats window, and clear all stats by reading. */
1681 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1682 	for (i = 0; i < 10; i++)
1683 		window_read8(vp, 6, i);
1684 	window_read16(vp, 6, 10);
1685 	window_read16(vp, 6, 12);
1686 	/* New: On the Vortex we must also clear the BadSSD counter. */
1687 	window_read8(vp, 4, 12);
1688 	/* ..and on the Boomerang we enable the extra statistics bits. */
1689 	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1690 
1691 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1692 		vp->cur_rx = vp->dirty_rx = 0;
1693 		/* Initialize the RxEarly register as recommended. */
1694 		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1695 		iowrite32(0x0020, ioaddr + PktStatus);
1696 		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1697 	}
1698 	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1699 		vp->cur_tx = vp->dirty_tx = 0;
1700 		if (vp->drv_flags & IS_BOOMERANG)
1701 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1702 		/* Clear the Rx, Tx rings. */
1703 		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1704 			vp->rx_ring[i].status = 0;
1705 		for (i = 0; i < TX_RING_SIZE; i++)
1706 			vp->tx_skbuff[i] = NULL;
1707 		iowrite32(0, ioaddr + DownListPtr);
1708 	}
1709 	/* Set receiver mode: presumably accept b-case and phys addr only. */
1710 	set_rx_mode(dev);
1711 	/* enable 802.1q tagged frames */
1712 	set_8021q_mode(dev, 1);
1713 	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1714 
1715 	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1716 	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1717 	/* Allow status bits to be seen. */
1718 	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1719 		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1720 		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1721 		(vp->bus_master ? DMADone : 0);
1722 	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1723 		(vp->full_bus_master_rx ? 0 : RxComplete) |
1724 		StatsFull | HostError | TxComplete | IntReq
1725 		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1726 	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1727 	/* Ack all pending events, and set active indicator mask. */
1728 	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1729 		 ioaddr + EL3_CMD);
1730 	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1731 	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1732 		iowrite32(0x8000, vp->cb_fn_base + 4);
1733 	netif_start_queue (dev);
1734 err_out:
1735 	return err;
1736 }
1737 
1738 static int
vortex_open(struct net_device * dev)1739 vortex_open(struct net_device *dev)
1740 {
1741 	struct vortex_private *vp = netdev_priv(dev);
1742 	int i;
1743 	int retval;
1744 
1745 	/* Use the now-standard shared IRQ implementation. */
1746 	if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1747 				boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1748 		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1749 		goto err;
1750 	}
1751 
1752 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1753 		if (vortex_debug > 2)
1754 			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1755 		for (i = 0; i < RX_RING_SIZE; i++) {
1756 			struct sk_buff *skb;
1757 			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1758 			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1759 			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1760 
1761 			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1762 						 GFP_KERNEL);
1763 			vp->rx_skbuff[i] = skb;
1764 			if (skb == NULL)
1765 				break;			/* Bad news!  */
1766 
1767 			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1768 			vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1769 		}
1770 		if (i != RX_RING_SIZE) {
1771 			int j;
1772 			pr_emerg("%s: no memory for rx ring\n", dev->name);
1773 			for (j = 0; j < i; j++) {
1774 				if (vp->rx_skbuff[j]) {
1775 					dev_kfree_skb(vp->rx_skbuff[j]);
1776 					vp->rx_skbuff[j] = NULL;
1777 				}
1778 			}
1779 			retval = -ENOMEM;
1780 			goto err_free_irq;
1781 		}
1782 		/* Wrap the ring. */
1783 		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1784 	}
1785 
1786 	retval = vortex_up(dev);
1787 	if (!retval)
1788 		goto out;
1789 
1790 err_free_irq:
1791 	free_irq(dev->irq, dev);
1792 err:
1793 	if (vortex_debug > 1)
1794 		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1795 out:
1796 	return retval;
1797 }
1798 
1799 static void
vortex_timer(unsigned long data)1800 vortex_timer(unsigned long data)
1801 {
1802 	struct net_device *dev = (struct net_device *)data;
1803 	struct vortex_private *vp = netdev_priv(dev);
1804 	void __iomem *ioaddr = vp->ioaddr;
1805 	int next_tick = 60*HZ;
1806 	int ok = 0;
1807 	int media_status;
1808 
1809 	if (vortex_debug > 2) {
1810 		pr_debug("%s: Media selection timer tick happened, %s.\n",
1811 			   dev->name, media_tbl[dev->if_port].name);
1812 		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1813 	}
1814 
1815 	media_status = window_read16(vp, 4, Wn4_Media);
1816 	switch (dev->if_port) {
1817 	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1818 		if (media_status & Media_LnkBeat) {
1819 			netif_carrier_on(dev);
1820 			ok = 1;
1821 			if (vortex_debug > 1)
1822 				pr_debug("%s: Media %s has link beat, %x.\n",
1823 					   dev->name, media_tbl[dev->if_port].name, media_status);
1824 		} else {
1825 			netif_carrier_off(dev);
1826 			if (vortex_debug > 1) {
1827 				pr_debug("%s: Media %s has no link beat, %x.\n",
1828 					   dev->name, media_tbl[dev->if_port].name, media_status);
1829 			}
1830 		}
1831 		break;
1832 	case XCVR_MII: case XCVR_NWAY:
1833 		{
1834 			ok = 1;
1835 			vortex_check_media(dev, 0);
1836 		}
1837 		break;
1838 	  default:					/* Other media types handled by Tx timeouts. */
1839 		if (vortex_debug > 1)
1840 		  pr_debug("%s: Media %s has no indication, %x.\n",
1841 				 dev->name, media_tbl[dev->if_port].name, media_status);
1842 		ok = 1;
1843 	}
1844 
1845 	if (!netif_carrier_ok(dev))
1846 		next_tick = 5*HZ;
1847 
1848 	if (vp->medialock)
1849 		goto leave_media_alone;
1850 
1851 	if (!ok) {
1852 		unsigned int config;
1853 
1854 		spin_lock_irq(&vp->lock);
1855 
1856 		do {
1857 			dev->if_port = media_tbl[dev->if_port].next;
1858 		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1859 		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1860 		  dev->if_port = vp->default_media;
1861 		  if (vortex_debug > 1)
1862 			pr_debug("%s: Media selection failing, using default %s port.\n",
1863 				   dev->name, media_tbl[dev->if_port].name);
1864 		} else {
1865 			if (vortex_debug > 1)
1866 				pr_debug("%s: Media selection failed, now trying %s port.\n",
1867 					   dev->name, media_tbl[dev->if_port].name);
1868 			next_tick = media_tbl[dev->if_port].wait;
1869 		}
1870 		window_write16(vp,
1871 			       (media_status & ~(Media_10TP|Media_SQE)) |
1872 			       media_tbl[dev->if_port].media_bits,
1873 			       4, Wn4_Media);
1874 
1875 		config = window_read32(vp, 3, Wn3_Config);
1876 		config = BFINS(config, dev->if_port, 20, 4);
1877 		window_write32(vp, config, 3, Wn3_Config);
1878 
1879 		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1880 			 ioaddr + EL3_CMD);
1881 		if (vortex_debug > 1)
1882 			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1883 		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1884 
1885 		spin_unlock_irq(&vp->lock);
1886 	}
1887 
1888 leave_media_alone:
1889 	if (vortex_debug > 2)
1890 	  pr_debug("%s: Media selection timer finished, %s.\n",
1891 			 dev->name, media_tbl[dev->if_port].name);
1892 
1893 	mod_timer(&vp->timer, RUN_AT(next_tick));
1894 	if (vp->deferred)
1895 		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1896 }
1897 
vortex_tx_timeout(struct net_device * dev)1898 static void vortex_tx_timeout(struct net_device *dev)
1899 {
1900 	struct vortex_private *vp = netdev_priv(dev);
1901 	void __iomem *ioaddr = vp->ioaddr;
1902 
1903 	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1904 		   dev->name, ioread8(ioaddr + TxStatus),
1905 		   ioread16(ioaddr + EL3_STATUS));
1906 	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1907 			window_read16(vp, 4, Wn4_NetDiag),
1908 			window_read16(vp, 4, Wn4_Media),
1909 			ioread32(ioaddr + PktStatus),
1910 			window_read16(vp, 4, Wn4_FIFODiag));
1911 	/* Slight code bloat to be user friendly. */
1912 	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1913 		pr_err("%s: Transmitter encountered 16 collisions --"
1914 			   " network cable problem?\n", dev->name);
1915 	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1916 		pr_err("%s: Interrupt posted but not delivered --"
1917 			   " IRQ blocked by another device?\n", dev->name);
1918 		/* Bad idea here.. but we might as well handle a few events. */
1919 		{
1920 			/*
1921 			 * Block interrupts because vortex_interrupt does a bare spin_lock()
1922 			 */
1923 			unsigned long flags;
1924 			local_irq_save(flags);
1925 			if (vp->full_bus_master_tx)
1926 				boomerang_interrupt(dev->irq, dev);
1927 			else
1928 				vortex_interrupt(dev->irq, dev);
1929 			local_irq_restore(flags);
1930 		}
1931 	}
1932 
1933 	if (vortex_debug > 0)
1934 		dump_tx_ring(dev);
1935 
1936 	issue_and_wait(dev, TxReset);
1937 
1938 	dev->stats.tx_errors++;
1939 	if (vp->full_bus_master_tx) {
1940 		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1941 		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1942 			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1943 				 ioaddr + DownListPtr);
1944 		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1945 			netif_wake_queue (dev);
1946 		if (vp->drv_flags & IS_BOOMERANG)
1947 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1948 		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1949 	} else {
1950 		dev->stats.tx_dropped++;
1951 		netif_wake_queue(dev);
1952 	}
1953 
1954 	/* Issue Tx Enable */
1955 	iowrite16(TxEnable, ioaddr + EL3_CMD);
1956 	dev->trans_start = jiffies; /* prevent tx timeout */
1957 }
1958 
1959 /*
1960  * Handle uncommon interrupt sources.  This is a separate routine to minimize
1961  * the cache impact.
1962  */
1963 static void
vortex_error(struct net_device * dev,int status)1964 vortex_error(struct net_device *dev, int status)
1965 {
1966 	struct vortex_private *vp = netdev_priv(dev);
1967 	void __iomem *ioaddr = vp->ioaddr;
1968 	int do_tx_reset = 0, reset_mask = 0;
1969 	unsigned char tx_status = 0;
1970 
1971 	if (vortex_debug > 2) {
1972 		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1973 	}
1974 
1975 	if (status & TxComplete) {			/* Really "TxError" for us. */
1976 		tx_status = ioread8(ioaddr + TxStatus);
1977 		/* Presumably a tx-timeout. We must merely re-enable. */
1978 		if (vortex_debug > 2 ||
1979 		    (tx_status != 0x88 && vortex_debug > 0)) {
1980 			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1981 				   dev->name, tx_status);
1982 			if (tx_status == 0x82) {
1983 				pr_err("Probably a duplex mismatch.  See "
1984 						"Documentation/networking/vortex.txt\n");
1985 			}
1986 			dump_tx_ring(dev);
1987 		}
1988 		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1989 		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1990 		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1991 		iowrite8(0, ioaddr + TxStatus);
1992 		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1993 			do_tx_reset = 1;
1994 		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1995 			do_tx_reset = 1;
1996 			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1997 		} else {				/* Merely re-enable the transmitter. */
1998 			iowrite16(TxEnable, ioaddr + EL3_CMD);
1999 		}
2000 	}
2001 
2002 	if (status & RxEarly)				/* Rx early is unused. */
2003 		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2004 
2005 	if (status & StatsFull) {			/* Empty statistics. */
2006 		static int DoneDidThat;
2007 		if (vortex_debug > 4)
2008 			pr_debug("%s: Updating stats.\n", dev->name);
2009 		update_stats(ioaddr, dev);
2010 		/* HACK: Disable statistics as an interrupt source. */
2011 		/* This occurs when we have the wrong media type! */
2012 		if (DoneDidThat == 0  &&
2013 			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2014 			pr_warning("%s: Updating statistics failed, disabling "
2015 				   "stats as an interrupt source.\n", dev->name);
2016 			iowrite16(SetIntrEnb |
2017 				  (window_read16(vp, 5, 10) & ~StatsFull),
2018 				  ioaddr + EL3_CMD);
2019 			vp->intr_enable &= ~StatsFull;
2020 			DoneDidThat++;
2021 		}
2022 	}
2023 	if (status & IntReq) {		/* Restore all interrupt sources.  */
2024 		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2025 		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2026 	}
2027 	if (status & HostError) {
2028 		u16 fifo_diag;
2029 		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2030 		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2031 			   dev->name, fifo_diag);
2032 		/* Adapter failure requires Tx/Rx reset and reinit. */
2033 		if (vp->full_bus_master_tx) {
2034 			int bus_status = ioread32(ioaddr + PktStatus);
2035 			/* 0x80000000 PCI master abort. */
2036 			/* 0x40000000 PCI target abort. */
2037 			if (vortex_debug)
2038 				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2039 
2040 			/* In this case, blow the card away */
2041 			/* Must not enter D3 or we can't legally issue the reset! */
2042 			vortex_down(dev, 0);
2043 			issue_and_wait(dev, TotalReset | 0xff);
2044 			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2045 		} else if (fifo_diag & 0x0400)
2046 			do_tx_reset = 1;
2047 		if (fifo_diag & 0x3000) {
2048 			/* Reset Rx fifo and upload logic */
2049 			issue_and_wait(dev, RxReset|0x07);
2050 			/* Set the Rx filter to the current state. */
2051 			set_rx_mode(dev);
2052 			/* enable 802.1q VLAN tagged frames */
2053 			set_8021q_mode(dev, 1);
2054 			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2055 			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2056 		}
2057 	}
2058 
2059 	if (do_tx_reset) {
2060 		issue_and_wait(dev, TxReset|reset_mask);
2061 		iowrite16(TxEnable, ioaddr + EL3_CMD);
2062 		if (!vp->full_bus_master_tx)
2063 			netif_wake_queue(dev);
2064 	}
2065 }
2066 
2067 static netdev_tx_t
vortex_start_xmit(struct sk_buff * skb,struct net_device * dev)2068 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2069 {
2070 	struct vortex_private *vp = netdev_priv(dev);
2071 	void __iomem *ioaddr = vp->ioaddr;
2072 
2073 	/* Put out the doubleword header... */
2074 	iowrite32(skb->len, ioaddr + TX_FIFO);
2075 	if (vp->bus_master) {
2076 		/* Set the bus-master controller to transfer the packet. */
2077 		int len = (skb->len + 3) & ~3;
2078 		vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2079 						PCI_DMA_TODEVICE);
2080 		spin_lock_irq(&vp->window_lock);
2081 		window_set(vp, 7);
2082 		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2083 		iowrite16(len, ioaddr + Wn7_MasterLen);
2084 		spin_unlock_irq(&vp->window_lock);
2085 		vp->tx_skb = skb;
2086 		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2087 		/* netif_wake_queue() will be called at the DMADone interrupt. */
2088 	} else {
2089 		/* ... and the packet rounded to a doubleword. */
2090 		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2091 		dev_kfree_skb (skb);
2092 		if (ioread16(ioaddr + TxFree) > 1536) {
2093 			netif_start_queue (dev);	/* AKPM: redundant? */
2094 		} else {
2095 			/* Interrupt us when the FIFO has room for max-sized packet. */
2096 			netif_stop_queue(dev);
2097 			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2098 		}
2099 	}
2100 
2101 
2102 	/* Clear the Tx status stack. */
2103 	{
2104 		int tx_status;
2105 		int i = 32;
2106 
2107 		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2108 			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2109 				if (vortex_debug > 2)
2110 				  pr_debug("%s: Tx error, status %2.2x.\n",
2111 						 dev->name, tx_status);
2112 				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2113 				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2114 				if (tx_status & 0x30) {
2115 					issue_and_wait(dev, TxReset);
2116 				}
2117 				iowrite16(TxEnable, ioaddr + EL3_CMD);
2118 			}
2119 			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2120 		}
2121 	}
2122 	return NETDEV_TX_OK;
2123 }
2124 
2125 static netdev_tx_t
boomerang_start_xmit(struct sk_buff * skb,struct net_device * dev)2126 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2127 {
2128 	struct vortex_private *vp = netdev_priv(dev);
2129 	void __iomem *ioaddr = vp->ioaddr;
2130 	/* Calculate the next Tx descriptor entry. */
2131 	int entry = vp->cur_tx % TX_RING_SIZE;
2132 	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2133 	unsigned long flags;
2134 
2135 	if (vortex_debug > 6) {
2136 		pr_debug("boomerang_start_xmit()\n");
2137 		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2138 			   dev->name, vp->cur_tx);
2139 	}
2140 
2141 	/*
2142 	 * We can't allow a recursion from our interrupt handler back into the
2143 	 * tx routine, as they take the same spin lock, and that causes
2144 	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2145 	 * a bit
2146 	 */
2147 	if (vp->handling_irq)
2148 		return NETDEV_TX_BUSY;
2149 
2150 	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2151 		if (vortex_debug > 0)
2152 			pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2153 				   dev->name);
2154 		netif_stop_queue(dev);
2155 		return NETDEV_TX_BUSY;
2156 	}
2157 
2158 	vp->tx_skbuff[entry] = skb;
2159 
2160 	vp->tx_ring[entry].next = 0;
2161 #if DO_ZEROCOPY
2162 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2163 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2164 	else
2165 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2166 
2167 	if (!skb_shinfo(skb)->nr_frags) {
2168 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2169 										skb->len, PCI_DMA_TODEVICE));
2170 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2171 	} else {
2172 		int i;
2173 
2174 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2175 										skb_headlen(skb), PCI_DMA_TODEVICE));
2176 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2177 
2178 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2179 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2180 
2181 			vp->tx_ring[entry].frag[i+1].addr =
2182 					cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2183 											   (void*)page_address(frag->page) + frag->page_offset,
2184 											   frag->size, PCI_DMA_TODEVICE));
2185 
2186 			if (i == skb_shinfo(skb)->nr_frags-1)
2187 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2188 			else
2189 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2190 		}
2191 	}
2192 #else
2193 	vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2194 	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2195 	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2196 #endif
2197 
2198 	spin_lock_irqsave(&vp->lock, flags);
2199 	/* Wait for the stall to complete. */
2200 	issue_and_wait(dev, DownStall);
2201 	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2202 	if (ioread32(ioaddr + DownListPtr) == 0) {
2203 		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2204 		vp->queued_packet++;
2205 	}
2206 
2207 	vp->cur_tx++;
2208 	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2209 		netif_stop_queue (dev);
2210 	} else {					/* Clear previous interrupt enable. */
2211 #if defined(tx_interrupt_mitigation)
2212 		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2213 		 * were selected, this would corrupt DN_COMPLETE. No?
2214 		 */
2215 		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2216 #endif
2217 	}
2218 	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2219 	spin_unlock_irqrestore(&vp->lock, flags);
2220 	return NETDEV_TX_OK;
2221 }
2222 
2223 /* The interrupt handler does all of the Rx thread work and cleans up
2224    after the Tx thread. */
2225 
2226 /*
2227  * This is the ISR for the vortex series chips.
2228  * full_bus_master_tx == 0 && full_bus_master_rx == 0
2229  */
2230 
2231 static irqreturn_t
vortex_interrupt(int irq,void * dev_id)2232 vortex_interrupt(int irq, void *dev_id)
2233 {
2234 	struct net_device *dev = dev_id;
2235 	struct vortex_private *vp = netdev_priv(dev);
2236 	void __iomem *ioaddr;
2237 	int status;
2238 	int work_done = max_interrupt_work;
2239 	int handled = 0;
2240 
2241 	ioaddr = vp->ioaddr;
2242 	spin_lock(&vp->lock);
2243 
2244 	status = ioread16(ioaddr + EL3_STATUS);
2245 
2246 	if (vortex_debug > 6)
2247 		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2248 
2249 	if ((status & IntLatch) == 0)
2250 		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2251 	handled = 1;
2252 
2253 	if (status & IntReq) {
2254 		status |= vp->deferred;
2255 		vp->deferred = 0;
2256 	}
2257 
2258 	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2259 		goto handler_exit;
2260 
2261 	if (vortex_debug > 4)
2262 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2263 			   dev->name, status, ioread8(ioaddr + Timer));
2264 
2265 	spin_lock(&vp->window_lock);
2266 	window_set(vp, 7);
2267 
2268 	do {
2269 		if (vortex_debug > 5)
2270 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2271 					   dev->name, status);
2272 		if (status & RxComplete)
2273 			vortex_rx(dev);
2274 
2275 		if (status & TxAvailable) {
2276 			if (vortex_debug > 5)
2277 				pr_debug("	TX room bit was handled.\n");
2278 			/* There's room in the FIFO for a full-sized packet. */
2279 			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2280 			netif_wake_queue (dev);
2281 		}
2282 
2283 		if (status & DMADone) {
2284 			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2285 				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2286 				pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2287 				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2288 				if (ioread16(ioaddr + TxFree) > 1536) {
2289 					/*
2290 					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2291 					 * insufficient FIFO room, the TxAvailable test will succeed and call
2292 					 * netif_wake_queue()
2293 					 */
2294 					netif_wake_queue(dev);
2295 				} else { /* Interrupt when FIFO has room for max-sized packet. */
2296 					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2297 					netif_stop_queue(dev);
2298 				}
2299 			}
2300 		}
2301 		/* Check for all uncommon interrupts at once. */
2302 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2303 			if (status == 0xffff)
2304 				break;
2305 			if (status & RxEarly)
2306 				vortex_rx(dev);
2307 			spin_unlock(&vp->window_lock);
2308 			vortex_error(dev, status);
2309 			spin_lock(&vp->window_lock);
2310 			window_set(vp, 7);
2311 		}
2312 
2313 		if (--work_done < 0) {
2314 			pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2315 				dev->name, status);
2316 			/* Disable all pending interrupts. */
2317 			do {
2318 				vp->deferred |= status;
2319 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2320 					 ioaddr + EL3_CMD);
2321 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2322 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2323 			/* The timer will reenable interrupts. */
2324 			mod_timer(&vp->timer, jiffies + 1*HZ);
2325 			break;
2326 		}
2327 		/* Acknowledge the IRQ. */
2328 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2329 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2330 
2331 	spin_unlock(&vp->window_lock);
2332 
2333 	if (vortex_debug > 4)
2334 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2335 			   dev->name, status);
2336 handler_exit:
2337 	spin_unlock(&vp->lock);
2338 	return IRQ_RETVAL(handled);
2339 }
2340 
2341 /*
2342  * This is the ISR for the boomerang series chips.
2343  * full_bus_master_tx == 1 && full_bus_master_rx == 1
2344  */
2345 
2346 static irqreturn_t
boomerang_interrupt(int irq,void * dev_id)2347 boomerang_interrupt(int irq, void *dev_id)
2348 {
2349 	struct net_device *dev = dev_id;
2350 	struct vortex_private *vp = netdev_priv(dev);
2351 	void __iomem *ioaddr;
2352 	int status;
2353 	int work_done = max_interrupt_work;
2354 
2355 	ioaddr = vp->ioaddr;
2356 
2357 
2358 	/*
2359 	 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2360 	 * and boomerang_start_xmit
2361 	 */
2362 	spin_lock(&vp->lock);
2363 	vp->handling_irq = 1;
2364 
2365 	status = ioread16(ioaddr + EL3_STATUS);
2366 
2367 	if (vortex_debug > 6)
2368 		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2369 
2370 	if ((status & IntLatch) == 0)
2371 		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2372 
2373 	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2374 		if (vortex_debug > 1)
2375 			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2376 		goto handler_exit;
2377 	}
2378 
2379 	if (status & IntReq) {
2380 		status |= vp->deferred;
2381 		vp->deferred = 0;
2382 	}
2383 
2384 	if (vortex_debug > 4)
2385 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2386 			   dev->name, status, ioread8(ioaddr + Timer));
2387 	do {
2388 		if (vortex_debug > 5)
2389 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2390 					   dev->name, status);
2391 		if (status & UpComplete) {
2392 			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2393 			if (vortex_debug > 5)
2394 				pr_debug("boomerang_interrupt->boomerang_rx\n");
2395 			boomerang_rx(dev);
2396 		}
2397 
2398 		if (status & DownComplete) {
2399 			unsigned int dirty_tx = vp->dirty_tx;
2400 
2401 			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2402 			while (vp->cur_tx - dirty_tx > 0) {
2403 				int entry = dirty_tx % TX_RING_SIZE;
2404 #if 1	/* AKPM: the latter is faster, but cyclone-only */
2405 				if (ioread32(ioaddr + DownListPtr) ==
2406 					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2407 					break;			/* It still hasn't been processed. */
2408 #else
2409 				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2410 					break;			/* It still hasn't been processed. */
2411 #endif
2412 
2413 				if (vp->tx_skbuff[entry]) {
2414 					struct sk_buff *skb = vp->tx_skbuff[entry];
2415 #if DO_ZEROCOPY
2416 					int i;
2417 					for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2418 							pci_unmap_single(VORTEX_PCI(vp),
2419 											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2420 											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2421 											 PCI_DMA_TODEVICE);
2422 #else
2423 					pci_unmap_single(VORTEX_PCI(vp),
2424 						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2425 #endif
2426 					dev_kfree_skb_irq(skb);
2427 					vp->tx_skbuff[entry] = NULL;
2428 				} else {
2429 					pr_debug("boomerang_interrupt: no skb!\n");
2430 				}
2431 				/* dev->stats.tx_packets++;  Counted below. */
2432 				dirty_tx++;
2433 			}
2434 			vp->dirty_tx = dirty_tx;
2435 			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2436 				if (vortex_debug > 6)
2437 					pr_debug("boomerang_interrupt: wake queue\n");
2438 				netif_wake_queue (dev);
2439 			}
2440 		}
2441 
2442 		/* Check for all uncommon interrupts at once. */
2443 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2444 			vortex_error(dev, status);
2445 
2446 		if (--work_done < 0) {
2447 			pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2448 				dev->name, status);
2449 			/* Disable all pending interrupts. */
2450 			do {
2451 				vp->deferred |= status;
2452 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2453 					 ioaddr + EL3_CMD);
2454 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2455 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2456 			/* The timer will reenable interrupts. */
2457 			mod_timer(&vp->timer, jiffies + 1*HZ);
2458 			break;
2459 		}
2460 		/* Acknowledge the IRQ. */
2461 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2462 		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2463 			iowrite32(0x8000, vp->cb_fn_base + 4);
2464 
2465 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2466 
2467 	if (vortex_debug > 4)
2468 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2469 			   dev->name, status);
2470 handler_exit:
2471 	vp->handling_irq = 0;
2472 	spin_unlock(&vp->lock);
2473 	return IRQ_HANDLED;
2474 }
2475 
vortex_rx(struct net_device * dev)2476 static int vortex_rx(struct net_device *dev)
2477 {
2478 	struct vortex_private *vp = netdev_priv(dev);
2479 	void __iomem *ioaddr = vp->ioaddr;
2480 	int i;
2481 	short rx_status;
2482 
2483 	if (vortex_debug > 5)
2484 		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2485 			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2486 	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2487 		if (rx_status & 0x4000) { /* Error, update stats. */
2488 			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2489 			if (vortex_debug > 2)
2490 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2491 			dev->stats.rx_errors++;
2492 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2493 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2494 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2495 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2496 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2497 		} else {
2498 			/* The packet length: up to 4.5K!. */
2499 			int pkt_len = rx_status & 0x1fff;
2500 			struct sk_buff *skb;
2501 
2502 			skb = dev_alloc_skb(pkt_len + 5);
2503 			if (vortex_debug > 4)
2504 				pr_debug("Receiving packet size %d status %4.4x.\n",
2505 					   pkt_len, rx_status);
2506 			if (skb != NULL) {
2507 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2508 				/* 'skb_put()' points to the start of sk_buff data area. */
2509 				if (vp->bus_master &&
2510 					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2511 					dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2512 									   pkt_len, PCI_DMA_FROMDEVICE);
2513 					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2514 					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2515 					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2516 					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2517 						;
2518 					pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2519 				} else {
2520 					ioread32_rep(ioaddr + RX_FIFO,
2521 					             skb_put(skb, pkt_len),
2522 						     (pkt_len + 3) >> 2);
2523 				}
2524 				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2525 				skb->protocol = eth_type_trans(skb, dev);
2526 				netif_rx(skb);
2527 				dev->stats.rx_packets++;
2528 				/* Wait a limited time to go to next packet. */
2529 				for (i = 200; i >= 0; i--)
2530 					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2531 						break;
2532 				continue;
2533 			} else if (vortex_debug > 0)
2534 				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2535 					dev->name, pkt_len);
2536 			dev->stats.rx_dropped++;
2537 		}
2538 		issue_and_wait(dev, RxDiscard);
2539 	}
2540 
2541 	return 0;
2542 }
2543 
2544 static int
boomerang_rx(struct net_device * dev)2545 boomerang_rx(struct net_device *dev)
2546 {
2547 	struct vortex_private *vp = netdev_priv(dev);
2548 	int entry = vp->cur_rx % RX_RING_SIZE;
2549 	void __iomem *ioaddr = vp->ioaddr;
2550 	int rx_status;
2551 	int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2552 
2553 	if (vortex_debug > 5)
2554 		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2555 
2556 	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2557 		if (--rx_work_limit < 0)
2558 			break;
2559 		if (rx_status & RxDError) { /* Error, update stats. */
2560 			unsigned char rx_error = rx_status >> 16;
2561 			if (vortex_debug > 2)
2562 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2563 			dev->stats.rx_errors++;
2564 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2565 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2566 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2567 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2568 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2569 		} else {
2570 			/* The packet length: up to 4.5K!. */
2571 			int pkt_len = rx_status & 0x1fff;
2572 			struct sk_buff *skb;
2573 			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2574 
2575 			if (vortex_debug > 4)
2576 				pr_debug("Receiving packet size %d status %4.4x.\n",
2577 					   pkt_len, rx_status);
2578 
2579 			/* Check if the packet is long enough to just accept without
2580 			   copying to a properly sized skbuff. */
2581 			if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
2582 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2583 				pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2584 				/* 'skb_put()' points to the start of sk_buff data area. */
2585 				memcpy(skb_put(skb, pkt_len),
2586 					   vp->rx_skbuff[entry]->data,
2587 					   pkt_len);
2588 				pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2589 				vp->rx_copy++;
2590 			} else {
2591 				/* Pass up the skbuff already on the Rx ring. */
2592 				skb = vp->rx_skbuff[entry];
2593 				vp->rx_skbuff[entry] = NULL;
2594 				skb_put(skb, pkt_len);
2595 				pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2596 				vp->rx_nocopy++;
2597 			}
2598 			skb->protocol = eth_type_trans(skb, dev);
2599 			{					/* Use hardware checksum info. */
2600 				int csum_bits = rx_status & 0xee000000;
2601 				if (csum_bits &&
2602 					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2603 					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2604 					skb->ip_summed = CHECKSUM_UNNECESSARY;
2605 					vp->rx_csumhits++;
2606 				}
2607 			}
2608 			netif_rx(skb);
2609 			dev->stats.rx_packets++;
2610 		}
2611 		entry = (++vp->cur_rx) % RX_RING_SIZE;
2612 	}
2613 	/* Refill the Rx ring buffers. */
2614 	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2615 		struct sk_buff *skb;
2616 		entry = vp->dirty_rx % RX_RING_SIZE;
2617 		if (vp->rx_skbuff[entry] == NULL) {
2618 			skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2619 			if (skb == NULL) {
2620 				static unsigned long last_jif;
2621 				if (time_after(jiffies, last_jif + 10 * HZ)) {
2622 					pr_warning("%s: memory shortage\n", dev->name);
2623 					last_jif = jiffies;
2624 				}
2625 				if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2626 					mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2627 				break;			/* Bad news!  */
2628 			}
2629 
2630 			vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2631 			vp->rx_skbuff[entry] = skb;
2632 		}
2633 		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2634 		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2635 	}
2636 	return 0;
2637 }
2638 
2639 /*
2640  * If we've hit a total OOM refilling the Rx ring we poll once a second
2641  * for some memory.  Otherwise there is no way to restart the rx process.
2642  */
2643 static void
rx_oom_timer(unsigned long arg)2644 rx_oom_timer(unsigned long arg)
2645 {
2646 	struct net_device *dev = (struct net_device *)arg;
2647 	struct vortex_private *vp = netdev_priv(dev);
2648 
2649 	spin_lock_irq(&vp->lock);
2650 	if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)	/* This test is redundant, but makes me feel good */
2651 		boomerang_rx(dev);
2652 	if (vortex_debug > 1) {
2653 		pr_debug("%s: rx_oom_timer %s\n", dev->name,
2654 			((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2655 	}
2656 	spin_unlock_irq(&vp->lock);
2657 }
2658 
2659 static void
vortex_down(struct net_device * dev,int final_down)2660 vortex_down(struct net_device *dev, int final_down)
2661 {
2662 	struct vortex_private *vp = netdev_priv(dev);
2663 	void __iomem *ioaddr = vp->ioaddr;
2664 
2665 	netif_stop_queue (dev);
2666 
2667 	del_timer_sync(&vp->rx_oom_timer);
2668 	del_timer_sync(&vp->timer);
2669 
2670 	/* Turn off statistics ASAP.  We update dev->stats below. */
2671 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2672 
2673 	/* Disable the receiver and transmitter. */
2674 	iowrite16(RxDisable, ioaddr + EL3_CMD);
2675 	iowrite16(TxDisable, ioaddr + EL3_CMD);
2676 
2677 	/* Disable receiving 802.1q tagged frames */
2678 	set_8021q_mode(dev, 0);
2679 
2680 	if (dev->if_port == XCVR_10base2)
2681 		/* Turn off thinnet power.  Green! */
2682 		iowrite16(StopCoax, ioaddr + EL3_CMD);
2683 
2684 	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2685 
2686 	update_stats(ioaddr, dev);
2687 	if (vp->full_bus_master_rx)
2688 		iowrite32(0, ioaddr + UpListPtr);
2689 	if (vp->full_bus_master_tx)
2690 		iowrite32(0, ioaddr + DownListPtr);
2691 
2692 	if (final_down && VORTEX_PCI(vp)) {
2693 		vp->pm_state_valid = 1;
2694 		pci_save_state(VORTEX_PCI(vp));
2695 		acpi_set_WOL(dev);
2696 	}
2697 }
2698 
2699 static int
vortex_close(struct net_device * dev)2700 vortex_close(struct net_device *dev)
2701 {
2702 	struct vortex_private *vp = netdev_priv(dev);
2703 	void __iomem *ioaddr = vp->ioaddr;
2704 	int i;
2705 
2706 	if (netif_device_present(dev))
2707 		vortex_down(dev, 1);
2708 
2709 	if (vortex_debug > 1) {
2710 		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2711 			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2712 		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2713 			   " tx_queued %d Rx pre-checksummed %d.\n",
2714 			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2715 	}
2716 
2717 #if DO_ZEROCOPY
2718 	if (vp->rx_csumhits &&
2719 	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2720 	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2721 		pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2722 	}
2723 #endif
2724 
2725 	free_irq(dev->irq, dev);
2726 
2727 	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2728 		for (i = 0; i < RX_RING_SIZE; i++)
2729 			if (vp->rx_skbuff[i]) {
2730 				pci_unmap_single(	VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2731 									PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2732 				dev_kfree_skb(vp->rx_skbuff[i]);
2733 				vp->rx_skbuff[i] = NULL;
2734 			}
2735 	}
2736 	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2737 		for (i = 0; i < TX_RING_SIZE; i++) {
2738 			if (vp->tx_skbuff[i]) {
2739 				struct sk_buff *skb = vp->tx_skbuff[i];
2740 #if DO_ZEROCOPY
2741 				int k;
2742 
2743 				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2744 						pci_unmap_single(VORTEX_PCI(vp),
2745 										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2746 										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2747 										 PCI_DMA_TODEVICE);
2748 #else
2749 				pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2750 #endif
2751 				dev_kfree_skb(skb);
2752 				vp->tx_skbuff[i] = NULL;
2753 			}
2754 		}
2755 	}
2756 
2757 	return 0;
2758 }
2759 
2760 static void
dump_tx_ring(struct net_device * dev)2761 dump_tx_ring(struct net_device *dev)
2762 {
2763 	if (vortex_debug > 0) {
2764 	struct vortex_private *vp = netdev_priv(dev);
2765 		void __iomem *ioaddr = vp->ioaddr;
2766 
2767 		if (vp->full_bus_master_tx) {
2768 			int i;
2769 			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2770 
2771 			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2772 					vp->full_bus_master_tx,
2773 					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2774 					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2775 			pr_err("  Transmit list %8.8x vs. %p.\n",
2776 				   ioread32(ioaddr + DownListPtr),
2777 				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2778 			issue_and_wait(dev, DownStall);
2779 			for (i = 0; i < TX_RING_SIZE; i++) {
2780 				unsigned int length;
2781 
2782 #if DO_ZEROCOPY
2783 				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2784 #else
2785 				length = le32_to_cpu(vp->tx_ring[i].length);
2786 #endif
2787 				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2788 					   i, &vp->tx_ring[i], length,
2789 					   le32_to_cpu(vp->tx_ring[i].status));
2790 			}
2791 			if (!stalled)
2792 				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2793 		}
2794 	}
2795 }
2796 
vortex_get_stats(struct net_device * dev)2797 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2798 {
2799 	struct vortex_private *vp = netdev_priv(dev);
2800 	void __iomem *ioaddr = vp->ioaddr;
2801 	unsigned long flags;
2802 
2803 	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2804 		spin_lock_irqsave (&vp->lock, flags);
2805 		update_stats(ioaddr, dev);
2806 		spin_unlock_irqrestore (&vp->lock, flags);
2807 	}
2808 	return &dev->stats;
2809 }
2810 
2811 /*  Update statistics.
2812 	Unlike with the EL3 we need not worry about interrupts changing
2813 	the window setting from underneath us, but we must still guard
2814 	against a race condition with a StatsUpdate interrupt updating the
2815 	table.  This is done by checking that the ASM (!) code generated uses
2816 	atomic updates with '+='.
2817 	*/
update_stats(void __iomem * ioaddr,struct net_device * dev)2818 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2819 {
2820 	struct vortex_private *vp = netdev_priv(dev);
2821 
2822 	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2823 	/* Switch to the stats window, and read everything. */
2824 	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2825 	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2826 	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2827 	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2828 	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2829 	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2830 						    0x30) << 4;
2831 	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2832 	/* Don't bother with register 9, an extension of registers 6&7.
2833 	   If we do use the 6&7 values the atomic update assumption above
2834 	   is invalid. */
2835 	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2836 	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2837 	/* Extra stats for get_ethtool_stats() */
2838 	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2839 	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2840 	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2841 	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2842 
2843 	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2844 		+ vp->xstats.tx_single_collisions
2845 		+ vp->xstats.tx_max_collisions;
2846 
2847 	{
2848 		u8 up = window_read8(vp, 4, 13);
2849 		dev->stats.rx_bytes += (up & 0x0f) << 16;
2850 		dev->stats.tx_bytes += (up & 0xf0) << 12;
2851 	}
2852 }
2853 
vortex_nway_reset(struct net_device * dev)2854 static int vortex_nway_reset(struct net_device *dev)
2855 {
2856 	struct vortex_private *vp = netdev_priv(dev);
2857 
2858 	return mii_nway_restart(&vp->mii);
2859 }
2860 
vortex_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)2861 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2862 {
2863 	struct vortex_private *vp = netdev_priv(dev);
2864 
2865 	return mii_ethtool_gset(&vp->mii, cmd);
2866 }
2867 
vortex_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)2868 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2869 {
2870 	struct vortex_private *vp = netdev_priv(dev);
2871 
2872 	return mii_ethtool_sset(&vp->mii, cmd);
2873 }
2874 
vortex_get_msglevel(struct net_device * dev)2875 static u32 vortex_get_msglevel(struct net_device *dev)
2876 {
2877 	return vortex_debug;
2878 }
2879 
vortex_set_msglevel(struct net_device * dev,u32 dbg)2880 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2881 {
2882 	vortex_debug = dbg;
2883 }
2884 
vortex_get_sset_count(struct net_device * dev,int sset)2885 static int vortex_get_sset_count(struct net_device *dev, int sset)
2886 {
2887 	switch (sset) {
2888 	case ETH_SS_STATS:
2889 		return VORTEX_NUM_STATS;
2890 	default:
2891 		return -EOPNOTSUPP;
2892 	}
2893 }
2894 
vortex_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2895 static void vortex_get_ethtool_stats(struct net_device *dev,
2896 	struct ethtool_stats *stats, u64 *data)
2897 {
2898 	struct vortex_private *vp = netdev_priv(dev);
2899 	void __iomem *ioaddr = vp->ioaddr;
2900 	unsigned long flags;
2901 
2902 	spin_lock_irqsave(&vp->lock, flags);
2903 	update_stats(ioaddr, dev);
2904 	spin_unlock_irqrestore(&vp->lock, flags);
2905 
2906 	data[0] = vp->xstats.tx_deferred;
2907 	data[1] = vp->xstats.tx_max_collisions;
2908 	data[2] = vp->xstats.tx_multiple_collisions;
2909 	data[3] = vp->xstats.tx_single_collisions;
2910 	data[4] = vp->xstats.rx_bad_ssd;
2911 }
2912 
2913 
vortex_get_strings(struct net_device * dev,u32 stringset,u8 * data)2914 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2915 {
2916 	switch (stringset) {
2917 	case ETH_SS_STATS:
2918 		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2919 		break;
2920 	default:
2921 		WARN_ON(1);
2922 		break;
2923 	}
2924 }
2925 
vortex_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2926 static void vortex_get_drvinfo(struct net_device *dev,
2927 					struct ethtool_drvinfo *info)
2928 {
2929 	struct vortex_private *vp = netdev_priv(dev);
2930 
2931 	strcpy(info->driver, DRV_NAME);
2932 	if (VORTEX_PCI(vp)) {
2933 		strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
2934 	} else {
2935 		if (VORTEX_EISA(vp))
2936 			strcpy(info->bus_info, dev_name(vp->gendev));
2937 		else
2938 			sprintf(info->bus_info, "EISA 0x%lx %d",
2939 					dev->base_addr, dev->irq);
2940 	}
2941 }
2942 
vortex_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2943 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2944 {
2945 	struct vortex_private *vp = netdev_priv(dev);
2946 
2947 	if (!VORTEX_PCI(vp))
2948 		return;
2949 
2950 	wol->supported = WAKE_MAGIC;
2951 
2952 	wol->wolopts = 0;
2953 	if (vp->enable_wol)
2954 		wol->wolopts |= WAKE_MAGIC;
2955 }
2956 
vortex_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2957 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2958 {
2959 	struct vortex_private *vp = netdev_priv(dev);
2960 
2961 	if (!VORTEX_PCI(vp))
2962 		return -EOPNOTSUPP;
2963 
2964 	if (wol->wolopts & ~WAKE_MAGIC)
2965 		return -EINVAL;
2966 
2967 	if (wol->wolopts & WAKE_MAGIC)
2968 		vp->enable_wol = 1;
2969 	else
2970 		vp->enable_wol = 0;
2971 	acpi_set_WOL(dev);
2972 
2973 	return 0;
2974 }
2975 
2976 static const struct ethtool_ops vortex_ethtool_ops = {
2977 	.get_drvinfo		= vortex_get_drvinfo,
2978 	.get_strings            = vortex_get_strings,
2979 	.get_msglevel           = vortex_get_msglevel,
2980 	.set_msglevel           = vortex_set_msglevel,
2981 	.get_ethtool_stats      = vortex_get_ethtool_stats,
2982 	.get_sset_count		= vortex_get_sset_count,
2983 	.get_settings           = vortex_get_settings,
2984 	.set_settings           = vortex_set_settings,
2985 	.get_link               = ethtool_op_get_link,
2986 	.nway_reset             = vortex_nway_reset,
2987 	.get_wol                = vortex_get_wol,
2988 	.set_wol                = vortex_set_wol,
2989 };
2990 
2991 #ifdef CONFIG_PCI
2992 /*
2993  *	Must power the device up to do MDIO operations
2994  */
vortex_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2995 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2996 {
2997 	int err;
2998 	struct vortex_private *vp = netdev_priv(dev);
2999 	pci_power_t state = 0;
3000 
3001 	if(VORTEX_PCI(vp))
3002 		state = VORTEX_PCI(vp)->current_state;
3003 
3004 	/* The kernel core really should have pci_get_power_state() */
3005 
3006 	if(state != 0)
3007 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3008 	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3009 	if(state != 0)
3010 		pci_set_power_state(VORTEX_PCI(vp), state);
3011 
3012 	return err;
3013 }
3014 #endif
3015 
3016 
3017 /* Pre-Cyclone chips have no documented multicast filter, so the only
3018    multicast setting is to receive all multicast frames.  At least
3019    the chip has a very clean way to set the mode, unlike many others. */
set_rx_mode(struct net_device * dev)3020 static void set_rx_mode(struct net_device *dev)
3021 {
3022 	struct vortex_private *vp = netdev_priv(dev);
3023 	void __iomem *ioaddr = vp->ioaddr;
3024 	int new_mode;
3025 
3026 	if (dev->flags & IFF_PROMISC) {
3027 		if (vortex_debug > 3)
3028 			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3029 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3030 	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3031 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3032 	} else
3033 		new_mode = SetRxFilter | RxStation | RxBroadcast;
3034 
3035 	iowrite16(new_mode, ioaddr + EL3_CMD);
3036 }
3037 
3038 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3039 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3040    Note that this must be done after each RxReset due to some backwards
3041    compatibility logic in the Cyclone and Tornado ASICs */
3042 
3043 /* The Ethernet Type used for 802.1q tagged frames */
3044 #define VLAN_ETHER_TYPE 0x8100
3045 
set_8021q_mode(struct net_device * dev,int enable)3046 static void set_8021q_mode(struct net_device *dev, int enable)
3047 {
3048 	struct vortex_private *vp = netdev_priv(dev);
3049 	int mac_ctrl;
3050 
3051 	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3052 		/* cyclone and tornado chipsets can recognize 802.1q
3053 		 * tagged frames and treat them correctly */
3054 
3055 		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3056 		if (enable)
3057 			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3058 
3059 		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3060 
3061 		/* set VlanEtherType to let the hardware checksumming
3062 		   treat tagged frames correctly */
3063 		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3064 	} else {
3065 		/* on older cards we have to enable large frames */
3066 
3067 		vp->large_frames = dev->mtu > 1500 || enable;
3068 
3069 		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3070 		if (vp->large_frames)
3071 			mac_ctrl |= 0x40;
3072 		else
3073 			mac_ctrl &= ~0x40;
3074 		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3075 	}
3076 }
3077 #else
3078 
set_8021q_mode(struct net_device * dev,int enable)3079 static void set_8021q_mode(struct net_device *dev, int enable)
3080 {
3081 }
3082 
3083 
3084 #endif
3085 
3086 /* MII transceiver control section.
3087    Read and write the MII registers using software-generated serial
3088    MDIO protocol.  See the MII specifications or DP83840A data sheet
3089    for details. */
3090 
3091 /* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3092    met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3093    "overclocking" issues. */
mdio_delay(struct vortex_private * vp)3094 static void mdio_delay(struct vortex_private *vp)
3095 {
3096 	window_read32(vp, 4, Wn4_PhysicalMgmt);
3097 }
3098 
3099 #define MDIO_SHIFT_CLK	0x01
3100 #define MDIO_DIR_WRITE	0x04
3101 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3102 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3103 #define MDIO_DATA_READ	0x02
3104 #define MDIO_ENB_IN		0x00
3105 
3106 /* Generate the preamble required for initial synchronization and
3107    a few older transceivers. */
mdio_sync(struct vortex_private * vp,int bits)3108 static void mdio_sync(struct vortex_private *vp, int bits)
3109 {
3110 	/* Establish sync by sending at least 32 logic ones. */
3111 	while (-- bits >= 0) {
3112 		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3113 		mdio_delay(vp);
3114 		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3115 			       4, Wn4_PhysicalMgmt);
3116 		mdio_delay(vp);
3117 	}
3118 }
3119 
mdio_read(struct net_device * dev,int phy_id,int location)3120 static int mdio_read(struct net_device *dev, int phy_id, int location)
3121 {
3122 	int i;
3123 	struct vortex_private *vp = netdev_priv(dev);
3124 	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3125 	unsigned int retval = 0;
3126 
3127 	spin_lock_bh(&vp->mii_lock);
3128 
3129 	if (mii_preamble_required)
3130 		mdio_sync(vp, 32);
3131 
3132 	/* Shift the read command bits out. */
3133 	for (i = 14; i >= 0; i--) {
3134 		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3135 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3136 		mdio_delay(vp);
3137 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3138 			       4, Wn4_PhysicalMgmt);
3139 		mdio_delay(vp);
3140 	}
3141 	/* Read the two transition, 16 data, and wire-idle bits. */
3142 	for (i = 19; i > 0; i--) {
3143 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3144 		mdio_delay(vp);
3145 		retval = (retval << 1) |
3146 			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3147 			  MDIO_DATA_READ) ? 1 : 0);
3148 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3149 			       4, Wn4_PhysicalMgmt);
3150 		mdio_delay(vp);
3151 	}
3152 
3153 	spin_unlock_bh(&vp->mii_lock);
3154 
3155 	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3156 }
3157 
mdio_write(struct net_device * dev,int phy_id,int location,int value)3158 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3159 {
3160 	struct vortex_private *vp = netdev_priv(dev);
3161 	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3162 	int i;
3163 
3164 	spin_lock_bh(&vp->mii_lock);
3165 
3166 	if (mii_preamble_required)
3167 		mdio_sync(vp, 32);
3168 
3169 	/* Shift the command bits out. */
3170 	for (i = 31; i >= 0; i--) {
3171 		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3172 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3173 		mdio_delay(vp);
3174 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3175 			       4, Wn4_PhysicalMgmt);
3176 		mdio_delay(vp);
3177 	}
3178 	/* Leave the interface idle. */
3179 	for (i = 1; i >= 0; i--) {
3180 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3181 		mdio_delay(vp);
3182 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3183 			       4, Wn4_PhysicalMgmt);
3184 		mdio_delay(vp);
3185 	}
3186 
3187 	spin_unlock_bh(&vp->mii_lock);
3188 }
3189 
3190 /* ACPI: Advanced Configuration and Power Interface. */
3191 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
acpi_set_WOL(struct net_device * dev)3192 static void acpi_set_WOL(struct net_device *dev)
3193 {
3194 	struct vortex_private *vp = netdev_priv(dev);
3195 	void __iomem *ioaddr = vp->ioaddr;
3196 
3197 	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3198 
3199 	if (vp->enable_wol) {
3200 		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3201 		window_write16(vp, 2, 7, 0x0c);
3202 		/* The RxFilter must accept the WOL frames. */
3203 		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3204 		iowrite16(RxEnable, ioaddr + EL3_CMD);
3205 
3206 		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3207 			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3208 
3209 			vp->enable_wol = 0;
3210 			return;
3211 		}
3212 
3213 		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3214 			return;
3215 
3216 		/* Change the power state to D3; RxEnable doesn't take effect. */
3217 		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3218 	}
3219 }
3220 
3221 
vortex_remove_one(struct pci_dev * pdev)3222 static void __devexit vortex_remove_one(struct pci_dev *pdev)
3223 {
3224 	struct net_device *dev = pci_get_drvdata(pdev);
3225 	struct vortex_private *vp;
3226 
3227 	if (!dev) {
3228 		pr_err("vortex_remove_one called for Compaq device!\n");
3229 		BUG();
3230 	}
3231 
3232 	vp = netdev_priv(dev);
3233 
3234 	if (vp->cb_fn_base)
3235 		pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3236 
3237 	unregister_netdev(dev);
3238 
3239 	if (VORTEX_PCI(vp)) {
3240 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
3241 		if (vp->pm_state_valid)
3242 			pci_restore_state(VORTEX_PCI(vp));
3243 		pci_disable_device(VORTEX_PCI(vp));
3244 	}
3245 	/* Should really use issue_and_wait() here */
3246 	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3247 	     vp->ioaddr + EL3_CMD);
3248 
3249 	pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3250 
3251 	pci_free_consistent(pdev,
3252 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
3253 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3254 						vp->rx_ring,
3255 						vp->rx_ring_dma);
3256 	if (vp->must_free_region)
3257 		release_region(dev->base_addr, vp->io_size);
3258 	free_netdev(dev);
3259 }
3260 
3261 
3262 static struct pci_driver vortex_driver = {
3263 	.name		= "3c59x",
3264 	.probe		= vortex_init_one,
3265 	.remove		= __devexit_p(vortex_remove_one),
3266 	.id_table	= vortex_pci_tbl,
3267 	.driver.pm	= VORTEX_PM_OPS,
3268 };
3269 
3270 
3271 static int vortex_have_pci;
3272 static int vortex_have_eisa;
3273 
3274 
vortex_init(void)3275 static int __init vortex_init(void)
3276 {
3277 	int pci_rc, eisa_rc;
3278 
3279 	pci_rc = pci_register_driver(&vortex_driver);
3280 	eisa_rc = vortex_eisa_init();
3281 
3282 	if (pci_rc == 0)
3283 		vortex_have_pci = 1;
3284 	if (eisa_rc > 0)
3285 		vortex_have_eisa = 1;
3286 
3287 	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3288 }
3289 
3290 
vortex_eisa_cleanup(void)3291 static void __exit vortex_eisa_cleanup(void)
3292 {
3293 	struct vortex_private *vp;
3294 	void __iomem *ioaddr;
3295 
3296 #ifdef CONFIG_EISA
3297 	/* Take care of the EISA devices */
3298 	eisa_driver_unregister(&vortex_eisa_driver);
3299 #endif
3300 
3301 	if (compaq_net_device) {
3302 		vp = netdev_priv(compaq_net_device);
3303 		ioaddr = ioport_map(compaq_net_device->base_addr,
3304 		                    VORTEX_TOTAL_SIZE);
3305 
3306 		unregister_netdev(compaq_net_device);
3307 		iowrite16(TotalReset, ioaddr + EL3_CMD);
3308 		release_region(compaq_net_device->base_addr,
3309 		               VORTEX_TOTAL_SIZE);
3310 
3311 		free_netdev(compaq_net_device);
3312 	}
3313 }
3314 
3315 
vortex_cleanup(void)3316 static void __exit vortex_cleanup(void)
3317 {
3318 	if (vortex_have_pci)
3319 		pci_unregister_driver(&vortex_driver);
3320 	if (vortex_have_eisa)
3321 		vortex_eisa_cleanup();
3322 }
3323 
3324 
3325 module_init(vortex_init);
3326 module_exit(vortex_cleanup);
3327