1 #define _VERSION "0.20"
2 /* ns83820.c by Benjamin LaHaise with contributions.
3  *
4  * Questions/comments/discussion to linux-ns83820@kvack.org.
5  *
6  * $Revision: 1.34.2.23 $
7  *
8  * Copyright 2001 Benjamin LaHaise.
9  * Copyright 2001, 2002 Red Hat.
10  *
11  * Mmmm, chocolate vanilla mocha...
12  *
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, write to the Free Software
26  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
27  *
28  *
29  * ChangeLog
30  * =========
31  *	20010414	0.1 - created
32  *	20010622	0.2 - basic rx and tx.
33  *	20010711	0.3 - added duplex and link state detection support.
34  *	20010713	0.4 - zero copy, no hangs.
35  *			0.5 - 64 bit dma support (davem will hate me for this)
36  *			    - disable jumbo frames to avoid tx hangs
37  *			    - work around tx deadlocks on my 1.02 card via
38  *			      fiddling with TXCFG
39  *	20010810	0.6 - use pci dma api for ringbuffers, work on ia64
40  *	20010816	0.7 - misc cleanups
41  *	20010826	0.8 - fix critical zero copy bugs
42  *			0.9 - internal experiment
43  *	20010827	0.10 - fix ia64 unaligned access.
44  *	20010906	0.11 - accept all packets with checksum errors as
45  *			       otherwise fragments get lost
46  *			     - fix >> 32 bugs
47  *			0.12 - add statistics counters
48  *			     - add allmulti/promisc support
49  *	20011009	0.13 - hotplug support, other smaller pci api cleanups
50  *	20011204	0.13a - optical transceiver support added
51  *				by Michael Clark <michael@metaparadigm.com>
52  *	20011205	0.13b - call register_netdev earlier in initialization
53  *				suppress duplicate link status messages
54  *	20011117 	0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55  *	20011204 	0.15	get ppc (big endian) working
56  *	20011218	0.16	various cleanups
57  *	20020310	0.17	speedups
58  *	20020610	0.18 -	actually use the pci dma api for highmem
59  *			     -	remove pci latency register fiddling
60  *			0.19 -	better bist support
61  *			     -	add ihr and reset_phy parameters
62  *			     -	gmii bus probing
63  *			     -	fix missed txok introduced during performance
64  *				tuning
65  *			0.20 -	fix stupid RFEN thinko.  i am such a smurf.
66  *
67  * Driver Overview
68  * ===============
69  *
70  * This driver was originally written for the National Semiconductor
71  * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
72  * this code will turn out to be a) clean, b) correct, and c) fast.
73  * With that in mind, I'm aiming to split the code up as much as
74  * reasonably possible.  At present there are X major sections that
75  * break down into a) packet receive, b) packet transmit, c) link
76  * management, d) initialization and configuration.  Where possible,
77  * these code paths are designed to run in parallel.
78  *
79  * This driver has been tested and found to work with the following
80  * cards (in no particular order):
81  *
82  *	Cameo		SOHO-GA2000T	SOHO-GA2500T
83  *	D-Link		DGE-500T
84  *	PureData	PDP8023Z-TG
85  *	SMC		SMC9452TX	SMC9462TX
86  *	Netgear		GA621
87  *
88  * Special thanks to SMC for providing hardware to test this driver on.
89  *
90  * Reports of success or failure would be greatly appreciated.
91  */
92 //#define dprintk		printk
93 #define dprintk(x...)		do { } while (0)
94 
95 #include <linux/module.h>
96 #include <linux/types.h>
97 #include <linux/pci.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/delay.h>
101 #include <linux/smp_lock.h>
102 #include <linux/tqueue.h>
103 #include <linux/init.h>
104 #include <linux/ip.h>	/* for iph */
105 #include <linux/in.h>	/* for IPPROTO_... */
106 #include <linux/eeprom.h>
107 #include <linux/compiler.h>
108 #include <linux/prefetch.h>
109 #include <linux/ethtool.h>
110 #include <linux/timer.h>
111 
112 #include <asm/io.h>
113 #include <asm/uaccess.h>
114 
115 /* Global parameters.  See MODULE_PARM near the bottom. */
116 static int ihr = 2;
117 static int reset_phy = 0;
118 static int lnksts = 0;		/* CFG_LNKSTS bit polarity */
119 
120 /* Dprintk is used for more interesting debug events */
121 #undef Dprintk
122 #define	Dprintk			dprintk
123 
124 #if defined(CONFIG_HIGHMEM64G) || defined(__ia64__)
125 #define USE_64BIT_ADDR	"+"
126 #endif
127 
128 #if defined(USE_64BIT_ADDR)
129 #define	VERSION	_VERSION USE_64BIT_ADDR
130 #define TRY_DAC	1
131 #else
132 #define	VERSION	_VERSION
133 #define TRY_DAC	0
134 #endif
135 
136 /* tunables */
137 #define RX_BUF_SIZE	1500	/* 8192 */
138 
139 /* Must not exceed ~65000. */
140 #define NR_RX_DESC	64
141 #define NR_TX_DESC	128
142 
143 /* not tunable */
144 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)	/* rx/tx mac addr + type */
145 
146 #define MIN_TX_DESC_FREE	8
147 
148 /* register defines */
149 #define CFGCS		0x04
150 
151 #define CR_TXE		0x00000001
152 #define CR_TXD		0x00000002
153 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
154  * The Receive engine skips one descriptor and moves
155  * onto the next one!! */
156 #define CR_RXE		0x00000004
157 #define CR_RXD		0x00000008
158 #define CR_TXR		0x00000010
159 #define CR_RXR		0x00000020
160 #define CR_SWI		0x00000080
161 #define CR_RST		0x00000100
162 
163 #define PTSCR_EEBIST_FAIL       0x00000001
164 #define PTSCR_EEBIST_EN         0x00000002
165 #define PTSCR_EELOAD_EN         0x00000004
166 #define PTSCR_RBIST_FAIL        0x000001b8
167 #define PTSCR_RBIST_DONE        0x00000200
168 #define PTSCR_RBIST_EN          0x00000400
169 #define PTSCR_RBIST_RST         0x00002000
170 
171 #define MEAR_EEDI		0x00000001
172 #define MEAR_EEDO		0x00000002
173 #define MEAR_EECLK		0x00000004
174 #define MEAR_EESEL		0x00000008
175 #define MEAR_MDIO		0x00000010
176 #define MEAR_MDDIR		0x00000020
177 #define MEAR_MDC		0x00000040
178 
179 #define ISR_TXDESC3	0x40000000
180 #define ISR_TXDESC2	0x20000000
181 #define ISR_TXDESC1	0x10000000
182 #define ISR_TXDESC0	0x08000000
183 #define ISR_RXDESC3	0x04000000
184 #define ISR_RXDESC2	0x02000000
185 #define ISR_RXDESC1	0x01000000
186 #define ISR_RXDESC0	0x00800000
187 #define ISR_TXRCMP	0x00400000
188 #define ISR_RXRCMP	0x00200000
189 #define ISR_DPERR	0x00100000
190 #define ISR_SSERR	0x00080000
191 #define ISR_RMABT	0x00040000
192 #define ISR_RTABT	0x00020000
193 #define ISR_RXSOVR	0x00010000
194 #define ISR_HIBINT	0x00008000
195 #define ISR_PHY		0x00004000
196 #define ISR_PME		0x00002000
197 #define ISR_SWI		0x00001000
198 #define ISR_MIB		0x00000800
199 #define ISR_TXURN	0x00000400
200 #define ISR_TXIDLE	0x00000200
201 #define ISR_TXERR	0x00000100
202 #define ISR_TXDESC	0x00000080
203 #define ISR_TXOK	0x00000040
204 #define ISR_RXORN	0x00000020
205 #define ISR_RXIDLE	0x00000010
206 #define ISR_RXEARLY	0x00000008
207 #define ISR_RXERR	0x00000004
208 #define ISR_RXDESC	0x00000002
209 #define ISR_RXOK	0x00000001
210 
211 #define TXCFG_CSI	0x80000000
212 #define TXCFG_HBI	0x40000000
213 #define TXCFG_MLB	0x20000000
214 #define TXCFG_ATP	0x10000000
215 #define TXCFG_ECRETRY	0x00800000
216 #define TXCFG_BRST_DIS	0x00080000
217 #define TXCFG_MXDMA1024	0x00000000
218 #define TXCFG_MXDMA512	0x00700000
219 #define TXCFG_MXDMA256	0x00600000
220 #define TXCFG_MXDMA128	0x00500000
221 #define TXCFG_MXDMA64	0x00400000
222 #define TXCFG_MXDMA32	0x00300000
223 #define TXCFG_MXDMA16	0x00200000
224 #define TXCFG_MXDMA8	0x00100000
225 
226 #define CFG_LNKSTS	0x80000000
227 #define CFG_SPDSTS	0x60000000
228 #define CFG_SPDSTS1	0x40000000
229 #define CFG_SPDSTS0	0x20000000
230 #define CFG_DUPSTS	0x10000000
231 #define CFG_TBI_EN	0x01000000
232 #define CFG_MODE_1000	0x00400000
233 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
234  * Read the Phy response and then configure the MAC accordingly */
235 #define CFG_AUTO_1000	0x00200000
236 #define CFG_PINT_CTL	0x001c0000
237 #define CFG_PINT_DUPSTS	0x00100000
238 #define CFG_PINT_LNKSTS	0x00080000
239 #define CFG_PINT_SPDSTS	0x00040000
240 #define CFG_TMRTEST	0x00020000
241 #define CFG_MRM_DIS	0x00010000
242 #define CFG_MWI_DIS	0x00008000
243 #define CFG_T64ADDR	0x00004000
244 #define CFG_PCI64_DET	0x00002000
245 #define CFG_DATA64_EN	0x00001000
246 #define CFG_M64ADDR	0x00000800
247 #define CFG_PHY_RST	0x00000400
248 #define CFG_PHY_DIS	0x00000200
249 #define CFG_EXTSTS_EN	0x00000100
250 #define CFG_REQALG	0x00000080
251 #define CFG_SB		0x00000040
252 #define CFG_POW		0x00000020
253 #define CFG_EXD		0x00000010
254 #define CFG_PESEL	0x00000008
255 #define CFG_BROM_DIS	0x00000004
256 #define CFG_EXT_125	0x00000002
257 #define CFG_BEM		0x00000001
258 
259 #define EXTSTS_UDPPKT	0x00200000
260 #define EXTSTS_TCPPKT	0x00080000
261 #define EXTSTS_IPPKT	0x00020000
262 
263 #define SPDSTS_POLARITY	(CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
264 
265 #define MIBC_MIBS	0x00000008
266 #define MIBC_ACLR	0x00000004
267 #define MIBC_FRZ	0x00000002
268 #define MIBC_WRN	0x00000001
269 
270 #define PCR_PSEN	(1 << 31)
271 #define PCR_PS_MCAST	(1 << 30)
272 #define PCR_PS_DA	(1 << 29)
273 #define PCR_STHI_8	(3 << 23)
274 #define PCR_STLO_4	(1 << 23)
275 #define PCR_FFHI_8K	(3 << 21)
276 #define PCR_FFLO_4K	(1 << 21)
277 #define PCR_PAUSE_CNT	0xFFFE
278 
279 #define RXCFG_AEP	0x80000000
280 #define RXCFG_ARP	0x40000000
281 #define RXCFG_STRIPCRC	0x20000000
282 #define RXCFG_RX_FD	0x10000000
283 #define RXCFG_ALP	0x08000000
284 #define RXCFG_AIRL	0x04000000
285 #define RXCFG_MXDMA512	0x00700000
286 #define RXCFG_DRTH	0x0000003e
287 #define RXCFG_DRTH0	0x00000002
288 
289 #define RFCR_RFEN	0x80000000
290 #define RFCR_AAB	0x40000000
291 #define RFCR_AAM	0x20000000
292 #define RFCR_AAU	0x10000000
293 #define RFCR_APM	0x08000000
294 #define RFCR_APAT	0x07800000
295 #define RFCR_APAT3	0x04000000
296 #define RFCR_APAT2	0x02000000
297 #define RFCR_APAT1	0x01000000
298 #define RFCR_APAT0	0x00800000
299 #define RFCR_AARP	0x00400000
300 #define RFCR_MHEN	0x00200000
301 #define RFCR_UHEN	0x00100000
302 #define RFCR_ULM	0x00080000
303 
304 #define VRCR_RUDPE	0x00000080
305 #define VRCR_RTCPE	0x00000040
306 #define VRCR_RIPE	0x00000020
307 #define VRCR_IPEN	0x00000010
308 #define VRCR_DUTF	0x00000008
309 #define VRCR_DVTF	0x00000004
310 #define VRCR_VTREN	0x00000002
311 #define VRCR_VTDEN	0x00000001
312 
313 #define VTCR_PPCHK	0x00000008
314 #define VTCR_GCHK	0x00000004
315 #define VTCR_VPPTI	0x00000002
316 #define VTCR_VGTI	0x00000001
317 
318 #define CR		0x00
319 #define CFG		0x04
320 #define MEAR		0x08
321 #define PTSCR		0x0c
322 #define	ISR		0x10
323 #define	IMR		0x14
324 #define	IER		0x18
325 #define	IHR		0x1c
326 #define TXDP		0x20
327 #define TXDP_HI		0x24
328 #define TXCFG		0x28
329 #define GPIOR		0x2c
330 #define RXDP		0x30
331 #define RXDP_HI		0x34
332 #define RXCFG		0x38
333 #define PQCR		0x3c
334 #define WCSR		0x40
335 #define PCR		0x44
336 #define RFCR		0x48
337 #define RFDR		0x4c
338 
339 #define SRR		0x58
340 
341 #define VRCR		0xbc
342 #define VTCR		0xc0
343 #define VDR		0xc4
344 #define CCSR		0xcc
345 
346 #define TBICR		0xe0
347 #define TBISR		0xe4
348 #define TANAR		0xe8
349 #define TANLPAR		0xec
350 #define TANER		0xf0
351 #define TESR		0xf4
352 
353 #define TBICR_MR_AN_ENABLE	0x00001000
354 #define TBICR_MR_RESTART_AN	0x00000200
355 
356 #define TBISR_MR_LINK_STATUS	0x00000020
357 #define TBISR_MR_AN_COMPLETE	0x00000004
358 
359 #define TANAR_PS2 		0x00000100
360 #define TANAR_PS1 		0x00000080
361 #define TANAR_HALF_DUP 		0x00000040
362 #define TANAR_FULL_DUP 		0x00000020
363 
364 #define GPIOR_GP5_OE		0x00000200
365 #define GPIOR_GP4_OE		0x00000100
366 #define GPIOR_GP3_OE		0x00000080
367 #define GPIOR_GP2_OE		0x00000040
368 #define GPIOR_GP1_OE		0x00000020
369 #define GPIOR_GP3_OUT		0x00000004
370 #define GPIOR_GP1_OUT		0x00000001
371 
372 #define LINK_AUTONEGOTIATE	0x01
373 #define LINK_DOWN		0x02
374 #define LINK_UP			0x04
375 
376 #define __kick_rx(dev)	writel(CR_RXE, dev->base + CR)
377 
378 #define kick_rx(dev) do { \
379 	dprintk("kick_rx: maybe kicking\n"); \
380 	if (test_and_clear_bit(0, &dev->rx_info.idle)) { \
381 		dprintk("actually kicking\n"); \
382 		writel(dev->rx_info.phy_descs + (4 * DESC_SIZE * dev->rx_info.next_rx), dev->base + RXDP); \
383 		if (dev->rx_info.next_rx == dev->rx_info.next_empty) \
384 			printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n", dev->net_dev.name);\
385 		__kick_rx(dev); \
386 	} \
387 } while(0)
388 
389 #ifdef USE_64BIT_ADDR
390 #define HW_ADDR_LEN	8
391 #define desc_addr_set(desc, addr)				\
392 	do {							\
393 		u64 __addr = (addr);				\
394 		(desc)[0] = cpu_to_le32(__addr);		\
395 		(desc)[1] = cpu_to_le32(__addr >> 32);		\
396 	} while(0)
397 #define desc_addr_get(desc)					\
398 		(((u64)le32_to_cpu((desc)[1]) << 32)		\
399 		     | le32_to_cpu((desc)[0]))
400 #else
401 #define HW_ADDR_LEN	4
402 #define desc_addr_set(desc, addr)	((desc)[0] = cpu_to_le32(addr))
403 #define desc_addr_get(desc)		(le32_to_cpu((desc)[0]))
404 #endif
405 
406 #define DESC_LINK		0
407 #define DESC_BUFPTR		(DESC_LINK + HW_ADDR_LEN/4)
408 #define DESC_CMDSTS		(DESC_BUFPTR + HW_ADDR_LEN/4)
409 #define DESC_EXTSTS		(DESC_CMDSTS + 4/4)
410 
411 #define CMDSTS_OWN	0x80000000
412 #define CMDSTS_MORE	0x40000000
413 #define CMDSTS_INTR	0x20000000
414 #define CMDSTS_ERR	0x10000000
415 #define CMDSTS_OK	0x08000000
416 #define CMDSTS_LEN_MASK	0x0000ffff
417 
418 #define CMDSTS_DEST_MASK	0x01800000
419 #define CMDSTS_DEST_SELF	0x00800000
420 #define CMDSTS_DEST_MULTI	0x01000000
421 
422 #define DESC_SIZE	8		/* Should be cache line sized */
423 
424 struct rx_info {
425 	spinlock_t	lock;
426 	int		up;
427 	long		idle;
428 
429 	struct sk_buff	*skbs[NR_RX_DESC];
430 
431 	u32		*next_rx_desc;
432 	u16		next_rx, next_empty;
433 
434 	u32		*descs;
435 	dma_addr_t	phy_descs;
436 };
437 
438 
439 struct ns83820 {
440 	struct net_device	net_dev;
441 	struct net_device_stats	stats;
442 	u8			*base;
443 
444 	struct pci_dev		*pci_dev;
445 
446 	struct rx_info		rx_info;
447 	struct tasklet_struct	rx_tasklet;
448 
449 	unsigned		ihr;
450 	struct tq_struct	tq_refill;
451 
452 	/* protects everything below.  irqsave when using. */
453 	spinlock_t		misc_lock;
454 
455 	u32			CFG_cache;
456 
457 	u32			MEAR_cache;
458 	u32			IMR_cache;
459 	struct eeprom		ee;
460 
461 	unsigned		linkstate;
462 
463 	spinlock_t	tx_lock;
464 
465 	u16		tx_done_idx;
466 	u16		tx_idx;
467 	volatile u16	tx_free_idx;	/* idx of free desc chain */
468 	u16		tx_intr_idx;
469 
470 	atomic_t	nr_tx_skbs;
471 	struct sk_buff	*tx_skbs[NR_TX_DESC];
472 
473 	char		pad[16] __attribute__((aligned(16)));
474 	u32		*tx_descs;
475 	dma_addr_t	tx_phy_descs;
476 
477 	struct timer_list	tx_watchdog;
478 };
479 
480 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
481 #define start_tx_okay(dev)	\
482 	(((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
483 
484 
485 /* Packet Receiver
486  *
487  * The hardware supports linked lists of receive descriptors for
488  * which ownership is transfered back and forth by means of an
489  * ownership bit.  While the hardware does support the use of a
490  * ring for receive descriptors, we only make use of a chain in
491  * an attempt to reduce bus traffic under heavy load scenarios.
492  * This will also make bugs a bit more obvious.  The current code
493  * only makes use of a single rx chain; I hope to implement
494  * priority based rx for version 1.0.  Goal: even under overload
495  * conditions, still route realtime traffic with as low jitter as
496  * possible.
497  */
build_rx_desc(struct ns83820 * dev,u32 * desc,dma_addr_t link,dma_addr_t buf,u32 cmdsts,u32 extsts)498 static inline void build_rx_desc(struct ns83820 *dev, u32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
499 {
500 	desc_addr_set(desc + DESC_LINK, link);
501 	desc_addr_set(desc + DESC_BUFPTR, buf);
502 	desc[DESC_EXTSTS] = cpu_to_le32(extsts);
503 	mb();
504 	desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
505 }
506 
507 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
ns83820_add_rx_skb(struct ns83820 * dev,struct sk_buff * skb)508 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
509 {
510 	unsigned next_empty;
511 	u32 cmdsts;
512 	u32 *sg;
513 	dma_addr_t buf;
514 
515 	next_empty = dev->rx_info.next_empty;
516 
517 	/* don't overrun last rx marker */
518 	if (unlikely(nr_rx_empty(dev) <= 2)) {
519 		kfree_skb(skb);
520 		return 1;
521 	}
522 
523 #if 0
524 	dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
525 		dev->rx_info.next_empty,
526 		dev->rx_info.nr_used,
527 		dev->rx_info.next_rx
528 		);
529 #endif
530 
531 	sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
532 	if (unlikely(NULL != dev->rx_info.skbs[next_empty]))
533 		BUG();
534 	dev->rx_info.skbs[next_empty] = skb;
535 
536 	dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
537 	cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
538 	buf = pci_map_single(dev->pci_dev, skb->tail,
539 			     REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
540 	build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
541 	/* update link of previous rx */
542 	if (likely(next_empty != dev->rx_info.next_rx))
543 		dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
544 
545 	return 0;
546 }
547 
rx_refill(struct ns83820 * dev,int gfp)548 static inline int rx_refill(struct ns83820 *dev, int gfp)
549 {
550 	unsigned i;
551 	long flags = 0;
552 
553 	if (unlikely(nr_rx_empty(dev) <= 2))
554 		return 0;
555 
556 	dprintk("rx_refill(%p)\n", dev);
557 	if (gfp == GFP_ATOMIC)
558 		spin_lock_irqsave(&dev->rx_info.lock, flags);
559 	for (i=0; i<NR_RX_DESC; i++) {
560 		struct sk_buff *skb;
561 		long res;
562 		/* extra 16 bytes for alignment */
563 		skb = __dev_alloc_skb(REAL_RX_BUF_SIZE+16, gfp);
564 		if (unlikely(!skb))
565 			break;
566 
567 		res = (long)skb->tail & 0xf;
568 		res = 0x10 - res;
569 		res &= 0xf;
570 		skb_reserve(skb, res);
571 
572 		skb->dev = &dev->net_dev;
573 		if (gfp != GFP_ATOMIC)
574 			spin_lock_irqsave(&dev->rx_info.lock, flags);
575 		res = ns83820_add_rx_skb(dev, skb);
576 		if (gfp != GFP_ATOMIC)
577 			spin_unlock_irqrestore(&dev->rx_info.lock, flags);
578 		if (res) {
579 			i = 1;
580 			break;
581 		}
582 	}
583 	if (gfp == GFP_ATOMIC)
584 		spin_unlock_irqrestore(&dev->rx_info.lock, flags);
585 
586 	return i ? 0 : -ENOMEM;
587 }
588 
589 static void FASTCALL(rx_refill_atomic(struct ns83820 *dev));
rx_refill_atomic(struct ns83820 * dev)590 static void fastcall rx_refill_atomic(struct ns83820 *dev)
591 {
592 	rx_refill(dev, GFP_ATOMIC);
593 }
594 
595 /* REFILL */
queue_refill(void * _dev)596 static inline void queue_refill(void *_dev)
597 {
598 	struct ns83820 *dev = _dev;
599 
600 	rx_refill(dev, GFP_KERNEL);
601 	if (dev->rx_info.up)
602 		kick_rx(dev);
603 }
604 
clear_rx_desc(struct ns83820 * dev,unsigned i)605 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
606 {
607 	build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
608 }
609 
610 static void FASTCALL(phy_intr(struct ns83820 *dev));
phy_intr(struct ns83820 * dev)611 static void fastcall phy_intr(struct ns83820 *dev)
612 {
613 	static char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
614 	u32 cfg, new_cfg;
615 	u32 tbisr, tanar, tanlpar;
616 	int speed, fullduplex, newlinkstate;
617 
618 	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
619 
620 	if (dev->CFG_cache & CFG_TBI_EN) {
621 		/* we have an optical transceiver */
622 		tbisr = readl(dev->base + TBISR);
623 		tanar = readl(dev->base + TANAR);
624 		tanlpar = readl(dev->base + TANLPAR);
625 		dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
626 			tbisr, tanar, tanlpar);
627 
628 		if ( (fullduplex = (tanlpar & TANAR_FULL_DUP)
629 		      && (tanar & TANAR_FULL_DUP)) ) {
630 
631 			/* both of us are full duplex */
632 			writel(readl(dev->base + TXCFG)
633 			       | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
634 			       dev->base + TXCFG);
635 			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
636 			       dev->base + RXCFG);
637 			/* Light up full duplex LED */
638 			writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
639 			       dev->base + GPIOR);
640 
641 		} else if(((tanlpar & TANAR_HALF_DUP)
642 			   && (tanar & TANAR_HALF_DUP))
643 			|| ((tanlpar & TANAR_FULL_DUP)
644 			    && (tanar & TANAR_HALF_DUP))
645 			|| ((tanlpar & TANAR_HALF_DUP)
646 			    && (tanar & TANAR_FULL_DUP))) {
647 
648 			/* one or both of us are half duplex */
649 			writel((readl(dev->base + TXCFG)
650 				& ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
651 			       dev->base + TXCFG);
652 			writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
653 			       dev->base + RXCFG);
654 			/* Turn off full duplex LED */
655 			writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
656 			       dev->base + GPIOR);
657 		}
658 
659 		speed = 4; /* 1000F */
660 
661 	} else {
662 		/* we have a copper transceiver */
663 		new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
664 
665 		if (cfg & CFG_SPDSTS1)
666 			new_cfg |= CFG_MODE_1000;
667 		else
668 			new_cfg &= ~CFG_MODE_1000;
669 
670 		speed = ((cfg / CFG_SPDSTS0) & 3);
671 		fullduplex = (cfg & CFG_DUPSTS);
672 
673 		if (fullduplex)
674 			new_cfg |= CFG_SB;
675 
676 		if ((cfg & CFG_LNKSTS) &&
677 		    ((new_cfg ^ dev->CFG_cache) & CFG_MODE_1000)) {
678 			writel(new_cfg, dev->base + CFG);
679 			dev->CFG_cache = new_cfg;
680 		}
681 
682 		dev->CFG_cache &= ~CFG_SPDSTS;
683 		dev->CFG_cache |= cfg & CFG_SPDSTS;
684 	}
685 
686 	newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
687 
688 	if (newlinkstate & LINK_UP
689 	    && dev->linkstate != newlinkstate) {
690 		netif_start_queue(&dev->net_dev);
691 		netif_wake_queue(&dev->net_dev);
692 		printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
693 			dev->net_dev.name,
694 			speeds[speed],
695 			fullduplex ? "full" : "half");
696 	} else if (newlinkstate & LINK_DOWN
697 		   && dev->linkstate != newlinkstate) {
698 		netif_stop_queue(&dev->net_dev);
699 		printk(KERN_INFO "%s: link now down.\n", dev->net_dev.name);
700 	}
701 
702 	dev->linkstate = newlinkstate;
703 }
704 
ns83820_setup_rx(struct ns83820 * dev)705 static int ns83820_setup_rx(struct ns83820 *dev)
706 {
707 	unsigned i;
708 	int ret;
709 
710 	dprintk("ns83820_setup_rx(%p)\n", dev);
711 
712 	dev->rx_info.idle = 1;
713 	dev->rx_info.next_rx = 0;
714 	dev->rx_info.next_rx_desc = dev->rx_info.descs;
715 	dev->rx_info.next_empty = 0;
716 
717 	for (i=0; i<NR_RX_DESC; i++)
718 		clear_rx_desc(dev, i);
719 
720 	writel(0, dev->base + RXDP_HI);
721 	writel(dev->rx_info.phy_descs, dev->base + RXDP);
722 
723 	ret = rx_refill(dev, GFP_KERNEL);
724 	if (!ret) {
725 		dprintk("starting receiver\n");
726 		/* prevent the interrupt handler from stomping on us */
727 		spin_lock_irq(&dev->rx_info.lock);
728 
729 		writel(0x0001, dev->base + CCSR);
730 		writel(0, dev->base + RFCR);
731 		writel(0x7fc00000, dev->base + RFCR);
732 		writel(0xffc00000, dev->base + RFCR);
733 
734 		dev->rx_info.up = 1;
735 
736 		phy_intr(dev);
737 
738 		/* Okay, let it rip */
739 		spin_lock_irq(&dev->misc_lock);
740 		dev->IMR_cache |= ISR_PHY;
741 		dev->IMR_cache |= ISR_RXRCMP;
742 		//dev->IMR_cache |= ISR_RXERR;
743 		//dev->IMR_cache |= ISR_RXOK;
744 		dev->IMR_cache |= ISR_RXORN;
745 		dev->IMR_cache |= ISR_RXSOVR;
746 		dev->IMR_cache |= ISR_RXDESC;
747 		dev->IMR_cache |= ISR_RXIDLE;
748 		dev->IMR_cache |= ISR_TXDESC;
749 		dev->IMR_cache |= ISR_TXIDLE;
750 
751 		writel(dev->IMR_cache, dev->base + IMR);
752 		writel(1, dev->base + IER);
753 		spin_unlock_irq(&dev->misc_lock);
754 
755 		kick_rx(dev);
756 
757 		spin_unlock_irq(&dev->rx_info.lock);
758 	}
759 	return ret;
760 }
761 
ns83820_cleanup_rx(struct ns83820 * dev)762 static void ns83820_cleanup_rx(struct ns83820 *dev)
763 {
764 	unsigned i;
765 	long flags;
766 
767 	dprintk("ns83820_cleanup_rx(%p)\n", dev);
768 
769 	/* disable receive interrupts */
770 	spin_lock_irqsave(&dev->misc_lock, flags);
771 	dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
772 	writel(dev->IMR_cache, dev->base + IMR);
773 	spin_unlock_irqrestore(&dev->misc_lock, flags);
774 
775 	/* synchronize with the interrupt handler and kill it */
776 	dev->rx_info.up = 0;
777 	synchronize_irq();
778 
779 	/* touch the pci bus... */
780 	readl(dev->base + IMR);
781 
782 	/* assumes the transmitter is already disabled and reset */
783 	writel(0, dev->base + RXDP_HI);
784 	writel(0, dev->base + RXDP);
785 
786 	for (i=0; i<NR_RX_DESC; i++) {
787 		struct sk_buff *skb = dev->rx_info.skbs[i];
788 		dev->rx_info.skbs[i] = NULL;
789 		clear_rx_desc(dev, i);
790 		if (skb)
791 			kfree_skb(skb);
792 	}
793 }
794 
795 static void FASTCALL(ns83820_rx_kick(struct ns83820 *dev));
ns83820_rx_kick(struct ns83820 * dev)796 static void fastcall ns83820_rx_kick(struct ns83820 *dev)
797 {
798 	/*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
799 		if (dev->rx_info.up) {
800 			rx_refill_atomic(dev);
801 			kick_rx(dev);
802 		}
803 	}
804 
805 	if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
806 		schedule_task(&dev->tq_refill);
807 	else
808 		kick_rx(dev);
809 	if (dev->rx_info.idle)
810 		printk(KERN_DEBUG "%s: BAD\n", dev->net_dev.name);
811 }
812 
813 /* rx_irq
814  *
815  */
816 static void FASTCALL(rx_irq(struct ns83820 *dev));
rx_irq(struct ns83820 * dev)817 static void fastcall rx_irq(struct ns83820 *dev)
818 {
819 	struct rx_info *info = &dev->rx_info;
820 	unsigned next_rx;
821 	u32 cmdsts, *desc;
822 	long flags;
823 	int nr = 0;
824 
825 	dprintk("rx_irq(%p)\n", dev);
826 	dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
827 		readl(dev->base + RXDP),
828 		(long)(dev->rx_info.phy_descs),
829 		(int)dev->rx_info.next_rx,
830 		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
831 		(int)dev->rx_info.next_empty,
832 		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
833 		);
834 
835 	spin_lock_irqsave(&info->lock, flags);
836 	if (!info->up)
837 		goto out;
838 
839 	dprintk("walking descs\n");
840 	next_rx = info->next_rx;
841 	desc = info->next_rx_desc;
842 	while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
843 	       (cmdsts != CMDSTS_OWN)) {
844 		struct sk_buff *skb;
845 		u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
846 		dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
847 
848 		dprintk("cmdsts: %08x\n", cmdsts);
849 		dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
850 		dprintk("extsts: %08x\n", extsts);
851 
852 		skb = info->skbs[next_rx];
853 		info->skbs[next_rx] = NULL;
854 		info->next_rx = (next_rx + 1) % NR_RX_DESC;
855 
856 		mb();
857 		clear_rx_desc(dev, next_rx);
858 
859 		pci_unmap_single(dev->pci_dev, bufptr,
860 				 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
861 		if (likely(CMDSTS_OK & cmdsts)) {
862 			int len = cmdsts & 0xffff;
863 			skb_put(skb, len);
864 			if (unlikely(!skb))
865 				goto netdev_mangle_me_harder_failed;
866 			if (cmdsts & CMDSTS_DEST_MULTI)
867 				dev->stats.multicast ++;
868 			dev->stats.rx_packets ++;
869 			dev->stats.rx_bytes += len;
870 			if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
871 				skb->ip_summed = CHECKSUM_UNNECESSARY;
872 			} else {
873 				skb->ip_summed = CHECKSUM_NONE;
874 			}
875 			skb->protocol = eth_type_trans(skb, &dev->net_dev);
876 			if (NET_RX_DROP == netif_rx(skb)) {
877 netdev_mangle_me_harder_failed:
878 				dev->stats.rx_dropped ++;
879 			}
880 		} else {
881 			kfree_skb(skb);
882 		}
883 
884 		nr++;
885 		next_rx = info->next_rx;
886 		desc = info->descs + (DESC_SIZE * next_rx);
887 	}
888 	info->next_rx = next_rx;
889 	info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
890 
891 out:
892 	if (0 && !nr) {
893 		Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
894 	}
895 
896 	spin_unlock_irqrestore(&info->lock, flags);
897 }
898 
rx_action(unsigned long _dev)899 static void rx_action(unsigned long _dev)
900 {
901 	struct ns83820 *dev = (void *)_dev;
902 	rx_irq(dev);
903 	writel(ihr, dev->base + IHR);
904 
905 	spin_lock_irq(&dev->misc_lock);
906 	dev->IMR_cache |= ISR_RXDESC;
907 	writel(dev->IMR_cache, dev->base + IMR);
908 	spin_unlock_irq(&dev->misc_lock);
909 
910 	rx_irq(dev);
911 	ns83820_rx_kick(dev);
912 }
913 
914 /* Packet Transmit code
915  */
kick_tx(struct ns83820 * dev)916 static inline void kick_tx(struct ns83820 *dev)
917 {
918 	dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
919 		dev, dev->tx_idx, dev->tx_free_idx);
920 	writel(CR_TXE, dev->base + CR);
921 }
922 
923 /* No spinlock needed on the transmit irq path as the interrupt handler is
924  * serialized.
925  */
do_tx_done(struct ns83820 * dev)926 static void do_tx_done(struct ns83820 *dev)
927 {
928 	u32 cmdsts, tx_done_idx, *desc;
929 
930 	spin_lock_irq(&dev->tx_lock);
931 
932 	dprintk("do_tx_done(%p)\n", dev);
933 	tx_done_idx = dev->tx_done_idx;
934 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
935 
936 	dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
937 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
938 	while ((tx_done_idx != dev->tx_free_idx) &&
939 	       !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
940 		struct sk_buff *skb;
941 		unsigned len;
942 		dma_addr_t addr;
943 
944 		if (cmdsts & CMDSTS_ERR)
945 			dev->stats.tx_errors ++;
946 		if (cmdsts & CMDSTS_OK)
947 			dev->stats.tx_packets ++;
948 		if (cmdsts & CMDSTS_OK)
949 			dev->stats.tx_bytes += cmdsts & 0xffff;
950 
951 		dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
952 			tx_done_idx, dev->tx_free_idx, cmdsts);
953 		skb = dev->tx_skbs[tx_done_idx];
954 		dev->tx_skbs[tx_done_idx] = NULL;
955 		dprintk("done(%p)\n", skb);
956 
957 		len = cmdsts & CMDSTS_LEN_MASK;
958 		addr = desc_addr_get(desc + DESC_BUFPTR);
959 		if (skb) {
960 			pci_unmap_single(dev->pci_dev,
961 					addr,
962 					len,
963 					PCI_DMA_TODEVICE);
964 			dev_kfree_skb_irq(skb);
965 			atomic_dec(&dev->nr_tx_skbs);
966 		} else
967 			pci_unmap_page(dev->pci_dev,
968 					addr,
969 					len,
970 					PCI_DMA_TODEVICE);
971 
972 		tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
973 		dev->tx_done_idx = tx_done_idx;
974 		desc[DESC_CMDSTS] = cpu_to_le32(0);
975 		mb();
976 		desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
977 	}
978 
979 	/* Allow network stack to resume queueing packets after we've
980 	 * finished transmitting at least 1/4 of the packets in the queue.
981 	 */
982 	if (netif_queue_stopped(&dev->net_dev) && start_tx_okay(dev)) {
983 		dprintk("start_queue(%p)\n", dev);
984 		netif_start_queue(&dev->net_dev);
985 		netif_wake_queue(&dev->net_dev);
986 	}
987 	spin_unlock_irq(&dev->tx_lock);
988 }
989 
ns83820_cleanup_tx(struct ns83820 * dev)990 static void ns83820_cleanup_tx(struct ns83820 *dev)
991 {
992 	unsigned i;
993 
994 	for (i=0; i<NR_TX_DESC; i++) {
995 		struct sk_buff *skb = dev->tx_skbs[i];
996 		dev->tx_skbs[i] = NULL;
997 		if (skb) {
998 			u32 *desc = dev->tx_descs + (i * DESC_SIZE);
999 			pci_unmap_single(dev->pci_dev,
1000 					desc_addr_get(desc + DESC_BUFPTR),
1001 					le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1002 					PCI_DMA_TODEVICE);
1003 			dev_kfree_skb_irq(skb);
1004 			atomic_dec(&dev->nr_tx_skbs);
1005 		}
1006 	}
1007 
1008 	memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1009 }
1010 
1011 /* transmit routine.  This code relies on the network layer serializing
1012  * its calls in, but will run happily in parallel with the interrupt
1013  * handler.  This code currently has provisions for fragmenting tx buffers
1014  * while trying to track down a bug in either the zero copy code or
1015  * the tx fifo (hence the MAX_FRAG_LEN).
1016  */
ns83820_hard_start_xmit(struct sk_buff * skb,struct net_device * _dev)1017 static int ns83820_hard_start_xmit(struct sk_buff *skb, struct net_device *_dev)
1018 {
1019 	struct ns83820 *dev = (struct ns83820 *)_dev;
1020 	u32 free_idx, cmdsts, extsts;
1021 	int nr_free, nr_frags;
1022 	unsigned tx_done_idx, last_idx;
1023 	dma_addr_t buf;
1024 	unsigned len;
1025 	skb_frag_t *frag;
1026 	int stopped = 0;
1027 	int do_intr = 0;
1028 	volatile u32 *first_desc;
1029 
1030 	dprintk("ns83820_hard_start_xmit\n");
1031 
1032 	nr_frags =  skb_shinfo(skb)->nr_frags;
1033 again:
1034 	if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1035 		netif_stop_queue(&dev->net_dev);
1036 		if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1037 			return 1;
1038 		netif_start_queue(&dev->net_dev);
1039 	}
1040 
1041 	last_idx = free_idx = dev->tx_free_idx;
1042 	tx_done_idx = dev->tx_done_idx;
1043 	nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1044 	nr_free -= 1;
1045 	if (nr_free <= nr_frags) {
1046 		dprintk("stop_queue - not enough(%p)\n", dev);
1047 		netif_stop_queue(&dev->net_dev);
1048 
1049 		/* Check again: we may have raced with a tx done irq */
1050 		if (dev->tx_done_idx != tx_done_idx) {
1051 			dprintk("restart queue(%p)\n", dev);
1052 			netif_start_queue(&dev->net_dev);
1053 			goto again;
1054 		}
1055 		return 1;
1056 	}
1057 
1058 	if (free_idx == dev->tx_intr_idx) {
1059 		do_intr = 1;
1060 		dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1061 	}
1062 
1063 	nr_free -= nr_frags;
1064 	if (nr_free < MIN_TX_DESC_FREE) {
1065 		dprintk("stop_queue - last entry(%p)\n", dev);
1066 		netif_stop_queue(&dev->net_dev);
1067 		stopped = 1;
1068 	}
1069 
1070 	frag = skb_shinfo(skb)->frags;
1071 	if (!nr_frags)
1072 		frag = 0;
1073 	extsts = 0;
1074 	if (skb->ip_summed == CHECKSUM_HW) {
1075 		extsts |= EXTSTS_IPPKT;
1076 		if (IPPROTO_TCP == skb->nh.iph->protocol)
1077 			extsts |= EXTSTS_TCPPKT;
1078 		else if (IPPROTO_UDP == skb->nh.iph->protocol)
1079 			extsts |= EXTSTS_UDPPKT;
1080 	}
1081 
1082 	len = skb->len;
1083 	if (nr_frags)
1084 		len -= skb->data_len;
1085 	buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1086 
1087 	first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1088 
1089 	for (;;) {
1090 		volatile u32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1091 		u32 residue = 0;
1092 
1093 		dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1094 			(unsigned long long)buf);
1095 		last_idx = free_idx;
1096 		free_idx = (free_idx + 1) % NR_TX_DESC;
1097 		desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1098 		desc_addr_set(desc + DESC_BUFPTR, buf);
1099 		desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1100 
1101 		cmdsts = ((nr_frags|residue) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1102 		cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1103 		cmdsts |= len;
1104 		desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1105 
1106 		if (residue) {
1107 			buf += len;
1108 			len = residue;
1109 			continue;
1110 		}
1111 
1112 		if (!nr_frags)
1113 			break;
1114 
1115 		buf = pci_map_page(dev->pci_dev, frag->page,
1116 				   frag->page_offset,
1117 				   frag->size, PCI_DMA_TODEVICE);
1118 		dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1119 			(long long)buf, (long)(frag->page - mem_map),
1120 			frag->page_offset);
1121 		len = frag->size;
1122 		frag++;
1123 		nr_frags--;
1124 	}
1125 	dprintk("done pkt\n");
1126 
1127 	spin_lock_irq(&dev->tx_lock);
1128 	dev->tx_skbs[last_idx] = skb;
1129 	first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1130 	dev->tx_free_idx = free_idx;
1131 	atomic_inc(&dev->nr_tx_skbs);
1132 	spin_unlock_irq(&dev->tx_lock);
1133 
1134 	kick_tx(dev);
1135 
1136 	/* Check again: we may have raced with a tx done irq */
1137 	if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1138 		netif_start_queue(&dev->net_dev);
1139 
1140 	/* set the transmit start time to catch transmit timeouts */
1141 	dev->net_dev.trans_start = jiffies;
1142 	return 0;
1143 }
1144 
ns83820_update_stats(struct ns83820 * dev)1145 static void ns83820_update_stats(struct ns83820 *dev)
1146 {
1147 	u8 *base = dev->base;
1148 
1149 	/* the DP83820 will freeze counters, so we need to read all of them */
1150 	dev->stats.rx_errors		+= readl(base + 0x60) & 0xffff;
1151 	dev->stats.rx_crc_errors	+= readl(base + 0x64) & 0xffff;
1152 	dev->stats.rx_missed_errors	+= readl(base + 0x68) & 0xffff;
1153 	dev->stats.rx_frame_errors	+= readl(base + 0x6c) & 0xffff;
1154 	/*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1155 	dev->stats.rx_length_errors	+= readl(base + 0x74) & 0xffff;
1156 	dev->stats.rx_length_errors	+= readl(base + 0x78) & 0xffff;
1157 	/*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1158 	/*dev->stats.rx_pause_count += */  readl(base + 0x80);
1159 	/*dev->stats.tx_pause_count += */  readl(base + 0x84);
1160 	dev->stats.tx_carrier_errors	+= readl(base + 0x88) & 0xff;
1161 }
1162 
ns83820_get_stats(struct net_device * _dev)1163 static struct net_device_stats *ns83820_get_stats(struct net_device *_dev)
1164 {
1165 	struct ns83820 *dev = (void *)_dev;
1166 
1167 	/* somewhat overkill */
1168 	spin_lock_irq(&dev->misc_lock);
1169 	ns83820_update_stats(dev);
1170 	spin_unlock_irq(&dev->misc_lock);
1171 
1172 	return &dev->stats;
1173 }
1174 
ns83820_ethtool_ioctl(struct ns83820 * dev,void * useraddr)1175 static int ns83820_ethtool_ioctl (struct ns83820 *dev, void *useraddr)
1176 {
1177 	u32 ethcmd;
1178 
1179 	if (copy_from_user(&ethcmd, useraddr, sizeof (ethcmd)))
1180 		return -EFAULT;
1181 
1182 	switch (ethcmd) {
1183 	case ETHTOOL_GDRVINFO:
1184 		{
1185 			struct ethtool_drvinfo info = { ETHTOOL_GDRVINFO };
1186 			strcpy(info.driver, "ns83820");
1187 			strcpy(info.version, VERSION);
1188 			strcpy(info.bus_info, dev->pci_dev->slot_name);
1189 			if (copy_to_user(useraddr, &info, sizeof (info)))
1190 				return -EFAULT;
1191 			return 0;
1192 		}
1193 
1194 	/* get link status */
1195 	case ETHTOOL_GLINK: {
1196 		struct ethtool_value edata = { ETHTOOL_GLINK };
1197 		u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1198 
1199 		if (cfg & CFG_LNKSTS)
1200 			edata.data = 1;
1201 		else
1202 			edata.data = 0;
1203 		if (copy_to_user(useraddr, &edata, sizeof(edata)))
1204 			return -EFAULT;
1205 		return 0;
1206 	}
1207 
1208 	default:
1209 		break;
1210 	}
1211 
1212 	return -EOPNOTSUPP;
1213 }
1214 
ns83820_ioctl(struct net_device * _dev,struct ifreq * rq,int cmd)1215 static int ns83820_ioctl(struct net_device *_dev, struct ifreq *rq, int cmd)
1216 {
1217 	struct ns83820 *dev = (struct ns83820 *)_dev;
1218 
1219 	switch(cmd) {
1220 	case SIOCETHTOOL:
1221 		return ns83820_ethtool_ioctl(dev, (void *) rq->ifr_data);
1222 
1223 	default:
1224 		return -EOPNOTSUPP;
1225 	}
1226 }
1227 
ns83820_mib_isr(struct ns83820 * dev)1228 static void ns83820_mib_isr(struct ns83820 *dev)
1229 {
1230 	spin_lock(&dev->misc_lock);
1231 	ns83820_update_stats(dev);
1232 	spin_unlock(&dev->misc_lock);
1233 }
1234 
1235 static void ns83820_do_isr(struct ns83820 *dev, u32 isr);
ns83820_irq(int foo,void * data,struct pt_regs * regs)1236 static void ns83820_irq(int foo, void *data, struct pt_regs *regs)
1237 {
1238 	struct ns83820 *dev = data;
1239 	u32 isr;
1240 	dprintk("ns83820_irq(%p)\n", dev);
1241 
1242 	dev->ihr = 0;
1243 
1244 	isr = readl(dev->base + ISR);
1245 	dprintk("irq: %08x\n", isr);
1246 	ns83820_do_isr(dev, isr);
1247 }
1248 
ns83820_do_isr(struct ns83820 * dev,u32 isr)1249 static void ns83820_do_isr(struct ns83820 *dev, u32 isr)
1250 {
1251 #ifdef DEBUG
1252 	if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1253 		Dprintk("odd isr? 0x%08x\n", isr);
1254 #endif
1255 
1256 	if (ISR_RXIDLE & isr) {
1257 		dev->rx_info.idle = 1;
1258 		Dprintk("oh dear, we are idle\n");
1259 		ns83820_rx_kick(dev);
1260 	}
1261 
1262 	if ((ISR_RXDESC | ISR_RXOK) & isr) {
1263 		prefetch(dev->rx_info.next_rx_desc);
1264 
1265 		spin_lock_irq(&dev->misc_lock);
1266 		dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1267 		writel(dev->IMR_cache, dev->base + IMR);
1268 		spin_unlock_irq(&dev->misc_lock);
1269 
1270 		tasklet_schedule(&dev->rx_tasklet);
1271 		//rx_irq(dev);
1272 		//writel(4, dev->base + IHR);
1273 	}
1274 
1275 	if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1276 		ns83820_rx_kick(dev);
1277 
1278 	if (unlikely(ISR_RXSOVR & isr)) {
1279 		//printk("overrun: rxsovr\n");
1280 		dev->stats.rx_fifo_errors ++;
1281 	}
1282 
1283 	if (unlikely(ISR_RXORN & isr)) {
1284 		//printk("overrun: rxorn\n");
1285 		dev->stats.rx_fifo_errors ++;
1286 	}
1287 
1288 	if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1289 		writel(CR_RXE, dev->base + CR);
1290 
1291 	if (ISR_TXIDLE & isr) {
1292 		u32 txdp;
1293 		txdp = readl(dev->base + TXDP);
1294 		dprintk("txdp: %08x\n", txdp);
1295 		txdp -= dev->tx_phy_descs;
1296 		dev->tx_idx = txdp / (DESC_SIZE * 4);
1297 		if (dev->tx_idx >= NR_TX_DESC) {
1298 			printk(KERN_ALERT "%s: BUG -- txdp out of range\n", dev->net_dev.name);
1299 			dev->tx_idx = 0;
1300 		}
1301 		/* The may have been a race between a pci originated read
1302 		 * and the descriptor update from the cpu.  Just in case,
1303 		 * kick the transmitter if the hardware thinks it is on a
1304 		 * different descriptor than we are.
1305 		 */
1306 		if (dev->tx_idx != dev->tx_free_idx)
1307 			kick_tx(dev);
1308 	}
1309 
1310 	/* Defer tx ring processing until more than a minimum amount of
1311 	 * work has accumulated
1312 	 */
1313 	if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1314 		do_tx_done(dev);
1315 
1316 		/* Disable TxOk if there are no outstanding tx packets.
1317 		 */
1318 		if ((dev->tx_done_idx == dev->tx_free_idx) &&
1319 		    (dev->IMR_cache & ISR_TXOK)) {
1320 			spin_lock_irq(&dev->misc_lock);
1321 			dev->IMR_cache &= ~ISR_TXOK;
1322 			writel(dev->IMR_cache, dev->base + IMR);
1323 			spin_unlock_irq(&dev->misc_lock);
1324 		}
1325 	}
1326 
1327 	/* The TxIdle interrupt can come in before the transmit has
1328 	 * completed.  Normally we reap packets off of the combination
1329 	 * of TxDesc and TxIdle and leave TxOk disabled (since it
1330 	 * occurs on every packet), but when no further irqs of this
1331 	 * nature are expected, we must enable TxOk.
1332 	 */
1333 	if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1334 		spin_lock_irq(&dev->misc_lock);
1335 		dev->IMR_cache |= ISR_TXOK;
1336 		writel(dev->IMR_cache, dev->base + IMR);
1337 		spin_unlock_irq(&dev->misc_lock);
1338 	}
1339 
1340 	/* MIB interrupt: one of the statistics counters is about to overflow */
1341 	if (unlikely(ISR_MIB & isr))
1342 		ns83820_mib_isr(dev);
1343 
1344 	/* PHY: Link up/down/negotiation state change */
1345 	if (unlikely(ISR_PHY & isr))
1346 		phy_intr(dev);
1347 
1348 #if 0	/* Still working on the interrupt mitigation strategy */
1349 	if (dev->ihr)
1350 		writel(dev->ihr, dev->base + IHR);
1351 #endif
1352 }
1353 
ns83820_do_reset(struct ns83820 * dev,u32 which)1354 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1355 {
1356 	Dprintk("resetting chip...\n");
1357 	writel(which, dev->base + CR);
1358 	do {
1359 		schedule();
1360 	} while (readl(dev->base + CR) & which);
1361 	Dprintk("okay!\n");
1362 }
1363 
ns83820_stop(struct net_device * _dev)1364 static int ns83820_stop(struct net_device *_dev)
1365 {
1366 	struct ns83820 *dev = (struct ns83820 *)_dev;
1367 
1368 	/* FIXME: protect against interrupt handler? */
1369 	del_timer_sync(&dev->tx_watchdog);
1370 
1371 	/* disable interrupts */
1372 	writel(0, dev->base + IMR);
1373 	writel(0, dev->base + IER);
1374 	readl(dev->base + IER);
1375 
1376 	dev->rx_info.up = 0;
1377 	synchronize_irq();
1378 
1379 	ns83820_do_reset(dev, CR_RST);
1380 
1381 	synchronize_irq();
1382 
1383 	spin_lock_irq(&dev->misc_lock);
1384 	dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1385 	spin_unlock_irq(&dev->misc_lock);
1386 
1387 	ns83820_cleanup_rx(dev);
1388 	ns83820_cleanup_tx(dev);
1389 
1390 	return 0;
1391 }
1392 
1393 static void ns83820_do_isr(struct ns83820 *dev, u32 isr);
ns83820_tx_timeout(struct net_device * _dev)1394 static void ns83820_tx_timeout(struct net_device *_dev)
1395 {
1396 	struct ns83820 *dev = (struct ns83820 *)_dev;
1397         u32 tx_done_idx, *desc;
1398 	long flags;
1399 
1400 	__save_flags(flags);
1401 	__cli();
1402 
1403 	tx_done_idx = dev->tx_done_idx;
1404 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1405 
1406 	printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1407 		dev->net_dev.name,
1408 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1409 
1410 #if defined(DEBUG)
1411 	{
1412 		u32 isr;
1413 		isr = readl(dev->base + ISR);
1414 		printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1415 		ns83820_do_isr(dev, isr);
1416 	}
1417 #endif
1418 
1419 	do_tx_done(dev);
1420 
1421 	tx_done_idx = dev->tx_done_idx;
1422 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1423 
1424 	printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1425 		dev->net_dev.name,
1426 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1427 
1428 	__restore_flags(flags);
1429 }
1430 
ns83820_tx_watch(unsigned long data)1431 static void ns83820_tx_watch(unsigned long data)
1432 {
1433 	struct ns83820 *dev = (void *)data;
1434 
1435 #if defined(DEBUG)
1436 	printk("ns83820_tx_watch: %u %u %d\n",
1437 		dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1438 		);
1439 #endif
1440 
1441 	if (time_after(jiffies, dev->net_dev.trans_start + 1*HZ) &&
1442 	    dev->tx_done_idx != dev->tx_free_idx) {
1443 		printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1444 			dev->net_dev.name,
1445 			dev->tx_done_idx, dev->tx_free_idx,
1446 			atomic_read(&dev->nr_tx_skbs));
1447 		ns83820_tx_timeout(&dev->net_dev);
1448 	}
1449 
1450 	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1451 }
1452 
ns83820_open(struct net_device * _dev)1453 static int ns83820_open(struct net_device *_dev)
1454 {
1455 	struct ns83820 *dev = (struct ns83820 *)_dev;
1456 	unsigned i;
1457 	u32 desc;
1458 	int ret;
1459 
1460 	dprintk("ns83820_open\n");
1461 
1462 	writel(0, dev->base + PQCR);
1463 
1464 	ret = ns83820_setup_rx(dev);
1465 	if (ret)
1466 		goto failed;
1467 
1468 	memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1469 	for (i=0; i<NR_TX_DESC; i++) {
1470 		dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1471 				= cpu_to_le32(
1472 				  dev->tx_phy_descs
1473 				  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1474 	}
1475 
1476 	dev->tx_idx = 0;
1477 	dev->tx_done_idx = 0;
1478 	desc = dev->tx_phy_descs;
1479 	writel(0, dev->base + TXDP_HI);
1480 	writel(desc, dev->base + TXDP);
1481 
1482 	init_timer(&dev->tx_watchdog);
1483 	dev->tx_watchdog.data = (unsigned long)dev;
1484 	dev->tx_watchdog.function = ns83820_tx_watch;
1485 	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1486 
1487 	netif_start_queue(&dev->net_dev);	/* FIXME: wait for phy to come up */
1488 
1489 	return 0;
1490 
1491 failed:
1492 	ns83820_stop(_dev);
1493 	return ret;
1494 }
1495 
ns83820_getmac(struct ns83820 * dev,u8 * mac)1496 static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1497 {
1498 	unsigned i;
1499 	for (i=0; i<3; i++) {
1500 		u32 data;
1501 #if 0	/* I've left this in as an example of how to use eeprom.h */
1502 		data = eeprom_readw(&dev->ee, 0xa + 2 - i);
1503 #else
1504 		/* Read from the perfect match memory: this is loaded by
1505 		 * the chip from the EEPROM via the EELOAD self test.
1506 		 */
1507 		writel(i*2, dev->base + RFCR);
1508 		data = readl(dev->base + RFDR);
1509 #endif
1510 		*mac++ = data;
1511 		*mac++ = data >> 8;
1512 	}
1513 }
1514 
ns83820_change_mtu(struct net_device * _dev,int new_mtu)1515 static int ns83820_change_mtu(struct net_device *_dev, int new_mtu)
1516 {
1517 	if (new_mtu > RX_BUF_SIZE)
1518 		return -EINVAL;
1519 	_dev->mtu = new_mtu;
1520 	return 0;
1521 }
1522 
ns83820_set_multicast(struct net_device * _dev)1523 static void ns83820_set_multicast(struct net_device *_dev)
1524 {
1525 	struct ns83820 *dev = (void *)_dev;
1526 	u8 *rfcr = dev->base + RFCR;
1527 	u32 and_mask = 0xffffffff;
1528 	u32 or_mask = 0;
1529 	u32 val;
1530 
1531 	if (dev->net_dev.flags & IFF_PROMISC)
1532 		or_mask |= RFCR_AAU | RFCR_AAM;
1533 	else
1534 		and_mask &= ~(RFCR_AAU | RFCR_AAM);
1535 
1536 	if (dev->net_dev.flags & IFF_ALLMULTI)
1537 		or_mask |= RFCR_AAM;
1538 	else
1539 		and_mask &= ~RFCR_AAM;
1540 
1541 	spin_lock_irq(&dev->misc_lock);
1542 	val = (readl(rfcr) & and_mask) | or_mask;
1543 	/* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1544 	writel(val & ~RFCR_RFEN, rfcr);
1545 	writel(val, rfcr);
1546 	spin_unlock_irq(&dev->misc_lock);
1547 }
1548 
ns83820_run_bist(struct ns83820 * dev,const char * name,u32 enable,u32 done,u32 fail)1549 static void ns83820_run_bist(struct ns83820 *dev, const char *name, u32 enable, u32 done, u32 fail)
1550 {
1551 	int timed_out = 0;
1552 	long start;
1553 	u32 status;
1554 	int loops = 0;
1555 
1556 	dprintk("%s: start %s\n", dev->net_dev.name, name);
1557 
1558 	start = jiffies;
1559 
1560 	writel(enable, dev->base + PTSCR);
1561 	for (;;) {
1562 		loops++;
1563 		status = readl(dev->base + PTSCR);
1564 		if (!(status & enable))
1565 			break;
1566 		if (status & done)
1567 			break;
1568 		if (status & fail)
1569 			break;
1570 		if ((jiffies - start) >= HZ) {
1571 			timed_out = 1;
1572 			break;
1573 		}
1574 		set_current_state(TASK_UNINTERRUPTIBLE);
1575 		schedule_timeout(1);
1576 	}
1577 
1578 	if (status & fail)
1579 		printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1580 			dev->net_dev.name, name, status, fail);
1581 	else if (timed_out)
1582 		printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1583 			dev->net_dev.name, name, status);
1584 
1585 	dprintk("%s: done %s in %d loops\n", dev->net_dev.name, name, loops);
1586 }
1587 
1588 #ifdef PHY_CODE_IS_FINISHED
ns83820_mii_write_bit(struct ns83820 * dev,int bit)1589 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1590 {
1591 	/* drive MDC low */
1592 	dev->MEAR_cache &= ~MEAR_MDC;
1593 	writel(dev->MEAR_cache, dev->base + MEAR);
1594 	readl(dev->base + MEAR);
1595 
1596 	/* enable output, set bit */
1597 	dev->MEAR_cache |= MEAR_MDDIR;
1598 	if (bit)
1599 		dev->MEAR_cache |= MEAR_MDIO;
1600 	else
1601 		dev->MEAR_cache &= ~MEAR_MDIO;
1602 
1603 	/* set the output bit */
1604 	writel(dev->MEAR_cache, dev->base + MEAR);
1605 	readl(dev->base + MEAR);
1606 
1607 	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1608 	udelay(1);
1609 
1610 	/* drive MDC high causing the data bit to be latched */
1611 	dev->MEAR_cache |= MEAR_MDC;
1612 	writel(dev->MEAR_cache, dev->base + MEAR);
1613 	readl(dev->base + MEAR);
1614 
1615 	/* Wait again... */
1616 	udelay(1);
1617 }
1618 
ns83820_mii_read_bit(struct ns83820 * dev)1619 static int ns83820_mii_read_bit(struct ns83820 *dev)
1620 {
1621 	int bit;
1622 
1623 	/* drive MDC low, disable output */
1624 	dev->MEAR_cache &= ~MEAR_MDC;
1625 	dev->MEAR_cache &= ~MEAR_MDDIR;
1626 	writel(dev->MEAR_cache, dev->base + MEAR);
1627 	readl(dev->base + MEAR);
1628 
1629 	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1630 	udelay(1);
1631 
1632 	/* drive MDC high causing the data bit to be latched */
1633 	bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1634 	dev->MEAR_cache |= MEAR_MDC;
1635 	writel(dev->MEAR_cache, dev->base + MEAR);
1636 
1637 	/* Wait again... */
1638 	udelay(1);
1639 
1640 	return bit;
1641 }
1642 
ns83820_mii_read_reg(struct ns83820 * dev,unsigned phy,unsigned reg)1643 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1644 {
1645 	unsigned data = 0;
1646 	int i;
1647 
1648 	/* read some garbage so that we eventually sync up */
1649 	for (i=0; i<64; i++)
1650 		ns83820_mii_read_bit(dev);
1651 
1652 	ns83820_mii_write_bit(dev, 0);	/* start */
1653 	ns83820_mii_write_bit(dev, 1);
1654 	ns83820_mii_write_bit(dev, 1);	/* opcode read */
1655 	ns83820_mii_write_bit(dev, 0);
1656 
1657 	/* write out the phy address: 5 bits, msb first */
1658 	for (i=0; i<5; i++)
1659 		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1660 
1661 	/* write out the register address, 5 bits, msb first */
1662 	for (i=0; i<5; i++)
1663 		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1664 
1665 	ns83820_mii_read_bit(dev);	/* turn around cycles */
1666 	ns83820_mii_read_bit(dev);
1667 
1668 	/* read in the register data, 16 bits msb first */
1669 	for (i=0; i<16; i++) {
1670 		data <<= 1;
1671 		data |= ns83820_mii_read_bit(dev);
1672 	}
1673 
1674 	return data;
1675 }
1676 
ns83820_mii_write_reg(struct ns83820 * dev,unsigned phy,unsigned reg,unsigned data)1677 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1678 {
1679 	int i;
1680 
1681 	/* read some garbage so that we eventually sync up */
1682 	for (i=0; i<64; i++)
1683 		ns83820_mii_read_bit(dev);
1684 
1685 	ns83820_mii_write_bit(dev, 0);	/* start */
1686 	ns83820_mii_write_bit(dev, 1);
1687 	ns83820_mii_write_bit(dev, 0);	/* opcode read */
1688 	ns83820_mii_write_bit(dev, 1);
1689 
1690 	/* write out the phy address: 5 bits, msb first */
1691 	for (i=0; i<5; i++)
1692 		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1693 
1694 	/* write out the register address, 5 bits, msb first */
1695 	for (i=0; i<5; i++)
1696 		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1697 
1698 	ns83820_mii_read_bit(dev);	/* turn around cycles */
1699 	ns83820_mii_read_bit(dev);
1700 
1701 	/* read in the register data, 16 bits msb first */
1702 	for (i=0; i<16; i++)
1703 		ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1704 
1705 	return data;
1706 }
1707 
ns83820_probe_phy(struct ns83820 * dev)1708 static void ns83820_probe_phy(struct ns83820 *dev)
1709 {
1710 	static int first;
1711 	int i;
1712 #define MII_PHYIDR1	0x02
1713 #define MII_PHYIDR2	0x03
1714 
1715 #if 0
1716 	if (!first) {
1717 		unsigned tmp;
1718 		ns83820_mii_read_reg(dev, 1, 0x09);
1719 		ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1720 
1721 		tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1722 		ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1723 		udelay(1300);
1724 		ns83820_mii_read_reg(dev, 1, 0x09);
1725 	}
1726 #endif
1727 	first = 1;
1728 
1729 	for (i=1; i<2; i++) {
1730 		int j;
1731 		unsigned a, b;
1732 		a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1733 		b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1734 
1735 		//printk("%s: phy %d: 0x%04x 0x%04x\n",
1736 		//	dev->net_dev.name, i, a, b);
1737 
1738 		for (j=0; j<0x16; j+=4) {
1739 			dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1740 				dev->net_dev.name, j,
1741 				ns83820_mii_read_reg(dev, i, 0 + j),
1742 				ns83820_mii_read_reg(dev, i, 1 + j),
1743 				ns83820_mii_read_reg(dev, i, 2 + j),
1744 				ns83820_mii_read_reg(dev, i, 3 + j)
1745 				);
1746 		}
1747 	}
1748 	{
1749 		unsigned a, b;
1750 		/* read firmware version: memory addr is 0x8402 and 0x8403 */
1751 		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1752 		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1753 		a = ns83820_mii_read_reg(dev, 1, 0x1d);
1754 
1755 		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1756 		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1757 		b = ns83820_mii_read_reg(dev, 1, 0x1d);
1758 		dprintk("version: 0x%04x 0x%04x\n", a, b);
1759 	}
1760 }
1761 #endif
1762 
ns83820_init_one(struct pci_dev * pci_dev,const struct pci_device_id * id)1763 static int __devinit ns83820_init_one(struct pci_dev *pci_dev, const struct pci_device_id *id)
1764 {
1765 	struct ns83820 *dev;
1766 	long addr;
1767 	int err;
1768 	int using_dac = 0;
1769 
1770 	/* See if we can set the dma mask early on; failure is fatal. */
1771 	if (TRY_DAC && !pci_set_dma_mask(pci_dev, 0xffffffffffffffffULL)) {
1772 		using_dac = 1;
1773 	} else if (!pci_set_dma_mask(pci_dev, 0xffffffff)) {
1774 		using_dac = 0;
1775 	} else {
1776 		printk(KERN_WARNING "ns83820.c: pci_set_dma_mask failed!\n");
1777 		return -ENODEV;
1778 	}
1779 
1780 	dev = (struct ns83820 *)alloc_etherdev((sizeof *dev) - (sizeof dev->net_dev));
1781 	err = -ENOMEM;
1782 	if (!dev)
1783 		goto out;
1784 
1785 	spin_lock_init(&dev->rx_info.lock);
1786 	spin_lock_init(&dev->tx_lock);
1787 	spin_lock_init(&dev->misc_lock);
1788 	dev->pci_dev = pci_dev;
1789 
1790 	dev->ee.cache = &dev->MEAR_cache;
1791 	dev->ee.lock = &dev->misc_lock;
1792 	dev->net_dev.owner = THIS_MODULE;
1793 	dev->net_dev.priv = dev;
1794 
1795 	INIT_TQUEUE(&dev->tq_refill, queue_refill, dev);
1796 	tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)dev);
1797 
1798 	err = pci_enable_device(pci_dev);
1799 	if (err) {
1800 		printk(KERN_INFO "ns83820: pci_enable_dev failed: %d\n", err);
1801 		goto out_free;
1802 	}
1803 
1804 	pci_set_master(pci_dev);
1805 	addr = pci_resource_start(pci_dev, 1);
1806 	dev->base = ioremap_nocache(addr, PAGE_SIZE);
1807 	dev->tx_descs = pci_alloc_consistent(pci_dev,
1808 			4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1809 	dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1810 			4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1811 	err = -ENOMEM;
1812 	if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1813 		goto out_disable;
1814 
1815 	dprintk("%p: %08lx  %p: %08lx\n",
1816 		dev->tx_descs, (long)dev->tx_phy_descs,
1817 		dev->rx_info.descs, (long)dev->rx_info.phy_descs);
1818 
1819 	/* disable interrupts */
1820 	writel(0, dev->base + IMR);
1821 	writel(0, dev->base + IER);
1822 	readl(dev->base + IER);
1823 
1824 	dev->IMR_cache = 0;
1825 
1826 	setup_ee_mem_bitbanger(&dev->ee, (long)dev->base + MEAR, 3, 2, 1, 0,
1827 		0);
1828 
1829 	err = request_irq(pci_dev->irq, ns83820_irq, SA_SHIRQ,
1830 			  dev->net_dev.name, dev);
1831 	if (err) {
1832 		printk(KERN_INFO "ns83820: unable to register irq %d\n",
1833 			pci_dev->irq);
1834 		goto out_unmap;
1835 	}
1836 
1837 	err = register_netdev(&dev->net_dev);
1838 	if (err) {
1839 		printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
1840 		goto out_unmap;
1841 	}
1842 
1843 	printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1844 		dev->net_dev.name, le32_to_cpu(readl(dev->base + 0x22c)),
1845 		pci_dev->subsystem_vendor, pci_dev->subsystem_device);
1846 
1847 	dev->net_dev.open = ns83820_open;
1848 	dev->net_dev.stop = ns83820_stop;
1849 	dev->net_dev.hard_start_xmit = ns83820_hard_start_xmit;
1850 	dev->net_dev.get_stats = ns83820_get_stats;
1851 	dev->net_dev.change_mtu = ns83820_change_mtu;
1852 	dev->net_dev.set_multicast_list = ns83820_set_multicast;
1853 	dev->net_dev.do_ioctl = ns83820_ioctl;
1854 	dev->net_dev.tx_timeout = ns83820_tx_timeout;
1855 	dev->net_dev.watchdog_timeo = 5 * HZ;
1856 
1857 	pci_set_drvdata(pci_dev, dev);
1858 
1859 	ns83820_do_reset(dev, CR_RST);
1860 
1861 	/* Must reset the ram bist before running it */
1862 	writel(PTSCR_RBIST_RST, dev->base + PTSCR);
1863 	ns83820_run_bist(dev, "sram bist",   PTSCR_RBIST_EN,
1864 			 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
1865 	ns83820_run_bist(dev, "eeprom bist", PTSCR_EEBIST_EN, 0,
1866 			 PTSCR_EEBIST_FAIL);
1867 	ns83820_run_bist(dev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
1868 
1869 	/* I love config registers */
1870 	dev->CFG_cache = readl(dev->base + CFG);
1871 
1872 	if ((dev->CFG_cache & CFG_PCI64_DET)) {
1873 		printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
1874 			dev->net_dev.name);
1875 		/*dev->CFG_cache |= CFG_DATA64_EN;*/
1876 		if (!(dev->CFG_cache & CFG_DATA64_EN))
1877 			printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
1878 				dev->net_dev.name);
1879 	} else
1880 		dev->CFG_cache &= ~(CFG_DATA64_EN);
1881 
1882 	dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
1883 			   CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
1884 			   CFG_M64ADDR);
1885 	dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
1886 			  CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
1887 	dev->CFG_cache |= CFG_REQALG;
1888 	dev->CFG_cache |= CFG_POW;
1889 	dev->CFG_cache |= CFG_TMRTEST;
1890 
1891 	/* When compiled with 64 bit addressing, we must always enable
1892 	 * the 64 bit descriptor format.
1893 	 */
1894 #ifdef USE_64BIT_ADDR
1895 	dev->CFG_cache |= CFG_M64ADDR;
1896 #endif
1897 	if (using_dac)
1898 		dev->CFG_cache |= CFG_T64ADDR;
1899 
1900 	/* Big endian mode does not seem to do what the docs suggest */
1901 	dev->CFG_cache &= ~CFG_BEM;
1902 
1903 	/* setup optical transceiver if we have one */
1904 	if (dev->CFG_cache & CFG_TBI_EN) {
1905 		printk(KERN_INFO "%s: enabling optical transceiver\n",
1906 			dev->net_dev.name);
1907 		writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
1908 
1909 		/* setup auto negotiation feature advertisement */
1910 		writel(readl(dev->base + TANAR)
1911 		       | TANAR_HALF_DUP | TANAR_FULL_DUP,
1912 		       dev->base + TANAR);
1913 
1914 		/* start auto negotiation */
1915 		writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1916 		       dev->base + TBICR);
1917 		writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1918 		dev->linkstate = LINK_AUTONEGOTIATE;
1919 
1920 		dev->CFG_cache |= CFG_MODE_1000;
1921 	}
1922 
1923 	writel(dev->CFG_cache, dev->base + CFG);
1924 	dprintk("CFG: %08x\n", dev->CFG_cache);
1925 
1926 	if (reset_phy) {
1927 		printk(KERN_INFO "%s: resetting phy\n", dev->net_dev.name);
1928 		writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
1929 		set_current_state(TASK_UNINTERRUPTIBLE);
1930 		schedule_timeout((HZ+99)/100);
1931 		writel(dev->CFG_cache, dev->base + CFG);
1932 	}
1933 
1934 #if 0	/* Huh?  This sets the PCI latency register.  Should be done via
1935 	 * the PCI layer.  FIXME.
1936 	 */
1937 	if (readl(dev->base + SRR))
1938 		writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
1939 #endif
1940 
1941 	/* Note!  The DMA burst size interacts with packet
1942 	 * transmission, such that the largest packet that
1943 	 * can be transmitted is 8192 - FLTH - burst size.
1944 	 * If only the transmit fifo was larger...
1945 	 */
1946 	/* Ramit : 1024 DMA is not a good idea, it ends up banging
1947 	 * some DELL and COMPAQ SMP systems */
1948 	writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
1949 		| ((1600 / 32) * 0x100),
1950 		dev->base + TXCFG);
1951 
1952 	/* Flush the interrupt holdoff timer */
1953 	writel(0x000, dev->base + IHR);
1954 	writel(0x100, dev->base + IHR);
1955 	writel(0x000, dev->base + IHR);
1956 
1957 	/* Set Rx to full duplex, don't accept runt, errored, long or length
1958 	 * range errored packets.  Use 512 byte DMA.
1959 	 */
1960 	/* Ramit : 1024 DMA is not a good idea, it ends up banging
1961 	 * some DELL and COMPAQ SMP systems
1962 	 * Turn on ALP, only we are accpeting Jumbo Packets */
1963 	writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
1964 		| RXCFG_STRIPCRC
1965 		//| RXCFG_ALP
1966 		| (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
1967 
1968 	/* Disable priority queueing */
1969 	writel(0, dev->base + PQCR);
1970 
1971 	/* Enable IP checksum validation and detetion of VLAN headers.
1972 	 * Note: do not set the reject options as at least the 0x102
1973 	 * revision of the chip does not properly accept IP fragments
1974 	 * at least for UDP.
1975 	 */
1976 	/* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
1977 	 * the MAC it calculates the packetsize AFTER stripping the VLAN
1978 	 * header, and if a VLAN Tagged packet of 64 bytes is received (like
1979 	 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
1980 	 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
1981 	 * it discrards it!.  These guys......
1982 	 */
1983 	writel(VRCR_IPEN | VRCR_VTDEN, dev->base + VRCR);
1984 
1985 	/* Enable per-packet TCP/UDP/IP checksumming */
1986 	writel(VTCR_PPCHK, dev->base + VTCR);
1987 
1988 	/* Ramit : Enable async and sync pause frames */
1989 	/* writel(0, dev->base + PCR); */
1990 	writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
1991 		PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
1992 		dev->base + PCR);
1993 
1994 	/* Disable Wake On Lan */
1995 	writel(0, dev->base + WCSR);
1996 
1997 	ns83820_getmac(dev, dev->net_dev.dev_addr);
1998 
1999 	/* Yes, we support dumb IP checksum on transmit */
2000 	dev->net_dev.features |= NETIF_F_SG;
2001 	dev->net_dev.features |= NETIF_F_IP_CSUM;
2002 
2003 	if (using_dac) {
2004 		printk(KERN_INFO "%s: using 64 bit addressing.\n",
2005 			dev->net_dev.name);
2006 		dev->net_dev.features |= NETIF_F_HIGHDMA;
2007 	}
2008 
2009 	printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %02x:%02x:%02x:%02x:%02x:%02x io=0x%08lx irq=%d f=%s\n",
2010 		dev->net_dev.name,
2011 		(unsigned)readl(dev->base + SRR) >> 8,
2012 		(unsigned)readl(dev->base + SRR) & 0xff,
2013 		dev->net_dev.dev_addr[0], dev->net_dev.dev_addr[1],
2014 		dev->net_dev.dev_addr[2], dev->net_dev.dev_addr[3],
2015 		dev->net_dev.dev_addr[4], dev->net_dev.dev_addr[5],
2016 		addr, pci_dev->irq,
2017 		(dev->net_dev.features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2018 		);
2019 
2020 #ifdef PHY_CODE_IS_FINISHED
2021 	ns83820_probe_phy(dev);
2022 #endif
2023 
2024 	return 0;
2025 
2026 out_unmap:
2027 	iounmap(dev->base);
2028 out_disable:
2029 	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2030 	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2031 	pci_disable_device(pci_dev);
2032 out_free:
2033 	kfree(dev);
2034 	pci_set_drvdata(pci_dev, NULL);
2035 out:
2036 	return err;
2037 }
2038 
ns83820_remove_one(struct pci_dev * pci_dev)2039 static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2040 {
2041 	struct ns83820	*dev = pci_get_drvdata(pci_dev);
2042 
2043 	if (!dev)			/* paranoia */
2044 		return;
2045 
2046 	writel(0, dev->base + IMR);	/* paranoia */
2047 	writel(0, dev->base + IER);
2048 	readl(dev->base + IER);
2049 
2050 	unregister_netdev(&dev->net_dev);
2051 	free_irq(dev->pci_dev->irq, dev);
2052 	iounmap(dev->base);
2053 	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2054 			dev->tx_descs, dev->tx_phy_descs);
2055 	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2056 			dev->rx_info.descs, dev->rx_info.phy_descs);
2057 	pci_disable_device(dev->pci_dev);
2058 	kfree(dev);
2059 	pci_set_drvdata(pci_dev, NULL);
2060 }
2061 
2062 static struct pci_device_id ns83820_pci_tbl[] __devinitdata = {
2063 	{ 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2064 	{ 0, },
2065 };
2066 
2067 static struct pci_driver driver = {
2068 	name:		"ns83820",
2069 	id_table:	ns83820_pci_tbl,
2070 	probe:		ns83820_init_one,
2071 	remove:		__devexit_p(ns83820_remove_one),
2072 #if 0	/* FIXME: implement */
2073 	suspend:	,
2074 	resume:		,
2075 #endif
2076 };
2077 
2078 
ns83820_init(void)2079 static int __init ns83820_init(void)
2080 {
2081 	printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2082 	return pci_module_init(&driver);
2083 }
2084 
ns83820_exit(void)2085 static void __exit ns83820_exit(void)
2086 {
2087 	pci_unregister_driver(&driver);
2088 }
2089 
2090 MODULE_AUTHOR("Benjamin LaHaise <bcrl@redhat.com>");
2091 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2092 MODULE_LICENSE("GPL");
2093 
2094 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2095 
2096 MODULE_PARM(lnksts, "i");
2097 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2098 
2099 MODULE_PARM(ihr, "i");
2100 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2101 
2102 MODULE_PARM(reset_phy, "i");
2103 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2104 
2105 module_init(ns83820_init);
2106 module_exit(ns83820_exit);
2107