1 /* $Id: shubio.h,v 1.1 2002/02/28 17:31:25 marcelo Exp $
2  *
3  * This file is subject to the terms and conditions of the GNU General Public
4  * License.  See the file "COPYING" in the main directory of this archive
5  * for more details.
6  *
7  * Copyright (C) 1992 - 1997, 2000-2003 Silicon Graphics, Inc. All rights reserved.
8  */
9 
10 #ifndef _ASM_IA64_SN_SN2_SHUBIO_H
11 #define _ASM_IA64_SN_SN2_SHUBIO_H
12 
13 #include <asm/sn/arch.h>
14 
15 #define HUB_WIDGET_ID_MAX 0xf
16 #define IIO_NUM_ITTES   7
17 #define HUB_NUM_BIG_WINDOW      (IIO_NUM_ITTES - 1)
18 
19 #define    IIO_WID                   0x00400000    /* Crosstalk Widget Identification */
20                                                    /* This register is also accessible from
21                                                     * Crosstalk at address 0x0.  */
22 #define    IIO_WSTAT                 0x00400008    /* Crosstalk Widget Status */
23 #define    IIO_WCR                   0x00400020    /* Crosstalk Widget Control Register */
24 #define    IIO_ILAPR                 0x00400100    /* IO Local Access Protection Register */
25 #define    IIO_ILAPO                 0x00400108    /* IO Local Access Protection Override */
26 #define    IIO_IOWA                  0x00400110    /* IO Outbound Widget Access */
27 #define    IIO_IIWA                  0x00400118    /* IO Inbound Widget Access */
28 #define    IIO_IIDEM                 0x00400120    /* IO Inbound Device Error Mask */
29 #define    IIO_ILCSR                 0x00400128    /* IO LLP Control and Status Register */
30 #define    IIO_ILLR                  0x00400130    /* IO LLP Log Register    */
31 #define    IIO_IIDSR                 0x00400138    /* IO Interrupt Destination */
32 
33 #define    IIO_IGFX0                 0x00400140    /* IO Graphics Node-Widget Map 0 */
34 #define    IIO_IGFX1                 0x00400148    /* IO Graphics Node-Widget Map 1 */
35 
36 #define    IIO_ISCR0                 0x00400150    /* IO Scratch Register 0 */
37 #define    IIO_ISCR1                 0x00400158    /* IO Scratch Register 1 */
38 
39 #define    IIO_ITTE1                 0x00400160    /* IO Translation Table Entry 1 */
40 #define    IIO_ITTE2                 0x00400168    /* IO Translation Table Entry 2 */
41 #define    IIO_ITTE3                 0x00400170    /* IO Translation Table Entry 3 */
42 #define    IIO_ITTE4                 0x00400178    /* IO Translation Table Entry 4 */
43 #define    IIO_ITTE5                 0x00400180    /* IO Translation Table Entry 5 */
44 #define    IIO_ITTE6                 0x00400188    /* IO Translation Table Entry 6 */
45 #define    IIO_ITTE7                 0x00400190    /* IO Translation Table Entry 7 */
46 
47 #define    IIO_IPRB0                 0x00400198    /* IO PRB Entry 0         */
48 #define    IIO_IPRB8                 0x004001A0    /* IO PRB Entry 8         */
49 #define    IIO_IPRB9                 0x004001A8    /* IO PRB Entry 9         */
50 #define    IIO_IPRBA                 0x004001B0    /* IO PRB Entry A         */
51 #define    IIO_IPRBB                 0x004001B8    /* IO PRB Entry B         */
52 #define    IIO_IPRBC                 0x004001C0    /* IO PRB Entry C         */
53 #define    IIO_IPRBD                 0x004001C8    /* IO PRB Entry D         */
54 #define    IIO_IPRBE                 0x004001D0    /* IO PRB Entry E         */
55 #define    IIO_IPRBF                 0x004001D8    /* IO PRB Entry F         */
56 
57 #define    IIO_IXCC                  0x004001E0    /* IO Crosstalk Credit Count Timeout */
58 #define    IIO_IMEM                  0x004001E8    /* IO Miscellaneous Error Mask */
59 #define    IIO_IXTT                  0x004001F0    /* IO Crosstalk Timeout Threshold */
60 #define    IIO_IECLR                 0x004001F8    /* IO Error Clear Register */
61 #define    IIO_IBCR                  0x00400200    /* IO BTE Control Register */
62 
63 #define    IIO_IXSM                  0x00400208    /* IO Crosstalk Spurious Message */
64 #define    IIO_IXSS                  0x00400210    /* IO Crosstalk Spurious Sideband */
65 
66 #define    IIO_ILCT                  0x00400218    /* IO LLP Channel Test    */
67 
68 #define    IIO_IIEPH1                0x00400220    /* IO Incoming Error Packet Header, Part 1 */
69 #define    IIO_IIEPH2                0x00400228    /* IO Incoming Error Packet Header, Part 2 */
70 
71 
72 #define    IIO_ISLAPR                0x00400230    /* IO SXB Local Access Protection Regster */
73 #define    IIO_ISLAPO                0x00400238    /* IO SXB Local Access Protection Override */
74 
75 #define    IIO_IWI                   0x00400240    /* IO Wrapper Interrupt Register */
76 #define    IIO_IWEL                  0x00400248    /* IO Wrapper Error Log Register */
77 #define    IIO_IWC                   0x00400250    /* IO Wrapper Control Register */
78 #define    IIO_IWS                   0x00400258    /* IO Wrapper Status Register */
79 #define    IIO_IWEIM                 0x00400260    /* IO Wrapper Error Interrupt Masking Register */
80 
81 #define    IIO_IPCA                  0x00400300    /* IO PRB Counter Adjust */
82 
83 #define    IIO_IPRTE0_A              0x00400308    /* IO PIO Read Address Table Entry 0, Part A */
84 #define    IIO_IPRTE1_A              0x00400310    /* IO PIO Read Address Table Entry 1, Part A */
85 #define    IIO_IPRTE2_A              0x00400318    /* IO PIO Read Address Table Entry 2, Part A */
86 #define    IIO_IPRTE3_A               0x00400320    /* IO PIO Read Address Table Entry 3, Part A */
87 #define    IIO_IPRTE4_A               0x00400328    /* IO PIO Read Address Table Entry 4, Part A */
88 #define    IIO_IPRTE5_A               0x00400330    /* IO PIO Read Address Table Entry 5, Part A */
89 #define    IIO_IPRTE6_A               0x00400338    /* IO PIO Read Address Table Entry 6, Part A */
90 #define    IIO_IPRTE7_A               0x00400340    /* IO PIO Read Address Table Entry 7, Part A */
91 
92 #define    IIO_IPRTE0_B              0x00400348    /* IO PIO Read Address Table Entry 0, Part B */
93 #define    IIO_IPRTE1_B              0x00400350    /* IO PIO Read Address Table Entry 1, Part B */
94 #define    IIO_IPRTE2_B              0x00400358    /* IO PIO Read Address Table Entry 2, Part B */
95 #define    IIO_IPRTE3_B               0x00400360    /* IO PIO Read Address Table Entry 3, Part B */
96 #define    IIO_IPRTE4_B               0x00400368    /* IO PIO Read Address Table Entry 4, Part B */
97 #define    IIO_IPRTE5_B               0x00400370    /* IO PIO Read Address Table Entry 5, Part B */
98 #define    IIO_IPRTE6_B               0x00400378    /* IO PIO Read Address Table Entry 6, Part B */
99 #define    IIO_IPRTE7_B               0x00400380    /* IO PIO Read Address Table Entry 7, Part B */
100 
101 #define    IIO_IPDR                  0x00400388    /* IO PIO Deallocation Register */
102 #define    IIO_ICDR                  0x00400390    /* IO CRB Entry Deallocation Register */
103 #define    IIO_IFDR                  0x00400398    /* IO IOQ FIFO Depth Register */
104 #define    IIO_IIAP                  0x004003A0    /* IO IIQ Arbitration Parameters */
105 #define    IIO_ICMR                  0x004003A8    /* IO CRB Management Register */
106 #define    IIO_ICCR                  0x004003B0    /* IO CRB Control Register */
107 #define    IIO_ICTO                  0x004003B8    /* IO CRB Timeout         */
108 #define    IIO_ICTP                  0x004003C0    /* IO CRB Timeout Prescalar */
109 
110 #define    IIO_ICRB0_A               0x00400400    /* IO CRB Entry 0_A       */
111 #define    IIO_ICRB0_B               0x00400408    /* IO CRB Entry 0_B       */
112 #define    IIO_ICRB0_C               0x00400410    /* IO CRB Entry 0_C       */
113 #define    IIO_ICRB0_D               0x00400418    /* IO CRB Entry 0_D       */
114 #define    IIO_ICRB0_E               0x00400420    /* IO CRB Entry 0_E       */
115 
116 #define    IIO_ICRB1_A               0x00400430    /* IO CRB Entry 1_A       */
117 #define    IIO_ICRB1_B               0x00400438    /* IO CRB Entry 1_B       */
118 #define    IIO_ICRB1_C               0x00400440    /* IO CRB Entry 1_C       */
119 #define    IIO_ICRB1_D               0x00400448    /* IO CRB Entry 1_D       */
120 #define    IIO_ICRB1_E               0x00400450    /* IO CRB Entry 1_E       */
121 
122 #define    IIO_ICRB2_A               0x00400460    /* IO CRB Entry 2_A       */
123 #define    IIO_ICRB2_B               0x00400468    /* IO CRB Entry 2_B       */
124 #define    IIO_ICRB2_C               0x00400470    /* IO CRB Entry 2_C       */
125 #define    IIO_ICRB2_D               0x00400478    /* IO CRB Entry 2_D       */
126 #define    IIO_ICRB2_E               0x00400480    /* IO CRB Entry 2_E       */
127 
128 #define    IIO_ICRB3_A               0x00400490    /* IO CRB Entry 3_A       */
129 #define    IIO_ICRB3_B               0x00400498    /* IO CRB Entry 3_B       */
130 #define    IIO_ICRB3_C               0x004004a0    /* IO CRB Entry 3_C       */
131 #define    IIO_ICRB3_D               0x004004a8    /* IO CRB Entry 3_D       */
132 #define    IIO_ICRB3_E               0x004004b0    /* IO CRB Entry 3_E       */
133 
134 #define    IIO_ICRB4_A               0x004004c0    /* IO CRB Entry 4_A       */
135 #define    IIO_ICRB4_B               0x004004c8    /* IO CRB Entry 4_B       */
136 #define    IIO_ICRB4_C               0x004004d0    /* IO CRB Entry 4_C       */
137 #define    IIO_ICRB4_D               0x004004d8    /* IO CRB Entry 4_D       */
138 #define    IIO_ICRB4_E               0x004004e0    /* IO CRB Entry 4_E       */
139 
140 #define    IIO_ICRB5_A               0x004004f0    /* IO CRB Entry 5_A       */
141 #define    IIO_ICRB5_B               0x004004f8    /* IO CRB Entry 5_B       */
142 #define    IIO_ICRB5_C               0x00400500    /* IO CRB Entry 5_C       */
143 #define    IIO_ICRB5_D               0x00400508    /* IO CRB Entry 5_D       */
144 #define    IIO_ICRB5_E               0x00400510    /* IO CRB Entry 5_E       */
145 
146 #define    IIO_ICRB6_A               0x00400520    /* IO CRB Entry 6_A       */
147 #define    IIO_ICRB6_B               0x00400528    /* IO CRB Entry 6_B       */
148 #define    IIO_ICRB6_C               0x00400530    /* IO CRB Entry 6_C       */
149 #define    IIO_ICRB6_D               0x00400538    /* IO CRB Entry 6_D       */
150 #define    IIO_ICRB6_E               0x00400540    /* IO CRB Entry 6_E       */
151 
152 #define    IIO_ICRB7_A               0x00400550    /* IO CRB Entry 7_A       */
153 #define    IIO_ICRB7_B               0x00400558    /* IO CRB Entry 7_B       */
154 #define    IIO_ICRB7_C               0x00400560    /* IO CRB Entry 7_C       */
155 #define    IIO_ICRB7_D               0x00400568    /* IO CRB Entry 7_D       */
156 #define    IIO_ICRB7_E               0x00400570    /* IO CRB Entry 7_E       */
157 
158 #define    IIO_ICRB8_A               0x00400580    /* IO CRB Entry 8_A       */
159 #define    IIO_ICRB8_B               0x00400588    /* IO CRB Entry 8_B       */
160 #define    IIO_ICRB8_C               0x00400590    /* IO CRB Entry 8_C       */
161 #define    IIO_ICRB8_D               0x00400598    /* IO CRB Entry 8_D       */
162 #define    IIO_ICRB8_E               0x004005a0    /* IO CRB Entry 8_E       */
163 
164 #define    IIO_ICRB9_A               0x004005b0    /* IO CRB Entry 9_A       */
165 #define    IIO_ICRB9_B               0x004005b8    /* IO CRB Entry 9_B       */
166 #define    IIO_ICRB9_C               0x004005c0    /* IO CRB Entry 9_C       */
167 #define    IIO_ICRB9_D               0x004005c8    /* IO CRB Entry 9_D       */
168 #define    IIO_ICRB9_E               0x004005d0    /* IO CRB Entry 9_E       */
169 
170 #define    IIO_ICRBA_A               0x004005e0    /* IO CRB Entry A_A       */
171 #define    IIO_ICRBA_B               0x004005e8    /* IO CRB Entry A_B       */
172 #define    IIO_ICRBA_C               0x004005f0    /* IO CRB Entry A_C       */
173 #define    IIO_ICRBA_D               0x004005f8    /* IO CRB Entry A_D       */
174 #define    IIO_ICRBA_E               0x00400600    /* IO CRB Entry A_E       */
175 
176 #define    IIO_ICRBB_A               0x00400610    /* IO CRB Entry B_A       */
177 #define    IIO_ICRBB_B               0x00400618    /* IO CRB Entry B_B       */
178 #define    IIO_ICRBB_C               0x00400620    /* IO CRB Entry B_C       */
179 #define    IIO_ICRBB_D               0x00400628    /* IO CRB Entry B_D       */
180 #define    IIO_ICRBB_E               0x00400630    /* IO CRB Entry B_E       */
181 
182 #define    IIO_ICRBC_A               0x00400640    /* IO CRB Entry C_A       */
183 #define    IIO_ICRBC_B               0x00400648    /* IO CRB Entry C_B       */
184 #define    IIO_ICRBC_C               0x00400650    /* IO CRB Entry C_C       */
185 #define    IIO_ICRBC_D               0x00400658    /* IO CRB Entry C_D       */
186 #define    IIO_ICRBC_E               0x00400660    /* IO CRB Entry C_E       */
187 
188 #define    IIO_ICRBD_A               0x00400670    /* IO CRB Entry D_A       */
189 #define    IIO_ICRBD_B               0x00400678    /* IO CRB Entry D_B       */
190 #define    IIO_ICRBD_C               0x00400680    /* IO CRB Entry D_C       */
191 #define    IIO_ICRBD_D               0x00400688    /* IO CRB Entry D_D       */
192 #define    IIO_ICRBD_E               0x00400690    /* IO CRB Entry D_E       */
193 
194 #define    IIO_ICRBE_A               0x004006a0    /* IO CRB Entry E_A       */
195 #define    IIO_ICRBE_B               0x004006a8    /* IO CRB Entry E_B       */
196 #define    IIO_ICRBE_C               0x004006b0    /* IO CRB Entry E_C       */
197 #define    IIO_ICRBE_D               0x004006b8    /* IO CRB Entry E_D       */
198 #define    IIO_ICRBE_E               0x004006c0    /* IO CRB Entry E_E       */
199 
200 #define    IIO_ICSML                 0x00400700    /* IO CRB Spurious Message Low */
201 #define    IIO_ICSMM                 0x00400708    /* IO CRB Spurious Message Middle */
202 #define    IIO_ICSMH                 0x00400710    /* IO CRB Spurious Message High */
203 
204 #define    IIO_IDBSS                 0x00400718    /* IO Debug Submenu Select */
205 
206 #define    IIO_IBLS0                 0x00410000    /* IO BTE Length Status 0 */
207 #define    IIO_IBSA0                 0x00410008    /* IO BTE Source Address 0 */
208 #define    IIO_IBDA0                 0x00410010    /* IO BTE Destination Address 0 */
209 #define    IIO_IBCT0                 0x00410018    /* IO BTE Control Terminate 0 */
210 #define    IIO_IBNA0                 0x00410020    /* IO BTE Notification Address 0 */
211 #define    IIO_IBIA0                 0x00410028    /* IO BTE Interrupt Address 0 */
212 #define    IIO_IBLS1                 0x00420000    /* IO BTE Length Status 1 */
213 #define    IIO_IBSA1                 0x00420008    /* IO BTE Source Address 1 */
214 #define    IIO_IBDA1                 0x00420010    /* IO BTE Destination Address 1 */
215 #define    IIO_IBCT1                 0x00420018    /* IO BTE Control Terminate 1 */
216 #define    IIO_IBNA1                 0x00420020    /* IO BTE Notification Address 1 */
217 #define    IIO_IBIA1                 0x00420028    /* IO BTE Interrupt Address 1 */
218 
219 #define    IIO_IPCR                  0x00430000    /* IO Performance Control */
220 #define    IIO_IPPR                  0x00430008    /* IO Performance Profiling */
221 
222 
223 #ifndef __ASSEMBLY__
224 
225 /************************************************************************
226  *                                                                      *
227  * Description:  This register echoes some information from the         *
228  * LB_REV_ID register. It is available through Crosstalk as described   *
229  * above. The REV_NUM and MFG_NUM fields receive their values from      *
230  * the REVISION and MANUFACTURER fields in the LB_REV_ID register.      *
231  * The PART_NUM field's value is the Crosstalk device ID number that    *
232  * Steve Miller assigned to the SHub chip.                              *
233  *                                                                      *
234  ************************************************************************/
235 
236 typedef union ii_wid_u {
237 	shubreg_t	ii_wid_regval;
238 	struct	{
239 		shubreg_t	w_rsvd_1		  :	 1;
240 		shubreg_t	w_mfg_num		  :	11;
241 		shubreg_t	w_part_num		  :	16;
242 		shubreg_t	w_rev_num		  :	 4;
243 		shubreg_t	w_rsvd			  :	32;
244 	} ii_wid_fld_s;
245 } ii_wid_u_t;
246 
247 
248 /************************************************************************
249  *                                                                      *
250  *  The fields in this register are set upon detection of an error      *
251  * and cleared by various mechanisms, as explained in the               *
252  * description.                                                         *
253  *                                                                      *
254  ************************************************************************/
255 
256 typedef union ii_wstat_u {
257 	shubreg_t	ii_wstat_regval;
258 	struct	{
259 		shubreg_t	w_pending		  :	 4;
260 		shubreg_t	w_xt_crd_to		  :	 1;
261 		shubreg_t	w_xt_tail_to		  :	 1;
262 		shubreg_t	w_rsvd_3		  :	 3;
263 		shubreg_t       w_tx_mx_rty               :      1;
264 		shubreg_t	w_rsvd_2		  :	 6;
265 		shubreg_t	w_llp_tx_cnt		  :	 8;
266 		shubreg_t	w_rsvd_1		  :	 8;
267 		shubreg_t	w_crazy			  :	 1;
268 		shubreg_t	w_rsvd			  :	31;
269 	} ii_wstat_fld_s;
270 } ii_wstat_u_t;
271 
272 
273 /************************************************************************
274  *                                                                      *
275  * Description:  This is a read-write enabled register. It controls     *
276  * various aspects of the Crosstalk flow control.                       *
277  *                                                                      *
278  ************************************************************************/
279 
280 typedef union ii_wcr_u {
281 	shubreg_t	ii_wcr_regval;
282 	struct	{
283 		shubreg_t	w_wid			  :	 4;
284 		shubreg_t	w_tag			  :	 1;
285 		shubreg_t	w_rsvd_1		  :	 8;
286 		shubreg_t	w_dst_crd		  :	 3;
287 		shubreg_t	w_f_bad_pkt		  :	 1;
288 		shubreg_t	w_dir_con		  :	 1;
289 		shubreg_t	w_e_thresh		  :	 5;
290 		shubreg_t	w_rsvd			  :	41;
291 	} ii_wcr_fld_s;
292 } ii_wcr_u_t;
293 
294 
295 /************************************************************************
296  *                                                                      *
297  * Description:  This register's value is a bit vector that guards      *
298  * access to local registers within the II as well as to external       *
299  * Crosstalk widgets. Each bit in the register corresponds to a         *
300  * particular region in the system; a region consists of one, two or    *
301  * four nodes (depending on the value of the REGION_SIZE field in the   *
302  * LB_REV_ID register, which is documented in Section 8.3.1.1). The     *
303  * protection provided by this register applies to PIO read             *
304  * operations as well as PIO write operations. The II will perform a    *
305  * PIO read or write request only if the bit for the requestor's        *
306  * region is set; otherwise, the II will not perform the requested      *
307  * operation and will return an error response. When a PIO read or      *
308  * write request targets an external Crosstalk widget, then not only    *
309  * must the bit for the requestor's region be set in the ILAPR, but     *
310  * also the target widget's bit in the IOWA register must be set in     *
311  * order for the II to perform the requested operation; otherwise,      *
312  * the II will return an error response. Hence, the protection          *
313  * provided by the IOWA register supplements the protection provided    *
314  * by the ILAPR for requests that target external Crosstalk widgets.    *
315  * This register itself can be accessed only by the nodes whose         *
316  * region ID bits are enabled in this same register. It can also be     *
317  * accessed through the IAlias space by the local processors.           *
318  * The reset value of this register allows access by all nodes.         *
319  *                                                                      *
320  ************************************************************************/
321 
322 typedef union ii_ilapr_u {
323 	shubreg_t	ii_ilapr_regval;
324 	struct  {
325 		shubreg_t	i_region                  :	64;
326 	} ii_ilapr_fld_s;
327 } ii_ilapr_u_t;
328 
329 
330 
331 
332 /************************************************************************
333  *                                                                      *
334  * Description:  A write to this register of the 64-bit value           *
335  * "SGIrules" in ASCII, will cause the bit in the ILAPR register        *
336  * corresponding to the region of the requestor to be set (allow        *
337  * access). A write of any other value will be ignored. Access          *
338  * protection for this register is "SGIrules".                          *
339  * This register can also be accessed through the IAlias space.         *
340  * However, this access will not change the access permissions in the   *
341  * ILAPR.                                                               *
342  *                                                                      *
343  ************************************************************************/
344 
345 typedef union ii_ilapo_u {
346 	shubreg_t	ii_ilapo_regval;
347 	struct	{
348 		shubreg_t	i_io_ovrride            :	64;
349 	} ii_ilapo_fld_s;
350 } ii_ilapo_u_t;
351 
352 
353 
354 /************************************************************************
355  *                                                                      *
356  *  This register qualifies all the PIO and Graphics writes launched    *
357  * from the SHUB towards a widget.                                      *
358  *                                                                      *
359  ************************************************************************/
360 
361 typedef union ii_iowa_u {
362 	shubreg_t	ii_iowa_regval;
363 	struct	{
364 		shubreg_t	i_w0_oac		  :	 1;
365 		shubreg_t	i_rsvd_1		  :	 7;
366                 shubreg_t       i_wx_oac                  :      8;
367 		shubreg_t	i_rsvd			  :	48;
368 	} ii_iowa_fld_s;
369 } ii_iowa_u_t;
370 
371 
372 /************************************************************************
373  *                                                                      *
374  * Description:  This register qualifies all the requests launched      *
375  * from a widget towards the Shub. This register is intended to be      *
376  * used by software in case of misbehaving widgets.                     *
377  *                                                                      *
378  *                                                                      *
379  ************************************************************************/
380 
381 typedef union ii_iiwa_u {
382 	shubreg_t	ii_iiwa_regval;
383 	struct  {
384 		shubreg_t	i_w0_iac                  :	 1;
385 		shubreg_t	i_rsvd_1		  :	 7;
386 		shubreg_t	i_wx_iac		  :	 8;
387 		shubreg_t	i_rsvd			  :	48;
388 	} ii_iiwa_fld_s;
389 } ii_iiwa_u_t;
390 
391 
392 
393 /************************************************************************
394  *                                                                      *
395  * Description:  This register qualifies all the operations launched    *
396  * from a widget towards the SHub. It allows individual access          *
397  * control for up to 8 devices per widget. A device refers to           *
398  * individual DMA master hosted by a widget.                            *
399  * The bits in each field of this register are cleared by the Shub      *
400  * upon detection of an error which requires the device to be           *
401  * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric    *
402  * Crosstalk). Whether or not a device has access rights to this        *
403  * Shub is determined by an AND of the device enable bit in the         *
404  * appropriate field of this register and the corresponding bit in      *
405  * the Wx_IAC field (for the widget which this device belongs to).      *
406  * The bits in this field are set by writing a 1 to them. Incoming      *
407  * replies from Crosstalk are not subject to this access control        *
408  * mechanism.                                                           *
409  *                                                                      *
410  ************************************************************************/
411 
412 typedef union ii_iidem_u {
413 	shubreg_t	ii_iidem_regval;
414 	struct	{
415 		shubreg_t	i_w8_dxs		  :	 8;
416 		shubreg_t	i_w9_dxs		  :	 8;
417 		shubreg_t	i_wa_dxs		  :	 8;
418 		shubreg_t	i_wb_dxs		  :	 8;
419 		shubreg_t	i_wc_dxs		  :	 8;
420 		shubreg_t	i_wd_dxs		  :	 8;
421 		shubreg_t	i_we_dxs		  :	 8;
422 		shubreg_t	i_wf_dxs		  :	 8;
423 	} ii_iidem_fld_s;
424 } ii_iidem_u_t;
425 
426 
427 /************************************************************************
428  *                                                                      *
429  *  This register contains the various programmable fields necessary    *
430  * for controlling and observing the LLP signals.                       *
431  *                                                                      *
432  ************************************************************************/
433 
434 typedef union ii_ilcsr_u {
435 	shubreg_t	ii_ilcsr_regval;
436 	struct  {
437 		shubreg_t	i_nullto                  :	 6;
438 		shubreg_t	i_rsvd_4		  :	 2;
439 		shubreg_t	i_wrmrst		  :	 1;
440 		shubreg_t	i_rsvd_3		  :	 1;
441 		shubreg_t	i_llp_en		  :	 1;
442 		shubreg_t	i_bm8			  :	 1;
443 		shubreg_t	i_llp_stat		  :	 2;
444 		shubreg_t	i_remote_power		  :	 1;
445 		shubreg_t	i_rsvd_2		  :	 1;
446 		shubreg_t	i_maxrtry		  :	10;
447 		shubreg_t	i_d_avail_sel		  :	 2;
448 		shubreg_t	i_rsvd_1		  :	 4;
449 		shubreg_t	i_maxbrst		  :	10;
450                 shubreg_t       i_rsvd                    :     22;
451 
452 	} ii_ilcsr_fld_s;
453 } ii_ilcsr_u_t;
454 
455 
456 /************************************************************************
457  *                                                                      *
458  *  This is simply a status registers that monitors the LLP error       *
459  * rate.                                                                *
460  *                                                                      *
461  ************************************************************************/
462 
463 typedef union ii_illr_u {
464 	shubreg_t	ii_illr_regval;
465 	struct	{
466 		shubreg_t	i_sn_cnt		  :	16;
467 		shubreg_t	i_cb_cnt		  :	16;
468 		shubreg_t	i_rsvd			  :	32;
469 	} ii_illr_fld_s;
470 } ii_illr_u_t;
471 
472 
473 /************************************************************************
474  *                                                                      *
475  * Description:  All II-detected non-BTE error interrupts are           *
476  * specified via this register.                                         *
477  * NOTE: The PI interrupt register address is hardcoded in the II. If   *
478  * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI      *
479  * packet) to address offset 0x0180_0090 within the local register      *
480  * address space of PI0 on the node specified by the NODE field. If     *
481  * PI_ID==1, then the II sends the interrupt request to address         *
482  * offset 0x01A0_0090 within the local register address space of PI1    *
483  * on the node specified by the NODE field.                             *
484  *                                                                      *
485  ************************************************************************/
486 
487 typedef union ii_iidsr_u {
488 	shubreg_t	ii_iidsr_regval;
489 	struct  {
490 		shubreg_t	i_level                   :	 8;
491 		shubreg_t	i_pi_id			  :	 1;
492 		shubreg_t	i_node			  :	11;
493 		shubreg_t       i_rsvd_3                  :      4;
494 		shubreg_t	i_enable		  :	 1;
495 		shubreg_t	i_rsvd_2		  :	 3;
496 		shubreg_t	i_int_sent		  :	 2;
497 		shubreg_t       i_rsvd_1                  :      2;
498 		shubreg_t	i_pi0_forward_int	  :	 1;
499 		shubreg_t	i_pi1_forward_int	  :	 1;
500 		shubreg_t	i_rsvd			  :	30;
501 	} ii_iidsr_fld_s;
502 } ii_iidsr_u_t;
503 
504 
505 
506 /************************************************************************
507  *                                                                      *
508  *  There are two instances of this register. This register is used     *
509  * for matching up the incoming responses from the graphics widget to   *
510  * the processor that initiated the graphics operation. The             *
511  * write-responses are converted to graphics credits and returned to    *
512  * the processor so that the processor interface can manage the flow    *
513  * control.                                                             *
514  *                                                                      *
515  ************************************************************************/
516 
517 typedef union ii_igfx0_u {
518 	shubreg_t	ii_igfx0_regval;
519 	struct	{
520 		shubreg_t	i_w_num			  :	 4;
521 		shubreg_t       i_pi_id                   :      1;
522 		shubreg_t	i_n_num			  :	12;
523 		shubreg_t       i_p_num                   :      1;
524 		shubreg_t       i_rsvd                    :     46;
525 	} ii_igfx0_fld_s;
526 } ii_igfx0_u_t;
527 
528 
529 /************************************************************************
530  *                                                                      *
531  *  There are two instances of this register. This register is used     *
532  * for matching up the incoming responses from the graphics widget to   *
533  * the processor that initiated the graphics operation. The             *
534  * write-responses are converted to graphics credits and returned to    *
535  * the processor so that the processor interface can manage the flow    *
536  * control.                                                             *
537  *                                                                      *
538  ************************************************************************/
539 
540 typedef union ii_igfx1_u {
541 	shubreg_t	ii_igfx1_regval;
542 	struct  {
543 		shubreg_t	i_w_num			  :	 4;
544 		shubreg_t       i_pi_id                   :      1;
545 		shubreg_t	i_n_num			  :	12;
546 		shubreg_t       i_p_num                   :      1;
547 		shubreg_t       i_rsvd                    :     46;
548 	} ii_igfx1_fld_s;
549 } ii_igfx1_u_t;
550 
551 
552 /************************************************************************
553  *                                                                      *
554  *  There are two instances of this registers. These registers are      *
555  * used as scratch registers for software use.                          *
556  *                                                                      *
557  ************************************************************************/
558 
559 typedef union ii_iscr0_u {
560 	shubreg_t	ii_iscr0_regval;
561 	struct  {
562 		shubreg_t	i_scratch                 :	64;
563 	} ii_iscr0_fld_s;
564 } ii_iscr0_u_t;
565 
566 
567 
568 /************************************************************************
569  *                                                                      *
570  *  There are two instances of this registers. These registers are      *
571  * used as scratch registers for software use.                          *
572  *                                                                      *
573  ************************************************************************/
574 
575 typedef union ii_iscr1_u {
576 	shubreg_t	ii_iscr1_regval;
577 	struct  {
578 		shubreg_t	i_scratch                 :	64;
579 	} ii_iscr1_fld_s;
580 } ii_iscr1_u_t;
581 
582 
583 /************************************************************************
584  *                                                                      *
585  * Description:  There are seven instances of translation table entry   *
586  * registers. Each register maps a Shub Big Window to a 48-bit          *
587  * address on Crosstalk.                                                *
588  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
589  * number) are used to select one of these 7 registers. The Widget      *
590  * number field is then derived from the W_NUM field for synthesizing   *
591  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
592  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
593  * are padded with zeros. Although the maximum Crosstalk space          *
594  * addressable by the SHub is thus the lower 16 GBytes per widget       *
595  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
596  * space can be accessed.                                               *
597  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
598  * Window number) are used to select one of these 7 registers. The      *
599  * Widget number field is then derived from the W_NUM field for         *
600  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
601  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
602  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
603  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
604  * Crosstalk space addressable by the Shub is thus the lower            *
605  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
606  * of this space can be accessed.                                       *
607  *                                                                      *
608  ************************************************************************/
609 
610 typedef union ii_itte1_u {
611 	shubreg_t	ii_itte1_regval;
612 	struct  {
613 		shubreg_t	i_offset                  :	 5;
614 		shubreg_t	i_rsvd_1		  :	 3;
615 		shubreg_t	i_w_num			  :	 4;
616 		shubreg_t	i_iosp			  :	 1;
617 		shubreg_t	i_rsvd			  :	51;
618 	} ii_itte1_fld_s;
619 } ii_itte1_u_t;
620 
621 
622 /************************************************************************
623  *                                                                      *
624  * Description:  There are seven instances of translation table entry   *
625  * registers. Each register maps a Shub Big Window to a 48-bit          *
626  * address on Crosstalk.                                                *
627  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
628  * number) are used to select one of these 7 registers. The Widget      *
629  * number field is then derived from the W_NUM field for synthesizing   *
630  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
631  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
632  * are padded with zeros. Although the maximum Crosstalk space          *
633  * addressable by the Shub is thus the lower 16 GBytes per widget       *
634  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
635  * space can be accessed.                                               *
636  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
637  * Window number) are used to select one of these 7 registers. The      *
638  * Widget number field is then derived from the W_NUM field for         *
639  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
640  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
641  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
642  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
643  * Crosstalk space addressable by the Shub is thus the lower            *
644  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
645  * of this space can be accessed.                                       *
646  *                                                                      *
647  ************************************************************************/
648 
649 typedef union ii_itte2_u {
650 	shubreg_t	ii_itte2_regval;
651 	struct	{
652 		shubreg_t	i_offset		  :	 5;
653 		shubreg_t	i_rsvd_1		  :	 3;
654 		shubreg_t	i_w_num			  :	 4;
655 		shubreg_t	i_iosp			  :	 1;
656 		shubreg_t       i_rsvd                    :     51;
657 	} ii_itte2_fld_s;
658 } ii_itte2_u_t;
659 
660 
661 /************************************************************************
662  *                                                                      *
663  * Description:  There are seven instances of translation table entry   *
664  * registers. Each register maps a Shub Big Window to a 48-bit          *
665  * address on Crosstalk.                                                *
666  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
667  * number) are used to select one of these 7 registers. The Widget      *
668  * number field is then derived from the W_NUM field for synthesizing   *
669  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
670  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
671  * are padded with zeros. Although the maximum Crosstalk space          *
672  * addressable by the Shub is thus the lower 16 GBytes per widget       *
673  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
674  * space can be accessed.                                               *
675  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
676  * Window number) are used to select one of these 7 registers. The      *
677  * Widget number field is then derived from the W_NUM field for         *
678  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
679  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
680  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
681  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
682  * Crosstalk space addressable by the SHub is thus the lower            *
683  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
684  * of this space can be accessed.                                       *
685  *                                                                      *
686  ************************************************************************/
687 
688 typedef union ii_itte3_u {
689 	shubreg_t	ii_itte3_regval;
690 	struct  {
691 		shubreg_t	i_offset                  :	 5;
692 		shubreg_t       i_rsvd_1                  :      3;
693 		shubreg_t       i_w_num                   :      4;
694 		shubreg_t       i_iosp                    :      1;
695 		shubreg_t       i_rsvd                    :     51;
696 	} ii_itte3_fld_s;
697 } ii_itte3_u_t;
698 
699 
700 /************************************************************************
701  *                                                                      *
702  * Description:  There are seven instances of translation table entry   *
703  * registers. Each register maps a SHub Big Window to a 48-bit          *
704  * address on Crosstalk.                                                *
705  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
706  * number) are used to select one of these 7 registers. The Widget      *
707  * number field is then derived from the W_NUM field for synthesizing   *
708  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
709  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
710  * are padded with zeros. Although the maximum Crosstalk space          *
711  * addressable by the SHub is thus the lower 16 GBytes per widget       *
712  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
713  * space can be accessed.                                               *
714  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
715  * Window number) are used to select one of these 7 registers. The      *
716  * Widget number field is then derived from the W_NUM field for         *
717  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
718  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
719  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
720  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
721  * Crosstalk space addressable by the SHub is thus the lower            *
722  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
723  * of this space can be accessed.                                       *
724  *                                                                      *
725  ************************************************************************/
726 
727 typedef union ii_itte4_u {
728 	shubreg_t	ii_itte4_regval;
729 	struct  {
730 		shubreg_t	i_offset                  :	 5;
731 		shubreg_t	i_rsvd_1		  :	 3;
732 		shubreg_t       i_w_num                   :      4;
733 		shubreg_t       i_iosp                    :      1;
734 		shubreg_t       i_rsvd                    :     51;
735 	} ii_itte4_fld_s;
736 } ii_itte4_u_t;
737 
738 
739 /************************************************************************
740  *                                                                      *
741  * Description:  There are seven instances of translation table entry   *
742  * registers. Each register maps a SHub Big Window to a 48-bit          *
743  * address on Crosstalk.                                                *
744  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
745  * number) are used to select one of these 7 registers. The Widget      *
746  * number field is then derived from the W_NUM field for synthesizing   *
747  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
748  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
749  * are padded with zeros. Although the maximum Crosstalk space          *
750  * addressable by the Shub is thus the lower 16 GBytes per widget       *
751  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
752  * space can be accessed.                                               *
753  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
754  * Window number) are used to select one of these 7 registers. The      *
755  * Widget number field is then derived from the W_NUM field for         *
756  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
757  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
758  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
759  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
760  * Crosstalk space addressable by the Shub is thus the lower            *
761  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
762  * of this space can be accessed.                                       *
763  *                                                                      *
764  ************************************************************************/
765 
766 typedef union ii_itte5_u {
767 	shubreg_t	ii_itte5_regval;
768 	struct  {
769 		shubreg_t	i_offset                  :	 5;
770 		shubreg_t       i_rsvd_1                  :      3;
771 		shubreg_t       i_w_num                   :      4;
772 		shubreg_t       i_iosp                    :      1;
773 		shubreg_t       i_rsvd                    :     51;
774 	} ii_itte5_fld_s;
775 } ii_itte5_u_t;
776 
777 
778 /************************************************************************
779  *                                                                      *
780  * Description:  There are seven instances of translation table entry   *
781  * registers. Each register maps a Shub Big Window to a 48-bit          *
782  * address on Crosstalk.                                                *
783  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
784  * number) are used to select one of these 7 registers. The Widget      *
785  * number field is then derived from the W_NUM field for synthesizing   *
786  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
787  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
788  * are padded with zeros. Although the maximum Crosstalk space          *
789  * addressable by the Shub is thus the lower 16 GBytes per widget       *
790  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
791  * space can be accessed.                                               *
792  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
793  * Window number) are used to select one of these 7 registers. The      *
794  * Widget number field is then derived from the W_NUM field for         *
795  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
796  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
797  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
798  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
799  * Crosstalk space addressable by the Shub is thus the lower            *
800  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
801  * of this space can be accessed.                                       *
802  *                                                                      *
803  ************************************************************************/
804 
805 typedef union ii_itte6_u {
806 	shubreg_t	ii_itte6_regval;
807 	struct  {
808 		shubreg_t	i_offset                  :	 5;
809 		shubreg_t       i_rsvd_1                  :      3;
810 		shubreg_t       i_w_num                   :      4;
811 		shubreg_t       i_iosp                    :      1;
812 		shubreg_t       i_rsvd                    :     51;
813 	} ii_itte6_fld_s;
814 } ii_itte6_u_t;
815 
816 
817 /************************************************************************
818  *                                                                      *
819  * Description:  There are seven instances of translation table entry   *
820  * registers. Each register maps a Shub Big Window to a 48-bit          *
821  * address on Crosstalk.                                                *
822  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
823  * number) are used to select one of these 7 registers. The Widget      *
824  * number field is then derived from the W_NUM field for synthesizing   *
825  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
826  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
827  * are padded with zeros. Although the maximum Crosstalk space          *
828  * addressable by the Shub is thus the lower 16 GBytes per widget       *
829  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
830  * space can be accessed.                                               *
831  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
832  * Window number) are used to select one of these 7 registers. The      *
833  * Widget number field is then derived from the W_NUM field for         *
834  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
835  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
836  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
837  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
838  * Crosstalk space addressable by the SHub is thus the lower            *
839  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
840  * of this space can be accessed.                                       *
841  *                                                                      *
842  ************************************************************************/
843 
844 typedef union ii_itte7_u {
845 	shubreg_t	ii_itte7_regval;
846 	struct  {
847 		shubreg_t	i_offset                  :	 5;
848 		shubreg_t	i_rsvd_1		  :	 3;
849 		shubreg_t       i_w_num                   :      4;
850 		shubreg_t       i_iosp                    :      1;
851 		shubreg_t       i_rsvd                    :     51;
852 	} ii_itte7_fld_s;
853 } ii_itte7_u_t;
854 
855 
856 /************************************************************************
857  *                                                                      *
858  * Description:  There are 9 instances of this register, one per        *
859  * actual widget in this implementation of SHub and Crossbow.           *
860  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
861  * refers to Crossbow's internal space.                                 *
862  * This register contains the state elements per widget that are        *
863  * necessary to manage the PIO flow control on Crosstalk and on the     *
864  * Router Network. See the PIO Flow Control chapter for a complete      *
865  * description of this register                                         *
866  * The SPUR_WR bit requires some explanation. When this register is     *
867  * written, the new value of the C field is captured in an internal     *
868  * register so the hardware can remember what the programmer wrote      *
869  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
870  * increments above this stored value, which indicates that there       *
871  * have been more responses received than requests sent. The SPUR_WR    *
872  * bit cannot be cleared until a value is written to the IPRBx          *
873  * register; the write will correct the C field and capture its new     *
874  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
875  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
876  * .                                                                    *
877  *                                                                      *
878  ************************************************************************/
879 
880 typedef union ii_iprb0_u {
881 	shubreg_t	ii_iprb0_regval;
882 	struct  {
883 		shubreg_t	i_c                       :	 8;
884 		shubreg_t	i_na			  :	14;
885 		shubreg_t       i_rsvd_2                  :      2;
886 		shubreg_t	i_nb			  :	14;
887 		shubreg_t	i_rsvd_1		  :	 2;
888 		shubreg_t	i_m			  :	 2;
889 		shubreg_t	i_f			  :	 1;
890 		shubreg_t	i_of_cnt		  :	 5;
891 		shubreg_t	i_error			  :	 1;
892 		shubreg_t	i_rd_to			  :	 1;
893 		shubreg_t	i_spur_wr		  :	 1;
894 		shubreg_t	i_spur_rd		  :	 1;
895 		shubreg_t	i_rsvd			  :	11;
896 		shubreg_t	i_mult_err		  :	 1;
897 	} ii_iprb0_fld_s;
898 } ii_iprb0_u_t;
899 
900 
901 /************************************************************************
902  *                                                                      *
903  * Description:  There are 9 instances of this register, one per        *
904  * actual widget in this implementation of SHub and Crossbow.           *
905  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
906  * refers to Crossbow's internal space.                                 *
907  * This register contains the state elements per widget that are        *
908  * necessary to manage the PIO flow control on Crosstalk and on the     *
909  * Router Network. See the PIO Flow Control chapter for a complete      *
910  * description of this register                                         *
911  * The SPUR_WR bit requires some explanation. When this register is     *
912  * written, the new value of the C field is captured in an internal     *
913  * register so the hardware can remember what the programmer wrote      *
914  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
915  * increments above this stored value, which indicates that there       *
916  * have been more responses received than requests sent. The SPUR_WR    *
917  * bit cannot be cleared until a value is written to the IPRBx          *
918  * register; the write will correct the C field and capture its new     *
919  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
920  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
921  * .                                                                    *
922  *                                                                      *
923  ************************************************************************/
924 
925 typedef union ii_iprb8_u {
926 	shubreg_t	ii_iprb8_regval;
927 	struct  {
928 		shubreg_t	i_c                       :	 8;
929 		shubreg_t	i_na			  :	14;
930 		shubreg_t       i_rsvd_2                  :      2;
931 		shubreg_t	i_nb			  :	14;
932 		shubreg_t       i_rsvd_1                  :      2;
933 		shubreg_t       i_m                       :      2;
934 		shubreg_t       i_f                       :      1;
935 		shubreg_t       i_of_cnt                  :      5;
936 		shubreg_t       i_error                   :      1;
937 		shubreg_t       i_rd_to                   :      1;
938 		shubreg_t       i_spur_wr                 :      1;
939 		shubreg_t	i_spur_rd		  :	 1;
940 		shubreg_t       i_rsvd                    :     11;
941 		shubreg_t	i_mult_err		  :	 1;
942 	} ii_iprb8_fld_s;
943 } ii_iprb8_u_t;
944 
945 
946 /************************************************************************
947  *                                                                      *
948  * Description:  There are 9 instances of this register, one per        *
949  * actual widget in this implementation of SHub and Crossbow.           *
950  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
951  * refers to Crossbow's internal space.                                 *
952  * This register contains the state elements per widget that are        *
953  * necessary to manage the PIO flow control on Crosstalk and on the     *
954  * Router Network. See the PIO Flow Control chapter for a complete      *
955  * description of this register                                         *
956  * The SPUR_WR bit requires some explanation. When this register is     *
957  * written, the new value of the C field is captured in an internal     *
958  * register so the hardware can remember what the programmer wrote      *
959  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
960  * increments above this stored value, which indicates that there       *
961  * have been more responses received than requests sent. The SPUR_WR    *
962  * bit cannot be cleared until a value is written to the IPRBx          *
963  * register; the write will correct the C field and capture its new     *
964  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
965  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
966  * .                                                                    *
967  *                                                                      *
968  ************************************************************************/
969 
970 typedef union ii_iprb9_u {
971 	shubreg_t	ii_iprb9_regval;
972 	struct	{
973 		shubreg_t	i_c			  :	 8;
974 		shubreg_t	i_na			  :	14;
975 		shubreg_t	i_rsvd_2		  :	 2;
976 		shubreg_t	i_nb			  :	14;
977 		shubreg_t	i_rsvd_1		  :	 2;
978 		shubreg_t	i_m			  :	 2;
979 		shubreg_t	i_f			  :	 1;
980 		shubreg_t	i_of_cnt		  :	 5;
981 		shubreg_t	i_error			  :	 1;
982 		shubreg_t	i_rd_to			  :	 1;
983 		shubreg_t	i_spur_wr		  :	 1;
984 		shubreg_t	i_spur_rd		  :	 1;
985 		shubreg_t	i_rsvd			  :	11;
986 		shubreg_t	i_mult_err		  :	 1;
987 	} ii_iprb9_fld_s;
988 } ii_iprb9_u_t;
989 
990 
991 /************************************************************************
992  *                                                                      *
993  * Description:  There are 9 instances of this register, one per        *
994  * actual widget in this implementation of SHub and Crossbow.        *
995  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
996  * refers to Crossbow's internal space.                                 *
997  * This register contains the state elements per widget that are        *
998  * necessary to manage the PIO flow control on Crosstalk and on the     *
999  * Router Network. See the PIO Flow Control chapter for a complete      *
1000  * description of this register                                         *
1001  * The SPUR_WR bit requires some explanation. When this register is     *
1002  * written, the new value of the C field is captured in an internal     *
1003  * register so the hardware can remember what the programmer wrote      *
1004  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1005  * increments above this stored value, which indicates that there       *
1006  * have been more responses received than requests sent. The SPUR_WR    *
1007  * bit cannot be cleared until a value is written to the IPRBx          *
1008  * register; the write will correct the C field and capture its new     *
1009  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1010  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1011  *                                                                      *
1012  *                                                                      *
1013  ************************************************************************/
1014 
1015 typedef union ii_iprba_u {
1016 	shubreg_t	ii_iprba_regval;
1017 	struct  {
1018 		shubreg_t	i_c                       :	 8;
1019 		shubreg_t	i_na			  :	14;
1020 		shubreg_t       i_rsvd_2                  :      2;
1021 		shubreg_t	i_nb			  :	14;
1022 		shubreg_t	i_rsvd_1		  :	 2;
1023 		shubreg_t	i_m			  :	 2;
1024 		shubreg_t	i_f			  :	 1;
1025 		shubreg_t	i_of_cnt		  :	 5;
1026 		shubreg_t	i_error			  :	 1;
1027 		shubreg_t	i_rd_to			  :	 1;
1028 		shubreg_t	i_spur_wr		  :	 1;
1029 		shubreg_t	i_spur_rd		  :	 1;
1030 		shubreg_t	i_rsvd			  :	11;
1031 		shubreg_t	i_mult_err		  :	 1;
1032 	} ii_iprba_fld_s;
1033 } ii_iprba_u_t;
1034 
1035 
1036 /************************************************************************
1037  *                                                                      *
1038  * Description:  There are 9 instances of this register, one per        *
1039  * actual widget in this implementation of SHub and Crossbow.           *
1040  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1041  * refers to Crossbow's internal space.                                 *
1042  * This register contains the state elements per widget that are        *
1043  * necessary to manage the PIO flow control on Crosstalk and on the     *
1044  * Router Network. See the PIO Flow Control chapter for a complete      *
1045  * description of this register                                         *
1046  * The SPUR_WR bit requires some explanation. When this register is     *
1047  * written, the new value of the C field is captured in an internal     *
1048  * register so the hardware can remember what the programmer wrote      *
1049  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1050  * increments above this stored value, which indicates that there       *
1051  * have been more responses received than requests sent. The SPUR_WR    *
1052  * bit cannot be cleared until a value is written to the IPRBx          *
1053  * register; the write will correct the C field and capture its new     *
1054  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1055  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1056  * .                                                                    *
1057  *                                                                      *
1058  ************************************************************************/
1059 
1060 typedef union ii_iprbb_u {
1061 	shubreg_t	ii_iprbb_regval;
1062 	struct	{
1063 		shubreg_t	i_c			  :	 8;
1064 		shubreg_t	i_na			  :	14;
1065 		shubreg_t	i_rsvd_2		  :	 2;
1066 		shubreg_t	i_nb			  :	14;
1067 		shubreg_t	i_rsvd_1		  :	 2;
1068 		shubreg_t	i_m			  :	 2;
1069 		shubreg_t	i_f			  :	 1;
1070 		shubreg_t	i_of_cnt		  :	 5;
1071 		shubreg_t	i_error			  :	 1;
1072 		shubreg_t	i_rd_to			  :	 1;
1073 		shubreg_t	i_spur_wr		  :	 1;
1074 		shubreg_t	i_spur_rd		  :	 1;
1075 		shubreg_t	i_rsvd			  :	11;
1076 		shubreg_t	i_mult_err		  :	 1;
1077 	} ii_iprbb_fld_s;
1078 } ii_iprbb_u_t;
1079 
1080 
1081 /************************************************************************
1082  *                                                                      *
1083  * Description:  There are 9 instances of this register, one per        *
1084  * actual widget in this implementation of SHub and Crossbow.           *
1085  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1086  * refers to Crossbow's internal space.                                 *
1087  * This register contains the state elements per widget that are        *
1088  * necessary to manage the PIO flow control on Crosstalk and on the     *
1089  * Router Network. See the PIO Flow Control chapter for a complete      *
1090  * description of this register                                         *
1091  * The SPUR_WR bit requires some explanation. When this register is     *
1092  * written, the new value of the C field is captured in an internal     *
1093  * register so the hardware can remember what the programmer wrote      *
1094  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1095  * increments above this stored value, which indicates that there       *
1096  * have been more responses received than requests sent. The SPUR_WR    *
1097  * bit cannot be cleared until a value is written to the IPRBx          *
1098  * register; the write will correct the C field and capture its new     *
1099  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1100  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1101  * .                                                                    *
1102  *                                                                      *
1103  ************************************************************************/
1104 
1105 typedef union ii_iprbc_u {
1106 	shubreg_t	ii_iprbc_regval;
1107 	struct	{
1108 		shubreg_t	i_c			  :	 8;
1109 		shubreg_t	i_na			  :	14;
1110 		shubreg_t	i_rsvd_2		  :	 2;
1111 		shubreg_t	i_nb			  :	14;
1112 		shubreg_t	i_rsvd_1		  :	 2;
1113 		shubreg_t	i_m			  :	 2;
1114 		shubreg_t	i_f			  :	 1;
1115 		shubreg_t	i_of_cnt		  :	 5;
1116 		shubreg_t	i_error			  :	 1;
1117 		shubreg_t	i_rd_to			  :	 1;
1118 		shubreg_t	i_spur_wr		  :	 1;
1119 		shubreg_t	i_spur_rd		  :	 1;
1120 		shubreg_t	i_rsvd			  :	11;
1121 		shubreg_t	i_mult_err		  :	 1;
1122 	} ii_iprbc_fld_s;
1123 } ii_iprbc_u_t;
1124 
1125 
1126 /************************************************************************
1127  *                                                                      *
1128  * Description:  There are 9 instances of this register, one per        *
1129  * actual widget in this implementation of SHub and Crossbow.           *
1130  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1131  * refers to Crossbow's internal space.                                 *
1132  * This register contains the state elements per widget that are        *
1133  * necessary to manage the PIO flow control on Crosstalk and on the     *
1134  * Router Network. See the PIO Flow Control chapter for a complete      *
1135  * description of this register                                         *
1136  * The SPUR_WR bit requires some explanation. When this register is     *
1137  * written, the new value of the C field is captured in an internal     *
1138  * register so the hardware can remember what the programmer wrote      *
1139  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1140  * increments above this stored value, which indicates that there       *
1141  * have been more responses received than requests sent. The SPUR_WR    *
1142  * bit cannot be cleared until a value is written to the IPRBx          *
1143  * register; the write will correct the C field and capture its new     *
1144  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1145  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1146  * .                                                                    *
1147  *                                                                      *
1148  ************************************************************************/
1149 
1150 typedef union ii_iprbd_u {
1151 	shubreg_t	ii_iprbd_regval;
1152 	struct	{
1153 		shubreg_t	i_c			  :	 8;
1154 		shubreg_t	i_na			  :	14;
1155 		shubreg_t	i_rsvd_2		  :	 2;
1156 		shubreg_t	i_nb			  :	14;
1157 		shubreg_t	i_rsvd_1		  :	 2;
1158 		shubreg_t	i_m			  :	 2;
1159 		shubreg_t	i_f			  :	 1;
1160 		shubreg_t	i_of_cnt		  :	 5;
1161 		shubreg_t	i_error			  :	 1;
1162 		shubreg_t	i_rd_to			  :	 1;
1163 		shubreg_t	i_spur_wr		  :	 1;
1164 		shubreg_t	i_spur_rd		  :	 1;
1165 		shubreg_t	i_rsvd			  :	11;
1166 		shubreg_t	i_mult_err		  :	 1;
1167 	} ii_iprbd_fld_s;
1168 } ii_iprbd_u_t;
1169 
1170 
1171 /************************************************************************
1172  *                                                                      *
1173  * Description:  There are 9 instances of this register, one per        *
1174  * actual widget in this implementation of SHub and Crossbow.           *
1175  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1176  * refers to Crossbow's internal space.                                 *
1177  * This register contains the state elements per widget that are        *
1178  * necessary to manage the PIO flow control on Crosstalk and on the     *
1179  * Router Network. See the PIO Flow Control chapter for a complete      *
1180  * description of this register                                         *
1181  * The SPUR_WR bit requires some explanation. When this register is     *
1182  * written, the new value of the C field is captured in an internal     *
1183  * register so the hardware can remember what the programmer wrote      *
1184  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1185  * increments above this stored value, which indicates that there       *
1186  * have been more responses received than requests sent. The SPUR_WR    *
1187  * bit cannot be cleared until a value is written to the IPRBx          *
1188  * register; the write will correct the C field and capture its new     *
1189  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1190  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1191  * .                                                                    *
1192  *                                                                      *
1193  ************************************************************************/
1194 
1195 typedef union ii_iprbe_u {
1196 	shubreg_t	ii_iprbe_regval;
1197 	struct	{
1198 		shubreg_t	i_c			  :	 8;
1199 		shubreg_t	i_na			  :	14;
1200 		shubreg_t	i_rsvd_2		  :	 2;
1201 		shubreg_t	i_nb			  :	14;
1202 		shubreg_t	i_rsvd_1		  :	 2;
1203 		shubreg_t	i_m			  :	 2;
1204 		shubreg_t	i_f			  :	 1;
1205 		shubreg_t	i_of_cnt		  :	 5;
1206 		shubreg_t	i_error			  :	 1;
1207 		shubreg_t	i_rd_to			  :	 1;
1208 		shubreg_t	i_spur_wr		  :	 1;
1209 		shubreg_t	i_spur_rd		  :	 1;
1210 		shubreg_t	i_rsvd			  :	11;
1211 		shubreg_t	i_mult_err		  :	 1;
1212 	} ii_iprbe_fld_s;
1213 } ii_iprbe_u_t;
1214 
1215 
1216 /************************************************************************
1217  *                                                                      *
1218  * Description:  There are 9 instances of this register, one per        *
1219  * actual widget in this implementation of Shub and Crossbow.           *
1220  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1221  * refers to Crossbow's internal space.                                 *
1222  * This register contains the state elements per widget that are        *
1223  * necessary to manage the PIO flow control on Crosstalk and on the     *
1224  * Router Network. See the PIO Flow Control chapter for a complete      *
1225  * description of this register                                         *
1226  * The SPUR_WR bit requires some explanation. When this register is     *
1227  * written, the new value of the C field is captured in an internal     *
1228  * register so the hardware can remember what the programmer wrote      *
1229  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1230  * increments above this stored value, which indicates that there       *
1231  * have been more responses received than requests sent. The SPUR_WR    *
1232  * bit cannot be cleared until a value is written to the IPRBx          *
1233  * register; the write will correct the C field and capture its new     *
1234  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1235  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1236  * .                                                                    *
1237  *                                                                      *
1238  ************************************************************************/
1239 
1240 typedef union ii_iprbf_u {
1241         shubreg_t       ii_iprbf_regval;
1242         struct  {
1243                 shubreg_t       i_c                       :      8;
1244                 shubreg_t       i_na                      :     14;
1245                 shubreg_t       i_rsvd_2                  :      2;
1246                 shubreg_t       i_nb                      :     14;
1247                 shubreg_t       i_rsvd_1                  :      2;
1248                 shubreg_t       i_m                       :      2;
1249                 shubreg_t       i_f                       :      1;
1250                 shubreg_t       i_of_cnt                  :      5;
1251                 shubreg_t       i_error                   :      1;
1252                 shubreg_t       i_rd_to                   :      1;
1253                 shubreg_t       i_spur_wr                 :      1;
1254                 shubreg_t       i_spur_rd                 :      1;
1255                 shubreg_t       i_rsvd                    :     11;
1256                 shubreg_t       i_mult_err                :      1;
1257         } ii_iprbe_fld_s;
1258 } ii_iprbf_u_t;
1259 
1260 
1261 /************************************************************************
1262  *                                                                      *
1263  *  This register specifies the timeout value to use for monitoring     *
1264  * Crosstalk credits which are used outbound to Crosstalk. An           *
1265  * internal counter called the Crosstalk Credit Timeout Counter         *
1266  * increments every 128 II clocks. The counter starts counting          *
1267  * anytime the credit count drops below a threshold, and resets to      *
1268  * zero (stops counting) anytime the credit count is at or above the    *
1269  * threshold. The threshold is 1 credit in direct connect mode and 2    *
1270  * in Crossbow connect mode. When the internal Crosstalk Credit         *
1271  * Timeout Counter reaches the value programmed in this register, a     *
1272  * Crosstalk Credit Timeout has occurred. The internal counter is not   *
1273  * readable from software, and stops counting at its maximum value,     *
1274  * so it cannot cause more than one interrupt.                          *
1275  *                                                                      *
1276  ************************************************************************/
1277 
1278 typedef union ii_ixcc_u {
1279 	shubreg_t	ii_ixcc_regval;
1280 	struct  {
1281 		shubreg_t	i_time_out                :	26;
1282 		shubreg_t	i_rsvd			  :	38;
1283 	} ii_ixcc_fld_s;
1284 } ii_ixcc_u_t;
1285 
1286 
1287 /************************************************************************
1288  *                                                                      *
1289  * Description:  This register qualifies all the PIO and DMA            *
1290  * operations launched from widget 0 towards the SHub. In               *
1291  * addition, it also qualifies accesses by the BTE streams.             *
1292  * The bits in each field of this register are cleared by the SHub      *
1293  * upon detection of an error which requires widget 0 or the BTE        *
1294  * streams to be terminated. Whether or not widget x has access         *
1295  * rights to this SHub is determined by an AND of the device            *
1296  * enable bit in the appropriate field of this register and bit 0 in    *
1297  * the Wx_IAC field. The bits in this field are set by writing a 1 to   *
1298  * them. Incoming replies from Crosstalk are not subject to this        *
1299  * access control mechanism.                                            *
1300  *                                                                      *
1301  ************************************************************************/
1302 
1303 typedef union ii_imem_u {
1304 	shubreg_t	ii_imem_regval;
1305 	struct  {
1306 		shubreg_t	i_w0_esd                  :	 1;
1307 		shubreg_t	i_rsvd_3		  :	 3;
1308 		shubreg_t	i_b0_esd		  :	 1;
1309 		shubreg_t	i_rsvd_2		  :	 3;
1310 		shubreg_t	i_b1_esd		  :	 1;
1311 		shubreg_t	i_rsvd_1		  :	 3;
1312 		shubreg_t	i_clr_precise		  :	 1;
1313 		shubreg_t       i_rsvd                    :     51;
1314 	} ii_imem_fld_s;
1315 } ii_imem_u_t;
1316 
1317 
1318 
1319 /************************************************************************
1320  *                                                                      *
1321  * Description:  This register specifies the timeout value to use for   *
1322  * monitoring Crosstalk tail flits coming into the Shub in the          *
1323  * TAIL_TO field. An internal counter associated with this register     *
1324  * is incremented every 128 II internal clocks (7 bits). The counter    *
1325  * starts counting anytime a header micropacket is received and stops   *
1326  * counting (and resets to zero) any time a micropacket with a Tail     *
1327  * bit is received. Once the counter reaches the threshold value        *
1328  * programmed in this register, it generates an interrupt to the        *
1329  * processor that is programmed into the IIDSR. The counter saturates   *
1330  * (does not roll over) at its maximum value, so it cannot cause        *
1331  * another interrupt until after it is cleared.                         *
1332  * The register also contains the Read Response Timeout values. The     *
1333  * Prescalar is 23 bits, and counts II clocks. An internal counter      *
1334  * increments on every II clock and when it reaches the value in the    *
1335  * Prescalar field, all IPRTE registers with their valid bits set       *
1336  * have their Read Response timers bumped. Whenever any of them match   *
1337  * the value in the RRSP_TO field, a Read Response Timeout has          *
1338  * occurred, and error handling occurs as described in the Error        *
1339  * Handling section of this document.                                   *
1340  *                                                                      *
1341  ************************************************************************/
1342 
1343 typedef union ii_ixtt_u {
1344 	shubreg_t	ii_ixtt_regval;
1345 	struct  {
1346 		shubreg_t	i_tail_to                 :	26;
1347 		shubreg_t	i_rsvd_1		  :	 6;
1348 		shubreg_t	i_rrsp_ps		  :	23;
1349 		shubreg_t	i_rrsp_to		  :	 5;
1350 		shubreg_t	i_rsvd			  :	 4;
1351 	} ii_ixtt_fld_s;
1352 } ii_ixtt_u_t;
1353 
1354 
1355 /************************************************************************
1356  *                                                                      *
1357  *  Writing a 1 to the fields of this register clears the appropriate   *
1358  * error bits in other areas of SHub. Note that when the                *
1359  * E_PRB_x bits are used to clear error bits in PRB registers,          *
1360  * SPUR_RD and SPUR_WR may persist, because they require additional     *
1361  * action to clear them. See the IPRBx and IXSS Register                *
1362  * specifications.                                                      *
1363  *                                                                      *
1364  ************************************************************************/
1365 
1366 typedef union ii_ieclr_u {
1367 	shubreg_t	ii_ieclr_regval;
1368 	struct  {
1369 		shubreg_t	i_e_prb_0                 :	 1;
1370 		shubreg_t	i_rsvd			  :	 7;
1371 		shubreg_t	i_e_prb_8		  :	 1;
1372 		shubreg_t	i_e_prb_9		  :	 1;
1373 		shubreg_t	i_e_prb_a		  :	 1;
1374 		shubreg_t	i_e_prb_b		  :	 1;
1375 		shubreg_t	i_e_prb_c		  :	 1;
1376 		shubreg_t	i_e_prb_d		  :	 1;
1377 		shubreg_t	i_e_prb_e		  :	 1;
1378 		shubreg_t	i_e_prb_f		  :	 1;
1379 		shubreg_t	i_e_crazy		  :	 1;
1380 		shubreg_t	i_e_bte_0		  :	 1;
1381 		shubreg_t	i_e_bte_1		  :	 1;
1382 		shubreg_t	i_reserved_1		  :	10;
1383 		shubreg_t	i_spur_rd_hdr		  :	 1;
1384 		shubreg_t	i_cam_intr_to		  :	 1;
1385 		shubreg_t	i_cam_overflow		  :	 1;
1386 		shubreg_t	i_cam_read_miss		  :	 1;
1387 		shubreg_t	i_ioq_rep_underflow	  :	 1;
1388 		shubreg_t	i_ioq_req_underflow	  :	 1;
1389 		shubreg_t	i_ioq_rep_overflow	  :	 1;
1390 		shubreg_t	i_ioq_req_overflow	  :	 1;
1391 		shubreg_t	i_iiq_rep_overflow	  :	 1;
1392 		shubreg_t	i_iiq_req_overflow	  :	 1;
1393 		shubreg_t	i_ii_xn_rep_cred_overflow :	 1;
1394 		shubreg_t	i_ii_xn_req_cred_overflow :	 1;
1395 		shubreg_t	i_ii_xn_invalid_cmd	  :	 1;
1396 		shubreg_t	i_xn_ii_invalid_cmd	  :	 1;
1397 		shubreg_t	i_reserved_2		  :	21;
1398 	} ii_ieclr_fld_s;
1399 } ii_ieclr_u_t;
1400 
1401 
1402 /************************************************************************
1403  *                                                                      *
1404  *  This register controls both BTEs. SOFT_RESET is intended for        *
1405  * recovery after an error. COUNT controls the total number of CRBs     *
1406  * that both BTEs (combined) can use, which affects total BTE           *
1407  * bandwidth.                                                           *
1408  *                                                                      *
1409  ************************************************************************/
1410 
1411 typedef union ii_ibcr_u {
1412 	shubreg_t	ii_ibcr_regval;
1413 	struct  {
1414 		shubreg_t	i_count                   :	 4;
1415 		shubreg_t	i_rsvd_1		  :	 4;
1416 		shubreg_t	i_soft_reset		  :	 1;
1417 		shubreg_t	i_rsvd			  :	55;
1418 	} ii_ibcr_fld_s;
1419 } ii_ibcr_u_t;
1420 
1421 
1422 /************************************************************************
1423  *                                                                      *
1424  *  This register contains the header of a spurious read response       *
1425  * received from Crosstalk. A spurious read response is defined as a    *
1426  * read response received by II from a widget for which (1) the SIDN    *
1427  * has a value between 1 and 7, inclusive (II never sends requests to   *
1428  * these widgets (2) there is no valid IPRTE register which             *
1429  * corresponds to the TNUM, or (3) the widget indicated in SIDN is      *
1430  * not the same as the widget recorded in the IPRTE register            *
1431  * referenced by the TNUM. If this condition is true, and if the        *
1432  * IXSS[VALID] bit is clear, then the header of the spurious read       *
1433  * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The    *
1434  * errant header is thereby captured, and no further spurious read      *
1435  * respones are captured until IXSS[VALID] is cleared by setting the    *
1436  * appropriate bit in IECLR.Everytime a spurious read response is       *
1437  * detected, the SPUR_RD bit of the PRB corresponding to the incoming   *
1438  * message's SIDN field is set. This always happens, regarless of       *
1439  * whether a header is captured. The programmer should check            *
1440  * IXSM[SIDN] to determine which widget sent the spurious response,     *
1441  * because there may be more than one SPUR_RD bit set in the PRB        *
1442  * registers. The widget indicated by IXSM[SIDN] was the first          *
1443  * spurious read response to be received since the last time            *
1444  * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB      *
1445  * will be set. Any SPUR_RD bits in any other PRB registers indicate    *
1446  * spurious messages from other widets which were detected after the    *
1447  * header was captured..                                                *
1448  *                                                                      *
1449  ************************************************************************/
1450 
1451 typedef union ii_ixsm_u {
1452 	shubreg_t	ii_ixsm_regval;
1453 	struct  {
1454 		shubreg_t	i_byte_en                 :	32;
1455 		shubreg_t	i_reserved		  :	 1;
1456 		shubreg_t	i_tag			  :	 3;
1457 		shubreg_t	i_alt_pactyp		  :	 4;
1458 		shubreg_t	i_bo			  :	 1;
1459 		shubreg_t	i_error			  :	 1;
1460 		shubreg_t	i_vbpm			  :	 1;
1461 		shubreg_t	i_gbr			  :	 1;
1462 		shubreg_t	i_ds			  :	 2;
1463 		shubreg_t	i_ct			  :	 1;
1464 		shubreg_t	i_tnum			  :	 5;
1465 		shubreg_t	i_pactyp		  :	 4;
1466 		shubreg_t	i_sidn			  :	 4;
1467 		shubreg_t	i_didn			  :	 4;
1468 	} ii_ixsm_fld_s;
1469 } ii_ixsm_u_t;
1470 
1471 
1472 /************************************************************************
1473  *                                                                      *
1474  *  This register contains the sideband bits of a spurious read         *
1475  * response received from Crosstalk.                                    *
1476  *                                                                      *
1477  ************************************************************************/
1478 
1479 typedef union ii_ixss_u {
1480 	shubreg_t	ii_ixss_regval;
1481 	struct  {
1482 		shubreg_t	i_sideband                :	 8;
1483 		shubreg_t	i_rsvd			  :	55;
1484 		shubreg_t	i_valid			  :	 1;
1485 	} ii_ixss_fld_s;
1486 } ii_ixss_u_t;
1487 
1488 
1489 /************************************************************************
1490  *                                                                      *
1491  *  This register enables software to access the II LLP's test port.    *
1492  * Refer to the LLP 2.5 documentation for an explanation of the test    *
1493  * port. Software can write to this register to program the values      *
1494  * for the control fields (TestErrCapture, TestClear, TestFlit,         *
1495  * TestMask and TestSeed). Similarly, software can read from this       *
1496  * register to obtain the values of the test port's status outputs      *
1497  * (TestCBerr, TestValid and TestData).                                 *
1498  *                                                                      *
1499  ************************************************************************/
1500 
1501 typedef union ii_ilct_u {
1502 	shubreg_t	ii_ilct_regval;
1503 	struct  {
1504 		shubreg_t	i_test_seed               :	20;
1505 		shubreg_t	i_test_mask               :	 8;
1506 		shubreg_t	i_test_data               :	20;
1507 		shubreg_t	i_test_valid              :	 1;
1508 		shubreg_t	i_test_cberr              :	 1;
1509 		shubreg_t	i_test_flit               :	 3;
1510 		shubreg_t	i_test_clear              :	 1;
1511 		shubreg_t	i_test_err_capture        :	 1;
1512 		shubreg_t	i_rsvd                    :	 9;
1513 	} ii_ilct_fld_s;
1514 } ii_ilct_u_t;
1515 
1516 
1517 /************************************************************************
1518  *                                                                      *
1519  *  If the II detects an illegal incoming Duplonet packet (request or   *
1520  * reply) when VALID==0 in the IIEPH1 register, then it saves the       *
1521  * contents of the packet's header flit in the IIEPH1 and IIEPH2        *
1522  * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit,     *
1523  * and assigns a value to the ERR_TYPE field which indicates the        *
1524  * specific nature of the error. The II recognizes four different       *
1525  * types of errors: short request packets (ERR_TYPE==2), short reply    *
1526  * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long   *
1527  * reply packets (ERR_TYPE==5). The encodings for these types of        *
1528  * errors were chosen to be consistent with the same types of errors    *
1529  * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in    *
1530  * the LB unit). If the II detects an illegal incoming Duplonet         *
1531  * packet when VALID==1 in the IIEPH1 register, then it merely sets     *
1532  * the OVERRUN bit to indicate that a subsequent error has happened,    *
1533  * and does nothing further.                                            *
1534  *                                                                      *
1535  ************************************************************************/
1536 
1537 typedef union ii_iieph1_u {
1538 	shubreg_t	ii_iieph1_regval;
1539 	struct	{
1540 		shubreg_t	i_command		  :	 7;
1541 		shubreg_t	i_rsvd_5		  :	 1;
1542 		shubreg_t	i_suppl			  :	14;
1543 		shubreg_t	i_rsvd_4		  :	 1;
1544 		shubreg_t	i_source		  :	14;
1545 		shubreg_t	i_rsvd_3		  :	 1;
1546 		shubreg_t	i_err_type		  :	 4;
1547 		shubreg_t	i_rsvd_2		  :	 4;
1548 		shubreg_t	i_overrun		  :	 1;
1549 		shubreg_t	i_rsvd_1		  :	 3;
1550 		shubreg_t	i_valid			  :	 1;
1551 		shubreg_t	i_rsvd			  :	13;
1552 	} ii_iieph1_fld_s;
1553 } ii_iieph1_u_t;
1554 
1555 
1556 /************************************************************************
1557  *                                                                      *
1558  *  This register holds the Address field from the header flit of an    *
1559  * incoming erroneous Duplonet packet, along with the tail bit which    *
1560  * accompanied this header flit. This register is essentially an        *
1561  * extension of IIEPH1. Two registers were necessary because the 64     *
1562  * bits available in only a single register were insufficient to        *
1563  * capture the entire header flit of an erroneous packet.               *
1564  *                                                                      *
1565  ************************************************************************/
1566 
1567 typedef union ii_iieph2_u {
1568 	shubreg_t	ii_iieph2_regval;
1569 	struct  {
1570 		shubreg_t	i_rsvd_0		  :	 3;
1571 		shubreg_t	i_address                 :	47;
1572 		shubreg_t	i_rsvd_1		  :	10;
1573 		shubreg_t	i_tail			  :	 1;
1574 		shubreg_t	i_rsvd			  :	 3;
1575 	} ii_iieph2_fld_s;
1576 } ii_iieph2_u_t;
1577 
1578 
1579 /******************************/
1580 
1581 
1582 
1583 /************************************************************************
1584  *                                                                      *
1585  *  This register's value is a bit vector that guards access from SXBs  *
1586  * to local registers within the II as well as to external Crosstalk    *
1587  * widgets								*
1588  *                                                                      *
1589  ************************************************************************/
1590 
1591 typedef union ii_islapr_u {
1592 	shubreg_t	ii_islapr_regval;
1593 	struct  {
1594 		shubreg_t	i_region		  :	64;
1595 	} ii_islapr_fld_s;
1596 } ii_islapr_u_t;
1597 
1598 
1599 /************************************************************************
1600  *                                                                      *
1601  *  A write to this register of the 56-bit value "Pup+Bun" will cause	*
1602  * the bit in the ISLAPR register corresponding to the region of the	*
1603  * requestor to be set (access allowed).				(
1604  *                                                                      *
1605  ************************************************************************/
1606 
1607 typedef union ii_islapo_u {
1608 	shubreg_t	ii_islapo_regval;
1609 	struct  {
1610 		shubreg_t	i_io_sbx_ovrride	  :	56;
1611 		shubreg_t	i_rsvd			  :	 8;
1612 	} ii_islapo_fld_s;
1613 } ii_islapo_u_t;
1614 
1615 /************************************************************************
1616  *                                                                      *
1617  *  Determines how long the wrapper will wait aftr an interrupt is	*
1618  * initially issued from the II before it times out the outstanding	*
1619  * interrupt and drops it from the interrupt queue.			*
1620  *                                                                      *
1621  ************************************************************************/
1622 
1623 typedef union ii_iwi_u {
1624 	shubreg_t	ii_iwi_regval;
1625 	struct  {
1626 		shubreg_t	i_prescale		  :	24;
1627 		shubreg_t	i_rsvd			  :	 8;
1628 		shubreg_t	i_timeout		  :	 8;
1629 		shubreg_t	i_rsvd1			  :	 8;
1630 		shubreg_t	i_intrpt_retry_period	  :	 8;
1631 		shubreg_t	i_rsvd2			  :	 8;
1632 	} ii_iwi_fld_s;
1633 } ii_iwi_u_t;
1634 
1635 /************************************************************************
1636  *                                                                      *
1637  *  Log errors which have occurred in the II wrapper. The errors are	*
1638  * cleared by writing to the IECLR register.				*
1639  *                                                                      *
1640  ************************************************************************/
1641 
1642 typedef union ii_iwel_u {
1643 	shubreg_t	ii_iwel_regval;
1644 	struct  {
1645 		shubreg_t	i_intr_timed_out	  :	 1;
1646 		shubreg_t	i_rsvd			  :	 7;
1647 		shubreg_t	i_cam_overflow		  :	 1;
1648 		shubreg_t	i_cam_read_miss		  :	 1;
1649 		shubreg_t	i_rsvd1			  :	 2;
1650 		shubreg_t	i_ioq_rep_underflow	  :	 1;
1651 		shubreg_t	i_ioq_req_underflow	  :	 1;
1652 		shubreg_t	i_ioq_rep_overflow	  :	 1;
1653 		shubreg_t	i_ioq_req_overflow	  :	 1;
1654 		shubreg_t	i_iiq_rep_overflow	  :	 1;
1655 		shubreg_t	i_iiq_req_overflow	  :	 1;
1656 		shubreg_t	i_rsvd2			  :	 6;
1657 		shubreg_t	i_ii_xn_rep_cred_over_under:	 1;
1658 		shubreg_t	i_ii_xn_req_cred_over_under:	 1;
1659 		shubreg_t	i_rsvd3			  :	 6;
1660 		shubreg_t	i_ii_xn_invalid_cmd	  :	 1;
1661 		shubreg_t	i_xn_ii_invalid_cmd	  :	 1;
1662 		shubreg_t	i_rsvd4			  :	30;
1663 	} ii_iwel_fld_s;
1664 } ii_iwel_u_t;
1665 
1666 /************************************************************************
1667  *                                                                      *
1668  *  Controls the II wrapper.						*
1669  *                                                                      *
1670  ************************************************************************/
1671 
1672 typedef union ii_iwc_u {
1673 	shubreg_t	ii_iwc_regval;
1674 	struct  {
1675 		shubreg_t	i_dma_byte_swap		  :	 1;
1676 		shubreg_t	i_rsvd			  :	 3;
1677 		shubreg_t	i_cam_read_lines_reset	  :	 1;
1678 		shubreg_t	i_rsvd1			  :	 3;
1679 		shubreg_t	i_ii_xn_cred_over_under_log:	 1;
1680 		shubreg_t	i_rsvd2			  :	19;
1681 		shubreg_t	i_xn_rep_iq_depth	  :	 5;
1682 		shubreg_t	i_rsvd3			  :	 3;
1683 		shubreg_t	i_xn_req_iq_depth	  :	 5;
1684 		shubreg_t	i_rsvd4			  :	 3;
1685 		shubreg_t	i_iiq_depth		  :	 6;
1686 		shubreg_t	i_rsvd5			  :	12;
1687 		shubreg_t	i_force_rep_cred	  :	 1;
1688 		shubreg_t	i_force_req_cred	  :	 1;
1689 	} ii_iwc_fld_s;
1690 } ii_iwc_u_t;
1691 
1692 /************************************************************************
1693  *                                                                      *
1694  *  Status in the II wrapper.						*
1695  *                                                                      *
1696  ************************************************************************/
1697 
1698 typedef union ii_iws_u {
1699 	shubreg_t	ii_iws_regval;
1700 	struct  {
1701 		shubreg_t	i_xn_rep_iq_credits	  :	 5;
1702 		shubreg_t	i_rsvd			  :	 3;
1703 		shubreg_t	i_xn_req_iq_credits	  :	 5;
1704 		shubreg_t	i_rsvd1			  :	51;
1705 	} ii_iws_fld_s;
1706 } ii_iws_u_t;
1707 
1708 /************************************************************************
1709  *                                                                      *
1710  *  Masks errors in the IWEL register.					*
1711  *                                                                      *
1712  ************************************************************************/
1713 
1714 typedef union ii_iweim_u {
1715 	shubreg_t	ii_iweim_regval;
1716 	struct  {
1717 		shubreg_t	i_intr_timed_out	  :	 1;
1718 		shubreg_t	i_rsvd			  :	 7;
1719 		shubreg_t	i_cam_overflow		  :	 1;
1720 		shubreg_t	i_cam_read_miss		  :	 1;
1721 		shubreg_t	i_rsvd1			  :	 2;
1722 		shubreg_t	i_ioq_rep_underflow	  :	 1;
1723 		shubreg_t	i_ioq_req_underflow	  :	 1;
1724 		shubreg_t	i_ioq_rep_overflow	  :	 1;
1725 		shubreg_t	i_ioq_req_overflow	  :	 1;
1726 		shubreg_t	i_iiq_rep_overflow	  :	 1;
1727 		shubreg_t	i_iiq_req_overflow	  :	 1;
1728 		shubreg_t	i_rsvd2			  :	 6;
1729 		shubreg_t	i_ii_xn_rep_cred_overflow :	 1;
1730 		shubreg_t	i_ii_xn_req_cred_overflow :	 1;
1731 		shubreg_t	i_rsvd3			  :	 6;
1732 		shubreg_t	i_ii_xn_invalid_cmd	  :	 1;
1733 		shubreg_t	i_xn_ii_invalid_cmd	  :	 1;
1734 		shubreg_t	i_rsvd4			  :	30;
1735 	} ii_iweim_fld_s;
1736 } ii_iweim_u_t;
1737 
1738 
1739 /************************************************************************
1740  *                                                                      *
1741  *  A write to this register causes a particular field in the           *
1742  * corresponding widget's PRB entry to be adjusted up or down by 1.     *
1743  * This counter should be used when recovering from error and reset     *
1744  * conditions. Note that software would be capable of causing           *
1745  * inadvertent overflow or underflow of these counters.                 *
1746  *                                                                      *
1747  ************************************************************************/
1748 
1749 typedef union ii_ipca_u {
1750 	shubreg_t	ii_ipca_regval;
1751 	struct  {
1752 		shubreg_t	i_wid                     :	 4;
1753 		shubreg_t	i_adjust		  :	 1;
1754 		shubreg_t	i_rsvd_1		  :	 3;
1755 		shubreg_t	i_field			  :	 2;
1756 		shubreg_t	i_rsvd			  :	54;
1757 	} ii_ipca_fld_s;
1758 } ii_ipca_u_t;
1759 
1760 
1761 /************************************************************************
1762  *                                                                      *
1763  *  There are 8 instances of this register. This register contains      *
1764  * the information that the II has to remember once it has launched a   *
1765  * PIO Read operation. The contents are used to form the correct        *
1766  * Router Network packet and direct the Crosstalk reply to the          *
1767  * appropriate processor.                                               *
1768  *                                                                      *
1769  ************************************************************************/
1770 
1771 
1772 typedef union ii_iprte0a_u {
1773 	shubreg_t	ii_iprte0a_regval;
1774 	struct  {
1775 		shubreg_t	i_rsvd_1                  :	54;
1776 		shubreg_t	i_widget		  :	 4;
1777 		shubreg_t	i_to_cnt		  :	 5;
1778 		shubreg_t       i_vld                     :      1;
1779 	} ii_iprte0a_fld_s;
1780 } ii_iprte0a_u_t;
1781 
1782 
1783 /************************************************************************
1784  *                                                                      *
1785  *  There are 8 instances of this register. This register contains      *
1786  * the information that the II has to remember once it has launched a   *
1787  * PIO Read operation. The contents are used to form the correct        *
1788  * Router Network packet and direct the Crosstalk reply to the          *
1789  * appropriate processor.                                               *
1790  *                                                                      *
1791  ************************************************************************/
1792 
1793 typedef union ii_iprte1a_u {
1794 	shubreg_t	ii_iprte1a_regval;
1795 	struct  {
1796 		shubreg_t	i_rsvd_1                  :	54;
1797 		shubreg_t	i_widget		  :	 4;
1798 		shubreg_t	i_to_cnt		  :	 5;
1799 		shubreg_t       i_vld                     :      1;
1800 	} ii_iprte1a_fld_s;
1801 } ii_iprte1a_u_t;
1802 
1803 
1804 /************************************************************************
1805  *                                                                      *
1806  *  There are 8 instances of this register. This register contains      *
1807  * the information that the II has to remember once it has launched a   *
1808  * PIO Read operation. The contents are used to form the correct        *
1809  * Router Network packet and direct the Crosstalk reply to the          *
1810  * appropriate processor.                                               *
1811  *                                                                      *
1812  ************************************************************************/
1813 
1814 typedef union ii_iprte2a_u {
1815 	shubreg_t	ii_iprte2a_regval;
1816 	struct  {
1817 		shubreg_t	i_rsvd_1                  :	54;
1818 		shubreg_t	i_widget		  :	 4;
1819 		shubreg_t	i_to_cnt		  :	 5;
1820 		shubreg_t       i_vld                     :      1;
1821 	} ii_iprte2a_fld_s;
1822 } ii_iprte2a_u_t;
1823 
1824 
1825 /************************************************************************
1826  *                                                                      *
1827  *  There are 8 instances of this register. This register contains      *
1828  * the information that the II has to remember once it has launched a   *
1829  * PIO Read operation. The contents are used to form the correct        *
1830  * Router Network packet and direct the Crosstalk reply to the          *
1831  * appropriate processor.                                               *
1832  *                                                                      *
1833  ************************************************************************/
1834 
1835 typedef union ii_iprte3a_u {
1836 	shubreg_t	ii_iprte3a_regval;
1837 	struct  {
1838 		shubreg_t	i_rsvd_1                  :	54;
1839 		shubreg_t	i_widget		  :	 4;
1840 		shubreg_t	i_to_cnt		  :	 5;
1841 		shubreg_t	i_vld			  :	 1;
1842 	} ii_iprte3a_fld_s;
1843 } ii_iprte3a_u_t;
1844 
1845 
1846 /************************************************************************
1847  *                                                                      *
1848  *  There are 8 instances of this register. This register contains      *
1849  * the information that the II has to remember once it has launched a   *
1850  * PIO Read operation. The contents are used to form the correct        *
1851  * Router Network packet and direct the Crosstalk reply to the          *
1852  * appropriate processor.                                               *
1853  *                                                                      *
1854  ************************************************************************/
1855 
1856 typedef union ii_iprte4a_u {
1857 	shubreg_t	ii_iprte4a_regval;
1858 	struct	{
1859 		shubreg_t	i_rsvd_1		  :	54;
1860 		shubreg_t	i_widget		  :	 4;
1861 		shubreg_t	i_to_cnt		  :	 5;
1862 		shubreg_t	i_vld			  :	 1;
1863 	} ii_iprte4a_fld_s;
1864 } ii_iprte4a_u_t;
1865 
1866 
1867 /************************************************************************
1868  *                                                                      *
1869  *  There are 8 instances of this register. This register contains      *
1870  * the information that the II has to remember once it has launched a   *
1871  * PIO Read operation. The contents are used to form the correct        *
1872  * Router Network packet and direct the Crosstalk reply to the          *
1873  * appropriate processor.                                               *
1874  *                                                                      *
1875  ************************************************************************/
1876 
1877 typedef union ii_iprte5a_u {
1878 	shubreg_t	ii_iprte5a_regval;
1879 	struct	{
1880 		shubreg_t	i_rsvd_1		  :	54;
1881 		shubreg_t	i_widget		  :	 4;
1882 		shubreg_t	i_to_cnt		  :	 5;
1883 		shubreg_t	i_vld			  :	 1;
1884 	} ii_iprte5a_fld_s;
1885 } ii_iprte5a_u_t;
1886 
1887 
1888 /************************************************************************
1889  *                                                                      *
1890  *  There are 8 instances of this register. This register contains      *
1891  * the information that the II has to remember once it has launched a   *
1892  * PIO Read operation. The contents are used to form the correct        *
1893  * Router Network packet and direct the Crosstalk reply to the          *
1894  * appropriate processor.                                               *
1895  *                                                                      *
1896  ************************************************************************/
1897 
1898 typedef union ii_iprte6a_u {
1899 	shubreg_t	ii_iprte6a_regval;
1900 	struct	{
1901 		shubreg_t	i_rsvd_1		  :	54;
1902 		shubreg_t	i_widget		  :	 4;
1903 		shubreg_t	i_to_cnt		  :	 5;
1904 		shubreg_t	i_vld			  :	 1;
1905 	} ii_iprte6a_fld_s;
1906 } ii_iprte6a_u_t;
1907 
1908 
1909 /************************************************************************
1910  *                                                                      *
1911  *  There are 8 instances of this register. This register contains      *
1912  * the information that the II has to remember once it has launched a   *
1913  * PIO Read operation. The contents are used to form the correct        *
1914  * Router Network packet and direct the Crosstalk reply to the          *
1915  * appropriate processor.                                               *
1916  *                                                                      *
1917  ************************************************************************/
1918 
1919 typedef union ii_iprte7a_u {
1920         shubreg_t       ii_iprte7a_regval;
1921         struct  {
1922                 shubreg_t       i_rsvd_1                  :     54;
1923                 shubreg_t       i_widget                  :      4;
1924                 shubreg_t       i_to_cnt                  :      5;
1925                 shubreg_t       i_vld                     :      1;
1926         } ii_iprtea7_fld_s;
1927 } ii_iprte7a_u_t;
1928 
1929 
1930 
1931 /************************************************************************
1932  *                                                                      *
1933  *  There are 8 instances of this register. This register contains      *
1934  * the information that the II has to remember once it has launched a   *
1935  * PIO Read operation. The contents are used to form the correct        *
1936  * Router Network packet and direct the Crosstalk reply to the          *
1937  * appropriate processor.                                               *
1938  *                                                                      *
1939  ************************************************************************/
1940 
1941 
1942 typedef union ii_iprte0b_u {
1943 	shubreg_t	ii_iprte0b_regval;
1944 	struct  {
1945 		shubreg_t	i_rsvd_1                  :	 3;
1946 		shubreg_t	i_address		  :	47;
1947 		shubreg_t	i_init			  :	 3;
1948 		shubreg_t       i_source                  :     11;
1949 	} ii_iprte0b_fld_s;
1950 } ii_iprte0b_u_t;
1951 
1952 
1953 /************************************************************************
1954  *                                                                      *
1955  *  There are 8 instances of this register. This register contains      *
1956  * the information that the II has to remember once it has launched a   *
1957  * PIO Read operation. The contents are used to form the correct        *
1958  * Router Network packet and direct the Crosstalk reply to the          *
1959  * appropriate processor.                                               *
1960  *                                                                      *
1961  ************************************************************************/
1962 
1963 typedef union ii_iprte1b_u {
1964 	shubreg_t	ii_iprte1b_regval;
1965 	struct  {
1966 		shubreg_t	i_rsvd_1                  :	 3;
1967 		shubreg_t	i_address		  :	47;
1968 		shubreg_t	i_init			  :	 3;
1969 		shubreg_t       i_source                  :     11;
1970 	} ii_iprte1b_fld_s;
1971 } ii_iprte1b_u_t;
1972 
1973 
1974 /************************************************************************
1975  *                                                                      *
1976  *  There are 8 instances of this register. This register contains      *
1977  * the information that the II has to remember once it has launched a   *
1978  * PIO Read operation. The contents are used to form the correct        *
1979  * Router Network packet and direct the Crosstalk reply to the          *
1980  * appropriate processor.                                               *
1981  *                                                                      *
1982  ************************************************************************/
1983 
1984 typedef union ii_iprte2b_u {
1985 	shubreg_t	ii_iprte2b_regval;
1986 	struct  {
1987 		shubreg_t	i_rsvd_1                  :	 3;
1988 		shubreg_t	i_address		  :	47;
1989 		shubreg_t	i_init			  :	 3;
1990 		shubreg_t       i_source                  :     11;
1991 	} ii_iprte2b_fld_s;
1992 } ii_iprte2b_u_t;
1993 
1994 
1995 /************************************************************************
1996  *                                                                      *
1997  *  There are 8 instances of this register. This register contains      *
1998  * the information that the II has to remember once it has launched a   *
1999  * PIO Read operation. The contents are used to form the correct        *
2000  * Router Network packet and direct the Crosstalk reply to the          *
2001  * appropriate processor.                                               *
2002  *                                                                      *
2003  ************************************************************************/
2004 
2005 typedef union ii_iprte3b_u {
2006 	shubreg_t	ii_iprte3b_regval;
2007 	struct  {
2008 		shubreg_t	i_rsvd_1                  :	 3;
2009 		shubreg_t	i_address		  :	47;
2010 		shubreg_t	i_init			  :	 3;
2011 		shubreg_t       i_source                  :     11;
2012 	} ii_iprte3b_fld_s;
2013 } ii_iprte3b_u_t;
2014 
2015 
2016 /************************************************************************
2017  *                                                                      *
2018  *  There are 8 instances of this register. This register contains      *
2019  * the information that the II has to remember once it has launched a   *
2020  * PIO Read operation. The contents are used to form the correct        *
2021  * Router Network packet and direct the Crosstalk reply to the          *
2022  * appropriate processor.                                               *
2023  *                                                                      *
2024  ************************************************************************/
2025 
2026 typedef union ii_iprte4b_u {
2027 	shubreg_t	ii_iprte4b_regval;
2028 	struct	{
2029 		shubreg_t	i_rsvd_1                  :	 3;
2030 		shubreg_t	i_address		  :	47;
2031 		shubreg_t	i_init			  :	 3;
2032 		shubreg_t       i_source                  :     11;
2033 	} ii_iprte4b_fld_s;
2034 } ii_iprte4b_u_t;
2035 
2036 
2037 /************************************************************************
2038  *                                                                      *
2039  *  There are 8 instances of this register. This register contains      *
2040  * the information that the II has to remember once it has launched a   *
2041  * PIO Read operation. The contents are used to form the correct        *
2042  * Router Network packet and direct the Crosstalk reply to the          *
2043  * appropriate processor.                                               *
2044  *                                                                      *
2045  ************************************************************************/
2046 
2047 typedef union ii_iprte5b_u {
2048 	shubreg_t	ii_iprte5b_regval;
2049 	struct	{
2050 		shubreg_t	i_rsvd_1                  :	 3;
2051 		shubreg_t	i_address		  :	47;
2052 		shubreg_t	i_init			  :	 3;
2053 		shubreg_t       i_source                  :     11;
2054 	} ii_iprte5b_fld_s;
2055 } ii_iprte5b_u_t;
2056 
2057 
2058 /************************************************************************
2059  *                                                                      *
2060  *  There are 8 instances of this register. This register contains      *
2061  * the information that the II has to remember once it has launched a   *
2062  * PIO Read operation. The contents are used to form the correct        *
2063  * Router Network packet and direct the Crosstalk reply to the          *
2064  * appropriate processor.                                               *
2065  *                                                                      *
2066  ************************************************************************/
2067 
2068 typedef union ii_iprte6b_u {
2069 	shubreg_t	ii_iprte6b_regval;
2070 	struct	{
2071 		shubreg_t	i_rsvd_1                  :	 3;
2072 		shubreg_t	i_address		  :	47;
2073 		shubreg_t	i_init			  :	 3;
2074 		shubreg_t       i_source                  :     11;
2075 
2076 	} ii_iprte6b_fld_s;
2077 } ii_iprte6b_u_t;
2078 
2079 
2080 /************************************************************************
2081  *                                                                      *
2082  *  There are 8 instances of this register. This register contains      *
2083  * the information that the II has to remember once it has launched a   *
2084  * PIO Read operation. The contents are used to form the correct        *
2085  * Router Network packet and direct the Crosstalk reply to the          *
2086  * appropriate processor.                                               *
2087  *                                                                      *
2088  ************************************************************************/
2089 
2090 typedef union ii_iprte7b_u {
2091         shubreg_t       ii_iprte7b_regval;
2092         struct  {
2093 		shubreg_t	i_rsvd_1                  :	 3;
2094 		shubreg_t	i_address		  :	47;
2095 		shubreg_t	i_init			  :	 3;
2096 		shubreg_t       i_source                  :     11;
2097         } ii_iprte7b_fld_s;
2098 } ii_iprte7b_u_t;
2099 
2100 
2101 /************************************************************************
2102  *                                                                      *
2103  * Description:  SHub II contains a feature which did not exist in      *
2104  * the Hub which automatically cleans up after a Read Response          *
2105  * timeout, including deallocation of the IPRTE and recovery of IBuf    *
2106  * space. The inclusion of this register in SHub is for backward        *
2107  * compatibility                                                        *
2108  * A write to this register causes an entry from the table of           *
2109  * outstanding PIO Read Requests to be freed and returned to the        *
2110  * stack of free entries. This register is used in handling the         *
2111  * timeout errors that result in a PIO Reply never returning from       *
2112  * Crosstalk.                                                           *
2113  * Note that this register does not affect the contents of the IPRTE    *
2114  * registers. The Valid bits in those registers have to be              *
2115  * specifically turned off by software.                                 *
2116  *                                                                      *
2117  ************************************************************************/
2118 
2119 typedef union ii_ipdr_u {
2120 	shubreg_t	ii_ipdr_regval;
2121 	struct  {
2122 		shubreg_t	i_te                      :	 3;
2123 		shubreg_t	i_rsvd_1		  :	 1;
2124 		shubreg_t	i_pnd			  :	 1;
2125 		shubreg_t	i_init_rpcnt		  :	 1;
2126 		shubreg_t	i_rsvd			  :	58;
2127 	} ii_ipdr_fld_s;
2128 } ii_ipdr_u_t;
2129 
2130 
2131 /************************************************************************
2132  *                                                                      *
2133  *  A write to this register causes a CRB entry to be returned to the   *
2134  * queue of free CRBs. The entry should have previously been cleared    *
2135  * (mark bit) via backdoor access to the pertinent CRB entry. This      *
2136  * register is used in the last step of handling the errors that are    *
2137  * captured and marked in CRB entries.  Briefly: 1) first error for     *
2138  * DMA write from a particular device, and first error for a            *
2139  * particular BTE stream, lead to a marked CRB entry, and processor     *
2140  * interrupt, 2) software reads the error information captured in the   *
2141  * CRB entry, and presumably takes some corrective action, 3)           *
2142  * software clears the mark bit, and finally 4) software writes to      *
2143  * the ICDR register to return the CRB entry to the list of free CRB    *
2144  * entries.                                                             *
2145  *                                                                      *
2146  ************************************************************************/
2147 
2148 typedef union ii_icdr_u {
2149 	shubreg_t	ii_icdr_regval;
2150 	struct  {
2151 		shubreg_t	i_crb_num                 :	 4;
2152 		shubreg_t	i_pnd			  :	 1;
2153 		shubreg_t       i_rsvd                    :     59;
2154 	} ii_icdr_fld_s;
2155 } ii_icdr_u_t;
2156 
2157 
2158 /************************************************************************
2159  *                                                                      *
2160  *  This register provides debug access to two FIFOs inside of II.      *
2161  * Both IOQ_MAX* fields of this register contain the instantaneous      *
2162  * depth (in units of the number of available entries) of the           *
2163  * associated IOQ FIFO.  A read of this register will return the        *
2164  * number of free entries on each FIFO at the time of the read.  So     *
2165  * when a FIFO is idle, the associated field contains the maximum       *
2166  * depth of the FIFO.  This register is writable for debug reasons      *
2167  * and is intended to be written with the maximum desired FIFO depth    *
2168  * while the FIFO is idle. Software must assure that II is idle when    *
2169  * this register is written. If there are any active entries in any     *
2170  * of these FIFOs when this register is written, the results are        *
2171  * undefined.                                                           *
2172  *                                                                      *
2173  ************************************************************************/
2174 
2175 typedef union ii_ifdr_u {
2176 	shubreg_t	ii_ifdr_regval;
2177 	struct  {
2178 		shubreg_t	i_ioq_max_rq              :	 7;
2179 		shubreg_t	i_set_ioq_rq		  :	 1;
2180 		shubreg_t	i_ioq_max_rp		  :	 7;
2181 		shubreg_t	i_set_ioq_rp		  :	 1;
2182 		shubreg_t	i_rsvd			  :	48;
2183 	} ii_ifdr_fld_s;
2184 } ii_ifdr_u_t;
2185 
2186 
2187 /************************************************************************
2188  *                                                                      *
2189  *  This register allows the II to become sluggish in removing          *
2190  * messages from its inbound queue (IIQ). This will cause messages to   *
2191  * back up in either virtual channel. Disabling the "molasses" mode     *
2192  * subsequently allows the II to be tested under stress. In the         *
2193  * sluggish ("Molasses") mode, the localized effects of congestion      *
2194  * can be observed.                                                     *
2195  *                                                                      *
2196  ************************************************************************/
2197 
2198 typedef union ii_iiap_u {
2199         shubreg_t       ii_iiap_regval;
2200         struct  {
2201                 shubreg_t       i_rq_mls                  :      6;
2202 		shubreg_t	i_rsvd_1		  :	 2;
2203 		shubreg_t	i_rp_mls		  :	 6;
2204 		shubreg_t       i_rsvd                    :     50;
2205         } ii_iiap_fld_s;
2206 } ii_iiap_u_t;
2207 
2208 
2209 /************************************************************************
2210  *                                                                      *
2211  *  This register allows several parameters of CRB operation to be      *
2212  * set. Note that writing to this register can have catastrophic side   *
2213  * effects, if the CRB is not quiescent, i.e. if the CRB is             *
2214  * processing protocol messages when the write occurs.                  *
2215  *                                                                      *
2216  ************************************************************************/
2217 
2218 typedef union ii_icmr_u {
2219 	shubreg_t	ii_icmr_regval;
2220 	struct  {
2221 		shubreg_t	i_sp_msg                  :	 1;
2222 		shubreg_t	i_rd_hdr		  :	 1;
2223 		shubreg_t	i_rsvd_4		  :	 2;
2224 		shubreg_t	i_c_cnt			  :	 4;
2225 		shubreg_t	i_rsvd_3		  :	 4;
2226 		shubreg_t	i_clr_rqpd		  :	 1;
2227 		shubreg_t	i_clr_rppd		  :	 1;
2228 		shubreg_t	i_rsvd_2		  :	 2;
2229 		shubreg_t	i_fc_cnt		  :	 4;
2230 		shubreg_t	i_crb_vld		  :	15;
2231 		shubreg_t	i_crb_mark		  :	15;
2232 		shubreg_t	i_rsvd_1		  :	 2;
2233 		shubreg_t	i_precise		  :	 1;
2234 		shubreg_t	i_rsvd			  :	11;
2235 	} ii_icmr_fld_s;
2236 } ii_icmr_u_t;
2237 
2238 
2239 /************************************************************************
2240  *                                                                      *
2241  *  This register allows control of the table portion of the CRB        *
2242  * logic via software. Control operations from this register have       *
2243  * priority over all incoming Crosstalk or BTE requests.                *
2244  *                                                                      *
2245  ************************************************************************/
2246 
2247 typedef union ii_iccr_u {
2248 	shubreg_t	ii_iccr_regval;
2249 	struct  {
2250 		shubreg_t	i_crb_num                 :	 4;
2251 		shubreg_t	i_rsvd_1		  :	 4;
2252 		shubreg_t	i_cmd			  :	 8;
2253 		shubreg_t	i_pending		  :	 1;
2254 		shubreg_t	i_rsvd			  :	47;
2255 	} ii_iccr_fld_s;
2256 } ii_iccr_u_t;
2257 
2258 
2259 /************************************************************************
2260  *                                                                      *
2261  *  This register allows the maximum timeout value to be programmed.    *
2262  *                                                                      *
2263  ************************************************************************/
2264 
2265 typedef union ii_icto_u {
2266 	shubreg_t	ii_icto_regval;
2267 	struct  {
2268 		shubreg_t	i_timeout                 :	 8;
2269 		shubreg_t	i_rsvd			  :	56;
2270 	} ii_icto_fld_s;
2271 } ii_icto_u_t;
2272 
2273 
2274 /************************************************************************
2275  *                                                                      *
2276  *  This register allows the timeout prescalar to be programmed. An     *
2277  * internal counter is associated with this register. When the          *
2278  * internal counter reaches the value of the PRESCALE field, the        *
2279  * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT]   *
2280  * field). The internal counter resets to zero, and then continues      *
2281  * counting.                                                            *
2282  *                                                                      *
2283  ************************************************************************/
2284 
2285 typedef union ii_ictp_u {
2286 	shubreg_t	ii_ictp_regval;
2287 	struct  {
2288 		shubreg_t	i_prescale                :	24;
2289 		shubreg_t	i_rsvd			  :	40;
2290 	} ii_ictp_fld_s;
2291 } ii_ictp_u_t;
2292 
2293 
2294 /************************************************************************
2295  *                                                                      *
2296  * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2297  * used for Crosstalk operations (both cacheline and partial            *
2298  * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2299  * registers (_A to _E) are required to read and write each entry.      *
2300  * The CRB Entry registers can be conceptualized as rows and columns    *
2301  * (illustrated in the table above). Each row contains the 4            *
2302  * registers required for a single CRB Entry. The first doubleword      *
2303  * (column) for each entry is labeled A, and the second doubleword      *
2304  * (higher address) is labeled B, the third doubleword is labeled C,    *
2305  * the fourth doubleword is labeled D and the fifth doubleword is       *
2306  * labeled E. All CRB entries have their addresses on a quarter         *
2307  * cacheline aligned boundary.                   *
2308  * Upon reset, only the following fields are initialized: valid         *
2309  * (VLD), priority count, timeout, timeout valid, and context valid.    *
2310  * All other bits should be cleared by software before use (after       *
2311  * recovering any potential error state from before the reset).         *
2312  * The following four tables summarize the format for the four          *
2313  * registers that are used for each ICRB# Entry.                        *
2314  *                                                                      *
2315  ************************************************************************/
2316 
2317 typedef union ii_icrb0_a_u {
2318 	shubreg_t	ii_icrb0_a_regval;
2319 	struct  {
2320 		shubreg_t	ia_iow                    :	 1;
2321 		shubreg_t	ia_vld			  :	 1;
2322 		shubreg_t	ia_addr			  :	47;
2323 		shubreg_t	ia_tnum			  :	 5;
2324 		shubreg_t	ia_sidn			  :	 4;
2325 		shubreg_t       ia_rsvd                   :      6;
2326 	} ii_icrb0_a_fld_s;
2327 } ii_icrb0_a_u_t;
2328 
2329 
2330 /************************************************************************
2331  *                                                                      *
2332  * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2333  * used for Crosstalk operations (both cacheline and partial            *
2334  * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2335  * registers (_A to _E) are required to read and write each entry.      *
2336  *                                                                      *
2337  ************************************************************************/
2338 
2339 typedef union ii_icrb0_b_u {
2340 	shubreg_t	ii_icrb0_b_regval;
2341 	struct	{
2342 		shubreg_t	ib_xt_err		  :	 1;
2343 		shubreg_t	ib_mark			  :	 1;
2344 		shubreg_t	ib_ln_uce		  :	 1;
2345 		shubreg_t	ib_errcode		  :	 3;
2346 		shubreg_t	ib_error		  :	 1;
2347 		shubreg_t	ib_stall__bte_1		  :	 1;
2348 		shubreg_t	ib_stall__bte_0		  :	 1;
2349 		shubreg_t	ib_stall__intr		  :	 1;
2350 		shubreg_t	ib_stall_ib		  :	 1;
2351 		shubreg_t	ib_intvn		  :	 1;
2352 		shubreg_t	ib_wb			  :	 1;
2353 		shubreg_t	ib_hold			  :	 1;
2354 		shubreg_t	ib_ack			  :	 1;
2355 		shubreg_t	ib_resp			  :	 1;
2356 		shubreg_t	ib_ack_cnt		  :	11;
2357 		shubreg_t	ib_rsvd			  :	 7;
2358 		shubreg_t	ib_exc			  :	 5;
2359 		shubreg_t	ib_init			  :	 3;
2360 		shubreg_t	ib_imsg			  :	 8;
2361 		shubreg_t	ib_imsgtype		  :	 2;
2362 		shubreg_t	ib_use_old		  :	 1;
2363 		shubreg_t	ib_rsvd_1		  :	11;
2364 	} ii_icrb0_b_fld_s;
2365 } ii_icrb0_b_u_t;
2366 
2367 
2368 /************************************************************************
2369  *                                                                      *
2370  * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2371  * used for Crosstalk operations (both cacheline and partial            *
2372  * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2373  * registers (_A to _E) are required to read and write each entry.      *
2374  *                                                                      *
2375  ************************************************************************/
2376 
2377 typedef union ii_icrb0_c_u {
2378 	shubreg_t	ii_icrb0_c_regval;
2379 	struct	{
2380 		shubreg_t	ic_source		  :	15;
2381 		shubreg_t	ic_size			  :	 2;
2382 		shubreg_t	ic_ct			  :	 1;
2383 		shubreg_t	ic_bte_num		  :	 1;
2384 		shubreg_t	ic_gbr			  :	 1;
2385 		shubreg_t	ic_resprqd		  :	 1;
2386 		shubreg_t	ic_bo			  :	 1;
2387 		shubreg_t	ic_suppl		  :	15;
2388 		shubreg_t	ic_rsvd			  :	27;
2389 	} ii_icrb0_c_fld_s;
2390 } ii_icrb0_c_u_t;
2391 
2392 
2393 /************************************************************************
2394  *                                                                      *
2395  * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2396  * used for Crosstalk operations (both cacheline and partial            *
2397  * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2398  * registers (_A to _E) are required to read and write each entry.      *
2399  *                                                                      *
2400  ************************************************************************/
2401 
2402 typedef union ii_icrb0_d_u {
2403 	shubreg_t	ii_icrb0_d_regval;
2404 	struct  {
2405 		shubreg_t	id_pa_be                  :	43;
2406 		shubreg_t	id_bte_op		  :	 1;
2407 		shubreg_t	id_pr_psc		  :	 4;
2408 		shubreg_t	id_pr_cnt		  :	 4;
2409 		shubreg_t	id_sleep		  :	 1;
2410 		shubreg_t	id_rsvd			  :	11;
2411 	} ii_icrb0_d_fld_s;
2412 } ii_icrb0_d_u_t;
2413 
2414 
2415 /************************************************************************
2416  *                                                                      *
2417  * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2418  * used for Crosstalk operations (both cacheline and partial            *
2419  * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2420  * registers (_A to _E) are required to read and write each entry.      *
2421  *                                                                      *
2422  ************************************************************************/
2423 
2424 typedef union ii_icrb0_e_u {
2425 	shubreg_t	ii_icrb0_e_regval;
2426 	struct  {
2427 		shubreg_t	ie_timeout                :	 8;
2428 		shubreg_t	ie_context		  :	15;
2429 		shubreg_t	ie_rsvd			  :	 1;
2430 		shubreg_t	ie_tvld			  :	 1;
2431 		shubreg_t	ie_cvld			  :	 1;
2432 		shubreg_t	ie_rsvd_0		  :	38;
2433 	} ii_icrb0_e_fld_s;
2434 } ii_icrb0_e_u_t;
2435 
2436 
2437 /************************************************************************
2438  *                                                                      *
2439  *  This register contains the lower 64 bits of the header of the       *
2440  * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
2441  * register is set.                                                     *
2442  *                                                                      *
2443  ************************************************************************/
2444 
2445 typedef union ii_icsml_u {
2446 	shubreg_t	ii_icsml_regval;
2447 	struct  {
2448 		shubreg_t	i_tt_addr                 :	47;
2449 		shubreg_t	i_newsuppl_ex		  :	14;
2450 		shubreg_t	i_reserved		  :	 2;
2451 		shubreg_t       i_overflow                :      1;
2452 	} ii_icsml_fld_s;
2453 } ii_icsml_u_t;
2454 
2455 
2456 /************************************************************************
2457  *                                                                      *
2458  *  This register contains the middle 64 bits of the header of the      *
2459  * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
2460  * register is set.                                                     *
2461  *                                                                      *
2462  ************************************************************************/
2463 
2464 typedef union ii_icsmm_u {
2465 	shubreg_t	ii_icsmm_regval;
2466 	struct  {
2467 		shubreg_t	i_tt_ack_cnt              :	11;
2468 		shubreg_t	i_reserved		  :	53;
2469 	} ii_icsmm_fld_s;
2470 } ii_icsmm_u_t;
2471 
2472 
2473 /************************************************************************
2474  *                                                                      *
2475  *  This register contains the microscopic state, all the inputs to     *
2476  * the protocol table, captured with the spurious message. Valid when   *
2477  * the SP_MSG bit in the ICMR register is set.                          *
2478  *                                                                      *
2479  ************************************************************************/
2480 
2481 typedef union ii_icsmh_u {
2482 	shubreg_t	ii_icsmh_regval;
2483 	struct  {
2484 		shubreg_t	i_tt_vld                  :	 1;
2485 		shubreg_t	i_xerr			  :	 1;
2486 		shubreg_t	i_ft_cwact_o		  :	 1;
2487 		shubreg_t	i_ft_wact_o		  :	 1;
2488 		shubreg_t       i_ft_active_o             :      1;
2489 		shubreg_t	i_sync			  :	 1;
2490 		shubreg_t	i_mnusg			  :	 1;
2491 		shubreg_t	i_mnusz			  :	 1;
2492 		shubreg_t	i_plusz			  :	 1;
2493 		shubreg_t	i_plusg			  :	 1;
2494 		shubreg_t	i_tt_exc		  :	 5;
2495 		shubreg_t	i_tt_wb			  :	 1;
2496 		shubreg_t	i_tt_hold		  :	 1;
2497 		shubreg_t	i_tt_ack		  :	 1;
2498 		shubreg_t	i_tt_resp		  :	 1;
2499 		shubreg_t	i_tt_intvn		  :	 1;
2500 		shubreg_t	i_g_stall_bte1		  :	 1;
2501 		shubreg_t	i_g_stall_bte0		  :	 1;
2502 		shubreg_t	i_g_stall_il		  :	 1;
2503 		shubreg_t	i_g_stall_ib		  :	 1;
2504 		shubreg_t	i_tt_imsg		  :	 8;
2505 		shubreg_t	i_tt_imsgtype		  :	 2;
2506 		shubreg_t	i_tt_use_old		  :	 1;
2507 		shubreg_t	i_tt_respreqd		  :	 1;
2508 		shubreg_t	i_tt_bte_num		  :	 1;
2509 		shubreg_t	i_cbn			  :	 1;
2510 		shubreg_t	i_match			  :	 1;
2511 		shubreg_t	i_rpcnt_lt_34		  :	 1;
2512 		shubreg_t	i_rpcnt_ge_34		  :	 1;
2513 		shubreg_t	i_rpcnt_lt_18		  :	 1;
2514 		shubreg_t	i_rpcnt_ge_18		  :	 1;
2515 		shubreg_t       i_rpcnt_lt_2              :      1;
2516 		shubreg_t	i_rpcnt_ge_2		  :	 1;
2517 		shubreg_t	i_rqcnt_lt_18		  :	 1;
2518 		shubreg_t	i_rqcnt_ge_18		  :	 1;
2519 		shubreg_t	i_rqcnt_lt_2		  :	 1;
2520 		shubreg_t	i_rqcnt_ge_2		  :	 1;
2521 		shubreg_t	i_tt_device		  :	 7;
2522 		shubreg_t	i_tt_init		  :	 3;
2523 		shubreg_t	i_reserved		  :	 5;
2524 	} ii_icsmh_fld_s;
2525 } ii_icsmh_u_t;
2526 
2527 
2528 /************************************************************************
2529  *                                                                      *
2530  *  The Shub DEBUG unit provides a 3-bit selection signal to the        *
2531  * II core and a 3-bit selection signal to the fsbclk domain in the II  *
2532  * wrapper.                                                             *
2533  *                                                                      *
2534  ************************************************************************/
2535 
2536 typedef union ii_idbss_u {
2537 	shubreg_t	ii_idbss_regval;
2538 	struct  {
2539 		shubreg_t	i_iioclk_core_submenu     :	 3;
2540 		shubreg_t	i_rsvd			  :	 5;
2541 		shubreg_t	i_fsbclk_wrapper_submenu  :	 3;
2542 		shubreg_t	i_rsvd_1		  :	 5;
2543 		shubreg_t	i_iioclk_menu		  :	 5;
2544 		shubreg_t	i_rsvd_2		  :	43;
2545 	} ii_idbss_fld_s;
2546 } ii_idbss_u_t;
2547 
2548 
2549 /************************************************************************
2550  *                                                                      *
2551  * Description:  This register is used to set up the length for a       *
2552  * transfer and then to monitor the progress of that transfer. This     *
2553  * register needs to be initialized before a transfer is started. A     *
2554  * legitimate write to this register will set the Busy bit, clear the   *
2555  * Error bit, and initialize the length to the value desired.           *
2556  * While the transfer is in progress, hardware will decrement the       *
2557  * length field with each successful block that is copied. Once the     *
2558  * transfer completes, hardware will clear the Busy bit. The length     *
2559  * field will also contain the number of cache lines left to be         *
2560  * transferred.                                                         *
2561  *                                                                      *
2562  ************************************************************************/
2563 
2564 typedef union ii_ibls0_u {
2565 	shubreg_t	ii_ibls0_regval;
2566 	struct	{
2567 		shubreg_t	i_length		  :	16;
2568 		shubreg_t	i_error			  :	 1;
2569 		shubreg_t	i_rsvd_1		  :	 3;
2570 		shubreg_t	i_busy			  :	 1;
2571 		shubreg_t       i_rsvd                    :     43;
2572 	} ii_ibls0_fld_s;
2573 } ii_ibls0_u_t;
2574 
2575 
2576 /************************************************************************
2577  *                                                                      *
2578  *  This register should be loaded before a transfer is started. The    *
2579  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2580  * address as described in Section 1.3, Figure2 and Figure3. Since      *
2581  * the bottom 7 bits of the address are always taken to be zero, BTE    *
2582  * transfers are always cacheline-aligned.                              *
2583  *                                                                      *
2584  ************************************************************************/
2585 
2586 typedef union ii_ibsa0_u {
2587 	shubreg_t	ii_ibsa0_regval;
2588 	struct  {
2589 		shubreg_t	i_rsvd_1                  :	 7;
2590 		shubreg_t	i_addr			  :	42;
2591 		shubreg_t       i_rsvd                    :     15;
2592 	} ii_ibsa0_fld_s;
2593 } ii_ibsa0_u_t;
2594 
2595 
2596 /************************************************************************
2597  *                                                                      *
2598  *  This register should be loaded before a transfer is started. The    *
2599  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2600  * address as described in Section 1.3, Figure2 and Figure3. Since      *
2601  * the bottom 7 bits of the address are always taken to be zero, BTE    *
2602  * transfers are always cacheline-aligned.                              *
2603  *                                                                      *
2604  ************************************************************************/
2605 
2606 typedef union ii_ibda0_u {
2607 	shubreg_t	ii_ibda0_regval;
2608 	struct  {
2609 		shubreg_t	i_rsvd_1                  :	 7;
2610 		shubreg_t	i_addr			  :	42;
2611 		shubreg_t	i_rsvd			  :	15;
2612 	} ii_ibda0_fld_s;
2613 } ii_ibda0_u_t;
2614 
2615 
2616 /************************************************************************
2617  *                                                                      *
2618  *  Writing to this register sets up the attributes of the transfer     *
2619  * and initiates the transfer operation. Reading this register has      *
2620  * the side effect of terminating any transfer in progress. Note:       *
2621  * stopping a transfer midstream could have an adverse impact on the    *
2622  * other BTE. If a BTE stream has to be stopped (due to error           *
2623  * handling for example), both BTE streams should be stopped and        *
2624  * their transfers discarded.                                           *
2625  *                                                                      *
2626  ************************************************************************/
2627 
2628 typedef union ii_ibct0_u {
2629 	shubreg_t	ii_ibct0_regval;
2630 	struct  {
2631 		shubreg_t	i_zerofill                :	 1;
2632 		shubreg_t	i_rsvd_2		  :	 3;
2633 		shubreg_t	i_notify		  :	 1;
2634 		shubreg_t	i_rsvd_1		  :	 3;
2635 		shubreg_t       i_poison                  :      1;
2636 		shubreg_t       i_rsvd                    :     55;
2637 	} ii_ibct0_fld_s;
2638 } ii_ibct0_u_t;
2639 
2640 
2641 /************************************************************************
2642  *                                                                      *
2643  *  This register contains the address to which the WINV is sent.       *
2644  * This address has to be cache line aligned.                           *
2645  *                                                                      *
2646  ************************************************************************/
2647 
2648 typedef union ii_ibna0_u {
2649 	shubreg_t	ii_ibna0_regval;
2650 	struct  {
2651 		shubreg_t	i_rsvd_1                  :	 7;
2652 		shubreg_t	i_addr			  :	42;
2653 		shubreg_t	i_rsvd			  :	15;
2654 	} ii_ibna0_fld_s;
2655 } ii_ibna0_u_t;
2656 
2657 
2658 /************************************************************************
2659  *                                                                      *
2660  *  This register contains the programmable level as well as the node   *
2661  * ID and PI unit of the processor to which the interrupt will be       *
2662  * sent.                                                                *
2663  *                                                                      *
2664  ************************************************************************/
2665 
2666 typedef union ii_ibia0_u {
2667 	shubreg_t	ii_ibia0_regval;
2668 	struct  {
2669 		shubreg_t	i_rsvd_2                   :	 1;
2670 		shubreg_t	i_node_id		  :	11;
2671 		shubreg_t	i_rsvd_1		  :	 4;
2672 		shubreg_t	i_level			  :	 7;
2673 		shubreg_t       i_rsvd                    :     41;
2674 	} ii_ibia0_fld_s;
2675 } ii_ibia0_u_t;
2676 
2677 
2678 /************************************************************************
2679  *                                                                      *
2680  * Description:  This register is used to set up the length for a       *
2681  * transfer and then to monitor the progress of that transfer. This     *
2682  * register needs to be initialized before a transfer is started. A     *
2683  * legitimate write to this register will set the Busy bit, clear the   *
2684  * Error bit, and initialize the length to the value desired.           *
2685  * While the transfer is in progress, hardware will decrement the       *
2686  * length field with each successful block that is copied. Once the     *
2687  * transfer completes, hardware will clear the Busy bit. The length     *
2688  * field will also contain the number of cache lines left to be         *
2689  * transferred.                                                         *
2690  *                                                                      *
2691  ************************************************************************/
2692 
2693 typedef union ii_ibls1_u {
2694 	shubreg_t	ii_ibls1_regval;
2695 	struct  {
2696 		shubreg_t	i_length                  :	16;
2697 		shubreg_t	i_error			  :	 1;
2698 		shubreg_t	i_rsvd_1		  :	 3;
2699 		shubreg_t	i_busy			  :	 1;
2700 		shubreg_t       i_rsvd                    :     43;
2701 	} ii_ibls1_fld_s;
2702 } ii_ibls1_u_t;
2703 
2704 
2705 /************************************************************************
2706  *                                                                      *
2707  *  This register should be loaded before a transfer is started. The    *
2708  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2709  * address as described in Section 1.3, Figure2 and Figure3. Since      *
2710  * the bottom 7 bits of the address are always taken to be zero, BTE    *
2711  * transfers are always cacheline-aligned.                              *
2712  *                                                                      *
2713  ************************************************************************/
2714 
2715 typedef union ii_ibsa1_u {
2716 	shubreg_t	ii_ibsa1_regval;
2717 	struct  {
2718 		shubreg_t	i_rsvd_1                  :	 7;
2719 		shubreg_t	i_addr			  :	33;
2720 		shubreg_t	i_rsvd			  :	24;
2721 	} ii_ibsa1_fld_s;
2722 } ii_ibsa1_u_t;
2723 
2724 
2725 /************************************************************************
2726  *                                                                      *
2727  *  This register should be loaded before a transfer is started. The    *
2728  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2729  * address as described in Section 1.3, Figure2 and Figure3. Since      *
2730  * the bottom 7 bits of the address are always taken to be zero, BTE    *
2731  * transfers are always cacheline-aligned.                              *
2732  *                                                                      *
2733  ************************************************************************/
2734 
2735 typedef union ii_ibda1_u {
2736 	shubreg_t	ii_ibda1_regval;
2737 	struct  {
2738 		shubreg_t	i_rsvd_1                  :	 7;
2739 		shubreg_t	i_addr			  :	33;
2740 		shubreg_t	i_rsvd			  :	24;
2741 	} ii_ibda1_fld_s;
2742 } ii_ibda1_u_t;
2743 
2744 
2745 /************************************************************************
2746  *                                                                      *
2747  *  Writing to this register sets up the attributes of the transfer     *
2748  * and initiates the transfer operation. Reading this register has      *
2749  * the side effect of terminating any transfer in progress. Note:       *
2750  * stopping a transfer midstream could have an adverse impact on the    *
2751  * other BTE. If a BTE stream has to be stopped (due to error           *
2752  * handling for example), both BTE streams should be stopped and        *
2753  * their transfers discarded.                                           *
2754  *                                                                      *
2755  ************************************************************************/
2756 
2757 typedef union ii_ibct1_u {
2758 	shubreg_t	ii_ibct1_regval;
2759 	struct  {
2760 		shubreg_t	i_zerofill                :	 1;
2761 		shubreg_t	i_rsvd_2		  :	 3;
2762 		shubreg_t	i_notify		  :	 1;
2763 		shubreg_t	i_rsvd_1		  :	 3;
2764 		shubreg_t	i_poison		  :	 1;
2765 		shubreg_t	i_rsvd			  :	55;
2766 	} ii_ibct1_fld_s;
2767 } ii_ibct1_u_t;
2768 
2769 
2770 /************************************************************************
2771  *                                                                      *
2772  *  This register contains the address to which the WINV is sent.       *
2773  * This address has to be cache line aligned.                           *
2774  *                                                                      *
2775  ************************************************************************/
2776 
2777 typedef union ii_ibna1_u {
2778 	shubreg_t	ii_ibna1_regval;
2779 	struct  {
2780 		shubreg_t	i_rsvd_1                  :	 7;
2781 		shubreg_t	i_addr			  :	33;
2782 		shubreg_t       i_rsvd                    :     24;
2783 	} ii_ibna1_fld_s;
2784 } ii_ibna1_u_t;
2785 
2786 
2787 /************************************************************************
2788  *                                                                      *
2789  *  This register contains the programmable level as well as the node   *
2790  * ID and PI unit of the processor to which the interrupt will be       *
2791  * sent.                                                                *
2792  *                                                                      *
2793  ************************************************************************/
2794 
2795 typedef union ii_ibia1_u {
2796 	shubreg_t	ii_ibia1_regval;
2797 	struct  {
2798 		shubreg_t	i_pi_id                   :	 1;
2799 		shubreg_t	i_node_id		  :	 8;
2800 		shubreg_t	i_rsvd_1		  :	 7;
2801 		shubreg_t	i_level			  :	 7;
2802 		shubreg_t	i_rsvd			  :	41;
2803 	} ii_ibia1_fld_s;
2804 } ii_ibia1_u_t;
2805 
2806 
2807 /************************************************************************
2808  *                                                                      *
2809  *  This register defines the resources that feed information into      *
2810  * the two performance counters located in the IO Performance           *
2811  * Profiling Register. There are 17 different quantities that can be    *
2812  * measured. Given these 17 different options, the two performance      *
2813  * counters have 15 of them in common; menu selections 0 through 0xE    *
2814  * are identical for each performance counter. As for the other two     *
2815  * options, one is available from one performance counter and the       *
2816  * other is available from the other performance counter. Hence, the    *
2817  * II supports all 17*16=272 possible combinations of quantities to     *
2818  * measure.                                                             *
2819  *                                                                      *
2820  ************************************************************************/
2821 
2822 typedef union ii_ipcr_u {
2823 	shubreg_t	ii_ipcr_regval;
2824 	struct  {
2825 		shubreg_t	i_ippr0_c                 :	 4;
2826 		shubreg_t	i_ippr1_c		  :	 4;
2827 		shubreg_t	i_icct			  :	 8;
2828 		shubreg_t       i_rsvd                    :     48;
2829 	} ii_ipcr_fld_s;
2830 } ii_ipcr_u_t;
2831 
2832 
2833 /************************************************************************
2834  *                                                                      *
2835  *                                                                      *
2836  *                                                                      *
2837  ************************************************************************/
2838 
2839 typedef union ii_ippr_u {
2840 	shubreg_t	ii_ippr_regval;
2841 	struct  {
2842 		shubreg_t	i_ippr0                   :	32;
2843 		shubreg_t	i_ippr1			  :	32;
2844 	} ii_ippr_fld_s;
2845 } ii_ippr_u_t;
2846 
2847 
2848 #endif /* __ASSEMBLY__ */
2849 
2850 /**************************************************************************
2851  *                                                                        *
2852  * The following defines which were not formed into structures are        *
2853  * probably indentical to another register, and the name of the           *
2854  * register is provided against each of these registers. This             *
2855  * information needs to be checked carefully                              *
2856  *                                                                        *
2857  *           IIO_ICRB1_A                IIO_ICRB0_A                       *
2858  *           IIO_ICRB1_B                IIO_ICRB0_B                       *
2859  *           IIO_ICRB1_C                IIO_ICRB0_C                       *
2860  *           IIO_ICRB1_D                IIO_ICRB0_D                       *
2861  *           IIO_ICRB1_E                IIO_ICRB0_E                       *
2862  *           IIO_ICRB2_A                IIO_ICRB0_A                       *
2863  *           IIO_ICRB2_B                IIO_ICRB0_B                       *
2864  *           IIO_ICRB2_C                IIO_ICRB0_C                       *
2865  *           IIO_ICRB2_D                IIO_ICRB0_D                       *
2866  *           IIO_ICRB2_E                IIO_ICRB0_E                       *
2867  *           IIO_ICRB3_A                IIO_ICRB0_A                       *
2868  *           IIO_ICRB3_B                IIO_ICRB0_B                       *
2869  *           IIO_ICRB3_C                IIO_ICRB0_C                       *
2870  *           IIO_ICRB3_D                IIO_ICRB0_D                       *
2871  *           IIO_ICRB3_E                IIO_ICRB0_E                       *
2872  *           IIO_ICRB4_A                IIO_ICRB0_A                       *
2873  *           IIO_ICRB4_B                IIO_ICRB0_B                       *
2874  *           IIO_ICRB4_C                IIO_ICRB0_C                       *
2875  *           IIO_ICRB4_D                IIO_ICRB0_D                       *
2876  *           IIO_ICRB4_E                IIO_ICRB0_E                       *
2877  *           IIO_ICRB5_A                IIO_ICRB0_A                       *
2878  *           IIO_ICRB5_B                IIO_ICRB0_B                       *
2879  *           IIO_ICRB5_C                IIO_ICRB0_C                       *
2880  *           IIO_ICRB5_D                IIO_ICRB0_D                       *
2881  *           IIO_ICRB5_E                IIO_ICRB0_E                       *
2882  *           IIO_ICRB6_A                IIO_ICRB0_A                       *
2883  *           IIO_ICRB6_B                IIO_ICRB0_B                       *
2884  *           IIO_ICRB6_C                IIO_ICRB0_C                       *
2885  *           IIO_ICRB6_D                IIO_ICRB0_D                       *
2886  *           IIO_ICRB6_E                IIO_ICRB0_E                       *
2887  *           IIO_ICRB7_A                IIO_ICRB0_A                       *
2888  *           IIO_ICRB7_B                IIO_ICRB0_B                       *
2889  *           IIO_ICRB7_C                IIO_ICRB0_C                       *
2890  *           IIO_ICRB7_D                IIO_ICRB0_D                       *
2891  *           IIO_ICRB7_E                IIO_ICRB0_E                       *
2892  *           IIO_ICRB8_A                IIO_ICRB0_A                       *
2893  *           IIO_ICRB8_B                IIO_ICRB0_B                       *
2894  *           IIO_ICRB8_C                IIO_ICRB0_C                       *
2895  *           IIO_ICRB8_D                IIO_ICRB0_D                       *
2896  *           IIO_ICRB8_E                IIO_ICRB0_E                       *
2897  *           IIO_ICRB9_A                IIO_ICRB0_A                       *
2898  *           IIO_ICRB9_B                IIO_ICRB0_B                       *
2899  *           IIO_ICRB9_C                IIO_ICRB0_C                       *
2900  *           IIO_ICRB9_D                IIO_ICRB0_D                       *
2901  *           IIO_ICRB9_E                IIO_ICRB0_E                       *
2902  *           IIO_ICRBA_A                IIO_ICRB0_A                       *
2903  *           IIO_ICRBA_B                IIO_ICRB0_B                       *
2904  *           IIO_ICRBA_C                IIO_ICRB0_C                       *
2905  *           IIO_ICRBA_D                IIO_ICRB0_D                       *
2906  *           IIO_ICRBA_E                IIO_ICRB0_E                       *
2907  *           IIO_ICRBB_A                IIO_ICRB0_A                       *
2908  *           IIO_ICRBB_B                IIO_ICRB0_B                       *
2909  *           IIO_ICRBB_C                IIO_ICRB0_C                       *
2910  *           IIO_ICRBB_D                IIO_ICRB0_D                       *
2911  *           IIO_ICRBB_E                IIO_ICRB0_E                       *
2912  *           IIO_ICRBC_A                IIO_ICRB0_A                       *
2913  *           IIO_ICRBC_B                IIO_ICRB0_B                       *
2914  *           IIO_ICRBC_C                IIO_ICRB0_C                       *
2915  *           IIO_ICRBC_D                IIO_ICRB0_D                       *
2916  *           IIO_ICRBC_E                IIO_ICRB0_E                       *
2917  *           IIO_ICRBD_A                IIO_ICRB0_A                       *
2918  *           IIO_ICRBD_B                IIO_ICRB0_B                       *
2919  *           IIO_ICRBD_C                IIO_ICRB0_C                       *
2920  *           IIO_ICRBD_D                IIO_ICRB0_D                       *
2921  *           IIO_ICRBD_E                IIO_ICRB0_E                       *
2922  *           IIO_ICRBE_A                IIO_ICRB0_A                       *
2923  *           IIO_ICRBE_B                IIO_ICRB0_B                       *
2924  *           IIO_ICRBE_C                IIO_ICRB0_C                       *
2925  *           IIO_ICRBE_D                IIO_ICRB0_D                       *
2926  *           IIO_ICRBE_E                IIO_ICRB0_E                       *
2927  *                                                                        *
2928  **************************************************************************/
2929 
2930 
2931 /*
2932  * Slightly friendlier names for some common registers.
2933  */
2934 #define IIO_WIDGET              IIO_WID      /* Widget identification */
2935 #define IIO_WIDGET_STAT         IIO_WSTAT    /* Widget status register */
2936 #define IIO_WIDGET_CTRL         IIO_WCR      /* Widget control register */
2937 #define IIO_PROTECT             IIO_ILAPR    /* IO interface protection */
2938 #define IIO_PROTECT_OVRRD       IIO_ILAPO    /* IO protect override */
2939 #define IIO_OUTWIDGET_ACCESS    IIO_IOWA     /* Outbound widget access */
2940 #define IIO_INWIDGET_ACCESS     IIO_IIWA     /* Inbound widget access */
2941 #define IIO_INDEV_ERR_MASK      IIO_IIDEM    /* Inbound device error mask */
2942 #define IIO_LLP_CSR             IIO_ILCSR    /* LLP control and status */
2943 #define IIO_LLP_LOG             IIO_ILLR     /* LLP log */
2944 #define IIO_XTALKCC_TOUT        IIO_IXCC     /* Xtalk credit count timeout*/
2945 #define IIO_XTALKTT_TOUT        IIO_IXTT     /* Xtalk tail timeout */
2946 #define IIO_IO_ERR_CLR          IIO_IECLR    /* IO error clear */
2947 #define IIO_IGFX_0 		IIO_IGFX0
2948 #define IIO_IGFX_1 		IIO_IGFX1
2949 #define IIO_IBCT_0		IIO_IBCT0
2950 #define IIO_IBCT_1		IIO_IBCT1
2951 #define IIO_IBLS_0		IIO_IBLS0
2952 #define IIO_IBLS_1		IIO_IBLS1
2953 #define IIO_IBSA_0		IIO_IBSA0
2954 #define IIO_IBSA_1		IIO_IBSA1
2955 #define IIO_IBDA_0		IIO_IBDA0
2956 #define IIO_IBDA_1		IIO_IBDA1
2957 #define IIO_IBNA_0		IIO_IBNA0
2958 #define IIO_IBNA_1		IIO_IBNA1
2959 #define IIO_IBIA_0		IIO_IBIA0
2960 #define IIO_IBIA_1		IIO_IBIA1
2961 #define IIO_IOPRB_0		IIO_IPRB0
2962 
2963 #define IIO_PRTE_A(_x)		(IIO_IPRTE0_A + (8 * (_x)))
2964 #define IIO_PRTE_B(_x)		(IIO_IPRTE0_B + (8 * (_x)))
2965 #define IIO_NUM_PRTES		8	/* Total number of PRB table entries */
2966 #define IIO_WIDPRTE_A(x)	IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */
2967 #define IIO_WIDPRTE_B(x)	IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */
2968 
2969 #define IIO_NUM_IPRBS 		(9)
2970 
2971 #define IIO_LLP_CSR_IS_UP               0x00002000
2972 #define IIO_LLP_CSR_LLP_STAT_MASK       0x00003000
2973 #define IIO_LLP_CSR_LLP_STAT_SHFT       12
2974 
2975 #define IIO_LLP_CB_MAX  0xffff	/* in ILLR CB_CNT, Max Check Bit errors */
2976 #define IIO_LLP_SN_MAX  0xffff	/* in ILLR SN_CNT, Max Sequence Number errors */
2977 
2978 /* key to IIO_PROTECT_OVRRD */
2979 #define IIO_PROTECT_OVRRD_KEY   0x53474972756c6573ull   /* "SGIrules" */
2980 
2981 /* BTE register names */
2982 #define IIO_BTE_STAT_0          IIO_IBLS_0   /* Also BTE length/status 0 */
2983 #define IIO_BTE_SRC_0           IIO_IBSA_0   /* Also BTE source address  0 */
2984 #define IIO_BTE_DEST_0          IIO_IBDA_0   /* Also BTE dest. address 0 */
2985 #define IIO_BTE_CTRL_0          IIO_IBCT_0   /* Also BTE control/terminate 0 */
2986 #define IIO_BTE_NOTIFY_0        IIO_IBNA_0   /* Also BTE notification 0 */
2987 #define IIO_BTE_INT_0           IIO_IBIA_0   /* Also BTE interrupt 0 */
2988 #define IIO_BTE_OFF_0           0            /* Base offset from BTE 0 regs. */
2989 #define IIO_BTE_OFF_1   	(IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */
2990 
2991 /* BTE register offsets from base */
2992 #define BTEOFF_STAT             0
2993 #define BTEOFF_SRC              (IIO_BTE_SRC_0 - IIO_BTE_STAT_0)
2994 #define BTEOFF_DEST             (IIO_BTE_DEST_0 - IIO_BTE_STAT_0)
2995 #define BTEOFF_CTRL             (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0)
2996 #define BTEOFF_NOTIFY           (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0)
2997 #define BTEOFF_INT              (IIO_BTE_INT_0 - IIO_BTE_STAT_0)
2998 
2999 
3000 /* names used in shub diags */
3001 #define IIO_BASE_BTE0   IIO_IBLS_0
3002 #define IIO_BASE_BTE1   IIO_IBLS_1
3003 
3004 /*
3005  * Macro which takes the widget number, and returns the
3006  * IO PRB address of that widget.
3007  * value _x is expected to be a widget number in the range
3008  * 0, 8 - 0xF
3009  */
3010 #define IIO_IOPRB(_x)   (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \
3011                         (_x) : \
3012                         (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) )
3013 
3014 
3015 /* GFX Flow Control Node/Widget Register */
3016 #define IIO_IGFX_W_NUM_BITS	4	/* size of widget num field */
3017 #define IIO_IGFX_W_NUM_MASK	((1<<IIO_IGFX_W_NUM_BITS)-1)
3018 #define IIO_IGFX_W_NUM_SHIFT	0
3019 #define IIO_IGFX_PI_NUM_BITS	1	/* size of PI num field */
3020 #define IIO_IGFX_PI_NUM_MASK	((1<<IIO_IGFX_PI_NUM_BITS)-1)
3021 #define IIO_IGFX_PI_NUM_SHIFT	4
3022 #define IIO_IGFX_N_NUM_BITS	8	/* size of node num field */
3023 #define IIO_IGFX_N_NUM_MASK	((1<<IIO_IGFX_N_NUM_BITS)-1)
3024 #define IIO_IGFX_N_NUM_SHIFT	5
3025 #define IIO_IGFX_P_NUM_BITS	1	/* size of processor num field */
3026 #define IIO_IGFX_P_NUM_MASK	((1<<IIO_IGFX_P_NUM_BITS)-1)
3027 #define IIO_IGFX_P_NUM_SHIFT	16
3028 #define IIO_IGFX_INIT(widget, pi, node, cpu)				(\
3029 	(((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) |	 \
3030 	(((pi)     & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)|	 \
3031 	(((node)   & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) |	 \
3032 	(((cpu)    & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT))
3033 
3034 
3035 /* Scratch registers (all bits available) */
3036 #define IIO_SCRATCH_REG0        IIO_ISCR0
3037 #define IIO_SCRATCH_REG1        IIO_ISCR1
3038 #define IIO_SCRATCH_MASK        0xffffffffffffffffUL
3039 
3040 #define IIO_SCRATCH_BIT0_0      0x0000000000000001UL
3041 #define IIO_SCRATCH_BIT0_1      0x0000000000000002UL
3042 #define IIO_SCRATCH_BIT0_2      0x0000000000000004UL
3043 #define IIO_SCRATCH_BIT0_3      0x0000000000000008UL
3044 #define IIO_SCRATCH_BIT0_4      0x0000000000000010UL
3045 #define IIO_SCRATCH_BIT0_5      0x0000000000000020UL
3046 #define IIO_SCRATCH_BIT0_6      0x0000000000000040UL
3047 #define IIO_SCRATCH_BIT0_7      0x0000000000000080UL
3048 #define IIO_SCRATCH_BIT0_8      0x0000000000000100UL
3049 #define IIO_SCRATCH_BIT0_9      0x0000000000000200UL
3050 #define IIO_SCRATCH_BIT0_A      0x0000000000000400UL
3051 
3052 #define IIO_SCRATCH_BIT1_0      0x0000000000000001UL
3053 #define IIO_SCRATCH_BIT1_1      0x0000000000000002UL
3054 /* IO Translation Table Entries */
3055 #define IIO_NUM_ITTES   7               /* ITTEs numbered 0..6 */
3056                                         /* Hw manuals number them 1..7! */
3057 /*
3058  * IIO_IMEM Register fields.
3059  */
3060 #define IIO_IMEM_W0ESD  0x1UL             /* Widget 0 shut down due to error */
3061 #define IIO_IMEM_B0ESD  (1UL << 4)        /* BTE 0 shut down due to error */
3062 #define IIO_IMEM_B1ESD  (1UL << 8)        /* BTE 1 Shut down due to error */
3063 
3064 /*
3065  * As a permanent workaround for a bug in the PI side of the shub, we've
3066  * redefined big window 7 as small window 0.
3067  XXX does this still apply for SN1??
3068  */
3069 #define HUB_NUM_BIG_WINDOW      (IIO_NUM_ITTES - 1)
3070 
3071 /*
3072  * Use the top big window as a surrogate for the first small window
3073  */
3074 #define SWIN0_BIGWIN            HUB_NUM_BIG_WINDOW
3075 
3076 #define ILCSR_WARM_RESET        0x100
3077 
3078 /*
3079  * CRB manipulation macros
3080  *      The CRB macros are slightly complicated, since there are up to
3081  *      four registers associated with each CRB entry.
3082  */
3083 #define IIO_NUM_CRBS            15      /* Number of CRBs */
3084 #define IIO_NUM_PC_CRBS         4       /* Number of partial cache CRBs */
3085 #define IIO_ICRB_OFFSET         8
3086 #define IIO_ICRB_0              IIO_ICRB0_A
3087 #define IIO_ICRB_ADDR_SHFT	2	/* Shift to get proper address */
3088 /* XXX - This is now tuneable:
3089         #define IIO_FIRST_PC_ENTRY 12
3090  */
3091 
3092 #define IIO_ICRB_A(_x)  ((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x))))
3093 #define IIO_ICRB_B(_x)  ((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET))
3094 #define IIO_ICRB_C(_x)  ((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET))
3095 #define IIO_ICRB_D(_x)  ((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET))
3096 #define IIO_ICRB_E(_x)  ((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET))
3097 
3098 #define TNUM_TO_WIDGET_DEV(_tnum)	(_tnum & 0x7)
3099 
3100 /*
3101  * values for "ecode" field
3102  */
3103 #define IIO_ICRB_ECODE_DERR     0       /* Directory error due to IIO access */
3104 #define IIO_ICRB_ECODE_PERR     1       /* Poison error on IO access */
3105 #define IIO_ICRB_ECODE_WERR     2       /* Write error by IIO access
3106                                          * e.g. WINV to a Read only line. */
3107 #define IIO_ICRB_ECODE_AERR     3       /* Access error caused by IIO access */
3108 #define IIO_ICRB_ECODE_PWERR    4       /* Error on partial write       */
3109 #define IIO_ICRB_ECODE_PRERR    5       /* Error on partial read        */
3110 #define IIO_ICRB_ECODE_TOUT     6       /* CRB timeout before deallocating */
3111 #define IIO_ICRB_ECODE_XTERR    7       /* Incoming xtalk pkt had error bit */
3112 
3113 /*
3114  * Values for field imsgtype
3115  */
3116 #define IIO_ICRB_IMSGT_XTALK    0       /* Incoming Meessage from Xtalk */
3117 #define IIO_ICRB_IMSGT_BTE      1       /* Incoming message from BTE    */
3118 #define IIO_ICRB_IMSGT_SN1NET   2       /* Incoming message from SN1 net */
3119 #define IIO_ICRB_IMSGT_CRB      3       /* Incoming message from CRB ???  */
3120 
3121 /*
3122  * values for field initiator.
3123  */
3124 #define IIO_ICRB_INIT_XTALK     0       /* Message originated in xtalk  */
3125 #define IIO_ICRB_INIT_BTE0      0x1     /* Message originated in BTE 0  */
3126 #define IIO_ICRB_INIT_SN1NET    0x2     /* Message originated in SN1net */
3127 #define IIO_ICRB_INIT_CRB       0x3     /* Message originated in CRB ?  */
3128 #define IIO_ICRB_INIT_BTE1      0x5     /* MEssage originated in BTE 1  */
3129 
3130 /*
3131  * Number of credits Hub widget has while sending req/response to
3132  * xbow.
3133  * Value of 3 is required by Xbow 1.1
3134  * We may be able to increase this to 4 with Xbow 1.2.
3135  */
3136 #define       HUBII_XBOW_CREDIT       3
3137 #define       HUBII_XBOW_REV2_CREDIT  4
3138 
3139 /*
3140  * Number of credits that xtalk devices should use when communicating
3141  * with a SHub (depth of SHub's queue).
3142  */
3143 #define HUB_CREDIT 4
3144 
3145 /*
3146  * Some IIO_PRB fields
3147  */
3148 #define IIO_PRB_MULTI_ERR	(1LL << 63)
3149 #define IIO_PRB_SPUR_RD		(1LL << 51)
3150 #define IIO_PRB_SPUR_WR		(1LL << 50)
3151 #define IIO_PRB_RD_TO		(1LL << 49)
3152 #define IIO_PRB_ERROR		(1LL << 48)
3153 
3154 /*************************************************************************
3155 
3156  Some of the IIO field masks and shifts are defined here.
3157  This is in order to maintain compatibility in SN0 and SN1 code
3158 
3159 **************************************************************************/
3160 
3161 /*
3162  * ICMR register fields
3163  * (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not
3164  * present in SHub)
3165  */
3166 
3167 #define IIO_ICMR_CRB_VLD_SHFT   20
3168 #define IIO_ICMR_CRB_VLD_MASK   (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT)
3169 
3170 #define IIO_ICMR_FC_CNT_SHFT    16
3171 #define IIO_ICMR_FC_CNT_MASK    (0xf << IIO_ICMR_FC_CNT_SHFT)
3172 
3173 #define IIO_ICMR_C_CNT_SHFT     4
3174 #define IIO_ICMR_C_CNT_MASK     (0xf << IIO_ICMR_C_CNT_SHFT)
3175 
3176 #define IIO_ICMR_PRECISE        (1UL << 52)
3177 #define IIO_ICMR_CLR_RPPD       (1UL << 13)
3178 #define IIO_ICMR_CLR_RQPD       (1UL << 12)
3179 
3180 /*
3181  * IIO PIO Deallocation register field masks : (IIO_IPDR)
3182  XXX present but not needed in bedrock?  See the manual.
3183  */
3184 #define IIO_IPDR_PND    (1 << 4)
3185 
3186 /*
3187  * IIO CRB deallocation register field masks: (IIO_ICDR)
3188  */
3189 #define IIO_ICDR_PND    (1 << 4)
3190 
3191 /*
3192  * IO BTE Length/Status (IIO_IBLS) register bit field definitions
3193  */
3194 #define IBLS_BUSY		(0x1UL << 20)
3195 #define IBLS_ERROR_SHFT		16
3196 #define IBLS_ERROR		(0x1UL << IBLS_ERROR_SHFT)
3197 #define IBLS_LENGTH_MASK	0xffff
3198 
3199 /*
3200  * IO BTE Control/Terminate register (IBCT) register bit field definitions
3201  */
3202 #define IBCT_POISON		(0x1UL << 8)
3203 #define IBCT_NOTIFY		(0x1UL << 4)
3204 #define IBCT_ZFIL_MODE		(0x1UL << 0)
3205 
3206 /*
3207  * IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2)
3208  */
3209 #define IIEPH1_VALID		(1UL << 44)
3210 #define IIEPH1_OVERRUN		(1UL << 40)
3211 #define IIEPH1_ERR_TYPE_SHFT	32
3212 #define IIEPH1_ERR_TYPE_MASK	0xf
3213 #define IIEPH1_SOURCE_SHFT	20
3214 #define IIEPH1_SOURCE_MASK	11
3215 #define IIEPH1_SUPPL_SHFT	8
3216 #define IIEPH1_SUPPL_MASK	11
3217 #define IIEPH1_CMD_SHFT		0
3218 #define IIEPH1_CMD_MASK		7
3219 
3220 #define IIEPH2_TAIL		(1UL << 40)
3221 #define IIEPH2_ADDRESS_SHFT	0
3222 #define IIEPH2_ADDRESS_MASK	38
3223 
3224 #define IIEPH1_ERR_SHORT_REQ	2
3225 #define IIEPH1_ERR_SHORT_REPLY	3
3226 #define IIEPH1_ERR_LONG_REQ	4
3227 #define IIEPH1_ERR_LONG_REPLY	5
3228 
3229 /*
3230  * IO Error Clear register bit field definitions
3231  */
3232 #define IECLR_PI1_FWD_INT	(1UL << 31)  /* clear PI1_FORWARD_INT in iidsr */
3233 #define IECLR_PI0_FWD_INT	(1UL << 30)  /* clear PI0_FORWARD_INT in iidsr */
3234 #define IECLR_SPUR_RD_HDR	(1UL << 29)  /* clear valid bit in ixss reg */
3235 #define IECLR_BTE1		(1UL << 18)  /* clear bte error 1 */
3236 #define IECLR_BTE0		(1UL << 17)  /* clear bte error 0 */
3237 #define IECLR_CRAZY		(1UL << 16)  /* clear crazy bit in wstat reg */
3238 #define IECLR_PRB_F		(1UL << 15)  /* clear err bit in PRB_F reg */
3239 #define IECLR_PRB_E		(1UL << 14)  /* clear err bit in PRB_E reg */
3240 #define IECLR_PRB_D		(1UL << 13)  /* clear err bit in PRB_D reg */
3241 #define IECLR_PRB_C		(1UL << 12)  /* clear err bit in PRB_C reg */
3242 #define IECLR_PRB_B		(1UL << 11)  /* clear err bit in PRB_B reg */
3243 #define IECLR_PRB_A		(1UL << 10)  /* clear err bit in PRB_A reg */
3244 #define IECLR_PRB_9		(1UL << 9)   /* clear err bit in PRB_9 reg */
3245 #define IECLR_PRB_8		(1UL << 8)   /* clear err bit in PRB_8 reg */
3246 #define IECLR_PRB_0		(1UL << 0)   /* clear err bit in PRB_0 reg */
3247 
3248 /*
3249  * IIO CRB control register Fields: IIO_ICCR
3250  */
3251 #define	IIO_ICCR_PENDING	(0x10000)
3252 #define	IIO_ICCR_CMD_MASK	(0xFF)
3253 #define	IIO_ICCR_CMD_SHFT	(7)
3254 #define	IIO_ICCR_CMD_NOP	(0x0)	/* No Op */
3255 #define	IIO_ICCR_CMD_WAKE	(0x100) /* Reactivate CRB entry and process */
3256 #define	IIO_ICCR_CMD_TIMEOUT	(0x200)	/* Make CRB timeout & mark invalid */
3257 #define	IIO_ICCR_CMD_EJECT	(0x400)	/* Contents of entry written to memory
3258 					 * via a WB
3259 					 */
3260 #define	IIO_ICCR_CMD_FLUSH	(0x800)
3261 
3262 /*
3263  *
3264  * CRB Register description.
3265  *
3266  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3267  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3268  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3269  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3270  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3271  *
3272  * Many of the fields in CRB are status bits used by hardware
3273  * for implementation of the protocol. It's very dangerous to
3274  * mess around with the CRB registers.
3275  *
3276  * It's OK to read the CRB registers and try to make sense out of the
3277  * fields in CRB.
3278  *
3279  * Updating CRB requires all activities in Hub IIO to be quiesced.
3280  * otherwise, a write to CRB could corrupt other CRB entries.
3281  * CRBs are here only as a back door peek to shub IIO's status.
3282  * Quiescing implies  no dmas no PIOs
3283  * either directly from the cpu or from sn0net.
3284  * this is not something that can be done easily. So, AVOID updating
3285  * CRBs.
3286  */
3287 
3288 #ifndef __ASSEMBLY__
3289 
3290 /*
3291  * Easy access macros for CRBs, all 5 registers (A-E)
3292  */
3293 typedef ii_icrb0_a_u_t icrba_t;
3294 #define a_sidn          ii_icrb0_a_fld_s.ia_sidn
3295 #define a_tnum          ii_icrb0_a_fld_s.ia_tnum
3296 #define a_addr          ii_icrb0_a_fld_s.ia_addr
3297 #define a_valid         ii_icrb0_a_fld_s.ia_vld
3298 #define a_iow           ii_icrb0_a_fld_s.ia_iow
3299 #define a_regvalue	ii_icrb0_a_regval
3300 
3301 typedef ii_icrb0_b_u_t icrbb_t;
3302 #define b_use_old       ii_icrb0_b_fld_s.ib_use_old
3303 #define b_imsgtype      ii_icrb0_b_fld_s.ib_imsgtype
3304 #define b_imsg          ii_icrb0_b_fld_s.ib_imsg
3305 #define b_initiator     ii_icrb0_b_fld_s.ib_init
3306 #define b_exc           ii_icrb0_b_fld_s.ib_exc
3307 #define b_ackcnt        ii_icrb0_b_fld_s.ib_ack_cnt
3308 #define b_resp          ii_icrb0_b_fld_s.ib_resp
3309 #define b_ack           ii_icrb0_b_fld_s.ib_ack
3310 #define b_hold          ii_icrb0_b_fld_s.ib_hold
3311 #define b_wb            ii_icrb0_b_fld_s.ib_wb
3312 #define b_intvn         ii_icrb0_b_fld_s.ib_intvn
3313 #define b_stall_ib      ii_icrb0_b_fld_s.ib_stall_ib
3314 #define b_stall_int     ii_icrb0_b_fld_s.ib_stall__intr
3315 #define b_stall_bte_0   ii_icrb0_b_fld_s.ib_stall__bte_0
3316 #define b_stall_bte_1   ii_icrb0_b_fld_s.ib_stall__bte_1
3317 #define b_error         ii_icrb0_b_fld_s.ib_error
3318 #define b_ecode         ii_icrb0_b_fld_s.ib_errcode
3319 #define b_lnetuce       ii_icrb0_b_fld_s.ib_ln_uce
3320 #define b_mark          ii_icrb0_b_fld_s.ib_mark
3321 #define b_xerr          ii_icrb0_b_fld_s.ib_xt_err
3322 #define b_regvalue	ii_icrb0_b_regval
3323 
3324 typedef ii_icrb0_c_u_t icrbc_t;
3325 #define c_suppl         ii_icrb0_c_fld_s.ic_suppl
3326 #define c_barrop        ii_icrb0_c_fld_s.ic_bo
3327 #define c_doresp        ii_icrb0_c_fld_s.ic_resprqd
3328 #define c_gbr           ii_icrb0_c_fld_s.ic_gbr
3329 #define c_btenum        ii_icrb0_c_fld_s.ic_bte_num
3330 #define c_cohtrans      ii_icrb0_c_fld_s.ic_ct
3331 #define c_xtsize        ii_icrb0_c_fld_s.ic_size
3332 #define c_source        ii_icrb0_c_fld_s.ic_source
3333 #define c_regvalue	ii_icrb0_c_regval
3334 
3335 
3336 typedef ii_icrb0_d_u_t icrbd_t;
3337 #define d_sleep         ii_icrb0_d_fld_s.id_sleep
3338 #define d_pricnt        ii_icrb0_d_fld_s.id_pr_cnt
3339 #define d_pripsc        ii_icrb0_d_fld_s.id_pr_psc
3340 #define d_bteop         ii_icrb0_d_fld_s.id_bte_op
3341 #define d_bteaddr       ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names*/
3342 #define d_benable       ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names*/
3343 #define d_regvalue	ii_icrb0_d_regval
3344 
3345 typedef ii_icrb0_e_u_t icrbe_t;
3346 #define icrbe_ctxtvld   ii_icrb0_e_fld_s.ie_cvld
3347 #define icrbe_toutvld   ii_icrb0_e_fld_s.ie_tvld
3348 #define icrbe_context   ii_icrb0_e_fld_s.ie_context
3349 #define icrbe_timeout   ii_icrb0_e_fld_s.ie_timeout
3350 #define e_regvalue	ii_icrb0_e_regval
3351 
3352 #endif /* __ASSEMBLY__ */
3353 
3354 /* Number of widgets supported by shub */
3355 #define HUB_NUM_WIDGET          9
3356 #define HUB_WIDGET_ID_MIN       0x8
3357 #define HUB_WIDGET_ID_MAX       0xf
3358 
3359 #define HUB_WIDGET_PART_NUM     0xc120
3360 #define MAX_HUBS_PER_XBOW       2
3361 
3362 #ifndef __ASSEMBLY__
3363 /* A few more #defines for backwards compatibility */
3364 #define iprb_t          ii_iprb0_u_t
3365 #define iprb_regval     ii_iprb0_regval
3366 #define iprb_mult_err	ii_iprb0_fld_s.i_mult_err
3367 #define iprb_spur_rd	ii_iprb0_fld_s.i_spur_rd
3368 #define iprb_spur_wr	ii_iprb0_fld_s.i_spur_wr
3369 #define iprb_rd_to	ii_iprb0_fld_s.i_rd_to
3370 #define iprb_ovflow     ii_iprb0_fld_s.i_of_cnt
3371 #define iprb_error      ii_iprb0_fld_s.i_error
3372 #define iprb_ff         ii_iprb0_fld_s.i_f
3373 #define iprb_mode       ii_iprb0_fld_s.i_m
3374 #define iprb_bnakctr    ii_iprb0_fld_s.i_nb
3375 #define iprb_anakctr    ii_iprb0_fld_s.i_na
3376 #define iprb_xtalkctr   ii_iprb0_fld_s.i_c
3377 #endif
3378 
3379 #define LNK_STAT_WORKING        0x2		/* LLP is working */
3380 
3381 #define IIO_WSTAT_ECRAZY        (1ULL << 32)    /* Hub gone crazy */
3382 #define IIO_WSTAT_TXRETRY       (1ULL << 9)     /* Hub Tx Retry timeout */
3383 #define IIO_WSTAT_TXRETRY_MASK  (0x7F)   /* should be 0xFF?? */
3384 #define IIO_WSTAT_TXRETRY_SHFT  (16)
3385 #define IIO_WSTAT_TXRETRY_CNT(w)        (((w) >> IIO_WSTAT_TXRETRY_SHFT) & \
3386                                           IIO_WSTAT_TXRETRY_MASK)
3387 
3388 /* Number of II perf. counters we can multiplex at once */
3389 
3390 #define IO_PERF_SETS	32
3391 
3392 #if __KERNEL__
3393 #ifndef __ASSEMBLY__
3394 #include <asm/sn/alenlist.h>
3395 #include <asm/sn/dmamap.h>
3396 #include <asm/sn/driver.h>
3397 #include <asm/sn/xtalk/xtalk.h>
3398 
3399 /* Bit for the widget in inbound access register */
3400 #define IIO_IIWA_WIDGET(_w)     ((uint64_t)(1ULL << _w))
3401 /* Bit for the widget in outbound access register */
3402 #define IIO_IOWA_WIDGET(_w)     ((uint64_t)(1ULL << _w))
3403 
3404 /* NOTE: The following define assumes that we are going to get
3405  * widget numbers from 8 thru F and the device numbers within
3406  * widget from 0 thru 7.
3407  */
3408 #define IIO_IIDEM_WIDGETDEV_MASK(w, d)  ((uint64_t)(1ULL << (8 * ((w) - 8) + (d))))
3409 
3410 /* IO Interrupt Destination Register */
3411 #define IIO_IIDSR_SENT_SHIFT    28
3412 #define IIO_IIDSR_SENT_MASK     0x30000000
3413 #define IIO_IIDSR_ENB_SHIFT     24
3414 #define IIO_IIDSR_ENB_MASK      0x01000000
3415 #define IIO_IIDSR_NODE_SHIFT    9
3416 #define IIO_IIDSR_NODE_MASK     0x000ff700
3417 #define IIO_IIDSR_PI_ID_SHIFT   8
3418 #define IIO_IIDSR_PI_ID_MASK    0x00000100
3419 #define IIO_IIDSR_LVL_SHIFT     0
3420 #define IIO_IIDSR_LVL_MASK      0x000000ff
3421 
3422 /* Xtalk timeout threshhold register (IIO_IXTT) */
3423 #define IXTT_RRSP_TO_SHFT	55	   /* read response timeout */
3424 #define IXTT_RRSP_TO_MASK	(0x1FULL << IXTT_RRSP_TO_SHFT)
3425 #define IXTT_RRSP_PS_SHFT	32	   /* read responsed TO prescalar */
3426 #define IXTT_RRSP_PS_MASK	(0x7FFFFFULL << IXTT_RRSP_PS_SHFT)
3427 #define IXTT_TAIL_TO_SHFT	0	   /* tail timeout counter threshold */
3428 #define IXTT_TAIL_TO_MASK	(0x3FFFFFFULL << IXTT_TAIL_TO_SHFT)
3429 
3430 /*
3431  * The IO LLP control status register and widget control register
3432  */
3433 
3434 typedef union hubii_wcr_u {
3435         uint64_t      wcr_reg_value;
3436         struct {
3437 	  uint64_t	wcr_widget_id:   4,     /* LLP crossbar credit */
3438 			wcr_tag_mode:	 1,	/* Tag mode */
3439 			wcr_rsvd1:	 8,	/* Reserved */
3440 			wcr_xbar_crd:	 3,	/* LLP crossbar credit */
3441 			wcr_f_bad_pkt:	 1,	/* Force bad llp pkt enable */
3442 			wcr_dir_con:	 1,	/* widget direct connect */
3443 			wcr_e_thresh:	 5,	/* elasticity threshold */
3444 			wcr_rsvd:	41;	/* unused */
3445         } wcr_fields_s;
3446 } hubii_wcr_t;
3447 
3448 #define iwcr_dir_con    wcr_fields_s.wcr_dir_con
3449 
3450 /* The structures below are defined to extract and modify the ii
3451 performance registers */
3452 
3453 /* io_perf_sel allows the caller to specify what tests will be
3454    performed */
3455 
3456 typedef union io_perf_sel {
3457         uint64_t perf_sel_reg;
3458         struct {
3459                uint64_t	perf_ippr0 :  4,
3460 				perf_ippr1 :  4,
3461 				perf_icct  :  8,
3462 				perf_rsvd  : 48;
3463         } perf_sel_bits;
3464 } io_perf_sel_t;
3465 
3466 /* io_perf_cnt is to extract the count from the shub registers. Due to
3467    hardware problems there is only one counter, not two. */
3468 
3469 typedef union io_perf_cnt {
3470         uint64_t      perf_cnt;
3471         struct {
3472                uint64_t	perf_cnt   : 20,
3473 				perf_rsvd2 : 12,
3474 				perf_rsvd1 : 32;
3475         } perf_cnt_bits;
3476 
3477 } io_perf_cnt_t;
3478 
3479 typedef union iprte_a {
3480 	shubreg_t	entry;
3481 	struct {
3482 		shubreg_t	i_rsvd_1                  :	 3;
3483 		shubreg_t	i_addr			  :	38;
3484 		shubreg_t	i_init			  :	 3;
3485 		shubreg_t	i_source		  :	 8;
3486 		shubreg_t	i_rsvd			  :	 2;
3487 		shubreg_t	i_widget		  :	 4;
3488 		shubreg_t	i_to_cnt		  :	 5;
3489 		shubreg_t       i_vld                     :      1;
3490 	} iprte_fields;
3491 } iprte_a_t;
3492 
3493 
3494 /* PIO MANAGEMENT */
3495 typedef struct hub_piomap_s *hub_piomap_t;
3496 
3497 extern hub_piomap_t
3498 hub_piomap_alloc(vertex_hdl_t dev,      /* set up mapping for this device */
3499                 device_desc_t dev_desc, /* device descriptor */
3500                 iopaddr_t xtalk_addr,   /* map for this xtalk_addr range */
3501                 size_t byte_count,
3502                 size_t byte_count_max,  /* maximum size of a mapping */
3503                 unsigned flags);                /* defined in sys/pio.h */
3504 
3505 extern void hub_piomap_free(hub_piomap_t hub_piomap);
3506 
3507 extern caddr_t
3508 hub_piomap_addr(hub_piomap_t hub_piomap,        /* mapping resources */
3509                 iopaddr_t xtalk_addr,           /* map for this xtalk addr */
3510                 size_t byte_count);             /* map this many bytes */
3511 
3512 extern void
3513 hub_piomap_done(hub_piomap_t hub_piomap);
3514 
3515 extern caddr_t
3516 hub_piotrans_addr(      vertex_hdl_t dev,       /* translate to this device */
3517                         device_desc_t dev_desc, /* device descriptor */
3518                         iopaddr_t xtalk_addr,   /* Crosstalk address */
3519                         size_t byte_count,      /* map this many bytes */
3520                         unsigned flags);        /* (currently unused) */
3521 
3522 /* DMA MANAGEMENT */
3523 typedef struct hub_dmamap_s *hub_dmamap_t;
3524 
3525 extern hub_dmamap_t
3526 hub_dmamap_alloc(       vertex_hdl_t dev,       /* set up mappings for dev */
3527                         device_desc_t dev_desc, /* device descriptor */
3528                         size_t byte_count_max,  /* max size of a mapping */
3529                         unsigned flags);        /* defined in dma.h */
3530 
3531 extern void
3532 hub_dmamap_free(hub_dmamap_t dmamap);
3533 
3534 extern iopaddr_t
3535 hub_dmamap_addr(        hub_dmamap_t dmamap,    /* use mapping resources */
3536                         paddr_t paddr,          /* map for this address */
3537                         size_t byte_count);     /* map this many bytes */
3538 
3539 extern alenlist_t
3540 hub_dmamap_list(        hub_dmamap_t dmamap,    /* use mapping resources */
3541                         alenlist_t alenlist,    /* map this Addr/Length List */
3542                         unsigned flags);
3543 
3544 extern void
3545 hub_dmamap_done(        hub_dmamap_t dmamap);   /* done w/ mapping resources */
3546 
3547 extern iopaddr_t
3548 hub_dmatrans_addr(      vertex_hdl_t dev,       /* translate for this device */
3549                         device_desc_t dev_desc, /* device descriptor */
3550                         paddr_t paddr,          /* system physical address */
3551                         size_t byte_count,      /* length */
3552                         unsigned flags);                /* defined in dma.h */
3553 
3554 extern alenlist_t
3555 hub_dmatrans_list(      vertex_hdl_t dev,       /* translate for this device */
3556                         device_desc_t dev_desc, /* device descriptor */
3557                         alenlist_t palenlist,   /* system addr/length list */
3558                         unsigned flags);                /* defined in dma.h */
3559 
3560 extern void
3561 hub_dmamap_drain(       hub_dmamap_t map);
3562 
3563 extern void
3564 hub_dmaaddr_drain(      vertex_hdl_t vhdl,
3565                         paddr_t addr,
3566                         size_t bytes);
3567 
3568 extern void
3569 hub_dmalist_drain(      vertex_hdl_t vhdl,
3570                         alenlist_t list);
3571 
3572 
3573 /* INTERRUPT MANAGEMENT */
3574 typedef struct hub_intr_s *hub_intr_t;
3575 
3576 extern hub_intr_t
3577 hub_intr_alloc( vertex_hdl_t dev,               /* which device */
3578                 device_desc_t dev_desc,         /* device descriptor */
3579                 vertex_hdl_t owner_dev);        /* owner of this interrupt */
3580 
3581 extern hub_intr_t
3582 hub_intr_alloc_nothd(vertex_hdl_t dev,          /* which device */
3583                 device_desc_t dev_desc,         /* device descriptor */
3584                 vertex_hdl_t owner_dev);        /* owner of this interrupt */
3585 
3586 extern void
3587 hub_intr_free(hub_intr_t intr_hdl);
3588 
3589 extern int
3590 hub_intr_connect(       hub_intr_t intr_hdl,    /* xtalk intr resource hndl */
3591 			intr_func_t intr_func,          /* xtalk intr handler */
3592 			void *intr_arg,                 /* arg to intr handler */
3593                         xtalk_intr_setfunc_t setfunc, /* func to set intr hw */
3594                         void *setfunc_arg);     /* arg to setfunc */
3595 
3596 extern void
3597 hub_intr_disconnect(hub_intr_t intr_hdl);
3598 
3599 
3600 /* CONFIGURATION MANAGEMENT */
3601 
3602 extern void
3603 hub_provider_startup(vertex_hdl_t hub);
3604 
3605 extern void
3606 hub_provider_shutdown(vertex_hdl_t hub);
3607 
3608 #define HUB_PIO_CONVEYOR        0x1     /* PIO in conveyor belt mode */
3609 #define HUB_PIO_FIRE_N_FORGET   0x2     /* PIO in fire-and-forget mode */
3610 
3611 /* Flags that make sense to hub_widget_flags_set */
3612 #define HUB_WIDGET_FLAGS        (                               \
3613 				 HUB_PIO_CONVEYOR       |       \
3614 				 HUB_PIO_FIRE_N_FORGET          \
3615 				)
3616 
3617 
3618 typedef int     hub_widget_flags_t;
3619 
3620 /* Set the PIO mode for a widget. */
3621 extern int      hub_widget_flags_set(nasid_t            nasid,
3622                                      xwidgetnum_t       widget_num,
3623                                      hub_widget_flags_t flags);
3624 
3625 /* Error Handling. */
3626 extern int hub_ioerror_handler(vertex_hdl_t, int, int, struct io_error_s *);
3627 extern int kl_ioerror_handler(cnodeid_t, cnodeid_t, cpuid_t,
3628                               int, paddr_t, caddr_t, ioerror_mode_t);
3629 extern int hub_error_devenable(vertex_hdl_t, int, int);
3630 extern int  hub_dma_enabled(vertex_hdl_t);
3631 
3632 extern caddr_t hubdev_prombase_get(vertex_hdl_t hub);
3633 
3634 extern cnodeid_t hubdev_cnodeid_get(vertex_hdl_t hub);
3635 
3636 #endif /* __ASSEMBLY__ */
3637 #endif /* _KERNEL */
3638 #endif /* _ASM_IA64_SN_SN2_SHUBIO_H */
3639 
3640