1 /*
2   Madge Horizon ATM Adapter driver.
3   Copyright (C) 1995-1999  Madge Networks Ltd.
4 
5   This program is free software; you can redistribute it and/or modify
6   it under the terms of the GNU General Public License as published by
7   the Free Software Foundation; either version 2 of the License, or
8   (at your option) any later version.
9 
10   This program is distributed in the hope that it will be useful,
11   but WITHOUT ANY WARRANTY; without even the implied warranty of
12   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13   GNU General Public License for more details.
14 
15   You should have received a copy of the GNU General Public License
16   along with this program; if not, write to the Free Software
17   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 
19   The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20   system and in the file COPYING in the Linux kernel source.
21 */
22 
23 /*
24   IMPORTANT NOTE: Madge Networks no longer makes the adapters
25   supported by this driver and makes no commitment to maintain it.
26 */
27 
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/errno.h>
33 #include <linux/atm.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/skbuff.h>
37 #include <linux/time.h>
38 #include <linux/delay.h>
39 #include <linux/uio.h>
40 #include <linux/init.h>
41 #include <linux/ioport.h>
42 
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/atomic.h>
46 #include <asm/uaccess.h>
47 #include <asm/string.h>
48 #include <asm/byteorder.h>
49 
50 #include "horizon.h"
51 
52 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
53 #define description_string "Madge ATM Horizon [Ultra] driver"
54 #define version_string "1.2.1"
55 
show_version(void)56 static inline void __init show_version (void) {
57   printk ("%s version %s\n", description_string, version_string);
58 }
59 
60 /*
61 
62   CREDITS
63 
64   Driver and documentation by:
65 
66   Chris Aston        Madge Networks
67   Giuliano Procida   Madge Networks
68   Simon Benham       Madge Networks
69   Simon Johnson      Madge Networks
70   Various Others     Madge Networks
71 
72   Some inspiration taken from other drivers by:
73 
74   Alexandru Cucos    UTBv
75   Kari Mettinen      University of Helsinki
76   Werner Almesberger EPFL LRC
77 
78   Theory of Operation
79 
80   I Hardware, detection, initialisation and shutdown.
81 
82   1. Supported Hardware
83 
84   This driver should handle all variants of the PCI Madge ATM adapters
85   with the Horizon chipset. These are all PCI cards supporting PIO, BM
86   DMA and a form of MMIO (registers only, not internal RAM).
87 
88   The driver is only known to work with SONET and UTP Horizon Ultra
89   cards at 155Mb/s. However, code is in place to deal with both the
90   original Horizon and 25Mb/s operation.
91 
92   There are two revisions of the Horizon ASIC: the original and the
93   Ultra. Details of hardware bugs are in section III.
94 
95   The ASIC version can be distinguished by chip markings but is NOT
96   indicated by the PCI revision (all adapters seem to have PCI rev 1).
97 
98   I believe that:
99 
100   Horizon       => Collage  25 PCI Adapter (UTP and STP)
101   Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
102   Ambassador x  => Collage 155 PCI Server (completely different)
103 
104   Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
105   have a Madge B154 plus glue logic serializer. I have also found a
106   really ancient version of this with slightly different glue. It
107   comes with the revision 0 (140-025-01) ASIC.
108 
109   Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
110   output (UTP) or an HP HFBR 5205 output (SONET). It has either
111   Madge's SAMBA framer or a SUNI-lite device (early versions). It
112   comes with the revision 1 (140-027-01) ASIC.
113 
114   2. Detection
115 
116   All Horizon-based cards present with the same PCI Vendor and Device
117   IDs. The standard Linux 2.2 PCI API is used to locate any cards and
118   to enable bus-mastering (with appropriate latency).
119 
120   ATM_LAYER_STATUS in the control register distinguishes between the
121   two possible physical layers (25 and 155). It is not clear whether
122   the 155 cards can also operate at 25Mbps. We rely on the fact that a
123   card operates at 155 if and only if it has the newer Horizon Ultra
124   ASIC.
125 
126   For 155 cards the two possible framers are probed for and then set
127   up for loop-timing.
128 
129   3. Initialisation
130 
131   The card is reset and then put into a known state. The physical
132   layer is configured for normal operation at the appropriate speed;
133   in the case of the 155 cards, the framer is initialised with
134   line-based timing; the internal RAM is zeroed and the allocation of
135   buffers for RX and TX is made; the Burnt In Address is read and
136   copied to the ATM ESI; various policy settings for RX (VPI bits,
137   unknown VCs, oam cells) are made. Ideally all policy items should be
138   configurable at module load (if not actually on-demand), however,
139   only the vpi vs vci bit allocation can be specified at insmod.
140 
141   4. Shutdown
142 
143   This is in response to module_cleaup. No VCs are in use and the card
144   should be idle; it is reset.
145 
146   II Driver software (as it should be)
147 
148   0. Traffic Parameters
149 
150   The traffic classes (not an enumeration) are currently: ATM_NONE (no
151   traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
152   (compatible with everything). Together with (perhaps only some of)
153   the following items they make up the traffic specification.
154 
155   struct atm_trafprm {
156     unsigned char traffic_class; traffic class (ATM_UBR, ...)
157     int           max_pcr;       maximum PCR in cells per second
158     int           pcr;           desired PCR in cells per second
159     int           min_pcr;       minimum PCR in cells per second
160     int           max_cdv;       maximum CDV in microseconds
161     int           max_sdu;       maximum SDU in bytes
162   };
163 
164   Note that these denote bandwidth available not bandwidth used; the
165   possibilities according to ATMF are:
166 
167   Real Time (cdv and max CDT given)
168 
169   CBR(pcr)             pcr bandwidth always available
170   rtVBR(pcr,scr,mbs)   scr bandwidth always available, upto pcr at mbs too
171 
172   Non Real Time
173 
174   nrtVBR(pcr,scr,mbs)  scr bandwidth always available, upto pcr at mbs too
175   UBR()
176   ABR(mcr,pcr)         mcr bandwidth always available, upto pcr (depending) too
177 
178   mbs is max burst size (bucket)
179   pcr and scr have associated cdvt values
180   mcr is like scr but has no cdtv
181   cdtv may differ at each hop
182 
183   Some of the above items are qos items (as opposed to traffic
184   parameters). We have nothing to do with qos. All except ABR can have
185   their traffic parameters converted to GCRA parameters. The GCRA may
186   be implemented as a (real-number) leaky bucket. The GCRA can be used
187   in complicated ways by switches and in simpler ways by end-stations.
188   It can be used both to filter incoming cells and shape out-going
189   cells.
190 
191   ATM Linux actually supports:
192 
193   ATM_NONE() (no traffic in this direction)
194   ATM_UBR(max_frame_size)
195   ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
196 
197   0 or ATM_MAX_PCR are used to indicate maximum available PCR
198 
199   A traffic specification consists of the AAL type and separate
200   traffic specifications for either direction. In ATM Linux it is:
201 
202   struct atm_qos {
203   struct atm_trafprm txtp;
204   struct atm_trafprm rxtp;
205   unsigned char aal;
206   };
207 
208   AAL types are:
209 
210   ATM_NO_AAL    AAL not specified
211   ATM_AAL0      "raw" ATM cells
212   ATM_AAL1      AAL1 (CBR)
213   ATM_AAL2      AAL2 (VBR)
214   ATM_AAL34     AAL3/4 (data)
215   ATM_AAL5      AAL5 (data)
216   ATM_SAAL      signaling AAL
217 
218   The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
219   it does not implement AAL 3/4 SAR and it has a different notion of
220   "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
221   supported by this driver.
222 
223   The Horizon has limited support for ABR (including UBR), VBR and
224   CBR. Each TX channel has a bucket (containing up to 31 cell units)
225   and two timers (PCR and SCR) associated with it that can be used to
226   govern cell emissions and host notification (in the case of ABR this
227   is presumably so that RM cells may be emitted at appropriate times).
228   The timers may either be disabled or may be set to any of 240 values
229   (determined by the clock crystal, a fixed (?) per-device divider, a
230   configurable divider and a configurable timer preload value).
231 
232   At the moment only UBR and CBR are supported by the driver. VBR will
233   be supported as soon as ATM for Linux supports it. ABR support is
234   very unlikely as RM cell handling is completely up to the driver.
235 
236   1. TX (TX channel setup and TX transfer)
237 
238   The TX half of the driver owns the TX Horizon registers. The TX
239   component in the IRQ handler is the BM completion handler. This can
240   only be entered when tx_busy is true (enforced by hardware). The
241   other TX component can only be entered when tx_busy is false
242   (enforced by driver). So TX is single-threaded.
243 
244   Apart from a minor optimisation to not re-select the last channel,
245   the TX send component works as follows:
246 
247   Atomic test and set tx_busy until we succeed; we should implement
248   some sort of timeout so that tx_busy will never be stuck at true.
249 
250   If no TX channel is set up for this VC we wait for an idle one (if
251   necessary) and set it up.
252 
253   At this point we have a TX channel ready for use. We wait for enough
254   buffers to become available then start a TX transmit (set the TX
255   descriptor, schedule transfer, exit).
256 
257   The IRQ component handles TX completion (stats, free buffer, tx_busy
258   unset, exit). We also re-schedule further transfers for the same
259   frame if needed.
260 
261   TX setup in more detail:
262 
263   TX open is a nop, the relevant information is held in the hrz_vcc
264   (vcc->dev_data) structure and is "cached" on the card.
265 
266   TX close gets the TX lock and clears the channel from the "cache".
267 
268   2. RX (Data Available and RX transfer)
269 
270   The RX half of the driver owns the RX registers. There are two RX
271   components in the IRQ handler: the data available handler deals with
272   fresh data that has arrived on the card, the BM completion handler
273   is very similar to the TX completion handler. The data available
274   handler grabs the rx_lock and it is only released once the data has
275   been discarded or completely transferred to the host. The BM
276   completion handler only runs when the lock is held; the data
277   available handler is locked out over the same period.
278 
279   Data available on the card triggers an interrupt. If the data is not
280   suitable for our existing RX channels or we cannot allocate a buffer
281   it is flushed. Otherwise an RX receive is scheduled. Multiple RX
282   transfers may be scheduled for the same frame.
283 
284   RX setup in more detail:
285 
286   RX open...
287   RX close...
288 
289   III Hardware Bugs
290 
291   0. Byte vs Word addressing of adapter RAM.
292 
293   A design feature; see the .h file (especially the memory map).
294 
295   1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
296 
297   The host must not start a transmit direction transfer at a
298   non-four-byte boundary in host memory. Instead the host should
299   perform a byte, or a two byte, or one byte followed by two byte
300   transfer in order to start the rest of the transfer on a four byte
301   boundary. RX is OK.
302 
303   Simultaneous transmit and receive direction bus master transfers are
304   not allowed.
305 
306   The simplest solution to these two is to always do PIO (never DMA)
307   in the TX direction on the original Horizon. More complicated
308   solutions are likely to hurt my brain.
309 
310   2. Loss of buffer on close VC
311 
312   When a VC is being closed, the buffer associated with it is not
313   returned to the pool. The host must store the reference to this
314   buffer and when opening a new VC then give it to that new VC.
315 
316   The host intervention currently consists of stacking such a buffer
317   pointer at VC close and checking the stack at VC open.
318 
319   3. Failure to close a VC
320 
321   If a VC is currently receiving a frame then closing the VC may fail
322   and the frame continues to be received.
323 
324   The solution is to make sure any received frames are flushed when
325   ready. This is currently done just before the solution to 2.
326 
327   4. PCI bus (original Horizon only, fixed in Ultra)
328 
329   Reading from the data port prior to initialisation will hang the PCI
330   bus. Just don't do that then! We don't.
331 
332   IV To Do List
333 
334   . Timer code may be broken.
335 
336   . Allow users to specify buffer allocation split for TX and RX.
337 
338   . Deal once and for all with buggy VC close.
339 
340   . Handle interrupted and/or non-blocking operations.
341 
342   . Change some macros to functions and move from .h to .c.
343 
344   . Try to limit the number of TX frames each VC may have queued, in
345     order to reduce the chances of TX buffer exhaustion.
346 
347   . Implement VBR (bucket and timers not understood) and ABR (need to
348     do RM cells manually); also no Linux support for either.
349 
350   . Implement QoS changes on open VCs (involves extracting parts of VC open
351     and close into separate functions and using them to make changes).
352 
353 */
354 
355 /********** globals **********/
356 
357 static hrz_dev * hrz_devs = NULL;
358 static struct timer_list housekeeping;
359 
360 static unsigned short debug = 0;
361 static unsigned short vpi_bits = 0;
362 static int max_tx_size = 9000;
363 static int max_rx_size = 9000;
364 static unsigned char pci_lat = 0;
365 
366 /********** access functions **********/
367 
368 /* Read / Write Horizon registers */
wr_regl(const hrz_dev * dev,unsigned char reg,u32 data)369 static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
370   outl (cpu_to_le32 (data), dev->iobase + reg);
371 }
372 
rd_regl(const hrz_dev * dev,unsigned char reg)373 static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
374   return le32_to_cpu (inl (dev->iobase + reg));
375 }
376 
wr_regw(const hrz_dev * dev,unsigned char reg,u16 data)377 static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
378   outw (cpu_to_le16 (data), dev->iobase + reg);
379 }
380 
rd_regw(const hrz_dev * dev,unsigned char reg)381 static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
382   return le16_to_cpu (inw (dev->iobase + reg));
383 }
384 
wrs_regb(const hrz_dev * dev,unsigned char reg,void * addr,u32 len)385 static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
386   outsb (dev->iobase + reg, addr, len);
387 }
388 
rds_regb(const hrz_dev * dev,unsigned char reg,void * addr,u32 len)389 static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
390   insb (dev->iobase + reg, addr, len);
391 }
392 
393 /* Read / Write to a given address in Horizon buffer memory.
394    Interrupts must be disabled between the address register and data
395    port accesses as these must form an atomic operation. */
wr_mem(const hrz_dev * dev,HDW * addr,u32 data)396 static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
397   // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
398   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
399   wr_regl (dev, MEMORY_PORT_OFF, data);
400 }
401 
rd_mem(const hrz_dev * dev,HDW * addr)402 static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
403   // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
404   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
405   return rd_regl (dev, MEMORY_PORT_OFF);
406 }
407 
wr_framer(const hrz_dev * dev,u32 addr,u32 data)408 static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
409   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
410   wr_regl (dev, MEMORY_PORT_OFF, data);
411 }
412 
rd_framer(const hrz_dev * dev,u32 addr)413 static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
414   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
415   return rd_regl (dev, MEMORY_PORT_OFF);
416 }
417 
418 /********** specialised access functions **********/
419 
420 /* RX */
421 
FLUSH_RX_CHANNEL(hrz_dev * dev,u16 channel)422 static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
423   wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
424   return;
425 }
426 
WAIT_FLUSH_RX_COMPLETE(hrz_dev * dev)427 static inline void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
428   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
429     ;
430   return;
431 }
432 
SELECT_RX_CHANNEL(hrz_dev * dev,u16 channel)433 static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
434   wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
435   return;
436 }
437 
WAIT_UPDATE_COMPLETE(hrz_dev * dev)438 static inline void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
439   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
440     ;
441   return;
442 }
443 
444 /* TX */
445 
SELECT_TX_CHANNEL(hrz_dev * dev,u16 tx_channel)446 static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
447   wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
448   return;
449 }
450 
451 /* Update or query one configuration parameter of a particular channel. */
452 
update_tx_channel_config(hrz_dev * dev,short chan,u8 mode,u16 value)453 static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
454   wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
455 	   chan * TX_CHANNEL_CONFIG_MULT | mode);
456     wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
457     return;
458 }
459 
query_tx_channel_config(hrz_dev * dev,short chan,u8 mode)460 static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
461   wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
462 	   chan * TX_CHANNEL_CONFIG_MULT | mode);
463     return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
464 }
465 
466 /********** dump functions **********/
467 
dump_skb(char * prefix,unsigned int vc,struct sk_buff * skb)468 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
469 #ifdef DEBUG_HORIZON
470   unsigned int i;
471   unsigned char * data = skb->data;
472   PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
473   for (i=0; i<skb->len && i < 256;i++)
474     PRINTDM (DBG_DATA, "%02x ", data[i]);
475   PRINTDE (DBG_DATA,"");
476 #else
477   (void) prefix;
478   (void) vc;
479   (void) skb;
480 #endif
481   return;
482 }
483 
484 #if 0 /* unused and in conflict with <asm-ppc/system.h> */
485 static inline void dump_regs (hrz_dev * dev) {
486 #ifdef DEBUG_HORIZON
487   PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
488   PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
489   PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
490   PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
491   PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
492   PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
493 #else
494   (void) dev;
495 #endif
496   return;
497 }
498 #endif
499 
dump_framer(hrz_dev * dev)500 static inline void dump_framer (hrz_dev * dev) {
501 #ifdef DEBUG_HORIZON
502   unsigned int i;
503   PRINTDB (DBG_REGS, "framer registers:");
504   for (i = 0; i < 0x10; ++i)
505     PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
506   PRINTDE (DBG_REGS,"");
507 #else
508   (void) dev;
509 #endif
510   return;
511 }
512 
513 /********** VPI/VCI <-> (RX) channel conversions **********/
514 
515 /* RX channels are 10 bit integers, these fns are quite paranoid */
516 
channel_to_vpivci(const u16 channel,short * vpi,int * vci)517 static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
518   unsigned short vci_bits = 10 - vpi_bits;
519   if ((channel & RX_CHANNEL_MASK) == channel) {
520     *vci = channel & ((~0)<<vci_bits);
521     *vpi = channel >> vci_bits;
522     return channel ? 0 : -EINVAL;
523   }
524   return -EINVAL;
525 }
526 
vpivci_to_channel(u16 * channel,const short vpi,const int vci)527 static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
528   unsigned short vci_bits = 10 - vpi_bits;
529   if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
530     *channel = vpi<<vci_bits | vci;
531     return *channel ? 0 : -EINVAL;
532   }
533   return -EINVAL;
534 }
535 
536 /********** decode RX queue entries **********/
537 
rx_q_entry_to_length(u32 x)538 static inline u16 rx_q_entry_to_length (u32 x) {
539   return x & RX_Q_ENTRY_LENGTH_MASK;
540 }
541 
rx_q_entry_to_rx_channel(u32 x)542 static inline u16 rx_q_entry_to_rx_channel (u32 x) {
543   return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
544 }
545 
546 /* Cell Transmit Rate Values
547  *
548  * the cell transmit rate (cells per sec) can be set to a variety of
549  * different values by specifying two parameters: a timer preload from
550  * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
551  * an exponent from 0 to 14; the special value 15 disables the timer).
552  *
553  * cellrate = baserate / (preload * 2^divider)
554  *
555  * The maximum cell rate that can be specified is therefore just the
556  * base rate. Halving the preload is equivalent to adding 1 to the
557  * divider and so values 1 to 8 of the preload are redundant except
558  * in the case of a maximal divider (14).
559  *
560  * Given a desired cell rate, an algorithm to determine the preload
561  * and divider is:
562  *
563  * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
564  * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
565  *    if x <= 16 then set p = x, d = 0 (high rates), done
566  * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
567  *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
568  *    we find the range (n will be between 1 and 14), set d = n
569  * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
570  *
571  * The algorithm used below is a minor variant of the above.
572  *
573  * The base rate is derived from the oscillator frequency (Hz) using a
574  * fixed divider:
575  *
576  * baserate = freq / 32 in the case of some Unknown Card
577  * baserate = freq / 8  in the case of the Horizon        25
578  * baserate = freq / 8  in the case of the Horizon Ultra 155
579  *
580  * The Horizon cards have oscillators and base rates as follows:
581  *
582  * Card               Oscillator  Base Rate
583  * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
584  * Horizon        25  32 MHz      4       MHz
585  * Horizon Ultra 155  40 MHz      5       MHz
586  *
587  * The following defines give the base rates in Hz. These were
588  * previously a factor of 100 larger, no doubt someone was using
589  * cps*100.
590  */
591 
592 #define BR_UKN 1031250l
593 #define BR_HRZ 4000000l
594 #define BR_ULT 5000000l
595 
596 // d is an exponent
597 #define CR_MIND 0
598 #define CR_MAXD 14
599 
600 // p ranges from 1 to a power of 2
601 #define CR_MAXPEXP 4
602 
make_rate(const hrz_dev * dev,u32 c,rounding r,u16 * bits,unsigned int * actual)603 static int make_rate (const hrz_dev * dev, u32 c, rounding r,
604 		      u16 * bits, unsigned int * actual) {
605 
606   // note: rounding the rate down means rounding 'p' up
607 
608   const unsigned long br = test_bit (ultra, (hrz_flags *) &dev->flags) ?
609     BR_ULT : BR_HRZ;
610 
611   u32 div = CR_MIND;
612   u32 pre;
613 
614   // local fn to build the timer bits
615   int set_cr (void) {
616     // paranoia
617     if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
618       PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
619 	      div, pre);
620       return -EINVAL;
621     } else {
622       if (bits)
623 	*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
624       if (actual) {
625 	*actual = (br + (pre<<div) - 1) / (pre<<div);
626 	PRINTD (DBG_QOS, "actual rate: %u", *actual);
627       }
628       return 0;
629     }
630   }
631 
632   // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
633   // the tests below. We could think harder about exact possibilities
634   // of failure...
635 
636   unsigned long br_man = br;
637   unsigned int br_exp = 0;
638 
639   PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
640 	  (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest");
641 
642   // avoid div by zero
643   if (!c) {
644     PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
645     return -EINVAL;
646   }
647 
648   while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
649     br_man = br_man >> 1;
650     ++br_exp;
651   }
652   // (br >>br_exp) <<br_exp == br and
653   // br_exp <= CR_MAXPEXP+CR_MIND
654 
655   if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
656     // Equivalent to: B <= (c << (MAXPEXP+MIND))
657     // take care of rounding
658     switch (r) {
659       case round_down:
660 	pre = (br+(c<<div)-1)/(c<<div);
661 	// but p must be non-zero
662 	if (!pre)
663 	  pre = 1;
664 	break;
665       case round_nearest:
666 	pre = (br+(c<<div)/2)/(c<<div);
667 	// but p must be non-zero
668 	if (!pre)
669 	  pre = 1;
670 	break;
671       case round_up:
672 	pre = br/(c<<div);
673 	// but p must be non-zero
674 	if (!pre)
675 	  return -EINVAL;
676 	break;
677     }
678     PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
679     return set_cr ();
680   }
681 
682   // at this point we have
683   // d == MIND and (c << (MAXPEXP+MIND)) < B
684   while (div < CR_MAXD) {
685     div++;
686     if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
687       // Equivalent to: B <= (c << (MAXPEXP+d))
688       // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
689       // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
690       // MAXP/2 < B/c2^d <= MAXP
691       // take care of rounding
692       switch (r) {
693 	case round_down:
694 	  pre = (br+(c<<div)-1)/(c<<div);
695 	  break;
696 	case round_nearest:
697 	  pre = (br+(c<<div)/2)/(c<<div);
698 	  break;
699 	case round_up:
700 	  pre = br/(c<<div);
701 	  break;
702       }
703       PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
704       return set_cr ();
705     }
706   }
707   // at this point we have
708   // d == MAXD and (c << (MAXPEXP+MAXD)) < B
709   // but we cannot go any higher
710   // take care of rounding
711   switch (r) {
712     case round_down:
713       return -EINVAL;
714       break;
715     case round_nearest:
716       break;
717     case round_up:
718       break;
719   }
720   pre = 1 << CR_MAXPEXP;
721   PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
722   return set_cr ();
723 }
724 
make_rate_with_tolerance(const hrz_dev * dev,u32 c,rounding r,unsigned int tol,u16 * bit_pattern,unsigned int * actual)725 static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
726 				     u16 * bit_pattern, unsigned int * actual) {
727   unsigned int my_actual;
728 
729   PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
730 	  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
731 
732   if (!actual)
733     // actual rate is not returned
734     actual = &my_actual;
735 
736   if (make_rate (dev, c, round_nearest, bit_pattern, actual))
737     // should never happen as round_nearest always succeeds
738     return -1;
739 
740   if (c - tol <= *actual && *actual <= c + tol)
741     // within tolerance
742     return 0;
743   else
744     // intolerant, try rounding instead
745     return make_rate (dev, c, r, bit_pattern, actual);
746 }
747 
748 /********** Listen on a VC **********/
749 
hrz_open_rx(hrz_dev * dev,u16 channel)750 static int hrz_open_rx (hrz_dev * dev, u16 channel) {
751   // is there any guarantee that we don't get two simulataneous
752   // identical calls of this function from different processes? yes
753   // rate_lock
754   unsigned long flags;
755   u32 channel_type; // u16?
756 
757   u16 buf_ptr = RX_CHANNEL_IDLE;
758 
759   rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
760 
761   PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
762 
763   spin_lock_irqsave (&dev->mem_lock, flags);
764   channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
765   spin_unlock_irqrestore (&dev->mem_lock, flags);
766 
767   // very serious error, should never occur
768   if (channel_type != RX_CHANNEL_DISABLED) {
769     PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
770     return -EBUSY; // clean up?
771   }
772 
773   // Give back spare buffer
774   if (dev->noof_spare_buffers) {
775     buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
776     PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
777     // should never occur
778     if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
779       // but easy to recover from
780       PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
781       buf_ptr = RX_CHANNEL_IDLE;
782     }
783   } else {
784     PRINTD (DBG_VCC, "using IDLE buffer pointer");
785   }
786 
787   // Channel is currently disabled so change its status to idle
788 
789   // do we really need to save the flags again?
790   spin_lock_irqsave (&dev->mem_lock, flags);
791 
792   wr_mem (dev, &rx_desc->wr_buf_type,
793 	  buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
794   if (buf_ptr != RX_CHANNEL_IDLE)
795     wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
796 
797   spin_unlock_irqrestore (&dev->mem_lock, flags);
798 
799   // rxer->rate = make_rate (qos->peak_cells);
800 
801   PRINTD (DBG_FLOW, "hrz_open_rx ok");
802 
803   return 0;
804 }
805 
806 #if 0
807 /********** change vc rate for a given vc **********/
808 
809 static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
810   rxer->rate = make_rate (qos->peak_cells);
811 }
812 #endif
813 
814 /********** free an skb (as per ATM device driver documentation) **********/
815 
hrz_kfree_skb(struct sk_buff * skb)816 static inline void hrz_kfree_skb (struct sk_buff * skb) {
817   if (ATM_SKB(skb)->vcc->pop) {
818     ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
819   } else {
820     dev_kfree_skb_any (skb);
821   }
822 }
823 
824 /********** cancel listen on a VC **********/
825 
hrz_close_rx(hrz_dev * dev,u16 vc)826 static void hrz_close_rx (hrz_dev * dev, u16 vc) {
827   unsigned long flags;
828 
829   u32 value;
830 
831   u32 r1, r2;
832 
833   rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
834 
835   int was_idle = 0;
836 
837   spin_lock_irqsave (&dev->mem_lock, flags);
838   value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
839   spin_unlock_irqrestore (&dev->mem_lock, flags);
840 
841   if (value == RX_CHANNEL_DISABLED) {
842     // I suppose this could happen once we deal with _NONE traffic properly
843     PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
844     return;
845   }
846   if (value == RX_CHANNEL_IDLE)
847     was_idle = 1;
848 
849   spin_lock_irqsave (&dev->mem_lock, flags);
850 
851   for (;;) {
852     wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
853 
854     if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
855       break;
856 
857     was_idle = 0;
858   }
859 
860   if (was_idle) {
861     spin_unlock_irqrestore (&dev->mem_lock, flags);
862     return;
863   }
864 
865   WAIT_FLUSH_RX_COMPLETE(dev);
866 
867   // XXX Is this all really necessary? We can rely on the rx_data_av
868   // handler to discard frames that remain queued for delivery. If the
869   // worry is that immediately reopening the channel (perhaps by a
870   // different process) may cause some data to be mis-delivered then
871   // there may still be a simpler solution (such as busy-waiting on
872   // rx_busy once the channel is disabled or before a new one is
873   // opened - does this leave any holes?). Arguably setting up and
874   // tearing down the TX and RX halves of each virtual circuit could
875   // most safely be done within ?x_busy protected regions.
876 
877   // OK, current changes are that Simon's marker is disabled and we DO
878   // look for NULL rxer elsewhere. The code here seems flush frames
879   // and then remember the last dead cell belonging to the channel
880   // just disabled - the cell gets relinked at the next vc_open.
881   // However, when all VCs are closed or only a few opened there are a
882   // handful of buffers that are unusable.
883 
884   // Does anyone feel like documenting spare_buffers properly?
885   // Does anyone feel like fixing this in a nicer way?
886 
887   // Flush any data which is left in the channel
888   for (;;) {
889     // Change the rx channel port to something different to the RX
890     // channel we are trying to close to force Horizon to flush the rx
891     // channel read and write pointers.
892 
893     u16 other = vc^(RX_CHANS/2);
894 
895     SELECT_RX_CHANNEL (dev, other);
896     WAIT_UPDATE_COMPLETE (dev);
897 
898     r1 = rd_mem (dev, &rx_desc->rd_buf_type);
899 
900     // Select this RX channel. Flush doesn't seem to work unless we
901     // select an RX channel before hand
902 
903     SELECT_RX_CHANNEL (dev, vc);
904     WAIT_UPDATE_COMPLETE (dev);
905 
906     // Attempt to flush a frame on this RX channel
907 
908     FLUSH_RX_CHANNEL (dev, vc);
909     WAIT_FLUSH_RX_COMPLETE (dev);
910 
911     // Force Horizon to flush rx channel read and write pointers as before
912 
913     SELECT_RX_CHANNEL (dev, other);
914     WAIT_UPDATE_COMPLETE (dev);
915 
916     r2 = rd_mem (dev, &rx_desc->rd_buf_type);
917 
918     PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
919 
920     if (r1 == r2) {
921       dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
922       break;
923     }
924   }
925 
926 #if 0
927   {
928     rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
929     rx_q_entry * rd_ptr = dev->rx_q_entry;
930 
931     PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
932 
933     while (rd_ptr != wr_ptr) {
934       u32 x = rd_mem (dev, (HDW *) rd_ptr);
935 
936       if (vc == rx_q_entry_to_rx_channel (x)) {
937 	x |= SIMONS_DODGEY_MARKER;
938 
939 	PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
940 
941 	wr_mem (dev, (HDW *) rd_ptr, x);
942       }
943 
944       if (rd_ptr == dev->rx_q_wrap)
945 	rd_ptr = dev->rx_q_reset;
946       else
947 	rd_ptr++;
948     }
949   }
950 #endif
951 
952   spin_unlock_irqrestore (&dev->mem_lock, flags);
953 
954   return;
955 }
956 
957 /********** schedule RX transfers **********/
958 
959 // Note on tail recursion: a GCC developer said that it is not likely
960 // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
961 // are sure it does as you may otherwise overflow the kernel stack.
962 
963 // giving this fn a return value would help GCC, alledgedly
964 
rx_schedule(hrz_dev * dev,int irq)965 static void rx_schedule (hrz_dev * dev, int irq) {
966   unsigned int rx_bytes;
967 
968   int pio_instead = 0;
969 #ifndef TAILRECURSIONWORKS
970   pio_instead = 1;
971   while (pio_instead) {
972 #endif
973     // bytes waiting for RX transfer
974     rx_bytes = dev->rx_bytes;
975 
976 #if 0
977     spin_count = 0;
978     while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
979       PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
980       if (++spin_count > 10) {
981 	PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
982 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
983 	clear_bit (rx_busy, &dev->flags);
984 	hrz_kfree_skb (dev->rx_skb);
985 	return;
986       }
987     }
988 #endif
989 
990     // this code follows the TX code but (at the moment) there is only
991     // one region - the skb itself. I don't know if this will change,
992     // but it doesn't hurt to have the code here, disabled.
993 
994     if (rx_bytes) {
995       // start next transfer within same region
996       if (rx_bytes <= MAX_PIO_COUNT) {
997 	PRINTD (DBG_RX|DBG_BUS, "(pio)");
998 	pio_instead = 1;
999       }
1000       if (rx_bytes <= MAX_TRANSFER_COUNT) {
1001 	PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
1002 	dev->rx_bytes = 0;
1003       } else {
1004 	PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
1005 	dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1006 	rx_bytes = MAX_TRANSFER_COUNT;
1007       }
1008     } else {
1009       // rx_bytes == 0 -- we're between regions
1010       // regions remaining to transfer
1011 #if 0
1012       unsigned int rx_regions = dev->rx_regions;
1013 #else
1014       unsigned int rx_regions = 0;
1015 #endif
1016 
1017       if (rx_regions) {
1018 #if 0
1019 	// start a new region
1020 	dev->rx_addr = dev->rx_iovec->iov_base;
1021 	rx_bytes = dev->rx_iovec->iov_len;
1022 	++dev->rx_iovec;
1023 	dev->rx_regions = rx_regions - 1;
1024 
1025 	if (rx_bytes <= MAX_PIO_COUNT) {
1026 	  PRINTD (DBG_RX|DBG_BUS, "(pio)");
1027 	  pio_instead = 1;
1028 	}
1029 	if (rx_bytes <= MAX_TRANSFER_COUNT) {
1030 	  PRINTD (DBG_RX|DBG_BUS, "(full region)");
1031 	  dev->rx_bytes = 0;
1032 	} else {
1033 	  PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1034 	  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1035 	  rx_bytes = MAX_TRANSFER_COUNT;
1036 	}
1037 #endif
1038       } else {
1039 	// rx_regions == 0
1040 	// that's all folks - end of frame
1041 	struct sk_buff * skb = dev->rx_skb;
1042 	// dev->rx_iovec = 0;
1043 
1044 	FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1045 
1046 	dump_skb ("<<<", dev->rx_channel, skb);
1047 
1048 	PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1049 
1050 	{
1051 	  struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1052 	  // VC layer stats
1053 	  atomic_inc(&vcc->stats->rx);
1054 	  skb->stamp = xtime;
1055 	  // end of our responsability
1056 	  vcc->push (vcc, skb);
1057 	}
1058       }
1059     }
1060 
1061     // note: writing RX_COUNT clears any interrupt condition
1062     if (rx_bytes) {
1063       if (pio_instead) {
1064 	if (irq)
1065 	  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1066 	rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1067       } else {
1068 	wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1069 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1070       }
1071       dev->rx_addr += rx_bytes;
1072     } else {
1073       if (irq)
1074 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1075       // allow another RX thread to start
1076       YELLOW_LED_ON(dev);
1077       clear_bit (rx_busy, &dev->flags);
1078       PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1079     }
1080 
1081 #ifdef TAILRECURSIONWORKS
1082     // and we all bless optimised tail calls
1083     if (pio_instead)
1084       return rx_schedule (dev, 0);
1085     return;
1086 #else
1087     // grrrrrrr!
1088     irq = 0;
1089   }
1090   return;
1091 #endif
1092 }
1093 
1094 /********** handle RX bus master complete events **********/
1095 
rx_bus_master_complete_handler(hrz_dev * dev)1096 static inline void rx_bus_master_complete_handler (hrz_dev * dev) {
1097   if (test_bit (rx_busy, &dev->flags)) {
1098     rx_schedule (dev, 1);
1099   } else {
1100     PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1101     // clear interrupt condition on adapter
1102     wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1103   }
1104   return;
1105 }
1106 
1107 /********** (queue to) become the next TX thread **********/
1108 
tx_hold(hrz_dev * dev)1109 static inline int tx_hold (hrz_dev * dev) {
1110   while (test_and_set_bit (tx_busy, &dev->flags)) {
1111     PRINTD (DBG_TX, "sleeping at tx lock %p %u", dev, dev->flags);
1112     interruptible_sleep_on (&dev->tx_queue);
1113     PRINTD (DBG_TX, "woken at tx lock %p %u", dev, dev->flags);
1114     if (signal_pending (current))
1115       return -1;
1116   }
1117   PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1118   return 0;
1119 }
1120 
1121 /********** allow another TX thread to start **********/
1122 
tx_release(hrz_dev * dev)1123 static inline void tx_release (hrz_dev * dev) {
1124   clear_bit (tx_busy, &dev->flags);
1125   PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1126   wake_up_interruptible (&dev->tx_queue);
1127 }
1128 
1129 /********** schedule TX transfers **********/
1130 
tx_schedule(hrz_dev * const dev,int irq)1131 static void tx_schedule (hrz_dev * const dev, int irq) {
1132   unsigned int tx_bytes;
1133 
1134   int append_desc = 0;
1135 
1136   int pio_instead = 0;
1137 #ifndef TAILRECURSIONWORKS
1138   pio_instead = 1;
1139   while (pio_instead) {
1140 #endif
1141     // bytes in current region waiting for TX transfer
1142     tx_bytes = dev->tx_bytes;
1143 
1144 #if 0
1145     spin_count = 0;
1146     while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1147       PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1148       if (++spin_count > 10) {
1149 	PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1150 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1151 	tx_release (dev);
1152 	hrz_kfree_skb (dev->tx_skb);
1153 	return;
1154       }
1155     }
1156 #endif
1157 
1158     if (tx_bytes) {
1159       // start next transfer within same region
1160       if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1161 	PRINTD (DBG_TX|DBG_BUS, "(pio)");
1162 	pio_instead = 1;
1163       }
1164       if (tx_bytes <= MAX_TRANSFER_COUNT) {
1165 	PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1166 	if (!dev->tx_iovec) {
1167 	  // end of last region
1168 	  append_desc = 1;
1169 	}
1170 	dev->tx_bytes = 0;
1171       } else {
1172 	PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1173 	dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1174 	tx_bytes = MAX_TRANSFER_COUNT;
1175       }
1176     } else {
1177       // tx_bytes == 0 -- we're between regions
1178       // regions remaining to transfer
1179       unsigned int tx_regions = dev->tx_regions;
1180 
1181       if (tx_regions) {
1182 	// start a new region
1183 	dev->tx_addr = dev->tx_iovec->iov_base;
1184 	tx_bytes = dev->tx_iovec->iov_len;
1185 	++dev->tx_iovec;
1186 	dev->tx_regions = tx_regions - 1;
1187 
1188 	if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1189 	  PRINTD (DBG_TX|DBG_BUS, "(pio)");
1190 	  pio_instead = 1;
1191 	}
1192 	if (tx_bytes <= MAX_TRANSFER_COUNT) {
1193 	  PRINTD (DBG_TX|DBG_BUS, "(full region)");
1194 	  dev->tx_bytes = 0;
1195 	} else {
1196 	  PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1197 	  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1198 	  tx_bytes = MAX_TRANSFER_COUNT;
1199 	}
1200       } else {
1201 	// tx_regions == 0
1202 	// that's all folks - end of frame
1203 	struct sk_buff * skb = dev->tx_skb;
1204 	dev->tx_iovec = 0;
1205 
1206 	// VC layer stats
1207 	atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1208 
1209 	// free the skb
1210 	hrz_kfree_skb (skb);
1211       }
1212     }
1213 
1214     // note: writing TX_COUNT clears any interrupt condition
1215     if (tx_bytes) {
1216       if (pio_instead) {
1217 	if (irq)
1218 	  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1219 	wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1220 	if (append_desc)
1221 	  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1222       } else {
1223 	wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1224 	if (append_desc)
1225 	  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1226 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1227 		 append_desc
1228 		 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1229 		 : tx_bytes);
1230       }
1231       dev->tx_addr += tx_bytes;
1232     } else {
1233       if (irq)
1234 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1235       YELLOW_LED_ON(dev);
1236       tx_release (dev);
1237     }
1238 
1239 #ifdef TAILRECURSIONWORKS
1240     // and we all bless optimised tail calls
1241     if (pio_instead)
1242       return tx_schedule (dev, 0);
1243     return;
1244 #else
1245     // grrrrrrr!
1246     irq = 0;
1247   }
1248   return;
1249 #endif
1250 }
1251 
1252 /********** handle TX bus master complete events **********/
1253 
tx_bus_master_complete_handler(hrz_dev * dev)1254 static inline void tx_bus_master_complete_handler (hrz_dev * dev) {
1255   if (test_bit (tx_busy, &dev->flags)) {
1256     tx_schedule (dev, 1);
1257   } else {
1258     PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1259     // clear interrupt condition on adapter
1260     wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1261   }
1262   return;
1263 }
1264 
1265 /********** move RX Q pointer to next item in circular buffer **********/
1266 
1267 // called only from IRQ sub-handler
rx_queue_entry_next(hrz_dev * dev)1268 static inline u32 rx_queue_entry_next (hrz_dev * dev) {
1269   u32 rx_queue_entry;
1270   spin_lock (&dev->mem_lock);
1271   rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1272   if (dev->rx_q_entry == dev->rx_q_wrap)
1273     dev->rx_q_entry = dev->rx_q_reset;
1274   else
1275     dev->rx_q_entry++;
1276   wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1277   spin_unlock (&dev->mem_lock);
1278   return rx_queue_entry;
1279 }
1280 
1281 /********** handle RX disabled by device **********/
1282 
rx_disabled_handler(hrz_dev * dev)1283 static inline void rx_disabled_handler (hrz_dev * dev) {
1284   wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1285   // count me please
1286   PRINTK (KERN_WARNING, "RX was disabled!");
1287 }
1288 
1289 /********** handle RX data received by device **********/
1290 
1291 // called from IRQ handler
rx_data_av_handler(hrz_dev * dev)1292 static inline void rx_data_av_handler (hrz_dev * dev) {
1293   u32 rx_queue_entry;
1294   u32 rx_queue_entry_flags;
1295   u16 rx_len;
1296   u16 rx_channel;
1297 
1298   PRINTD (DBG_FLOW, "hrz_data_av_handler");
1299 
1300   // try to grab rx lock (not possible during RX bus mastering)
1301   if (test_and_set_bit (rx_busy, &dev->flags)) {
1302     PRINTD (DBG_RX, "locked out of rx lock");
1303     return;
1304   }
1305   PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1306   // lock is cleared if we fail now, o/w after bus master completion
1307 
1308   YELLOW_LED_OFF(dev);
1309 
1310   rx_queue_entry = rx_queue_entry_next (dev);
1311 
1312   rx_len = rx_q_entry_to_length (rx_queue_entry);
1313   rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1314 
1315   WAIT_FLUSH_RX_COMPLETE (dev);
1316 
1317   SELECT_RX_CHANNEL (dev, rx_channel);
1318 
1319   PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1320   rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1321 
1322   if (!rx_len) {
1323     // (at least) bus-mastering breaks if we try to handle a
1324     // zero-length frame, besides AAL5 does not support them
1325     PRINTK (KERN_ERR, "zero-length frame!");
1326     rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1327   }
1328 
1329   if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1330     PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1331   }
1332   if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1333     struct atm_vcc * atm_vcc;
1334 
1335     PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1336 
1337     atm_vcc = dev->rxer[rx_channel];
1338     // if no vcc is assigned to this channel, we should drop the frame
1339     // (is this what SIMONS etc. was trying to achieve?)
1340 
1341     if (atm_vcc) {
1342 
1343       if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1344 
1345 	if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1346 
1347 	  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1348 	  if (skb) {
1349 	    // remember this so we can push it later
1350 	    dev->rx_skb = skb;
1351 	    // remember this so we can flush it later
1352 	    dev->rx_channel = rx_channel;
1353 
1354 	    // prepare socket buffer
1355 	    skb_put (skb, rx_len);
1356 	    ATM_SKB(skb)->vcc = atm_vcc;
1357 
1358 	    // simple transfer
1359 	    // dev->rx_regions = 0;
1360 	    // dev->rx_iovec = 0;
1361 	    dev->rx_bytes = rx_len;
1362 	    dev->rx_addr = skb->data;
1363 	    PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1364 		    skb->data, rx_len);
1365 
1366 	    // do the business
1367 	    rx_schedule (dev, 0);
1368 	    return;
1369 
1370 	  } else {
1371 	    PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1372 	  }
1373 
1374 	} else {
1375 	  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1376 	  // do we count this?
1377 	}
1378 
1379       } else {
1380 	PRINTK (KERN_WARNING, "dropped over-size frame");
1381 	// do we count this?
1382       }
1383 
1384     } else {
1385       PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1386       // do we count this?
1387     }
1388 
1389   } else {
1390     // Wait update complete ? SPONG
1391   }
1392 
1393   // RX was aborted
1394   YELLOW_LED_ON(dev);
1395 
1396   FLUSH_RX_CHANNEL (dev,rx_channel);
1397   clear_bit (rx_busy, &dev->flags);
1398 
1399   return;
1400 }
1401 
1402 /********** interrupt handler **********/
1403 
interrupt_handler(int irq,void * dev_id,struct pt_regs * pt_regs)1404 static void interrupt_handler (int irq, void * dev_id, struct pt_regs * pt_regs) {
1405   hrz_dev * dev = hrz_devs;
1406   u32 int_source;
1407   unsigned int irq_ok;
1408   (void) pt_regs;
1409 
1410   PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1411 
1412   if (!dev_id) {
1413     PRINTD (DBG_IRQ|DBG_ERR, "irq with NULL dev_id: %d", irq);
1414     return;
1415   }
1416   // Did one of our cards generate the interrupt?
1417   while (dev) {
1418     if (dev == dev_id)
1419       break;
1420     dev = dev->prev;
1421   }
1422   if (!dev) {
1423     PRINTD (DBG_IRQ, "irq not for me: %d", irq);
1424     return;
1425   }
1426   if (irq != dev->irq) {
1427     PRINTD (DBG_IRQ|DBG_ERR, "irq mismatch: %d", irq);
1428     return;
1429   }
1430 
1431   // definitely for us
1432   irq_ok = 0;
1433   while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1434 	  & INTERESTING_INTERRUPTS)) {
1435     // In the interests of fairness, the (inline) handlers below are
1436     // called in sequence and without immediate return to the head of
1437     // the while loop. This is only of issue for slow hosts (or when
1438     // debugging messages are on). Really slow hosts may find a fast
1439     // sender keeps them permanently in the IRQ handler. :(
1440 
1441     // (only an issue for slow hosts) RX completion goes before
1442     // rx_data_av as the former implies rx_busy and so the latter
1443     // would just abort. If it reschedules another transfer
1444     // (continuing the same frame) then it will not clear rx_busy.
1445 
1446     // (only an issue for slow hosts) TX completion goes before RX
1447     // data available as it is a much shorter routine - there is the
1448     // chance that any further transfers it schedules will be complete
1449     // by the time of the return to the head of the while loop
1450 
1451     if (int_source & RX_BUS_MASTER_COMPLETE) {
1452       ++irq_ok;
1453       PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1454       rx_bus_master_complete_handler (dev);
1455     }
1456     if (int_source & TX_BUS_MASTER_COMPLETE) {
1457       ++irq_ok;
1458       PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1459       tx_bus_master_complete_handler (dev);
1460     }
1461     if (int_source & RX_DATA_AV) {
1462       ++irq_ok;
1463       PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1464       rx_data_av_handler (dev);
1465     }
1466   }
1467   if (irq_ok) {
1468     PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1469   } else {
1470     PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1471   }
1472 
1473   PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1474 }
1475 
1476 /********** housekeeping **********/
1477 
set_timer(struct timer_list * timer,unsigned int delay)1478 static void set_timer (struct timer_list * timer, unsigned int delay) {
1479   timer->expires = jiffies + delay;
1480   add_timer (timer);
1481   return;
1482 }
1483 
do_housekeeping(unsigned long arg)1484 static void do_housekeeping (unsigned long arg) {
1485   // just stats at the moment
1486   hrz_dev * dev = hrz_devs;
1487   (void) arg;
1488   // data is set to zero at module unload
1489   if (housekeeping.data) {
1490     while (dev) {
1491       // collect device-specific (not driver/atm-linux) stats here
1492       dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1493       dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1494       dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1495       dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1496       dev = dev->prev;
1497     }
1498     set_timer (&housekeeping, HZ/10);
1499   }
1500   return;
1501 }
1502 
1503 /********** find an idle channel for TX and set it up **********/
1504 
1505 // called with tx_busy set
setup_idle_tx_channel(hrz_dev * dev,hrz_vcc * vcc)1506 static inline short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1507   unsigned short idle_channels;
1508   short tx_channel = -1;
1509   unsigned int spin_count;
1510   PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1511 
1512   // better would be to fail immediately, the caller can then decide whether
1513   // to wait or drop (depending on whether this is UBR etc.)
1514   spin_count = 0;
1515   while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1516     PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1517     // delay a bit here
1518     if (++spin_count > 100) {
1519       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1520       return -EBUSY;
1521     }
1522   }
1523 
1524   // got an idle channel
1525   {
1526     // tx_idle ensures we look for idle channels in RR order
1527     int chan = dev->tx_idle;
1528 
1529     int keep_going = 1;
1530     while (keep_going) {
1531       if (idle_channels & (1<<chan)) {
1532 	tx_channel = chan;
1533 	keep_going = 0;
1534       }
1535       ++chan;
1536       if (chan == TX_CHANS)
1537 	chan = 0;
1538     }
1539 
1540     dev->tx_idle = chan;
1541   }
1542 
1543   // set up the channel we found
1544   {
1545     // Initialise the cell header in the transmit channel descriptor
1546     // a.k.a. prepare the channel and remember that we have done so.
1547 
1548     tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1549     u16 rd_ptr;
1550     u16 wr_ptr;
1551     u16 channel = vcc->channel;
1552 
1553     unsigned long flags;
1554     spin_lock_irqsave (&dev->mem_lock, flags);
1555 
1556     // Update the transmit channel record.
1557     dev->tx_channel_record[tx_channel] = channel;
1558 
1559     // xBR channel
1560     update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1561 			      vcc->tx_xbr_bits);
1562 
1563     // Update the PCR counter preload value etc.
1564     update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1565 			      vcc->tx_pcr_bits);
1566 
1567 #if 0
1568     if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1569       // SCR timer
1570       update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1571 				vcc->tx_scr_bits);
1572 
1573       // Bucket size...
1574       update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1575 				vcc->tx_bucket_bits);
1576 
1577       // ... and fullness
1578       update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1579 				vcc->tx_bucket_bits);
1580     }
1581 #endif
1582 
1583     // Initialise the read and write buffer pointers
1584     rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1585     wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1586 
1587     // idle TX channels should have identical pointers
1588     if (rd_ptr != wr_ptr) {
1589       PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1590       // spin_unlock... return -E...
1591       // I wonder if gcc would get rid of one of the pointer aliases
1592     }
1593     PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1594 	    rd_ptr, wr_ptr);
1595 
1596     switch (vcc->aal) {
1597       case aal0:
1598 	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1599 	rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1600 	wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1601 	break;
1602       case aal34:
1603 	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1604 	rd_ptr |= CHANNEL_TYPE_AAL3_4;
1605 	wr_ptr |= CHANNEL_TYPE_AAL3_4;
1606 	break;
1607       case aal5:
1608 	rd_ptr |= CHANNEL_TYPE_AAL5;
1609 	wr_ptr |= CHANNEL_TYPE_AAL5;
1610 	// Initialise the CRC
1611 	wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1612 	break;
1613     }
1614 
1615     wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1616     wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1617 
1618     // Write the Cell Header
1619     // Payload Type, CLP and GFC would go here if non-zero
1620     wr_mem (dev, &tx_desc->cell_header, channel);
1621 
1622     spin_unlock_irqrestore (&dev->mem_lock, flags);
1623   }
1624 
1625   return tx_channel;
1626 }
1627 
1628 /********** send a frame **********/
1629 
hrz_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1630 static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1631   unsigned int spin_count;
1632   int free_buffers;
1633   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1634   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1635   u16 channel = vcc->channel;
1636 
1637   u32 buffers_required;
1638 
1639   /* signed for error return */
1640   short tx_channel;
1641 
1642   PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1643 	  channel, skb->data, skb->len);
1644 
1645   dump_skb (">>>", channel, skb);
1646 
1647   if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1648     PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1649     hrz_kfree_skb (skb);
1650     return -EIO;
1651   }
1652 
1653   // don't understand this
1654   ATM_SKB(skb)->vcc = atm_vcc;
1655 
1656   if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1657     PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1658     hrz_kfree_skb (skb);
1659     return -EIO;
1660   }
1661 
1662   if (!channel) {
1663     PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1664     hrz_kfree_skb (skb);
1665     return -EIO;
1666   }
1667 
1668 #if 0
1669   {
1670     // where would be a better place for this? housekeeping?
1671     u16 status;
1672     pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1673     if (status & PCI_STATUS_REC_MASTER_ABORT) {
1674       PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1675       status &= ~PCI_STATUS_REC_MASTER_ABORT;
1676       pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1677       if (test_bit (tx_busy, &dev->flags)) {
1678 	hrz_kfree_skb (dev->tx_skb);
1679 	tx_release (dev);
1680       }
1681     }
1682   }
1683 #endif
1684 
1685 #ifdef DEBUG_HORIZON
1686   /* wey-hey! */
1687   if (channel == 1023) {
1688     unsigned int i;
1689     unsigned short d = 0;
1690     char * s = skb->data;
1691     if (*s++ == 'D') {
1692       for (i = 0; i < 4; ++i) {
1693 	d = (d<<4) | ((*s <= '9') ? (*s - '0') : (*s - 'a' + 10));
1694 	++s;
1695       }
1696       PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1697     }
1698   }
1699 #endif
1700 
1701   // wait until TX is free and grab lock
1702   if (tx_hold (dev)) {
1703     hrz_kfree_skb (skb);
1704     return -ERESTARTSYS;
1705   }
1706 
1707   // Wait for enough space to be available in transmit buffer memory.
1708 
1709   // should be number of cells needed + 2 (according to hardware docs)
1710   // = ((framelen+8)+47) / 48 + 2
1711   // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1712   buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1713 
1714   // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1715   spin_count = 0;
1716   while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1717     PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1718 	    free_buffers, buffers_required);
1719     // what is the appropriate delay? implement a timeout? (depending on line speed?)
1720     // mdelay (1);
1721     // what happens if we kill (current_pid, SIGKILL) ?
1722     schedule();
1723     if (++spin_count > 1000) {
1724       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1725 	      free_buffers, buffers_required);
1726       tx_release (dev);
1727       hrz_kfree_skb (skb);
1728       return -ERESTARTSYS;
1729     }
1730   }
1731 
1732   // Select a channel to transmit the frame on.
1733   if (channel == dev->last_vc) {
1734     PRINTD (DBG_TX, "last vc hack: hit");
1735     tx_channel = dev->tx_last;
1736   } else {
1737     PRINTD (DBG_TX, "last vc hack: miss");
1738     // Are we currently transmitting this VC on one of the channels?
1739     for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1740       if (dev->tx_channel_record[tx_channel] == channel) {
1741 	PRINTD (DBG_TX, "vc already on channel: hit");
1742 	break;
1743       }
1744     if (tx_channel == TX_CHANS) {
1745       PRINTD (DBG_TX, "vc already on channel: miss");
1746       // Find and set up an idle channel.
1747       tx_channel = setup_idle_tx_channel (dev, vcc);
1748       if (tx_channel < 0) {
1749 	PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1750 	tx_release (dev);
1751 	return tx_channel;
1752       }
1753     }
1754 
1755     PRINTD (DBG_TX, "got channel");
1756     SELECT_TX_CHANNEL(dev, tx_channel);
1757 
1758     dev->last_vc = channel;
1759     dev->tx_last = tx_channel;
1760   }
1761 
1762   PRINTD (DBG_TX, "using channel %u", tx_channel);
1763 
1764   YELLOW_LED_OFF(dev);
1765 
1766   // TX start transfer
1767 
1768   {
1769     unsigned int tx_len = skb->len;
1770     unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1771     // remember this so we can free it later
1772     dev->tx_skb = skb;
1773 
1774     if (tx_iovcnt) {
1775       // scatter gather transfer
1776       dev->tx_regions = tx_iovcnt;
1777       dev->tx_iovec = 0;		/* @@@ needs rewritten */
1778       dev->tx_bytes = 0;
1779       PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1780 	      skb->data, tx_len);
1781       tx_release (dev);
1782       hrz_kfree_skb (skb);
1783       return -EIO;
1784     } else {
1785       // simple transfer
1786       dev->tx_regions = 0;
1787       dev->tx_iovec = 0;
1788       dev->tx_bytes = tx_len;
1789       dev->tx_addr = skb->data;
1790       PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1791 	      skb->data, tx_len);
1792     }
1793 
1794     // and do the business
1795     tx_schedule (dev, 0);
1796 
1797   }
1798 
1799   return 0;
1800 }
1801 
1802 /********** reset a card **********/
1803 
hrz_reset(const hrz_dev * dev)1804 static void __init hrz_reset (const hrz_dev * dev) {
1805   u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1806 
1807   // why not set RESET_HORIZON to one and wait for the card to
1808   // reassert that bit as zero? Like so:
1809   control_0_reg = control_0_reg & RESET_HORIZON;
1810   wr_regl (dev, CONTROL_0_REG, control_0_reg);
1811   while (control_0_reg & RESET_HORIZON)
1812     control_0_reg = rd_regl (dev, CONTROL_0_REG);
1813 
1814   // old reset code retained:
1815   wr_regl (dev, CONTROL_0_REG, control_0_reg |
1816 	   RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1817   // just guessing here
1818   udelay (1000);
1819 
1820   wr_regl (dev, CONTROL_0_REG, control_0_reg);
1821 }
1822 
1823 /********** read the burnt in address **********/
1824 
read_bia(const hrz_dev * dev,u16 addr)1825 static u16 __init read_bia (const hrz_dev * dev, u16 addr) {
1826 
1827   u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1828 
1829   void WRITE_IT_WAIT (void) {
1830     wr_regl (dev, CONTROL_0_REG, ctrl);
1831     udelay (5);
1832   }
1833 
1834   void CLOCK_IT (void) {
1835     // DI must be valid around rising SK edge
1836     ctrl &= ~SEEPROM_SK;
1837     WRITE_IT_WAIT();
1838     ctrl |= SEEPROM_SK;
1839     WRITE_IT_WAIT();
1840   }
1841 
1842   const unsigned int addr_bits = 6;
1843   const unsigned int data_bits = 16;
1844 
1845   unsigned int i;
1846 
1847   u16 res;
1848 
1849   ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1850   WRITE_IT_WAIT();
1851 
1852   // wake Serial EEPROM and send 110 (READ) command
1853   ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1854   CLOCK_IT();
1855 
1856   ctrl |= SEEPROM_DI;
1857   CLOCK_IT();
1858 
1859   ctrl &= ~SEEPROM_DI;
1860   CLOCK_IT();
1861 
1862   for (i=0; i<addr_bits; i++) {
1863     if (addr & (1 << (addr_bits-1)))
1864       ctrl |= SEEPROM_DI;
1865     else
1866       ctrl &= ~SEEPROM_DI;
1867 
1868     CLOCK_IT();
1869 
1870     addr = addr << 1;
1871   }
1872 
1873   // we could check that we have DO = 0 here
1874   ctrl &= ~SEEPROM_DI;
1875 
1876   res = 0;
1877   for (i=0;i<data_bits;i++) {
1878     res = res >> 1;
1879 
1880     CLOCK_IT();
1881 
1882     if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1883       res |= (1 << (data_bits-1));
1884   }
1885 
1886   ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1887   WRITE_IT_WAIT();
1888 
1889   return res;
1890 }
1891 
1892 /********** initialise a card **********/
1893 
hrz_init(hrz_dev * dev)1894 static int __init hrz_init (hrz_dev * dev) {
1895   int onefivefive;
1896 
1897   u16 chan;
1898 
1899   int buff_count;
1900 
1901   HDW * mem;
1902 
1903   cell_buf * tx_desc;
1904   cell_buf * rx_desc;
1905 
1906   u32 ctrl;
1907 
1908   ctrl = rd_regl (dev, CONTROL_0_REG);
1909   PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1910   onefivefive = ctrl & ATM_LAYER_STATUS;
1911 
1912   if (onefivefive)
1913     printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1914   else
1915     printk (DEV_LABEL ": Horizon (at 25 MBps)");
1916 
1917   printk (":");
1918   // Reset the card to get everything in a known state
1919 
1920   printk (" reset");
1921   hrz_reset (dev);
1922 
1923   // Clear all the buffer memory
1924 
1925   printk (" clearing memory");
1926 
1927   for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1928     wr_mem (dev, mem, 0);
1929 
1930   printk (" tx channels");
1931 
1932   // All transmit eight channels are set up as AAL5 ABR channels with
1933   // a 16us cell spacing. Why?
1934 
1935   // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1936   // buffer at 110h etc.
1937 
1938   for (chan = 0; chan < TX_CHANS; ++chan) {
1939     tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1940     cell_buf * buf = &memmap->inittxbufs[chan];
1941 
1942     // initialise the read and write buffer pointers
1943     wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1944     wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1945 
1946     // set the status of the initial buffers to empty
1947     wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1948   }
1949 
1950   // Use space bufn3 at the moment for tx buffers
1951 
1952   printk (" tx buffers");
1953 
1954   tx_desc = memmap->bufn3;
1955 
1956   wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1957 
1958   for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1959     wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1960     tx_desc++;
1961   }
1962 
1963   wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1964 
1965   // Initialise the transmit free buffer count
1966   wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1967 
1968   printk (" rx channels");
1969 
1970   // Initialise all of the receive channels to be AAL5 disabled with
1971   // an interrupt threshold of 0
1972 
1973   for (chan = 0; chan < RX_CHANS; ++chan) {
1974     rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1975 
1976     wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1977   }
1978 
1979   printk (" rx buffers");
1980 
1981   // Use space bufn4 at the moment for rx buffers
1982 
1983   rx_desc = memmap->bufn4;
1984 
1985   wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1986 
1987   for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1988     wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1989 
1990     rx_desc++;
1991   }
1992 
1993   wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1994 
1995   // Initialise the receive free buffer count
1996   wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1997 
1998   // Initialize Horizons registers
1999 
2000   // TX config
2001   wr_regw (dev, TX_CONFIG_OFF,
2002 	   ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
2003 
2004   // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
2005   wr_regw (dev, RX_CONFIG_OFF,
2006 	   DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
2007 
2008   // RX line config
2009   wr_regw (dev, RX_LINE_CONFIG_OFF,
2010 	   LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
2011 
2012   // Set the max AAL5 cell count to be just enough to contain the
2013   // largest AAL5 frame that the user wants to receive
2014   wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
2015 	   (max_rx_size + ATM_AAL5_TRAILER + ATM_CELL_PAYLOAD - 1) / ATM_CELL_PAYLOAD);
2016 
2017   // Enable receive
2018   wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
2019 
2020   printk (" control");
2021 
2022   // Drive the OE of the LEDs then turn the green LED on
2023   ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
2024   wr_regl (dev, CONTROL_0_REG, ctrl);
2025 
2026   // Test for a 155-capable card
2027 
2028   if (onefivefive) {
2029     // Select 155 mode... make this a choice (or: how do we detect
2030     // external line speed and switch?)
2031     ctrl |= ATM_LAYER_SELECT;
2032     wr_regl (dev, CONTROL_0_REG, ctrl);
2033 
2034     // test SUNI-lite vs SAMBA
2035 
2036     // Register 0x00 in the SUNI will have some of bits 3-7 set, and
2037     // they will always be zero for the SAMBA.  Ha!  Bloody hardware
2038     // engineers.  It'll never work.
2039 
2040     if (rd_framer (dev, 0) & 0x00f0) {
2041       // SUNI
2042       printk (" SUNI");
2043 
2044       // Reset, just in case
2045       wr_framer (dev, 0x00, 0x0080);
2046       wr_framer (dev, 0x00, 0x0000);
2047 
2048       // Configure transmit FIFO
2049       wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2050 
2051       // Set line timed mode
2052       wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2053     } else {
2054       // SAMBA
2055       printk (" SAMBA");
2056 
2057       // Reset, just in case
2058       wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2059       wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2060 
2061       // Turn off diagnostic loopback and enable line-timed mode
2062       wr_framer (dev, 0, 0x0002);
2063 
2064       // Turn on transmit outputs
2065       wr_framer (dev, 2, 0x0B80);
2066     }
2067   } else {
2068     // Select 25 mode
2069     ctrl &= ~ATM_LAYER_SELECT;
2070 
2071     // Madge B154 setup
2072     // none required?
2073   }
2074 
2075   printk (" LEDs");
2076 
2077   GREEN_LED_ON(dev);
2078   YELLOW_LED_ON(dev);
2079 
2080   printk (" ESI=");
2081 
2082   {
2083     u16 b = 0;
2084     int i;
2085     u8 * esi = dev->atm_dev->esi;
2086 
2087     // in the card I have, EEPROM
2088     // addresses 0, 1, 2 contain 0
2089     // addresess 5, 6 etc. contain ffff
2090     // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2091     // the read_bia routine gets the BIA in Ethernet bit order
2092 
2093     for (i=0; i < ESI_LEN; ++i) {
2094       if (i % 2 == 0)
2095 	b = read_bia (dev, i/2 + 2);
2096       else
2097 	b = b >> 8;
2098       esi[i] = b & 0xFF;
2099       printk ("%02x", esi[i]);
2100     }
2101   }
2102 
2103   // Enable RX_Q and ?X_COMPLETE interrupts only
2104   wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2105   printk (" IRQ on");
2106 
2107   printk (".\n");
2108 
2109   return onefivefive;
2110 }
2111 
2112 /********** check max_sdu **********/
2113 
check_max_sdu(hrz_aal aal,struct atm_trafprm * tp,unsigned int max_frame_size)2114 static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2115   PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2116 
2117   switch (aal) {
2118     case aal0:
2119       if (!(tp->max_sdu)) {
2120 	PRINTD (DBG_QOS, "defaulting max_sdu");
2121 	tp->max_sdu = ATM_AAL0_SDU;
2122       } else if (tp->max_sdu != ATM_AAL0_SDU) {
2123 	PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2124 	return -EINVAL;
2125       }
2126       break;
2127     case aal34:
2128       if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2129 	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2130 	tp->max_sdu = ATM_MAX_AAL34_PDU;
2131       }
2132       break;
2133     case aal5:
2134       if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2135 	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2136 	tp->max_sdu = max_frame_size;
2137       }
2138       break;
2139   }
2140   return 0;
2141 }
2142 
2143 /********** check pcr **********/
2144 
2145 // something like this should be part of ATM Linux
atm_pcr_check(struct atm_trafprm * tp,unsigned int pcr)2146 static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2147   // we are assuming non-UBR, and non-special values of pcr
2148   if (tp->min_pcr == ATM_MAX_PCR)
2149     PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2150   else if (tp->min_pcr < 0)
2151     PRINTD (DBG_QOS, "luser gave negative min_pcr");
2152   else if (tp->min_pcr && tp->min_pcr > pcr)
2153     PRINTD (DBG_QOS, "pcr less than min_pcr");
2154   else
2155     // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2156     // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2157     // [this would get rid of next two conditionals]
2158     if ((0) && tp->max_pcr == ATM_MAX_PCR)
2159       PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2160     else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2161       PRINTD (DBG_QOS, "luser gave negative max_pcr");
2162     else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2163       PRINTD (DBG_QOS, "pcr greater than max_pcr");
2164     else {
2165       // each limit unspecified or not violated
2166       PRINTD (DBG_QOS, "xBR(pcr) OK");
2167       return 0;
2168     }
2169   PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2170 	  pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2171   return -EINVAL;
2172 }
2173 
2174 /********** open VC **********/
2175 
hrz_open(struct atm_vcc * atm_vcc,short vpi,int vci)2176 static int hrz_open (struct atm_vcc * atm_vcc, short vpi, int vci) {
2177   int error;
2178   u16 channel;
2179 
2180   struct atm_qos * qos;
2181   struct atm_trafprm * txtp;
2182   struct atm_trafprm * rxtp;
2183 
2184   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2185   hrz_vcc vcc;
2186   hrz_vcc * vccp; // allocated late
2187   PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2188 
2189 #ifdef ATM_VPI_UNSPEC
2190   // UNSPEC is deprecated, remove this code eventually
2191   if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2192     PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2193     return -EINVAL;
2194   }
2195 #endif
2196 
2197   // deal with possibly wildcarded VCs
2198   error = atm_find_ci (atm_vcc, &vpi, &vci);
2199   if (error) {
2200     PRINTD (DBG_WARN|DBG_VCC, "atm_find_ci failed!");
2201     return error;
2202   }
2203   PRINTD (DBG_VCC, "atm_find_ci gives %x %x", vpi, vci);
2204 
2205   error = vpivci_to_channel (&channel, vpi, vci);
2206   if (error) {
2207     PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2208     return error;
2209   }
2210 
2211   vcc.channel = channel;
2212   // max speed for the moment
2213   vcc.tx_rate = 0x0;
2214 
2215   qos = &atm_vcc->qos;
2216 
2217   // check AAL and remember it
2218   switch (qos->aal) {
2219     case ATM_AAL0:
2220       // we would if it were 48 bytes and not 52!
2221       PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2222       vcc.aal = aal0;
2223       break;
2224     case ATM_AAL34:
2225       // we would if I knew how do the SAR!
2226       PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2227       vcc.aal = aal34;
2228       break;
2229     case ATM_AAL5:
2230       PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2231       vcc.aal = aal5;
2232       break;
2233     default:
2234       PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2235       return -EINVAL;
2236       break;
2237   }
2238 
2239   // TX traffic parameters
2240 
2241   // there are two, interrelated problems here: 1. the reservation of
2242   // PCR is not a binary choice, we are given bounds and/or a
2243   // desirable value; 2. the device is only capable of certain values,
2244   // most of which are not integers. It is almost certainly acceptable
2245   // to be off by a maximum of 1 to 10 cps.
2246 
2247   // Pragmatic choice: always store an integral PCR as that which has
2248   // been allocated, even if we allocate a little (or a lot) less,
2249   // after rounding. The actual allocation depends on what we can
2250   // manage with our rate selection algorithm. The rate selection
2251   // algorithm is given an integral PCR and a tolerance and told
2252   // whether it should round the value up or down if the tolerance is
2253   // exceeded; it returns: a) the actual rate selected (rounded up to
2254   // the nearest integer), b) a bit pattern to feed to the timer
2255   // register, and c) a failure value if no applicable rate exists.
2256 
2257   // Part of the job is done by atm_pcr_goal which gives us a PCR
2258   // specification which says: EITHER grab the maximum available PCR
2259   // (and perhaps a lower bound which we musn't pass), OR grab this
2260   // amount, rounding down if you have to (and perhaps a lower bound
2261   // which we musn't pass) OR grab this amount, rounding up if you
2262   // have to (and perhaps an upper bound which we musn't pass). If any
2263   // bounds ARE passed we fail. Note that rounding is only rounding to
2264   // match device limitations, we do not round down to satisfy
2265   // bandwidth availability even if this would not violate any given
2266   // lower bound.
2267 
2268   // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2269   // (say) so this is not even a binary fixpoint cell rate (but this
2270   // device can do it). To avoid this sort of hassle we use a
2271   // tolerance parameter (currently fixed at 10 cps).
2272 
2273   PRINTD (DBG_QOS, "TX:");
2274 
2275   txtp = &qos->txtp;
2276 
2277   // set up defaults for no traffic
2278   vcc.tx_rate = 0;
2279   // who knows what would actually happen if you try and send on this?
2280   vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2281   vcc.tx_pcr_bits = CLOCK_DISABLE;
2282 #if 0
2283   vcc.tx_scr_bits = CLOCK_DISABLE;
2284   vcc.tx_bucket_bits = 0;
2285 #endif
2286 
2287   if (txtp->traffic_class != ATM_NONE) {
2288     error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2289     if (error) {
2290       PRINTD (DBG_QOS, "TX max_sdu check failed");
2291       return error;
2292     }
2293 
2294     switch (txtp->traffic_class) {
2295       case ATM_UBR: {
2296 	// we take "the PCR" as a rate-cap
2297 	// not reserved
2298 	vcc.tx_rate = 0;
2299 	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2300 	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2301 	break;
2302       }
2303 #if 0
2304       case ATM_ABR: {
2305 	// reserve min, allow up to max
2306 	vcc.tx_rate = 0; // ?
2307 	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2308 	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2309 	break;
2310       }
2311 #endif
2312       case ATM_CBR: {
2313 	int pcr = atm_pcr_goal (txtp);
2314 	rounding r;
2315 	if (!pcr) {
2316 	  // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2317 	  // should really have: once someone gets unlimited bandwidth
2318 	  // that no more non-UBR channels can be opened until the
2319 	  // unlimited one closes?? For the moment, round_down means
2320 	  // greedy people actually get something and not nothing
2321 	  r = round_down;
2322 	  // slight race (no locking) here so we may get -EAGAIN
2323 	  // later; the greedy bastards would deserve it :)
2324 	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2325 	  pcr = dev->tx_avail;
2326 	} else if (pcr < 0) {
2327 	  r = round_down;
2328 	  pcr = -pcr;
2329 	} else {
2330 	  r = round_up;
2331 	}
2332 	error = make_rate_with_tolerance (dev, pcr, r, 10,
2333 					  &vcc.tx_pcr_bits, &vcc.tx_rate);
2334 	if (error) {
2335 	  PRINTD (DBG_QOS, "could not make rate from TX PCR");
2336 	  return error;
2337 	}
2338 	// not really clear what further checking is needed
2339 	error = atm_pcr_check (txtp, vcc.tx_rate);
2340 	if (error) {
2341 	  PRINTD (DBG_QOS, "TX PCR failed consistency check");
2342 	  return error;
2343 	}
2344 	vcc.tx_xbr_bits = CBR_RATE_TYPE;
2345 	break;
2346       }
2347 #if 0
2348       case ATM_VBR: {
2349 	int pcr = atm_pcr_goal (txtp);
2350 	// int scr = atm_scr_goal (txtp);
2351 	int scr = pcr/2; // just for fun
2352 	unsigned int mbs = 60; // just for fun
2353 	rounding pr;
2354 	rounding sr;
2355 	unsigned int bucket;
2356 	if (!pcr) {
2357 	  pr = round_nearest;
2358 	  pcr = 1<<30;
2359 	} else if (pcr < 0) {
2360 	  pr = round_down;
2361 	  pcr = -pcr;
2362 	} else {
2363 	  pr = round_up;
2364 	}
2365 	error = make_rate_with_tolerance (dev, pcr, pr, 10,
2366 					  &vcc.tx_pcr_bits, 0);
2367 	if (!scr) {
2368 	  // see comments for PCR with CBR above
2369 	  sr = round_down;
2370 	  // slight race (no locking) here so we may get -EAGAIN
2371 	  // later; the greedy bastards would deserve it :)
2372 	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2373 	  scr = dev->tx_avail;
2374 	} else if (scr < 0) {
2375 	  sr = round_down;
2376 	  scr = -scr;
2377 	} else {
2378 	  sr = round_up;
2379 	}
2380 	error = make_rate_with_tolerance (dev, scr, sr, 10,
2381 					  &vcc.tx_scr_bits, &vcc.tx_rate);
2382 	if (error) {
2383 	  PRINTD (DBG_QOS, "could not make rate from TX SCR");
2384 	  return error;
2385 	}
2386 	// not really clear what further checking is needed
2387 	// error = atm_scr_check (txtp, vcc.tx_rate);
2388 	if (error) {
2389 	  PRINTD (DBG_QOS, "TX SCR failed consistency check");
2390 	  return error;
2391 	}
2392 	// bucket calculations (from a piece of paper...) cell bucket
2393 	// capacity must be largest integer smaller than m(p-s)/p + 1
2394 	// where m = max burst size, p = pcr, s = scr
2395 	bucket = mbs*(pcr-scr)/pcr;
2396 	if (bucket*pcr != mbs*(pcr-scr))
2397 	  bucket += 1;
2398 	if (bucket > BUCKET_MAX_SIZE) {
2399 	  PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2400 		  bucket, BUCKET_MAX_SIZE);
2401 	  bucket = BUCKET_MAX_SIZE;
2402 	}
2403 	vcc.tx_xbr_bits = VBR_RATE_TYPE;
2404 	vcc.tx_bucket_bits = bucket;
2405 	break;
2406       }
2407 #endif
2408       default: {
2409 	PRINTD (DBG_QOS, "unsupported TX traffic class");
2410 	return -EINVAL;
2411 	break;
2412       }
2413     }
2414   }
2415 
2416   // RX traffic parameters
2417 
2418   PRINTD (DBG_QOS, "RX:");
2419 
2420   rxtp = &qos->rxtp;
2421 
2422   // set up defaults for no traffic
2423   vcc.rx_rate = 0;
2424 
2425   if (rxtp->traffic_class != ATM_NONE) {
2426     error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2427     if (error) {
2428       PRINTD (DBG_QOS, "RX max_sdu check failed");
2429       return error;
2430     }
2431     switch (rxtp->traffic_class) {
2432       case ATM_UBR: {
2433 	// not reserved
2434 	break;
2435       }
2436 #if 0
2437       case ATM_ABR: {
2438 	// reserve min
2439 	vcc.rx_rate = 0; // ?
2440 	break;
2441       }
2442 #endif
2443       case ATM_CBR: {
2444 	int pcr = atm_pcr_goal (rxtp);
2445 	if (!pcr) {
2446 	  // slight race (no locking) here so we may get -EAGAIN
2447 	  // later; the greedy bastards would deserve it :)
2448 	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2449 	  pcr = dev->rx_avail;
2450 	} else if (pcr < 0) {
2451 	  pcr = -pcr;
2452 	}
2453 	vcc.rx_rate = pcr;
2454 	// not really clear what further checking is needed
2455 	error = atm_pcr_check (rxtp, vcc.rx_rate);
2456 	if (error) {
2457 	  PRINTD (DBG_QOS, "RX PCR failed consistency check");
2458 	  return error;
2459 	}
2460 	break;
2461       }
2462 #if 0
2463       case ATM_VBR: {
2464 	// int scr = atm_scr_goal (rxtp);
2465 	int scr = 1<<16; // just for fun
2466 	if (!scr) {
2467 	  // slight race (no locking) here so we may get -EAGAIN
2468 	  // later; the greedy bastards would deserve it :)
2469 	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2470 	  scr = dev->rx_avail;
2471 	} else if (scr < 0) {
2472 	  scr = -scr;
2473 	}
2474 	vcc.rx_rate = scr;
2475 	// not really clear what further checking is needed
2476 	// error = atm_scr_check (rxtp, vcc.rx_rate);
2477 	if (error) {
2478 	  PRINTD (DBG_QOS, "RX SCR failed consistency check");
2479 	  return error;
2480 	}
2481 	break;
2482       }
2483 #endif
2484       default: {
2485 	PRINTD (DBG_QOS, "unsupported RX traffic class");
2486 	return -EINVAL;
2487 	break;
2488       }
2489     }
2490   }
2491 
2492 
2493   // late abort useful for diagnostics
2494   if (vcc.aal != aal5) {
2495     PRINTD (DBG_QOS, "AAL not supported");
2496     return -EINVAL;
2497   }
2498 
2499   // get space for our vcc stuff and copy parameters into it
2500   vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2501   if (!vccp) {
2502     PRINTK (KERN_ERR, "out of memory!");
2503     return -ENOMEM;
2504   }
2505   *vccp = vcc;
2506 
2507   // clear error and grab cell rate resource lock
2508   error = 0;
2509   spin_lock (&dev->rate_lock);
2510 
2511   if (vcc.tx_rate > dev->tx_avail) {
2512     PRINTD (DBG_QOS, "not enough TX PCR left");
2513     error = -EAGAIN;
2514   }
2515 
2516   if (vcc.rx_rate > dev->rx_avail) {
2517     PRINTD (DBG_QOS, "not enough RX PCR left");
2518     error = -EAGAIN;
2519   }
2520 
2521   if (!error) {
2522     // really consume cell rates
2523     dev->tx_avail -= vcc.tx_rate;
2524     dev->rx_avail -= vcc.rx_rate;
2525     PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2526 	    vcc.tx_rate, vcc.rx_rate);
2527   }
2528 
2529   // release lock and exit on error
2530   spin_unlock (&dev->rate_lock);
2531   if (error) {
2532     PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2533     kfree (vccp);
2534     return error;
2535   }
2536 
2537   // this is "immediately before allocating the connection identifier
2538   // in hardware" - so long as the next call does not fail :)
2539   set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2540 
2541   // any errors here are very serious and should never occur
2542 
2543   if (rxtp->traffic_class != ATM_NONE) {
2544     if (dev->rxer[channel]) {
2545       PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2546       error = -EBUSY;
2547     }
2548     if (!error)
2549       error = hrz_open_rx (dev, channel);
2550     if (error) {
2551       kfree (vccp);
2552       return error;
2553     }
2554     // this link allows RX frames through
2555     dev->rxer[channel] = atm_vcc;
2556   }
2557 
2558   // success, set elements of atm_vcc
2559   atm_vcc->vpi = vpi;
2560   atm_vcc->vci = vci;
2561   atm_vcc->dev_data = (void *) vccp;
2562 
2563   // indicate readiness
2564   set_bit(ATM_VF_READY,&atm_vcc->flags);
2565 
2566   return 0;
2567 }
2568 
2569 /********** close VC **********/
2570 
hrz_close(struct atm_vcc * atm_vcc)2571 static void hrz_close (struct atm_vcc * atm_vcc) {
2572   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2573   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2574   u16 channel = vcc->channel;
2575   PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2576 
2577   // indicate unreadiness
2578   clear_bit(ATM_VF_READY,&atm_vcc->flags);
2579 
2580   if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2581     unsigned int i;
2582 
2583     // let any TX on this channel that has started complete
2584     // no restart, just keep trying
2585     while (tx_hold (dev))
2586       ;
2587     // remove record of any tx_channel having been setup for this channel
2588     for (i = 0; i < TX_CHANS; ++i)
2589       if (dev->tx_channel_record[i] == channel) {
2590 	dev->tx_channel_record[i] = -1;
2591 	break;
2592       }
2593     if (dev->last_vc == channel)
2594       dev->tx_last = -1;
2595     tx_release (dev);
2596   }
2597 
2598   if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2599     // disable RXing - it tries quite hard
2600     hrz_close_rx (dev, channel);
2601     // forget the vcc - no more skbs will be pushed
2602     if (atm_vcc != dev->rxer[channel])
2603       PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2604 	      "arghhh! we're going to die!",
2605 	      atm_vcc, dev->rxer[channel]);
2606     dev->rxer[channel] = 0;
2607   }
2608 
2609   // atomically release our rate reservation
2610   spin_lock (&dev->rate_lock);
2611   PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2612 	  vcc->tx_rate, vcc->rx_rate);
2613   dev->tx_avail += vcc->tx_rate;
2614   dev->rx_avail += vcc->rx_rate;
2615   spin_unlock (&dev->rate_lock);
2616 
2617   // free our structure
2618   kfree (vcc);
2619   // say the VPI/VCI is free again
2620   clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2621 }
2622 
2623 #if 0
2624 static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2625 			   void *optval, int optlen) {
2626   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2627   PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2628   switch (level) {
2629     case SOL_SOCKET:
2630       switch (optname) {
2631 //	case SO_BCTXOPT:
2632 //	  break;
2633 //	case SO_BCRXOPT:
2634 //	  break;
2635 	default:
2636 	  return -ENOPROTOOPT;
2637 	  break;
2638       };
2639       break;
2640   }
2641   return -EINVAL;
2642 }
2643 
2644 static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2645 			   void *optval, int optlen) {
2646   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2647   PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2648   switch (level) {
2649     case SOL_SOCKET:
2650       switch (optname) {
2651 //	case SO_BCTXOPT:
2652 //	  break;
2653 //	case SO_BCRXOPT:
2654 //	  break;
2655 	default:
2656 	  return -ENOPROTOOPT;
2657 	  break;
2658       };
2659       break;
2660   }
2661   return -EINVAL;
2662 }
2663 #endif
2664 
hrz_sg_send(struct atm_vcc * atm_vcc,unsigned long start,unsigned long size)2665 static int hrz_sg_send (struct atm_vcc * atm_vcc,
2666 			unsigned long start,
2667 			unsigned long size) {
2668   if (atm_vcc->qos.aal == ATM_AAL5) {
2669     PRINTD (DBG_FLOW|DBG_VCC, "hrz_sg_send: yes");
2670     return 1;
2671   } else {
2672     PRINTD (DBG_FLOW|DBG_VCC, "hrz_sg_send: no");
2673     return 0;
2674   }
2675 }
2676 
2677 #if 0
2678 static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2679   hrz_dev * dev = HRZ_DEV(atm_dev);
2680   PRINTD (DBG_FLOW, "hrz_ioctl");
2681   return -1;
2682 }
2683 
2684 unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2685   hrz_dev * dev = HRZ_DEV(atm_dev);
2686   PRINTD (DBG_FLOW, "hrz_phy_get");
2687   return 0;
2688 }
2689 
2690 static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2691 			 unsigned long addr) {
2692   hrz_dev * dev = HRZ_DEV(atm_dev);
2693   PRINTD (DBG_FLOW, "hrz_phy_put");
2694 }
2695 
2696 static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2697   hrz_dev * dev = HRZ_DEV(vcc->dev);
2698   PRINTD (DBG_FLOW, "hrz_change_qos");
2699   return -1;
2700 }
2701 #endif
2702 
2703 /********** proc file contents **********/
2704 
hrz_proc_read(struct atm_dev * atm_dev,loff_t * pos,char * page)2705 static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2706   hrz_dev * dev = HRZ_DEV(atm_dev);
2707   int left = *pos;
2708   PRINTD (DBG_FLOW, "hrz_proc_read");
2709 
2710   /* more diagnostics here? */
2711 
2712 #if 0
2713   if (!left--) {
2714     unsigned int count = sprintf (page, "vbr buckets:");
2715     unsigned int i;
2716     for (i = 0; i < TX_CHANS; ++i)
2717       count += sprintf (page, " %u/%u",
2718 			query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2719 			query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2720     count += sprintf (page+count, ".\n");
2721     return count;
2722   }
2723 #endif
2724 
2725   if (!left--)
2726     return sprintf (page,
2727 		    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2728 		    dev->tx_cell_count, dev->rx_cell_count,
2729 		    dev->hec_error_count, dev->unassigned_cell_count);
2730 
2731   if (!left--)
2732     return sprintf (page,
2733 		    "free cell buffers: TX %hu, RX %hu+%hu.\n",
2734 		    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2735 		    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2736 		    dev->noof_spare_buffers);
2737 
2738   if (!left--)
2739     return sprintf (page,
2740 		    "cps remaining: TX %u, RX %u\n",
2741 		    dev->tx_avail, dev->rx_avail);
2742 
2743   return 0;
2744 }
2745 
2746 static const struct atmdev_ops hrz_ops = {
2747   open:		hrz_open,
2748   close:	hrz_close,
2749   send:		hrz_send,
2750   sg_send:	hrz_sg_send,
2751   proc_read:	hrz_proc_read,
2752   owner:	THIS_MODULE,
2753 };
2754 
hrz_probe(void)2755 static int __init hrz_probe (void) {
2756   struct pci_dev * pci_dev;
2757   int devs;
2758 
2759   PRINTD (DBG_FLOW, "hrz_probe");
2760 
2761   devs = 0;
2762   pci_dev = NULL;
2763   while ((pci_dev = pci_find_device
2764 	  (PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, pci_dev)
2765 	  )) {
2766     hrz_dev * dev;
2767 
2768     // adapter slot free, read resources from PCI configuration space
2769     u32 iobase = pci_resource_start (pci_dev, 0);
2770     u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2771     u8 irq = pci_dev->irq;
2772 
2773     /* XXX DEV_LABEL is a guess */
2774     if (!request_region (iobase, HRZ_IO_EXTENT, DEV_LABEL))
2775   	  continue;
2776 
2777     if (pci_enable_device (pci_dev))
2778       continue;
2779 
2780     dev = kmalloc (sizeof(hrz_dev), GFP_KERNEL);
2781     if (!dev) {
2782       // perhaps we should be nice: deregister all adapters and abort?
2783       PRINTD (DBG_ERR, "out of memory");
2784       continue;
2785     }
2786 
2787     memset (dev, 0, sizeof(hrz_dev));
2788 
2789     // grab IRQ and install handler - move this someplace more sensible
2790     if (request_irq (irq,
2791 		     interrupt_handler,
2792 		     SA_SHIRQ, /* irqflags guess */
2793 		     DEV_LABEL, /* name guess */
2794 		     dev)) {
2795       PRINTD (DBG_WARN, "request IRQ failed!");
2796       // free_irq is at "endif"
2797     } else {
2798 
2799       PRINTD (DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2800 	      iobase, irq, membase);
2801 
2802       dev->atm_dev = atm_dev_register (DEV_LABEL, &hrz_ops, -1, NULL);
2803       if (!(dev->atm_dev)) {
2804 	PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2805       } else {
2806 	unsigned char lat;
2807 
2808 	PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2809 		dev->atm_dev->number, dev, dev->atm_dev);
2810 	dev->atm_dev->dev_data = (void *) dev;
2811 	dev->pci_dev = pci_dev;
2812 
2813 	// enable bus master accesses
2814 	pci_set_master (pci_dev);
2815 
2816 	// frobnicate latency (upwards, usually)
2817 	pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2818 	if (pci_lat) {
2819 	  PRINTD (DBG_INFO, "%s PCI latency timer from %hu to %hu",
2820 		  "changing", lat, pci_lat);
2821 	  pci_write_config_byte (pci_dev, PCI_LATENCY_TIMER, pci_lat);
2822 	} else if (lat < MIN_PCI_LATENCY) {
2823 	  PRINTK (KERN_INFO, "%s PCI latency timer from %hu to %hu",
2824 		  "increasing", lat, MIN_PCI_LATENCY);
2825 	  pci_write_config_byte (pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2826 	}
2827 
2828 	dev->iobase = iobase;
2829 	dev->irq = irq;
2830 	dev->membase = membase;
2831 
2832 	dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2833 	dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2834 
2835 	// these next three are performance hacks
2836 	dev->last_vc = -1;
2837 	dev->tx_last = -1;
2838 	dev->tx_idle = 0;
2839 
2840 	dev->tx_regions = 0;
2841 	dev->tx_bytes = 0;
2842 	dev->tx_skb = 0;
2843 	dev->tx_iovec = 0;
2844 
2845 	dev->tx_cell_count = 0;
2846 	dev->rx_cell_count = 0;
2847 	dev->hec_error_count = 0;
2848 	dev->unassigned_cell_count = 0;
2849 
2850 	dev->noof_spare_buffers = 0;
2851 
2852 	{
2853 	  unsigned int i;
2854 	  for (i = 0; i < TX_CHANS; ++i)
2855 	    dev->tx_channel_record[i] = -1;
2856 	}
2857 
2858 	dev->flags = 0;
2859 
2860 	// Allocate cell rates and remember ASIC version
2861 	// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2862 	// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2863 	// Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2864 
2865 	if (hrz_init (dev)) {
2866 	  // to be really pedantic, this should be ATM_OC3c_PCR
2867 	  dev->tx_avail = ATM_OC3_PCR;
2868 	  dev->rx_avail = ATM_OC3_PCR;
2869 	  set_bit (ultra, &dev->flags); // NOT "|= ultra" !
2870 	} else {
2871 	  dev->tx_avail = ((25600000/8)*26)/(27*53);
2872 	  dev->rx_avail = ((25600000/8)*26)/(27*53);
2873 	  PRINTD (DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2874 	}
2875 
2876 	// rate changes spinlock
2877 	spin_lock_init (&dev->rate_lock);
2878 
2879 	// on-board memory access spinlock; we want atomic reads and
2880 	// writes to adapter memory (handles IRQ and SMP)
2881 	spin_lock_init (&dev->mem_lock);
2882 
2883 #if LINUX_VERSION_CODE >= 0x20303
2884 	init_waitqueue_head (&dev->tx_queue);
2885 #else
2886 	dev->tx_queue = 0;
2887 #endif
2888 
2889 	// vpi in 0..4, vci in 6..10
2890 	dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2891 	dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2892 
2893 	// update count and linked list
2894 	++devs;
2895 	dev->prev = hrz_devs;
2896 	hrz_devs = dev;
2897 	// success
2898 	continue;
2899 
2900 	/* not currently reached */
2901 	atm_dev_deregister (dev->atm_dev);
2902       } /* atm_dev_register */
2903       free_irq (irq, dev);
2904 
2905     } /* request_irq */
2906     kfree (dev);
2907     release_region(iobase, HRZ_IO_EXTENT);
2908   } /* kmalloc and while */
2909   return devs;
2910 }
2911 
hrz_check_args(void)2912 static void __init hrz_check_args (void) {
2913 #ifdef DEBUG_HORIZON
2914   PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2915 #else
2916   if (debug)
2917     PRINTK (KERN_NOTICE, "no debug support in this image");
2918 #endif
2919 
2920   if (vpi_bits > HRZ_MAX_VPI)
2921     PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2922 	    vpi_bits = HRZ_MAX_VPI);
2923 
2924   if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2925     PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2926 	    max_tx_size = TX_AAL5_LIMIT);
2927 
2928   if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2929     PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2930 	    max_rx_size = RX_AAL5_LIMIT);
2931 
2932   return;
2933 }
2934 
2935 #ifdef MODULE
2936 EXPORT_NO_SYMBOLS;
2937 
2938 MODULE_AUTHOR(maintainer_string);
2939 MODULE_DESCRIPTION(description_string);
2940 MODULE_LICENSE("GPL");
2941 MODULE_PARM(debug, "h");
2942 MODULE_PARM(vpi_bits, "h");
2943 MODULE_PARM(max_tx_size, "i");
2944 MODULE_PARM(max_rx_size, "i");
2945 MODULE_PARM(pci_lat, "b");
2946 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2947 MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2948 MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2949 MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2950 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2951 
2952 /********** module entry **********/
2953 
init_module(void)2954 int init_module (void) {
2955   int devs;
2956 
2957   // sanity check - cast is needed since printk does not support %Zu
2958   if (sizeof(struct MEMMAP) != 128*1024/4) {
2959     PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2960 	    (unsigned long) sizeof(struct MEMMAP));
2961     return -ENOMEM;
2962   }
2963 
2964   show_version();
2965 
2966   // check arguments
2967   hrz_check_args();
2968 
2969   // get the juice
2970   devs = hrz_probe();
2971 
2972   if (devs) {
2973     init_timer (&housekeeping);
2974     housekeeping.function = do_housekeeping;
2975     // paranoia
2976     housekeeping.data = 1;
2977     set_timer (&housekeeping, 0);
2978   } else {
2979     PRINTK (KERN_ERR, "no (usable) adapters found");
2980   }
2981 
2982   return devs ? 0 : -ENODEV;
2983 }
2984 
2985 /********** module exit **********/
2986 
cleanup_module(void)2987 void cleanup_module (void) {
2988   hrz_dev * dev;
2989   PRINTD (DBG_FLOW, "cleanup_module");
2990 
2991   // paranoia
2992   housekeeping.data = 0;
2993   del_timer (&housekeeping);
2994 
2995   while (hrz_devs) {
2996     dev = hrz_devs;
2997     hrz_devs = dev->prev;
2998 
2999     PRINTD (DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
3000     hrz_reset (dev);
3001     atm_dev_deregister (dev->atm_dev);
3002     free_irq (dev->irq, dev);
3003     release_region (dev->iobase, HRZ_IO_EXTENT);
3004     kfree (dev);
3005   }
3006 
3007   return;
3008 }
3009 
3010 #else
3011 
3012 /********** monolithic entry **********/
3013 
hrz_detect(void)3014 int __init hrz_detect (void) {
3015   int devs;
3016 
3017   // sanity check - cast is needed since printk does not support %Zu
3018   if (sizeof(struct MEMMAP) != 128*1024/4) {
3019     PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
3020 	    (unsigned long) sizeof(struct MEMMAP));
3021     return 0;
3022   }
3023 
3024   show_version();
3025 
3026   // what about command line arguments?
3027   // check arguments
3028   hrz_check_args();
3029 
3030   // get the juice
3031   devs = hrz_probe();
3032 
3033   if (devs) {
3034     init_timer (&housekeeping);
3035     housekeeping.function = do_housekeeping;
3036     // paranoia
3037     housekeeping.data = 1;
3038     set_timer (&housekeeping, 0);
3039   } else {
3040     PRINTK (KERN_ERR, "no (usable) adapters found");
3041   }
3042 
3043   return devs;
3044 }
3045 
3046 #endif
3047