1 /*
2 * in2000.c - Linux device driver for the
3 * Always IN2000 ISA SCSI card.
4 *
5 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
6 * john@geolog.com
7 * jshiffle@netcom.com
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 *
20 * Drew Eckhardt's excellent 'Generic NCR5380' sources provided
21 * much of the inspiration and some of the code for this driver.
22 * The Linux IN2000 driver distributed in the Linux kernels through
23 * version 1.2.13 was an extremely valuable reference on the arcane
24 * (and still mysterious) workings of the IN2000's fifo. It also
25 * is where I lifted in2000_biosparam(), the gist of the card
26 * detection scheme, and other bits of code. Many thanks to the
27 * talented and courageous people who wrote, contributed to, and
28 * maintained that driver (including Brad McLean, Shaun Savage,
29 * Bill Earnest, Larry Doolittle, Roger Sunshine, John Luckey,
30 * Matt Postiff, Peter Lu, zerucha@shell.portal.com, and Eric
31 * Youngdale). I should also mention the driver written by
32 * Hamish Macdonald for the (GASP!) Amiga A2091 card, included
33 * in the Linux-m68k distribution; it gave me a good initial
34 * understanding of the proper way to run a WD33c93 chip, and I
35 * ended up stealing lots of code from it.
36 *
37 * _This_ driver is (I feel) an improvement over the old one in
38 * several respects:
39 * - All problems relating to the data size of a SCSI request are
40 * gone (as far as I know). The old driver couldn't handle
41 * swapping to partitions because that involved 4k blocks, nor
42 * could it deal with the st.c tape driver unmodified, because
43 * that usually involved 4k - 32k blocks. The old driver never
44 * quite got away from a morbid dependence on 2k block sizes -
45 * which of course is the size of the card's fifo.
46 *
47 * - Target Disconnection/Reconnection is now supported. Any
48 * system with more than one device active on the SCSI bus
49 * will benefit from this. The driver defaults to what I'm
50 * calling 'adaptive disconnect' - meaning that each command
51 * is evaluated individually as to whether or not it should
52 * be run with the option to disconnect/reselect (if the
53 * device chooses), or as a "SCSI-bus-hog".
54 *
55 * - Synchronous data transfers are now supported. Because there
56 * are a few devices (and many improperly terminated systems)
57 * that choke when doing sync, the default is sync DISABLED
58 * for all devices. This faster protocol can (and should!)
59 * be enabled on selected devices via the command-line.
60 *
61 * - Runtime operating parameters can now be specified through
62 * either the LILO or the 'insmod' command line. For LILO do:
63 * "in2000=blah,blah,blah"
64 * and with insmod go like:
65 * "insmod /usr/src/linux/modules/in2000.o setup_strings=blah,blah"
66 * The defaults should be good for most people. See the comment
67 * for 'setup_strings' below for more details.
68 *
69 * - The old driver relied exclusively on what the Western Digital
70 * docs call "Combination Level 2 Commands", which are a great
71 * idea in that the CPU is relieved of a lot of interrupt
72 * overhead. However, by accepting a certain (user-settable)
73 * amount of additional interrupts, this driver achieves
74 * better control over the SCSI bus, and data transfers are
75 * almost as fast while being much easier to define, track,
76 * and debug.
77 *
78 * - You can force detection of a card whose BIOS has been disabled.
79 *
80 * - Multiple IN2000 cards might almost be supported. I've tried to
81 * keep it in mind, but have no way to test...
82 *
83 *
84 * TODO:
85 * tagged queuing. multiple cards.
86 *
87 *
88 * NOTE:
89 * When using this or any other SCSI driver as a module, you'll
90 * find that with the stock kernel, at most _two_ SCSI hard
91 * drives will be linked into the device list (ie, usable).
92 * If your IN2000 card has more than 2 disks on its bus, you
93 * might want to change the define of 'SD_EXTRA_DEVS' in the
94 * 'hosts.h' file from 2 to whatever is appropriate. It took
95 * me a while to track down this surprisingly obscure and
96 * undocumented little "feature".
97 *
98 *
99 * People with bug reports, wish-lists, complaints, comments,
100 * or improvements are asked to pah-leeez email me (John Shifflett)
101 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
102 * this thing into as good a shape as possible, and I'm positive
103 * there are lots of lurking bugs and "Stupid Places".
104 *
105 */
106
107 #include <linux/module.h>
108
109 #include <asm/system.h>
110 #include <linux/sched.h>
111 #include <linux/string.h>
112 #include <linux/delay.h>
113 #include <linux/proc_fs.h>
114 #include <asm/io.h>
115 #include <linux/ioport.h>
116 #include <linux/blkdev.h>
117
118 #include <linux/blk.h>
119 #include <linux/stat.h>
120
121 #include "scsi.h"
122 #include "sd.h"
123 #include "hosts.h"
124
125 #define IN2000_VERSION "1.33"
126 #define IN2000_DATE "26/August/1998"
127
128 #include "in2000.h"
129
130
131 /*
132 * 'setup_strings' is a single string used to pass operating parameters and
133 * settings from the kernel/module command-line to the driver. 'setup_args[]'
134 * is an array of strings that define the compile-time default values for
135 * these settings. If Linux boots with a LILO or insmod command-line, those
136 * settings are combined with 'setup_args[]'. Note that LILO command-lines
137 * are prefixed with "in2000=" while insmod uses a "setup_strings=" prefix.
138 * The driver recognizes the following keywords (lower case required) and
139 * arguments:
140 *
141 * - ioport:addr -Where addr is IO address of a (usually ROM-less) card.
142 * - noreset -No optional args. Prevents SCSI bus reset at boot time.
143 * - nosync:x -x is a bitmask where the 1st 7 bits correspond with
144 * the 7 possible SCSI devices (bit 0 for device #0, etc).
145 * Set a bit to PREVENT sync negotiation on that device.
146 * The driver default is sync DISABLED on all devices.
147 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer
148 * period. Default is 500; acceptable values are 250 - 1000.
149 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them.
150 * x = 1 does 'adaptive' disconnects, which is the default
151 * and generally the best choice.
152 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bitmask that causes
153 * various types of debug output to printed - see the DB_xxx
154 * defines in in2000.h
155 * - proc:x -If 'PROC_INTERFACE' is defined, x is a bitmask that
156 * determines how the /proc interface works and what it
157 * does - see the PR_xxx defines in in2000.h
158 *
159 * Syntax Notes:
160 * - Numeric arguments can be decimal or the '0x' form of hex notation. There
161 * _must_ be a colon between a keyword and its numeric argument, with no
162 * spaces.
163 * - Keywords are separated by commas, no spaces, in the standard kernel
164 * command-line manner.
165 * - A keyword in the 'nth' comma-separated command-line member will overwrite
166 * the 'nth' element of setup_args[]. A blank command-line member (in
167 * other words, a comma with no preceding keyword) will _not_ overwrite
168 * the corresponding setup_args[] element.
169 *
170 * A few LILO examples (for insmod, use 'setup_strings' instead of 'in2000'):
171 * - in2000=ioport:0x220,noreset
172 * - in2000=period:250,disconnect:2,nosync:0x03
173 * - in2000=debug:0x1e
174 * - in2000=proc:3
175 */
176
177 /* Normally, no defaults are specified... */
178 static char *setup_args[] =
179 {"","","","","","","","",""};
180
181 /* filled in by 'insmod' */
182 static char *setup_strings = 0;
183
184 #ifdef MODULE_PARM
185 MODULE_PARM(setup_strings, "s");
186 #endif
187
188
189 static struct Scsi_Host *instance_list = 0;
190
191
192
read_3393(struct IN2000_hostdata * hostdata,uchar reg_num)193 static inline uchar read_3393(struct IN2000_hostdata *hostdata, uchar reg_num)
194 {
195 write1_io(reg_num,IO_WD_ADDR);
196 return read1_io(IO_WD_DATA);
197 }
198
199
200 #define READ_AUX_STAT() read1_io(IO_WD_ASR)
201
202
write_3393(struct IN2000_hostdata * hostdata,uchar reg_num,uchar value)203 static inline void write_3393(struct IN2000_hostdata *hostdata, uchar reg_num, uchar value)
204 {
205 write1_io(reg_num,IO_WD_ADDR);
206 write1_io(value,IO_WD_DATA);
207 }
208
209
write_3393_cmd(struct IN2000_hostdata * hostdata,uchar cmd)210 static inline void write_3393_cmd(struct IN2000_hostdata *hostdata, uchar cmd)
211 {
212 /* while (READ_AUX_STAT() & ASR_CIP)
213 printk("|");*/
214 write1_io(WD_COMMAND,IO_WD_ADDR);
215 write1_io(cmd,IO_WD_DATA);
216 }
217
218
read_1_byte(struct IN2000_hostdata * hostdata)219 static uchar read_1_byte(struct IN2000_hostdata *hostdata)
220 {
221 uchar asr, x = 0;
222
223 write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
224 write_3393_cmd(hostdata,WD_CMD_TRANS_INFO|0x80);
225 do {
226 asr = READ_AUX_STAT();
227 if (asr & ASR_DBR)
228 x = read_3393(hostdata,WD_DATA);
229 } while (!(asr & ASR_INT));
230 return x;
231 }
232
233
write_3393_count(struct IN2000_hostdata * hostdata,unsigned long value)234 static void write_3393_count(struct IN2000_hostdata *hostdata, unsigned long value)
235 {
236 write1_io(WD_TRANSFER_COUNT_MSB,IO_WD_ADDR);
237 write1_io((value >> 16),IO_WD_DATA);
238 write1_io((value >> 8),IO_WD_DATA);
239 write1_io(value,IO_WD_DATA);
240 }
241
242
read_3393_count(struct IN2000_hostdata * hostdata)243 static unsigned long read_3393_count(struct IN2000_hostdata *hostdata)
244 {
245 unsigned long value;
246
247 write1_io(WD_TRANSFER_COUNT_MSB,IO_WD_ADDR);
248 value = read1_io(IO_WD_DATA) << 16;
249 value |= read1_io(IO_WD_DATA) << 8;
250 value |= read1_io(IO_WD_DATA);
251 return value;
252 }
253
254
255 /* The 33c93 needs to be told which direction a command transfers its
256 * data; we use this function to figure it out. Returns true if there
257 * will be a DATA_OUT phase with this command, false otherwise.
258 * (Thanks to Joerg Dorchain for the research and suggestion.)
259 */
is_dir_out(Scsi_Cmnd * cmd)260 static int is_dir_out(Scsi_Cmnd *cmd)
261 {
262 switch (cmd->cmnd[0]) {
263 case WRITE_6: case WRITE_10: case WRITE_12:
264 case WRITE_LONG: case WRITE_SAME: case WRITE_BUFFER:
265 case WRITE_VERIFY: case WRITE_VERIFY_12:
266 case COMPARE: case COPY: case COPY_VERIFY:
267 case SEARCH_EQUAL: case SEARCH_HIGH: case SEARCH_LOW:
268 case SEARCH_EQUAL_12: case SEARCH_HIGH_12: case SEARCH_LOW_12:
269 case FORMAT_UNIT: case REASSIGN_BLOCKS: case RESERVE:
270 case MODE_SELECT: case MODE_SELECT_10: case LOG_SELECT:
271 case SEND_DIAGNOSTIC: case CHANGE_DEFINITION: case UPDATE_BLOCK:
272 case SET_WINDOW: case MEDIUM_SCAN: case SEND_VOLUME_TAG:
273 case 0xea:
274 return 1;
275 default:
276 return 0;
277 }
278 }
279
280
281
282 static struct sx_period sx_table[] = {
283 { 1, 0x20},
284 {252, 0x20},
285 {376, 0x30},
286 {500, 0x40},
287 {624, 0x50},
288 {752, 0x60},
289 {876, 0x70},
290 {1000,0x00},
291 {0, 0} };
292
round_period(unsigned int period)293 static int round_period(unsigned int period)
294 {
295 int x;
296
297 for (x=1; sx_table[x].period_ns; x++) {
298 if ((period <= sx_table[x-0].period_ns) &&
299 (period > sx_table[x-1].period_ns)) {
300 return x;
301 }
302 }
303 return 7;
304 }
305
calc_sync_xfer(unsigned int period,unsigned int offset)306 static uchar calc_sync_xfer(unsigned int period, unsigned int offset)
307 {
308 uchar result;
309
310 period *= 4; /* convert SDTR code to ns */
311 result = sx_table[round_period(period)].reg_value;
312 result |= (offset < OPTIMUM_SX_OFF)?offset:OPTIMUM_SX_OFF;
313 return result;
314 }
315
316
317
318 static void in2000_execute(struct Scsi_Host *instance);
319
in2000_queuecommand(Scsi_Cmnd * cmd,void (* done)(Scsi_Cmnd *))320 int in2000_queuecommand (Scsi_Cmnd *cmd, void (*done)(Scsi_Cmnd *))
321 {
322 struct IN2000_hostdata *hostdata;
323 Scsi_Cmnd *tmp;
324 unsigned long flags;
325
326 hostdata = (struct IN2000_hostdata *)cmd->host->hostdata;
327
328 DB(DB_QUEUE_COMMAND,printk("Q-%d-%02x-%ld(",cmd->target,cmd->cmnd[0],cmd->pid))
329
330 /* Set up a few fields in the Scsi_Cmnd structure for our own use:
331 * - host_scribble is the pointer to the next cmd in the input queue
332 * - scsi_done points to the routine we call when a cmd is finished
333 * - result is what you'd expect
334 */
335
336 cmd->host_scribble = NULL;
337 cmd->scsi_done = done;
338 cmd->result = 0;
339
340 /* We use the Scsi_Pointer structure that's included with each command
341 * as a scratchpad (as it's intended to be used!). The handy thing about
342 * the SCp.xxx fields is that they're always associated with a given
343 * cmd, and are preserved across disconnect-reselect. This means we
344 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
345 * if we keep all the critical pointers and counters in SCp:
346 * - SCp.ptr is the pointer into the RAM buffer
347 * - SCp.this_residual is the size of that buffer
348 * - SCp.buffer points to the current scatter-gather buffer
349 * - SCp.buffers_residual tells us how many S.G. buffers there are
350 * - SCp.have_data_in helps keep track of >2048 byte transfers
351 * - SCp.sent_command is not used
352 * - SCp.phase records this command's SRCID_ER bit setting
353 */
354
355 if (cmd->use_sg) {
356 cmd->SCp.buffer = (struct scatterlist *)cmd->buffer;
357 cmd->SCp.buffers_residual = cmd->use_sg - 1;
358 cmd->SCp.ptr = (char *)cmd->SCp.buffer->address;
359 cmd->SCp.this_residual = cmd->SCp.buffer->length;
360 }
361 else {
362 cmd->SCp.buffer = NULL;
363 cmd->SCp.buffers_residual = 0;
364 cmd->SCp.ptr = (char *)cmd->request_buffer;
365 cmd->SCp.this_residual = cmd->request_bufflen;
366 }
367 cmd->SCp.have_data_in = 0;
368
369 /* We don't set SCp.phase here - that's done in in2000_execute() */
370
371 /* WD docs state that at the conclusion of a "LEVEL2" command, the
372 * status byte can be retrieved from the LUN register. Apparently,
373 * this is the case only for *uninterrupted* LEVEL2 commands! If
374 * there are any unexpected phases entered, even if they are 100%
375 * legal (different devices may choose to do things differently),
376 * the LEVEL2 command sequence is exited. This often occurs prior
377 * to receiving the status byte, in which case the driver does a
378 * status phase interrupt and gets the status byte on its own.
379 * While such a command can then be "resumed" (ie restarted to
380 * finish up as a LEVEL2 command), the LUN register will NOT be
381 * a valid status byte at the command's conclusion, and we must
382 * use the byte obtained during the earlier interrupt. Here, we
383 * preset SCp.Status to an illegal value (0xff) so that when
384 * this command finally completes, we can tell where the actual
385 * status byte is stored.
386 */
387
388 cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
389
390 /* We need to disable interrupts before messing with the input
391 * queue and calling in2000_execute().
392 */
393
394 save_flags(flags);
395 cli();
396
397 /*
398 * Add the cmd to the end of 'input_Q'. Note that REQUEST_SENSE
399 * commands are added to the head of the queue so that the desired
400 * sense data is not lost before REQUEST_SENSE executes.
401 */
402
403 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
404 cmd->host_scribble = (uchar *)hostdata->input_Q;
405 hostdata->input_Q = cmd;
406 }
407 else { /* find the end of the queue */
408 for (tmp=(Scsi_Cmnd *)hostdata->input_Q; tmp->host_scribble;
409 tmp=(Scsi_Cmnd *)tmp->host_scribble)
410 ;
411 tmp->host_scribble = (uchar *)cmd;
412 }
413
414 /* We know that there's at least one command in 'input_Q' now.
415 * Go see if any of them are runnable!
416 */
417
418 in2000_execute(cmd->host);
419
420 DB(DB_QUEUE_COMMAND,printk(")Q-%ld ",cmd->pid))
421
422 restore_flags(flags);
423 return 0;
424 }
425
426
427
428 /*
429 * This routine attempts to start a scsi command. If the host_card is
430 * already connected, we give up immediately. Otherwise, look through
431 * the input_Q, using the first command we find that's intended
432 * for a currently non-busy target/lun.
433 * Note that this function is always called with interrupts already
434 * disabled (either from in2000_queuecommand() or in2000_intr()).
435 */
in2000_execute(struct Scsi_Host * instance)436 static void in2000_execute (struct Scsi_Host *instance)
437 {
438 struct IN2000_hostdata *hostdata;
439 Scsi_Cmnd *cmd, *prev;
440 int i;
441 unsigned short *sp;
442 unsigned short f;
443 unsigned short flushbuf[16];
444
445
446 hostdata = (struct IN2000_hostdata *)instance->hostdata;
447
448 DB(DB_EXECUTE,printk("EX("))
449
450 if (hostdata->selecting || hostdata->connected) {
451
452 DB(DB_EXECUTE,printk(")EX-0 "))
453
454 return;
455 }
456
457 /*
458 * Search through the input_Q for a command destined
459 * for an idle target/lun.
460 */
461
462 cmd = (Scsi_Cmnd *)hostdata->input_Q;
463 prev = 0;
464 while (cmd) {
465 if (!(hostdata->busy[cmd->target] & (1 << cmd->lun)))
466 break;
467 prev = cmd;
468 cmd = (Scsi_Cmnd *)cmd->host_scribble;
469 }
470
471 /* quit if queue empty or all possible targets are busy */
472
473 if (!cmd) {
474
475 DB(DB_EXECUTE,printk(")EX-1 "))
476
477 return;
478 }
479
480 /* remove command from queue */
481
482 if (prev)
483 prev->host_scribble = cmd->host_scribble;
484 else
485 hostdata->input_Q = (Scsi_Cmnd *)cmd->host_scribble;
486
487 #ifdef PROC_STATISTICS
488 hostdata->cmd_cnt[cmd->target]++;
489 #endif
490
491 /*
492 * Start the selection process
493 */
494
495 if (is_dir_out(cmd))
496 write_3393(hostdata,WD_DESTINATION_ID, cmd->target);
497 else
498 write_3393(hostdata,WD_DESTINATION_ID, cmd->target | DSTID_DPD);
499
500 /* Now we need to figure out whether or not this command is a good
501 * candidate for disconnect/reselect. We guess to the best of our
502 * ability, based on a set of hierarchical rules. When several
503 * devices are operating simultaneously, disconnects are usually
504 * an advantage. In a single device system, or if only 1 device
505 * is being accessed, transfers usually go faster if disconnects
506 * are not allowed:
507 *
508 * + Commands should NEVER disconnect if hostdata->disconnect =
509 * DIS_NEVER (this holds for tape drives also), and ALWAYS
510 * disconnect if hostdata->disconnect = DIS_ALWAYS.
511 * + Tape drive commands should always be allowed to disconnect.
512 * + Disconnect should be allowed if disconnected_Q isn't empty.
513 * + Commands should NOT disconnect if input_Q is empty.
514 * + Disconnect should be allowed if there are commands in input_Q
515 * for a different target/lun. In this case, the other commands
516 * should be made disconnect-able, if not already.
517 *
518 * I know, I know - this code would flunk me out of any
519 * "C Programming 101" class ever offered. But it's easy
520 * to change around and experiment with for now.
521 */
522
523 cmd->SCp.phase = 0; /* assume no disconnect */
524 if (hostdata->disconnect == DIS_NEVER)
525 goto no;
526 if (hostdata->disconnect == DIS_ALWAYS)
527 goto yes;
528 if (cmd->device->type == 1) /* tape drive? */
529 goto yes;
530 if (hostdata->disconnected_Q) /* other commands disconnected? */
531 goto yes;
532 if (!(hostdata->input_Q)) /* input_Q empty? */
533 goto no;
534 for (prev=(Scsi_Cmnd *)hostdata->input_Q; prev;
535 prev=(Scsi_Cmnd *)prev->host_scribble) {
536 if ((prev->target != cmd->target) || (prev->lun != cmd->lun)) {
537 for (prev=(Scsi_Cmnd *)hostdata->input_Q; prev;
538 prev=(Scsi_Cmnd *)prev->host_scribble)
539 prev->SCp.phase = 1;
540 goto yes;
541 }
542 }
543 goto no;
544
545 yes:
546 cmd->SCp.phase = 1;
547
548 #ifdef PROC_STATISTICS
549 hostdata->disc_allowed_cnt[cmd->target]++;
550 #endif
551
552 no:
553 write_3393(hostdata,WD_SOURCE_ID,((cmd->SCp.phase)?SRCID_ER:0));
554
555 write_3393(hostdata,WD_TARGET_LUN, cmd->lun);
556 write_3393(hostdata,WD_SYNCHRONOUS_TRANSFER,hostdata->sync_xfer[cmd->target]);
557 hostdata->busy[cmd->target] |= (1 << cmd->lun);
558
559 if ((hostdata->level2 <= L2_NONE) ||
560 (hostdata->sync_stat[cmd->target] == SS_UNSET)) {
561
562 /*
563 * Do a 'Select-With-ATN' command. This will end with
564 * one of the following interrupts:
565 * CSR_RESEL_AM: failure - can try again later.
566 * CSR_TIMEOUT: failure - give up.
567 * CSR_SELECT: success - proceed.
568 */
569
570 hostdata->selecting = cmd;
571
572 /* Every target has its own synchronous transfer setting, kept in
573 * the sync_xfer array, and a corresponding status byte in sync_stat[].
574 * Each target's sync_stat[] entry is initialized to SS_UNSET, and its
575 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
576 * means that the parameters are undetermined as yet, and that we
577 * need to send an SDTR message to this device after selection is
578 * complete. We set SS_FIRST to tell the interrupt routine to do so,
579 * unless we don't want to even _try_ synchronous transfers: In this
580 * case we set SS_SET to make the defaults final.
581 */
582 if (hostdata->sync_stat[cmd->target] == SS_UNSET) {
583 if (hostdata->sync_off & (1 << cmd->target))
584 hostdata->sync_stat[cmd->target] = SS_SET;
585 else
586 hostdata->sync_stat[cmd->target] = SS_FIRST;
587 }
588 hostdata->state = S_SELECTING;
589 write_3393_count(hostdata,0); /* this guarantees a DATA_PHASE interrupt */
590 write_3393_cmd(hostdata,WD_CMD_SEL_ATN);
591 }
592
593 else {
594
595 /*
596 * Do a 'Select-With-ATN-Xfer' command. This will end with
597 * one of the following interrupts:
598 * CSR_RESEL_AM: failure - can try again later.
599 * CSR_TIMEOUT: failure - give up.
600 * anything else: success - proceed.
601 */
602
603 hostdata->connected = cmd;
604 write_3393(hostdata,WD_COMMAND_PHASE, 0);
605
606 /* copy command_descriptor_block into WD chip
607 * (take advantage of auto-incrementing)
608 */
609
610 write1_io(WD_CDB_1, IO_WD_ADDR);
611 for (i=0; i<cmd->cmd_len; i++)
612 write1_io(cmd->cmnd[i], IO_WD_DATA);
613
614 /* The wd33c93 only knows about Group 0, 1, and 5 commands when
615 * it's doing a 'select-and-transfer'. To be safe, we write the
616 * size of the CDB into the OWN_ID register for every case. This
617 * way there won't be problems with vendor-unique, audio, etc.
618 */
619
620 write_3393(hostdata, WD_OWN_ID, cmd->cmd_len);
621
622 /* When doing a non-disconnect command, we can save ourselves a DATA
623 * phase interrupt later by setting everything up now. With writes we
624 * need to pre-fill the fifo; if there's room for the 32 flush bytes,
625 * put them in there too - that'll avoid a fifo interrupt. Reads are
626 * somewhat simpler.
627 * KLUDGE NOTE: It seems that you can't completely fill the fifo here:
628 * This results in the IO_FIFO_COUNT register rolling over to zero,
629 * and apparently the gate array logic sees this as empty, not full,
630 * so the 3393 chip is never signalled to start reading from the
631 * fifo. Or maybe it's seen as a permanent fifo interrupt condition.
632 * Regardless, we fix this by temporarily pretending that the fifo
633 * is 16 bytes smaller. (I see now that the old driver has a comment
634 * about "don't fill completely" in an analogous place - must be the
635 * same deal.) This results in CDROM, swap partitions, and tape drives
636 * needing an extra interrupt per write command - I think we can live
637 * with that!
638 */
639
640 if (!(cmd->SCp.phase)) {
641 write_3393_count(hostdata, cmd->SCp.this_residual);
642 write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
643 write1_io(0, IO_FIFO_WRITE); /* clear fifo counter, write mode */
644
645 if (is_dir_out(cmd)) {
646 hostdata->fifo = FI_FIFO_WRITING;
647 if ((i = cmd->SCp.this_residual) > (IN2000_FIFO_SIZE - 16) )
648 i = IN2000_FIFO_SIZE - 16;
649 cmd->SCp.have_data_in = i; /* this much data in fifo */
650 i >>= 1; /* Gulp. Assuming modulo 2. */
651 sp = (unsigned short *)cmd->SCp.ptr;
652 f = hostdata->io_base + IO_FIFO;
653
654 #ifdef FAST_WRITE_IO
655
656 FAST_WRITE2_IO();
657 #else
658 while (i--)
659 write2_io(*sp++,IO_FIFO);
660
661 #endif
662
663 /* Is there room for the flush bytes? */
664
665 if (cmd->SCp.have_data_in <= ((IN2000_FIFO_SIZE - 16) - 32)) {
666 sp = flushbuf;
667 i = 16;
668
669 #ifdef FAST_WRITE_IO
670
671 FAST_WRITE2_IO();
672 #else
673 while (i--)
674 write2_io(0,IO_FIFO);
675
676 #endif
677
678 }
679 }
680
681 else {
682 write1_io(0, IO_FIFO_READ); /* put fifo in read mode */
683 hostdata->fifo = FI_FIFO_READING;
684 cmd->SCp.have_data_in = 0; /* nothing transferred yet */
685 }
686
687 }
688 else {
689 write_3393_count(hostdata,0); /* this guarantees a DATA_PHASE interrupt */
690 }
691 hostdata->state = S_RUNNING_LEVEL2;
692 write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
693 }
694
695 /*
696 * Since the SCSI bus can handle only 1 connection at a time,
697 * we get out of here now. If the selection fails, or when
698 * the command disconnects, we'll come back to this routine
699 * to search the input_Q again...
700 */
701
702 DB(DB_EXECUTE,printk("%s%ld)EX-2 ",(cmd->SCp.phase)?"d:":"",cmd->pid))
703
704 }
705
706
707
transfer_pio(uchar * buf,int cnt,int data_in_dir,struct IN2000_hostdata * hostdata)708 static void transfer_pio(uchar *buf, int cnt,
709 int data_in_dir, struct IN2000_hostdata *hostdata)
710 {
711 uchar asr;
712
713 DB(DB_TRANSFER,printk("(%p,%d,%s)",buf,cnt,data_in_dir?"in":"out"))
714
715 write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
716 write_3393_count(hostdata,cnt);
717 write_3393_cmd(hostdata,WD_CMD_TRANS_INFO);
718 if (data_in_dir) {
719 do {
720 asr = READ_AUX_STAT();
721 if (asr & ASR_DBR)
722 *buf++ = read_3393(hostdata,WD_DATA);
723 } while (!(asr & ASR_INT));
724 }
725 else {
726 do {
727 asr = READ_AUX_STAT();
728 if (asr & ASR_DBR)
729 write_3393(hostdata,WD_DATA, *buf++);
730 } while (!(asr & ASR_INT));
731 }
732
733 /* Note: we are returning with the interrupt UN-cleared.
734 * Since (presumably) an entire I/O operation has
735 * completed, the bus phase is probably different, and
736 * the interrupt routine will discover this when it
737 * responds to the uncleared int.
738 */
739
740 }
741
742
743
transfer_bytes(Scsi_Cmnd * cmd,int data_in_dir)744 static void transfer_bytes(Scsi_Cmnd *cmd, int data_in_dir)
745 {
746 struct IN2000_hostdata *hostdata;
747 unsigned short *sp;
748 unsigned short f;
749 int i;
750
751 hostdata = (struct IN2000_hostdata *)cmd->host->hostdata;
752
753 /* Normally, you'd expect 'this_residual' to be non-zero here.
754 * In a series of scatter-gather transfers, however, this
755 * routine will usually be called with 'this_residual' equal
756 * to 0 and 'buffers_residual' non-zero. This means that a
757 * previous transfer completed, clearing 'this_residual', and
758 * now we need to setup the next scatter-gather buffer as the
759 * source or destination for THIS transfer.
760 */
761 if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
762 ++cmd->SCp.buffer;
763 --cmd->SCp.buffers_residual;
764 cmd->SCp.this_residual = cmd->SCp.buffer->length;
765 cmd->SCp.ptr = cmd->SCp.buffer->address;
766 }
767
768 /* Set up hardware registers */
769
770 write_3393(hostdata,WD_SYNCHRONOUS_TRANSFER,hostdata->sync_xfer[cmd->target]);
771 write_3393_count(hostdata,cmd->SCp.this_residual);
772 write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
773 write1_io(0,IO_FIFO_WRITE); /* zero counter, assume write */
774
775 /* Reading is easy. Just issue the command and return - we'll
776 * get an interrupt later when we have actual data to worry about.
777 */
778
779 if (data_in_dir) {
780 write1_io(0,IO_FIFO_READ);
781 if ((hostdata->level2 >= L2_DATA) ||
782 (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
783 write_3393(hostdata,WD_COMMAND_PHASE,0x45);
784 write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
785 hostdata->state = S_RUNNING_LEVEL2;
786 }
787 else
788 write_3393_cmd(hostdata,WD_CMD_TRANS_INFO);
789 hostdata->fifo = FI_FIFO_READING;
790 cmd->SCp.have_data_in = 0;
791 return;
792 }
793
794 /* Writing is more involved - we'll start the WD chip and write as
795 * much data to the fifo as we can right now. Later interrupts will
796 * write any bytes that don't make it at this stage.
797 */
798
799 if ((hostdata->level2 >= L2_DATA) ||
800 (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
801 write_3393(hostdata,WD_COMMAND_PHASE,0x45);
802 write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
803 hostdata->state = S_RUNNING_LEVEL2;
804 }
805 else
806 write_3393_cmd(hostdata,WD_CMD_TRANS_INFO);
807 hostdata->fifo = FI_FIFO_WRITING;
808 sp = (unsigned short *)cmd->SCp.ptr;
809
810 if ((i = cmd->SCp.this_residual) > IN2000_FIFO_SIZE)
811 i = IN2000_FIFO_SIZE;
812 cmd->SCp.have_data_in = i;
813 i >>= 1; /* Gulp. We assume this_residual is modulo 2 */
814 f = hostdata->io_base + IO_FIFO;
815
816 #ifdef FAST_WRITE_IO
817
818 FAST_WRITE2_IO();
819 #else
820 while (i--)
821 write2_io(*sp++,IO_FIFO);
822
823 #endif
824
825 }
826
827
828 /* We need to use spin_lock_irqsave() & spin_unlock_irqrestore() in this
829 * function in order to work in an SMP environment. (I'd be surprised
830 * if the driver is ever used by anyone on a real multi-CPU motherboard,
831 * but it _does_ need to be able to compile and run in an SMP kernel.)
832 */
833
in2000_intr(int irqnum,void * dev_id,struct pt_regs * ptregs)834 static void in2000_intr (int irqnum, void * dev_id, struct pt_regs *ptregs)
835 {
836 struct Scsi_Host *instance;
837 struct IN2000_hostdata *hostdata;
838 Scsi_Cmnd *patch, *cmd;
839 uchar asr, sr, phs, id, lun, *ucp, msg;
840 int i,j;
841 unsigned long length;
842 unsigned short *sp;
843 unsigned short f;
844 unsigned long flags;
845
846 for (instance = instance_list; instance; instance = instance->next) {
847 if (instance->irq == irqnum)
848 break;
849 }
850 if (!instance) {
851 printk("*** Hmm... interrupts are screwed up! ***\n");
852 return;
853 }
854 hostdata = (struct IN2000_hostdata *)instance->hostdata;
855
856 /* Get the spin_lock and disable further ints, for SMP */
857
858 CLISPIN_LOCK(flags);
859
860 #ifdef PROC_STATISTICS
861 hostdata->int_cnt++;
862 #endif
863
864 /* The IN2000 card has 2 interrupt sources OR'ed onto its IRQ line - the
865 * WD3393 chip and the 2k fifo (which is actually a dual-port RAM combined
866 * with a big logic array, so it's a little different than what you might
867 * expect). As far as I know, there's no reason that BOTH can't be active
868 * at the same time, but there's a problem: while we can read the 3393
869 * to tell if _it_ wants an interrupt, I don't know of a way to ask the
870 * fifo the same question. The best we can do is check the 3393 and if
871 * it _isn't_ the source of the interrupt, then we can be pretty sure
872 * that the fifo is the culprit.
873 * UPDATE: I have it on good authority (Bill Earnest) that bit 0 of the
874 * IO_FIFO_COUNT register mirrors the fifo interrupt state. I
875 * assume that bit clear means interrupt active. As it turns
876 * out, the driver really doesn't need to check for this after
877 * all, so my remarks above about a 'problem' can safely be
878 * ignored. The way the logic is set up, there's no advantage
879 * (that I can see) to worrying about it.
880 *
881 * It seems that the fifo interrupt signal is negated when we extract
882 * bytes during read or write bytes during write.
883 * - fifo will interrupt when data is moving from it to the 3393, and
884 * there are 31 (or less?) bytes left to go. This is sort of short-
885 * sighted: what if you don't WANT to do more? In any case, our
886 * response is to push more into the fifo - either actual data or
887 * dummy bytes if need be. Note that we apparently have to write at
888 * least 32 additional bytes to the fifo after an interrupt in order
889 * to get it to release the ones it was holding on to - writing fewer
890 * than 32 will result in another fifo int.
891 * UPDATE: Again, info from Bill Earnest makes this more understandable:
892 * 32 bytes = two counts of the fifo counter register. He tells
893 * me that the fifo interrupt is a non-latching signal derived
894 * from a straightforward boolean interpretation of the 7
895 * highest bits of the fifo counter and the fifo-read/fifo-write
896 * state. Who'd a thought?
897 */
898
899 write1_io(0, IO_LED_ON);
900 asr = READ_AUX_STAT();
901 if (!(asr & ASR_INT)) { /* no WD33c93 interrupt? */
902
903 /* Ok. This is definitely a FIFO-only interrupt.
904 *
905 * If FI_FIFO_READING is set, there are up to 2048 bytes waiting to be read,
906 * maybe more to come from the SCSI bus. Read as many as we can out of the
907 * fifo and into memory at the location of SCp.ptr[SCp.have_data_in], and
908 * update have_data_in afterwards.
909 *
910 * If we have FI_FIFO_WRITING, the FIFO has almost run out of bytes to move
911 * into the WD3393 chip (I think the interrupt happens when there are 31
912 * bytes left, but it may be fewer...). The 3393 is still waiting, so we
913 * shove some more into the fifo, which gets things moving again. If the
914 * original SCSI command specified more than 2048 bytes, there may still
915 * be some of that data left: fine - use it (from SCp.ptr[SCp.have_data_in]).
916 * Don't forget to update have_data_in. If we've already written out the
917 * entire buffer, feed 32 dummy bytes to the fifo - they're needed to
918 * push out the remaining real data.
919 * (Big thanks to Bill Earnest for getting me out of the mud in here.)
920 */
921
922 cmd = (Scsi_Cmnd *)hostdata->connected; /* assume we're connected */
923 CHECK_NULL(cmd,"fifo_int")
924
925 if (hostdata->fifo == FI_FIFO_READING) {
926
927 DB(DB_FIFO,printk("{R:%02x} ",read1_io(IO_FIFO_COUNT)))
928
929 sp = (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in);
930 i = read1_io(IO_FIFO_COUNT) & 0xfe;
931 i <<= 2; /* # of words waiting in the fifo */
932 f = hostdata->io_base + IO_FIFO;
933
934 #ifdef FAST_READ_IO
935
936 FAST_READ2_IO();
937 #else
938 while (i--)
939 *sp++ = read2_io(IO_FIFO);
940
941 #endif
942
943 i = sp - (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in);
944 i <<= 1;
945 cmd->SCp.have_data_in += i;
946 }
947
948 else if (hostdata->fifo == FI_FIFO_WRITING) {
949
950 DB(DB_FIFO,printk("{W:%02x} ",read1_io(IO_FIFO_COUNT)))
951
952 /* If all bytes have been written to the fifo, flush out the stragglers.
953 * Note that while writing 16 dummy words seems arbitrary, we don't
954 * have another choice that I can see. What we really want is to read
955 * the 3393 transfer count register (that would tell us how many bytes
956 * needed flushing), but the TRANSFER_INFO command hasn't completed
957 * yet (not enough bytes!) and that register won't be accessible. So,
958 * we use 16 words - a number obtained through trial and error.
959 * UPDATE: Bill says this is exactly what Always does, so there.
960 * More thanks due him for help in this section.
961 */
962
963 if (cmd->SCp.this_residual == cmd->SCp.have_data_in) {
964 i = 16;
965 while (i--) /* write 32 dummy bytes */
966 write2_io(0,IO_FIFO);
967 }
968
969 /* If there are still bytes left in the SCSI buffer, write as many as we
970 * can out to the fifo.
971 */
972
973 else {
974 sp = (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in);
975 i = cmd->SCp.this_residual - cmd->SCp.have_data_in; /* bytes yet to go */
976 j = read1_io(IO_FIFO_COUNT) & 0xfe;
977 j <<= 2; /* how many words the fifo has room for */
978 if ((j << 1) > i)
979 j = (i >> 1);
980 while (j--)
981 write2_io(*sp++,IO_FIFO);
982
983 i = sp - (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in);
984 i <<= 1;
985 cmd->SCp.have_data_in += i;
986 }
987 }
988
989 else {
990 printk("*** Spurious FIFO interrupt ***");
991 }
992
993 write1_io(0, IO_LED_OFF);
994
995 /* release the SMP spin_lock and restore irq state */
996 CLISPIN_UNLOCK(flags);
997 return;
998 }
999
1000 /* This interrupt was triggered by the WD33c93 chip. The fifo interrupt
1001 * may also be asserted, but we don't bother to check it: we get more
1002 * detailed info from FIFO_READING and FIFO_WRITING (see below).
1003 */
1004
1005 cmd = (Scsi_Cmnd *)hostdata->connected; /* assume we're connected */
1006 sr = read_3393(hostdata,WD_SCSI_STATUS); /* clear the interrupt */
1007 phs = read_3393(hostdata,WD_COMMAND_PHASE);
1008
1009 if (!cmd && (sr != CSR_RESEL_AM && sr != CSR_TIMEOUT && sr != CSR_SELECT)) {
1010 printk("\nNR:wd-intr-1\n");
1011 write1_io(0, IO_LED_OFF);
1012
1013 /* release the SMP spin_lock and restore irq state */
1014 CLISPIN_UNLOCK(flags);
1015 return;
1016 }
1017
1018 DB(DB_INTR,printk("{%02x:%02x-",asr,sr))
1019
1020 /* After starting a FIFO-based transfer, the next _WD3393_ interrupt is
1021 * guaranteed to be in response to the completion of the transfer.
1022 * If we were reading, there's probably data in the fifo that needs
1023 * to be copied into RAM - do that here. Also, we have to update
1024 * 'this_residual' and 'ptr' based on the contents of the
1025 * TRANSFER_COUNT register, in case the device decided to do an
1026 * intermediate disconnect (a device may do this if it has to
1027 * do a seek, or just to be nice and let other devices have
1028 * some bus time during long transfers).
1029 * After doing whatever is necessary with the fifo, we go on and
1030 * service the WD3393 interrupt normally.
1031 */
1032
1033 if (hostdata->fifo == FI_FIFO_READING) {
1034
1035 /* buffer index = start-of-buffer + #-of-bytes-already-read */
1036
1037 sp = (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in);
1038
1039 /* bytes remaining in fifo = (total-wanted - #-not-got) - #-already-read */
1040
1041 i = (cmd->SCp.this_residual - read_3393_count(hostdata)) - cmd->SCp.have_data_in;
1042 i >>= 1; /* Gulp. We assume this will always be modulo 2 */
1043 f = hostdata->io_base + IO_FIFO;
1044
1045 #ifdef FAST_READ_IO
1046
1047 FAST_READ2_IO();
1048 #else
1049 while (i--)
1050 *sp++ = read2_io(IO_FIFO);
1051
1052 #endif
1053
1054 hostdata->fifo = FI_FIFO_UNUSED;
1055 length = cmd->SCp.this_residual;
1056 cmd->SCp.this_residual = read_3393_count(hostdata);
1057 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1058
1059 DB(DB_TRANSFER,printk("(%p,%d)",cmd->SCp.ptr,cmd->SCp.this_residual))
1060
1061 }
1062
1063 else if (hostdata->fifo == FI_FIFO_WRITING) {
1064 hostdata->fifo = FI_FIFO_UNUSED;
1065 length = cmd->SCp.this_residual;
1066 cmd->SCp.this_residual = read_3393_count(hostdata);
1067 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1068
1069 DB(DB_TRANSFER,printk("(%p,%d)",cmd->SCp.ptr,cmd->SCp.this_residual))
1070
1071 }
1072
1073 /* Respond to the specific WD3393 interrupt - there are quite a few! */
1074
1075 switch (sr) {
1076
1077 case CSR_TIMEOUT:
1078 DB(DB_INTR,printk("TIMEOUT"))
1079
1080 if (hostdata->state == S_RUNNING_LEVEL2)
1081 hostdata->connected = NULL;
1082 else {
1083 cmd = (Scsi_Cmnd *)hostdata->selecting; /* get a valid cmd */
1084 CHECK_NULL(cmd,"csr_timeout")
1085 hostdata->selecting = NULL;
1086 }
1087
1088 cmd->result = DID_NO_CONNECT << 16;
1089 hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
1090 hostdata->state = S_UNCONNECTED;
1091 cmd->scsi_done(cmd);
1092
1093 /* We are not connected to a target - check to see if there
1094 * are commands waiting to be executed.
1095 */
1096
1097 in2000_execute(instance);
1098 break;
1099
1100
1101 /* Note: this interrupt should not occur in a LEVEL2 command */
1102
1103 case CSR_SELECT:
1104 DB(DB_INTR,printk("SELECT"))
1105 hostdata->connected = cmd = (Scsi_Cmnd *)hostdata->selecting;
1106 CHECK_NULL(cmd,"csr_select")
1107 hostdata->selecting = NULL;
1108
1109 /* construct an IDENTIFY message with correct disconnect bit */
1110
1111 hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->lun);
1112 if (cmd->SCp.phase)
1113 hostdata->outgoing_msg[0] |= 0x40;
1114
1115 if (hostdata->sync_stat[cmd->target] == SS_FIRST) {
1116 #ifdef SYNC_DEBUG
1117 printk(" sending SDTR ");
1118 #endif
1119
1120 hostdata->sync_stat[cmd->target] = SS_WAITING;
1121
1122 /* tack on a 2nd message to ask about synchronous transfers */
1123
1124 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
1125 hostdata->outgoing_msg[2] = 3;
1126 hostdata->outgoing_msg[3] = EXTENDED_SDTR;
1127 hostdata->outgoing_msg[4] = OPTIMUM_SX_PER/4;
1128 hostdata->outgoing_msg[5] = OPTIMUM_SX_OFF;
1129 hostdata->outgoing_len = 6;
1130 }
1131 else
1132 hostdata->outgoing_len = 1;
1133
1134 hostdata->state = S_CONNECTED;
1135 break;
1136
1137
1138 case CSR_XFER_DONE|PHS_DATA_IN:
1139 case CSR_UNEXP |PHS_DATA_IN:
1140 case CSR_SRV_REQ |PHS_DATA_IN:
1141 DB(DB_INTR,printk("IN-%d.%d",cmd->SCp.this_residual,cmd->SCp.buffers_residual))
1142 transfer_bytes(cmd, DATA_IN_DIR);
1143 if (hostdata->state != S_RUNNING_LEVEL2)
1144 hostdata->state = S_CONNECTED;
1145 break;
1146
1147
1148 case CSR_XFER_DONE|PHS_DATA_OUT:
1149 case CSR_UNEXP |PHS_DATA_OUT:
1150 case CSR_SRV_REQ |PHS_DATA_OUT:
1151 DB(DB_INTR,printk("OUT-%d.%d",cmd->SCp.this_residual,cmd->SCp.buffers_residual))
1152 transfer_bytes(cmd, DATA_OUT_DIR);
1153 if (hostdata->state != S_RUNNING_LEVEL2)
1154 hostdata->state = S_CONNECTED;
1155 break;
1156
1157
1158 /* Note: this interrupt should not occur in a LEVEL2 command */
1159
1160 case CSR_XFER_DONE|PHS_COMMAND:
1161 case CSR_UNEXP |PHS_COMMAND:
1162 case CSR_SRV_REQ |PHS_COMMAND:
1163 DB(DB_INTR,printk("CMND-%02x,%ld",cmd->cmnd[0],cmd->pid))
1164 transfer_pio(cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, hostdata);
1165 hostdata->state = S_CONNECTED;
1166 break;
1167
1168
1169 case CSR_XFER_DONE|PHS_STATUS:
1170 case CSR_UNEXP |PHS_STATUS:
1171 case CSR_SRV_REQ |PHS_STATUS:
1172 DB(DB_INTR,printk("STATUS="))
1173
1174 cmd->SCp.Status = read_1_byte(hostdata);
1175 DB(DB_INTR,printk("%02x",cmd->SCp.Status))
1176 if (hostdata->level2 >= L2_BASIC) {
1177 sr = read_3393(hostdata,WD_SCSI_STATUS); /* clear interrupt */
1178 hostdata->state = S_RUNNING_LEVEL2;
1179 write_3393(hostdata,WD_COMMAND_PHASE, 0x50);
1180 write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
1181 }
1182 else {
1183 hostdata->state = S_CONNECTED;
1184 }
1185 break;
1186
1187
1188 case CSR_XFER_DONE|PHS_MESS_IN:
1189 case CSR_UNEXP |PHS_MESS_IN:
1190 case CSR_SRV_REQ |PHS_MESS_IN:
1191 DB(DB_INTR,printk("MSG_IN="))
1192
1193 msg = read_1_byte(hostdata);
1194 sr = read_3393(hostdata,WD_SCSI_STATUS); /* clear interrupt */
1195
1196 hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
1197 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
1198 msg = EXTENDED_MESSAGE;
1199 else
1200 hostdata->incoming_ptr = 0;
1201
1202 cmd->SCp.Message = msg;
1203 switch (msg) {
1204
1205 case COMMAND_COMPLETE:
1206 DB(DB_INTR,printk("CCMP-%ld",cmd->pid))
1207 write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1208 hostdata->state = S_PRE_CMP_DISC;
1209 break;
1210
1211 case SAVE_POINTERS:
1212 DB(DB_INTR,printk("SDP"))
1213 write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1214 hostdata->state = S_CONNECTED;
1215 break;
1216
1217 case RESTORE_POINTERS:
1218 DB(DB_INTR,printk("RDP"))
1219 if (hostdata->level2 >= L2_BASIC) {
1220 write_3393(hostdata,WD_COMMAND_PHASE, 0x45);
1221 write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
1222 hostdata->state = S_RUNNING_LEVEL2;
1223 }
1224 else {
1225 write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1226 hostdata->state = S_CONNECTED;
1227 }
1228 break;
1229
1230 case DISCONNECT:
1231 DB(DB_INTR,printk("DIS"))
1232 cmd->device->disconnect = 1;
1233 write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1234 hostdata->state = S_PRE_TMP_DISC;
1235 break;
1236
1237 case MESSAGE_REJECT:
1238 DB(DB_INTR,printk("REJ"))
1239 #ifdef SYNC_DEBUG
1240 printk("-REJ-");
1241 #endif
1242 if (hostdata->sync_stat[cmd->target] == SS_WAITING)
1243 hostdata->sync_stat[cmd->target] = SS_SET;
1244 write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1245 hostdata->state = S_CONNECTED;
1246 break;
1247
1248 case EXTENDED_MESSAGE:
1249 DB(DB_INTR,printk("EXT"))
1250
1251 ucp = hostdata->incoming_msg;
1252
1253 #ifdef SYNC_DEBUG
1254 printk("%02x",ucp[hostdata->incoming_ptr]);
1255 #endif
1256 /* Is this the last byte of the extended message? */
1257
1258 if ((hostdata->incoming_ptr >= 2) &&
1259 (hostdata->incoming_ptr == (ucp[1] + 1))) {
1260
1261 switch (ucp[2]) { /* what's the EXTENDED code? */
1262 case EXTENDED_SDTR:
1263 id = calc_sync_xfer(ucp[3],ucp[4]);
1264 if (hostdata->sync_stat[cmd->target] != SS_WAITING) {
1265
1266 /* A device has sent an unsolicited SDTR message; rather than go
1267 * through the effort of decoding it and then figuring out what
1268 * our reply should be, we're just gonna say that we have a
1269 * synchronous fifo depth of 0. This will result in asynchronous
1270 * transfers - not ideal but so much easier.
1271 * Actually, this is OK because it assures us that if we don't
1272 * specifically ask for sync transfers, we won't do any.
1273 */
1274
1275 write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1276 hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1277 hostdata->outgoing_msg[1] = 3;
1278 hostdata->outgoing_msg[2] = EXTENDED_SDTR;
1279 hostdata->outgoing_msg[3] = hostdata->default_sx_per/4;
1280 hostdata->outgoing_msg[4] = 0;
1281 hostdata->outgoing_len = 5;
1282 hostdata->sync_xfer[cmd->target] =
1283 calc_sync_xfer(hostdata->default_sx_per/4,0);
1284 }
1285 else {
1286 hostdata->sync_xfer[cmd->target] = id;
1287 }
1288 #ifdef SYNC_DEBUG
1289 printk("sync_xfer=%02x",hostdata->sync_xfer[cmd->target]);
1290 #endif
1291 hostdata->sync_stat[cmd->target] = SS_SET;
1292 write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1293 hostdata->state = S_CONNECTED;
1294 break;
1295 case EXTENDED_WDTR:
1296 write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1297 printk("sending WDTR ");
1298 hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1299 hostdata->outgoing_msg[1] = 2;
1300 hostdata->outgoing_msg[2] = EXTENDED_WDTR;
1301 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */
1302 hostdata->outgoing_len = 4;
1303 write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1304 hostdata->state = S_CONNECTED;
1305 break;
1306 default:
1307 write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1308 printk("Rejecting Unknown Extended Message(%02x). ",ucp[2]);
1309 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1310 hostdata->outgoing_len = 1;
1311 write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1312 hostdata->state = S_CONNECTED;
1313 break;
1314 }
1315 hostdata->incoming_ptr = 0;
1316 }
1317
1318 /* We need to read more MESS_IN bytes for the extended message */
1319
1320 else {
1321 hostdata->incoming_ptr++;
1322 write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1323 hostdata->state = S_CONNECTED;
1324 }
1325 break;
1326
1327 default:
1328 printk("Rejecting Unknown Message(%02x) ",msg);
1329 write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1330 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1331 hostdata->outgoing_len = 1;
1332 write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1333 hostdata->state = S_CONNECTED;
1334 }
1335 break;
1336
1337
1338 /* Note: this interrupt will occur only after a LEVEL2 command */
1339
1340 case CSR_SEL_XFER_DONE:
1341
1342 /* Make sure that reselection is enabled at this point - it may
1343 * have been turned off for the command that just completed.
1344 */
1345
1346 write_3393(hostdata,WD_SOURCE_ID, SRCID_ER);
1347 if (phs == 0x60) {
1348 DB(DB_INTR,printk("SX-DONE-%ld",cmd->pid))
1349 cmd->SCp.Message = COMMAND_COMPLETE;
1350 lun = read_3393(hostdata,WD_TARGET_LUN);
1351 DB(DB_INTR,printk(":%d.%d",cmd->SCp.Status,lun))
1352 hostdata->connected = NULL;
1353 hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
1354 hostdata->state = S_UNCONNECTED;
1355 if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
1356 cmd->SCp.Status = lun;
1357 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1358 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1359 else
1360 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1361 cmd->scsi_done(cmd);
1362
1363 /* We are no longer connected to a target - check to see if
1364 * there are commands waiting to be executed.
1365 */
1366
1367 in2000_execute(instance);
1368 }
1369 else {
1370 printk("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---",asr,sr,phs,cmd->pid);
1371 }
1372 break;
1373
1374
1375 /* Note: this interrupt will occur only after a LEVEL2 command */
1376
1377 case CSR_SDP:
1378 DB(DB_INTR,printk("SDP"))
1379 hostdata->state = S_RUNNING_LEVEL2;
1380 write_3393(hostdata,WD_COMMAND_PHASE, 0x41);
1381 write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
1382 break;
1383
1384
1385 case CSR_XFER_DONE|PHS_MESS_OUT:
1386 case CSR_UNEXP |PHS_MESS_OUT:
1387 case CSR_SRV_REQ |PHS_MESS_OUT:
1388 DB(DB_INTR,printk("MSG_OUT="))
1389
1390 /* To get here, we've probably requested MESSAGE_OUT and have
1391 * already put the correct bytes in outgoing_msg[] and filled
1392 * in outgoing_len. We simply send them out to the SCSI bus.
1393 * Sometimes we get MESSAGE_OUT phase when we're not expecting
1394 * it - like when our SDTR message is rejected by a target. Some
1395 * targets send the REJECT before receiving all of the extended
1396 * message, and then seem to go back to MESSAGE_OUT for a byte
1397 * or two. Not sure why, or if I'm doing something wrong to
1398 * cause this to happen. Regardless, it seems that sending
1399 * NOP messages in these situations results in no harm and
1400 * makes everyone happy.
1401 */
1402
1403 if (hostdata->outgoing_len == 0) {
1404 hostdata->outgoing_len = 1;
1405 hostdata->outgoing_msg[0] = NOP;
1406 }
1407 transfer_pio(hostdata->outgoing_msg, hostdata->outgoing_len,
1408 DATA_OUT_DIR, hostdata);
1409 DB(DB_INTR,printk("%02x",hostdata->outgoing_msg[0]))
1410 hostdata->outgoing_len = 0;
1411 hostdata->state = S_CONNECTED;
1412 break;
1413
1414
1415 case CSR_UNEXP_DISC:
1416
1417 /* I think I've seen this after a request-sense that was in response
1418 * to an error condition, but not sure. We certainly need to do
1419 * something when we get this interrupt - the question is 'what?'.
1420 * Let's think positively, and assume some command has finished
1421 * in a legal manner (like a command that provokes a request-sense),
1422 * so we treat it as a normal command-complete-disconnect.
1423 */
1424
1425
1426 /* Make sure that reselection is enabled at this point - it may
1427 * have been turned off for the command that just completed.
1428 */
1429
1430 write_3393(hostdata,WD_SOURCE_ID, SRCID_ER);
1431 if (cmd == NULL) {
1432 printk(" - Already disconnected! ");
1433 hostdata->state = S_UNCONNECTED;
1434
1435 /* release the SMP spin_lock and restore irq state */
1436 CLISPIN_UNLOCK(flags);
1437 return;
1438 }
1439 DB(DB_INTR,printk("UNEXP_DISC-%ld",cmd->pid))
1440 hostdata->connected = NULL;
1441 hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
1442 hostdata->state = S_UNCONNECTED;
1443 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1444 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1445 else
1446 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1447 cmd->scsi_done(cmd);
1448
1449 /* We are no longer connected to a target - check to see if
1450 * there are commands waiting to be executed.
1451 */
1452
1453 in2000_execute(instance);
1454 break;
1455
1456
1457 case CSR_DISC:
1458
1459 /* Make sure that reselection is enabled at this point - it may
1460 * have been turned off for the command that just completed.
1461 */
1462
1463 write_3393(hostdata,WD_SOURCE_ID, SRCID_ER);
1464 DB(DB_INTR,printk("DISC-%ld",cmd->pid))
1465 if (cmd == NULL) {
1466 printk(" - Already disconnected! ");
1467 hostdata->state = S_UNCONNECTED;
1468 }
1469 switch (hostdata->state) {
1470 case S_PRE_CMP_DISC:
1471 hostdata->connected = NULL;
1472 hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
1473 hostdata->state = S_UNCONNECTED;
1474 DB(DB_INTR,printk(":%d",cmd->SCp.Status))
1475 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1476 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1477 else
1478 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1479 cmd->scsi_done(cmd);
1480 break;
1481 case S_PRE_TMP_DISC:
1482 case S_RUNNING_LEVEL2:
1483 cmd->host_scribble = (uchar *)hostdata->disconnected_Q;
1484 hostdata->disconnected_Q = cmd;
1485 hostdata->connected = NULL;
1486 hostdata->state = S_UNCONNECTED;
1487
1488 #ifdef PROC_STATISTICS
1489 hostdata->disc_done_cnt[cmd->target]++;
1490 #endif
1491
1492 break;
1493 default:
1494 printk("*** Unexpected DISCONNECT interrupt! ***");
1495 hostdata->state = S_UNCONNECTED;
1496 }
1497
1498 /* We are no longer connected to a target - check to see if
1499 * there are commands waiting to be executed.
1500 */
1501
1502 in2000_execute(instance);
1503 break;
1504
1505
1506 case CSR_RESEL_AM:
1507 DB(DB_INTR,printk("RESEL"))
1508
1509 /* First we have to make sure this reselection didn't */
1510 /* happen during Arbitration/Selection of some other device. */
1511 /* If yes, put losing command back on top of input_Q. */
1512
1513 if (hostdata->level2 <= L2_NONE) {
1514
1515 if (hostdata->selecting) {
1516 cmd = (Scsi_Cmnd *)hostdata->selecting;
1517 hostdata->selecting = NULL;
1518 hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
1519 cmd->host_scribble = (uchar *)hostdata->input_Q;
1520 hostdata->input_Q = cmd;
1521 }
1522 }
1523
1524 else {
1525
1526 if (cmd) {
1527 if (phs == 0x00) {
1528 hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
1529 cmd->host_scribble = (uchar *)hostdata->input_Q;
1530 hostdata->input_Q = cmd;
1531 }
1532 else {
1533 printk("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",asr,sr,phs);
1534 while (1)
1535 printk("\r");
1536 }
1537 }
1538
1539 }
1540
1541 /* OK - find out which device reselected us. */
1542
1543 id = read_3393(hostdata,WD_SOURCE_ID);
1544 id &= SRCID_MASK;
1545
1546 /* and extract the lun from the ID message. (Note that we don't
1547 * bother to check for a valid message here - I guess this is
1548 * not the right way to go, but....)
1549 */
1550
1551 lun = read_3393(hostdata,WD_DATA);
1552 if (hostdata->level2 < L2_RESELECT)
1553 write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1554 lun &= 7;
1555
1556 /* Now we look for the command that's reconnecting. */
1557
1558 cmd = (Scsi_Cmnd *)hostdata->disconnected_Q;
1559 patch = NULL;
1560 while (cmd) {
1561 if (id == cmd->target && lun == cmd->lun)
1562 break;
1563 patch = cmd;
1564 cmd = (Scsi_Cmnd *)cmd->host_scribble;
1565 }
1566
1567 /* Hmm. Couldn't find a valid command.... What to do? */
1568
1569 if (!cmd) {
1570 printk("---TROUBLE: target %d.%d not in disconnect queue---",id,lun);
1571 break;
1572 }
1573
1574 /* Ok, found the command - now start it up again. */
1575
1576 if (patch)
1577 patch->host_scribble = cmd->host_scribble;
1578 else
1579 hostdata->disconnected_Q = (Scsi_Cmnd *)cmd->host_scribble;
1580 hostdata->connected = cmd;
1581
1582 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1583 * because these things are preserved over a disconnect.
1584 * But we DO need to fix the DPD bit so it's correct for this command.
1585 */
1586
1587 if (is_dir_out(cmd))
1588 write_3393(hostdata,WD_DESTINATION_ID,cmd->target);
1589 else
1590 write_3393(hostdata,WD_DESTINATION_ID,cmd->target | DSTID_DPD);
1591 if (hostdata->level2 >= L2_RESELECT) {
1592 write_3393_count(hostdata,0); /* we want a DATA_PHASE interrupt */
1593 write_3393(hostdata,WD_COMMAND_PHASE, 0x45);
1594 write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
1595 hostdata->state = S_RUNNING_LEVEL2;
1596 }
1597 else
1598 hostdata->state = S_CONNECTED;
1599
1600 DB(DB_INTR,printk("-%ld",cmd->pid))
1601 break;
1602
1603 default:
1604 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--",asr,sr,phs);
1605 }
1606
1607 write1_io(0, IO_LED_OFF);
1608
1609 DB(DB_INTR,printk("} "))
1610
1611 /* release the SMP spin_lock and restore irq state */
1612 CLISPIN_UNLOCK(flags);
1613
1614 }
1615
1616
1617
1618 #define RESET_CARD 0
1619 #define RESET_CARD_AND_BUS 1
1620 #define B_FLAG 0x80
1621
reset_hardware(struct Scsi_Host * instance,int type)1622 static int reset_hardware(struct Scsi_Host *instance, int type)
1623 {
1624 struct IN2000_hostdata *hostdata;
1625 int qt,x;
1626 unsigned long flags;
1627
1628 hostdata = (struct IN2000_hostdata *)instance->hostdata;
1629
1630 write1_io(0, IO_LED_ON);
1631 if (type == RESET_CARD_AND_BUS) {
1632 write1_io(0,IO_CARD_RESET);
1633 x = read1_io(IO_HARDWARE);
1634 }
1635 x = read_3393(hostdata,WD_SCSI_STATUS); /* clear any WD intrpt */
1636 write_3393(hostdata,WD_OWN_ID, instance->this_id |
1637 OWNID_EAF | OWNID_RAF | OWNID_FS_8);
1638 write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1639 write_3393(hostdata,WD_SYNCHRONOUS_TRANSFER,
1640 calc_sync_xfer(hostdata->default_sx_per/4,DEFAULT_SX_OFF));
1641 save_flags(flags);
1642 cli();
1643 write1_io(0,IO_FIFO_WRITE); /* clear fifo counter */
1644 write1_io(0,IO_FIFO_READ); /* start fifo out in read mode */
1645 write_3393(hostdata,WD_COMMAND, WD_CMD_RESET);
1646 while (!(READ_AUX_STAT() & ASR_INT))
1647 ; /* wait for RESET to complete */
1648
1649 x = read_3393(hostdata,WD_SCSI_STATUS); /* clear interrupt */
1650 restore_flags(flags);
1651 write_3393(hostdata,WD_QUEUE_TAG,0xa5); /* any random number */
1652 qt = read_3393(hostdata,WD_QUEUE_TAG);
1653 if (qt == 0xa5) {
1654 x |= B_FLAG;
1655 write_3393(hostdata,WD_QUEUE_TAG,0);
1656 }
1657 write_3393(hostdata,WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1658 write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1659 write1_io(0, IO_LED_OFF);
1660 return x;
1661 }
1662
1663
1664
in2000_reset(Scsi_Cmnd * cmd,unsigned int reset_flags)1665 int in2000_reset(Scsi_Cmnd *cmd, unsigned int reset_flags)
1666 {
1667 unsigned long flags;
1668 struct Scsi_Host *instance;
1669 struct IN2000_hostdata *hostdata;
1670 int x;
1671
1672 instance = cmd->host;
1673 hostdata = (struct IN2000_hostdata *)instance->hostdata;
1674
1675 printk("scsi%d: Reset. ", instance->host_no);
1676 save_flags(flags);
1677 cli();
1678
1679 /* do scsi-reset here */
1680
1681 reset_hardware(instance, RESET_CARD_AND_BUS);
1682 for (x = 0; x < 8; x++) {
1683 hostdata->busy[x] = 0;
1684 hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER/4,DEFAULT_SX_OFF);
1685 hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */
1686 }
1687 hostdata->input_Q = NULL;
1688 hostdata->selecting = NULL;
1689 hostdata->connected = NULL;
1690 hostdata->disconnected_Q = NULL;
1691 hostdata->state = S_UNCONNECTED;
1692 hostdata->fifo = FI_FIFO_UNUSED;
1693 hostdata->incoming_ptr = 0;
1694 hostdata->outgoing_len = 0;
1695
1696 cmd->result = DID_RESET << 16;
1697 restore_flags(flags);
1698 return 0;
1699 }
1700
1701
1702
in2000_abort(Scsi_Cmnd * cmd)1703 int in2000_abort (Scsi_Cmnd *cmd)
1704 {
1705 struct Scsi_Host *instance;
1706 struct IN2000_hostdata *hostdata;
1707 Scsi_Cmnd *tmp, *prev;
1708 unsigned long flags;
1709 uchar sr, asr;
1710 unsigned long timeout;
1711
1712 save_flags (flags);
1713 cli();
1714
1715 instance = cmd->host;
1716 hostdata = (struct IN2000_hostdata *)instance->hostdata;
1717
1718 printk ("scsi%d: Abort-", instance->host_no);
1719 printk("(asr=%02x,count=%ld,resid=%d,buf_resid=%d,have_data=%d,FC=%02x)- ",
1720 READ_AUX_STAT(),read_3393_count(hostdata),cmd->SCp.this_residual,cmd->SCp.buffers_residual,
1721 cmd->SCp.have_data_in,read1_io(IO_FIFO_COUNT));
1722
1723 /*
1724 * Case 1 : If the command hasn't been issued yet, we simply remove it
1725 * from the inout_Q.
1726 */
1727
1728 tmp = (Scsi_Cmnd *)hostdata->input_Q;
1729 prev = 0;
1730 while (tmp) {
1731 if (tmp == cmd) {
1732 if (prev)
1733 prev->host_scribble = cmd->host_scribble;
1734 cmd->host_scribble = NULL;
1735 cmd->result = DID_ABORT << 16;
1736 printk("scsi%d: Abort - removing command %ld from input_Q. ",
1737 instance->host_no, cmd->pid);
1738 cmd->scsi_done(cmd);
1739 restore_flags(flags);
1740 return SCSI_ABORT_SUCCESS;
1741 }
1742 prev = tmp;
1743 tmp = (Scsi_Cmnd *)tmp->host_scribble;
1744 }
1745
1746 /*
1747 * Case 2 : If the command is connected, we're going to fail the abort
1748 * and let the high level SCSI driver retry at a later time or
1749 * issue a reset.
1750 *
1751 * Timeouts, and therefore aborted commands, will be highly unlikely
1752 * and handling them cleanly in this situation would make the common
1753 * case of noresets less efficient, and would pollute our code. So,
1754 * we fail.
1755 */
1756
1757 if (hostdata->connected == cmd) {
1758
1759 printk("scsi%d: Aborting connected command %ld - ",
1760 instance->host_no, cmd->pid);
1761
1762 printk("sending wd33c93 ABORT command - ");
1763 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1764 write_3393_cmd(hostdata, WD_CMD_ABORT);
1765
1766 /* Now we have to attempt to flush out the FIFO... */
1767
1768 printk("flushing fifo - ");
1769 timeout = 1000000;
1770 do {
1771 asr = READ_AUX_STAT();
1772 if (asr & ASR_DBR)
1773 read_3393(hostdata, WD_DATA);
1774 } while (!(asr & ASR_INT) && timeout-- > 0);
1775 sr = read_3393(hostdata, WD_SCSI_STATUS);
1776 printk("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ",
1777 asr, sr, read_3393_count(hostdata), timeout);
1778
1779 /*
1780 * Abort command processed.
1781 * Still connected.
1782 * We must disconnect.
1783 */
1784
1785 printk("sending wd33c93 DISCONNECT command - ");
1786 write_3393_cmd(hostdata, WD_CMD_DISCONNECT);
1787
1788 timeout = 1000000;
1789 asr = READ_AUX_STAT();
1790 while ((asr & ASR_CIP) && timeout-- > 0)
1791 asr = READ_AUX_STAT();
1792 sr = read_3393(hostdata, WD_SCSI_STATUS);
1793 printk("asr=%02x, sr=%02x.",asr,sr);
1794
1795 hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
1796 hostdata->connected = NULL;
1797 hostdata->state = S_UNCONNECTED;
1798 cmd->result = DID_ABORT << 16;
1799 cmd->scsi_done(cmd);
1800
1801 in2000_execute (instance);
1802
1803 restore_flags(flags);
1804 return SCSI_ABORT_SUCCESS;
1805 }
1806
1807 /*
1808 * Case 3: If the command is currently disconnected from the bus,
1809 * we're not going to expend much effort here: Let's just return
1810 * an ABORT_SNOOZE and hope for the best...
1811 */
1812
1813 for (tmp=(Scsi_Cmnd *)hostdata->disconnected_Q; tmp;
1814 tmp=(Scsi_Cmnd *)tmp->host_scribble)
1815 if (cmd == tmp) {
1816 restore_flags(flags);
1817 printk("Sending ABORT_SNOOZE. ");
1818 return SCSI_ABORT_SNOOZE;
1819 }
1820
1821 /*
1822 * Case 4 : If we reached this point, the command was not found in any of
1823 * the queues.
1824 *
1825 * We probably reached this point because of an unlikely race condition
1826 * between the command completing successfully and the abortion code,
1827 * so we won't panic, but we will notify the user in case something really
1828 * broke.
1829 */
1830
1831 in2000_execute (instance);
1832
1833 restore_flags(flags);
1834 printk("scsi%d: warning : SCSI command probably completed successfully"
1835 " before abortion. ", instance->host_no);
1836 return SCSI_ABORT_NOT_RUNNING;
1837 }
1838
1839
1840
1841 #define MAX_IN2000_HOSTS 3
1842 #define MAX_SETUP_ARGS (sizeof(setup_args) / sizeof(char *))
1843 #define SETUP_BUFFER_SIZE 200
1844 static char setup_buffer[SETUP_BUFFER_SIZE];
1845 static char setup_used[MAX_SETUP_ARGS];
1846 static int done_setup = 0;
1847
in2000_setup(char * str,int * ints)1848 void __init in2000_setup (char *str, int *ints)
1849 {
1850 int i;
1851 char *p1,*p2;
1852
1853 strncpy(setup_buffer,str,SETUP_BUFFER_SIZE);
1854 setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0';
1855 p1 = setup_buffer;
1856 i = 0;
1857 while (*p1 && (i < MAX_SETUP_ARGS)) {
1858 p2 = strchr(p1, ',');
1859 if (p2) {
1860 *p2 = '\0';
1861 if (p1 != p2)
1862 setup_args[i] = p1;
1863 p1 = p2 + 1;
1864 i++;
1865 }
1866 else {
1867 setup_args[i] = p1;
1868 break;
1869 }
1870 }
1871 for (i=0; i<MAX_SETUP_ARGS; i++)
1872 setup_used[i] = 0;
1873 done_setup = 1;
1874 }
1875
1876
1877 /* check_setup_args() returns index if key found, 0 if not
1878 */
1879
check_setup_args(char * key,int * flags,int * val,char * buf)1880 static int __init check_setup_args(char *key, int *flags, int *val, char *buf)
1881 {
1882 int x;
1883 char *cp;
1884
1885 for (x=0; x<MAX_SETUP_ARGS; x++) {
1886 if (setup_used[x])
1887 continue;
1888 if (!strncmp(setup_args[x], key, strlen(key)))
1889 break;
1890 }
1891 if (x == MAX_SETUP_ARGS)
1892 return 0;
1893 setup_used[x] = 1;
1894 cp = setup_args[x] + strlen(key);
1895 *val = -1;
1896 if (*cp != ':')
1897 return ++x;
1898 cp++;
1899 if ((*cp >= '0') && (*cp <= '9')) {
1900 *val = simple_strtoul(cp,NULL,0);
1901 }
1902 return ++x;
1903 }
1904
1905
1906
1907 /* The "correct" (ie portable) way to access memory-mapped hardware
1908 * such as the IN2000 EPROM and dip switch is through the use of
1909 * special macros declared in 'asm/io.h'. We use readb() and readl()
1910 * when reading from the card's BIOS area in in2000_detect().
1911 */
1912 static u32 bios_tab[] in2000__INITDATA = {
1913 0xc8000,
1914 0xd0000,
1915 0xd8000,
1916 0
1917 };
1918
1919 static unsigned short base_tab[] in2000__INITDATA = {
1920 0x220,
1921 0x200,
1922 0x110,
1923 0x100,
1924 };
1925
1926 static int int_tab[] in2000__INITDATA = {
1927 15,
1928 14,
1929 11,
1930 10
1931 };
1932
1933
in2000_detect(Scsi_Host_Template * tpnt)1934 int __init in2000_detect(Scsi_Host_Template * tpnt)
1935 {
1936 struct Scsi_Host *instance;
1937 struct IN2000_hostdata *hostdata;
1938 int detect_count;
1939 int bios;
1940 int x;
1941 unsigned short base;
1942 uchar switches;
1943 uchar hrev;
1944 int flags;
1945 int val;
1946 char buf[32];
1947
1948 /* Thanks to help from Bill Earnest, probing for IN2000 cards is a
1949 * pretty straightforward and fool-proof operation. There are 3
1950 * possible locations for the IN2000 EPROM in memory space - if we
1951 * find a BIOS signature, we can read the dip switch settings from
1952 * the byte at BIOS+32 (shadowed in by logic on the card). From 2
1953 * of the switch bits we get the card's address in IO space. There's
1954 * an image of the dip switch there, also, so we have a way to back-
1955 * check that this really is an IN2000 card. Very nifty. Use the
1956 * 'ioport:xx' command-line parameter if your BIOS EPROM is absent
1957 * or disabled.
1958 */
1959
1960 if (!done_setup && setup_strings)
1961 in2000_setup(setup_strings,0);
1962
1963 detect_count = 0;
1964 for (bios = 0; bios_tab[bios]; bios++) {
1965 if (check_setup_args("ioport",&flags,&val,buf)) {
1966 base = val;
1967 switches = ~inb(base + IO_SWITCHES) & 0xff;
1968 printk("Forcing IN2000 detection at IOport 0x%x ",base);
1969 bios = 2;
1970 }
1971 /*
1972 * There have been a couple of BIOS versions with different layouts
1973 * for the obvious ID strings. We look for the 2 most common ones and
1974 * hope that they cover all the cases...
1975 */
1976 else if (isa_readl(bios_tab[bios]+0x10) == 0x41564f4e ||
1977 isa_readl(bios_tab[bios]+0x30) == 0x61776c41) {
1978 printk("Found IN2000 BIOS at 0x%x ",(unsigned int)bios_tab[bios]);
1979
1980 /* Read the switch image that's mapped into EPROM space */
1981
1982 switches = ~((isa_readb(bios_tab[bios]+0x20) & 0xff));
1983
1984 /* Find out where the IO space is */
1985
1986 x = switches & (SW_ADDR0 | SW_ADDR1);
1987 base = base_tab[x];
1988
1989 /* Check for the IN2000 signature in IO space. */
1990
1991 x = ~inb(base + IO_SWITCHES) & 0xff;
1992 if (x != switches) {
1993 printk("Bad IO signature: %02x vs %02x.\n",x,switches);
1994 continue;
1995 }
1996 }
1997 else
1998 continue;
1999
2000 /* OK. We have a base address for the IO ports - run a few safety checks */
2001
2002 if (!(switches & SW_BIT7)) { /* I _think_ all cards do this */
2003 printk("There is no IN-2000 SCSI card at IOport 0x%03x!\n",base);
2004 continue;
2005 }
2006
2007 /* Let's assume any hardware version will work, although the driver
2008 * has only been tested on 0x21, 0x22, 0x25, 0x26, and 0x27. We'll
2009 * print out the rev number for reference later, but accept them all.
2010 */
2011
2012 hrev = inb(base + IO_HARDWARE);
2013
2014 /* Bit 2 tells us if interrupts are disabled */
2015 if (switches & SW_DISINT) {
2016 printk("The IN-2000 SCSI card at IOport 0x%03x ",base);
2017 printk("is not configured for interrupt operation!\n");
2018 printk("This driver requires an interrupt: cancelling detection.\n");
2019 continue;
2020 }
2021
2022 /* Ok. We accept that there's an IN2000 at ioaddr 'base'. Now
2023 * initialize it.
2024 */
2025
2026 tpnt->proc_name = "in2000";
2027 instance = scsi_register(tpnt, sizeof(struct IN2000_hostdata));
2028 if(instance == NULL)
2029 continue;
2030 detect_count++;
2031 if (!instance_list)
2032 instance_list = instance;
2033 hostdata = (struct IN2000_hostdata *)instance->hostdata;
2034 instance->io_port = hostdata->io_base = base;
2035 hostdata->dip_switch = switches;
2036 hostdata->hrev = hrev;
2037
2038 write1_io(0,IO_FIFO_WRITE); /* clear fifo counter */
2039 write1_io(0,IO_FIFO_READ); /* start fifo out in read mode */
2040 write1_io(0,IO_INTR_MASK); /* allow all ints */
2041 x = int_tab[(switches & (SW_INT0 | SW_INT1)) >> SW_INT_SHIFT];
2042 if (request_irq(x, in2000_intr, SA_INTERRUPT, "in2000", NULL)) {
2043 printk("in2000_detect: Unable to allocate IRQ.\n");
2044 detect_count--;
2045 continue;
2046 }
2047 instance->irq = x;
2048 instance->n_io_port = 13;
2049 request_region(base, 13, "in2000"); /* lock in this IO space for our use */
2050
2051 for (x = 0; x < 8; x++) {
2052 hostdata->busy[x] = 0;
2053 hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER/4,DEFAULT_SX_OFF);
2054 hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */
2055 #ifdef PROC_STATISTICS
2056 hostdata->cmd_cnt[x] = 0;
2057 hostdata->disc_allowed_cnt[x] = 0;
2058 hostdata->disc_done_cnt[x] = 0;
2059 #endif
2060 }
2061 hostdata->input_Q = NULL;
2062 hostdata->selecting = NULL;
2063 hostdata->connected = NULL;
2064 hostdata->disconnected_Q = NULL;
2065 hostdata->state = S_UNCONNECTED;
2066 hostdata->fifo = FI_FIFO_UNUSED;
2067 hostdata->level2 = L2_BASIC;
2068 hostdata->disconnect = DIS_ADAPTIVE;
2069 hostdata->args = DEBUG_DEFAULTS;
2070 hostdata->incoming_ptr = 0;
2071 hostdata->outgoing_len = 0;
2072 hostdata->default_sx_per = DEFAULT_SX_PER;
2073
2074 /* Older BIOS's had a 'sync on/off' switch - use its setting */
2075
2076 if (isa_readl(bios_tab[bios]+0x10) == 0x41564f4e && (switches & SW_SYNC_DOS5))
2077 hostdata->sync_off = 0x00; /* sync defaults to on */
2078 else
2079 hostdata->sync_off = 0xff; /* sync defaults to off */
2080
2081 #ifdef PROC_INTERFACE
2082 hostdata->proc = PR_VERSION|PR_INFO|PR_STATISTICS|
2083 PR_CONNECTED|PR_INPUTQ|PR_DISCQ|
2084 PR_STOP;
2085 #ifdef PROC_STATISTICS
2086 hostdata->int_cnt = 0;
2087 #endif
2088 #endif
2089
2090 if (check_setup_args("nosync",&flags,&val,buf))
2091 hostdata->sync_off = val;
2092
2093 if (check_setup_args("period",&flags,&val,buf))
2094 hostdata->default_sx_per = sx_table[round_period((unsigned int)val)].period_ns;
2095
2096 if (check_setup_args("disconnect",&flags,&val,buf)) {
2097 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
2098 hostdata->disconnect = val;
2099 else
2100 hostdata->disconnect = DIS_ADAPTIVE;
2101 }
2102
2103 if (check_setup_args("noreset",&flags,&val,buf))
2104 hostdata->args ^= A_NO_SCSI_RESET;
2105
2106 if (check_setup_args("level2",&flags,&val,buf))
2107 hostdata->level2 = val;
2108
2109 if (check_setup_args("debug",&flags,&val,buf))
2110 hostdata->args = (val & DB_MASK);
2111
2112 #ifdef PROC_INTERFACE
2113 if (check_setup_args("proc",&flags,&val,buf))
2114 hostdata->proc = val;
2115 #endif
2116
2117
2118 x = reset_hardware(instance,(hostdata->args & A_NO_SCSI_RESET)?RESET_CARD:RESET_CARD_AND_BUS);
2119
2120 hostdata->microcode = read_3393(hostdata,WD_CDB_1);
2121 if (x & 0x01) {
2122 if (x & B_FLAG)
2123 hostdata->chip = C_WD33C93B;
2124 else
2125 hostdata->chip = C_WD33C93A;
2126 }
2127 else
2128 hostdata->chip = C_WD33C93;
2129
2130 printk("dip_switch=%02x irq=%d ioport=%02x floppy=%s sync/DOS5=%s ",
2131 (switches & 0x7f),
2132 instance->irq,hostdata->io_base,
2133 (switches & SW_FLOPPY)?"Yes":"No",
2134 (switches & SW_SYNC_DOS5)?"Yes":"No");
2135 printk("hardware_ver=%02x chip=%s microcode=%02x\n",
2136 hrev,
2137 (hostdata->chip==C_WD33C93)?"WD33c93":
2138 (hostdata->chip==C_WD33C93A)?"WD33c93A":
2139 (hostdata->chip==C_WD33C93B)?"WD33c93B":"unknown",
2140 hostdata->microcode);
2141 #ifdef DEBUGGING_ON
2142 printk("setup_args = ");
2143 for (x=0; x<MAX_SETUP_ARGS; x++)
2144 printk("%s,",setup_args[x]);
2145 printk("\n");
2146 #endif
2147 if (hostdata->sync_off == 0xff)
2148 printk("Sync-transfer DISABLED on all devices: ENABLE from command-line\n");
2149 printk("IN2000 driver version %s - %s\n",IN2000_VERSION,IN2000_DATE);
2150 }
2151
2152 return detect_count;
2153 }
2154
2155
2156 /* NOTE: I lifted this function straight out of the old driver,
2157 * and have not tested it. Presumably it does what it's
2158 * supposed to do...
2159 */
2160
in2000_biosparam(Disk * disk,kdev_t dev,int * iinfo)2161 int in2000_biosparam(Disk *disk, kdev_t dev, int *iinfo)
2162 {
2163 int size;
2164
2165 size = disk->capacity;
2166 iinfo[0] = 64;
2167 iinfo[1] = 32;
2168 iinfo[2] = size >> 11;
2169
2170 /* This should approximate the large drive handling that the DOS ASPI manager
2171 uses. Drives very near the boundaries may not be handled correctly (i.e.
2172 near 2.0 Gb and 4.0 Gb) */
2173
2174 if (iinfo[2] > 1024) {
2175 iinfo[0] = 64;
2176 iinfo[1] = 63;
2177 iinfo[2] = disk->capacity / (iinfo[0] * iinfo[1]);
2178 }
2179 if (iinfo[2] > 1024) {
2180 iinfo[0] = 128;
2181 iinfo[1] = 63;
2182 iinfo[2] = disk->capacity / (iinfo[0] * iinfo[1]);
2183 }
2184 if (iinfo[2] > 1024) {
2185 iinfo[0] = 255;
2186 iinfo[1] = 63;
2187 iinfo[2] = disk->capacity / (iinfo[0] * iinfo[1]);
2188 }
2189 return 0;
2190 }
2191
2192
in2000_proc_info(char * buf,char ** start,off_t off,int len,int hn,int in)2193 int in2000_proc_info(char *buf, char **start, off_t off, int len, int hn, int in)
2194 {
2195
2196 #ifdef PROC_INTERFACE
2197
2198 char *bp;
2199 char tbuf[128];
2200 unsigned long flags;
2201 struct Scsi_Host *instance;
2202 struct IN2000_hostdata *hd;
2203 Scsi_Cmnd *cmd;
2204 int x,i;
2205 static int stop = 0;
2206
2207 for (instance=instance_list; instance; instance=instance->next) {
2208 if (instance->host_no == hn)
2209 break;
2210 }
2211 if (!instance) {
2212 printk("*** Hmm... Can't find host #%d!\n",hn);
2213 return (-ESRCH);
2214 }
2215 hd = (struct IN2000_hostdata *)instance->hostdata;
2216
2217 /* If 'in' is TRUE we need to _read_ the proc file. We accept the following
2218 * keywords (same format as command-line, but only ONE per read):
2219 * debug
2220 * disconnect
2221 * period
2222 * resync
2223 * proc
2224 */
2225
2226 if (in) {
2227 buf[len] = '\0';
2228 bp = buf;
2229 if (!strncmp(bp,"debug:",6)) {
2230 bp += 6;
2231 hd->args = simple_strtoul(bp,NULL,0) & DB_MASK;
2232 }
2233 else if (!strncmp(bp,"disconnect:",11)) {
2234 bp += 11;
2235 x = simple_strtoul(bp,NULL,0);
2236 if (x < DIS_NEVER || x > DIS_ALWAYS)
2237 x = DIS_ADAPTIVE;
2238 hd->disconnect = x;
2239 }
2240 else if (!strncmp(bp,"period:",7)) {
2241 bp += 7;
2242 x = simple_strtoul(bp,NULL,0);
2243 hd->default_sx_per = sx_table[round_period((unsigned int)x)].period_ns;
2244 }
2245 else if (!strncmp(bp,"resync:",7)) {
2246 bp += 7;
2247 x = simple_strtoul(bp,NULL,0);
2248 for (i=0; i<7; i++)
2249 if (x & (1<<i))
2250 hd->sync_stat[i] = SS_UNSET;
2251 }
2252 else if (!strncmp(bp,"proc:",5)) {
2253 bp += 5;
2254 hd->proc = simple_strtoul(bp,NULL,0);
2255 }
2256 else if (!strncmp(bp,"level2:",7)) {
2257 bp += 7;
2258 hd->level2 = simple_strtoul(bp,NULL,0);
2259 }
2260 return len;
2261 }
2262
2263 save_flags(flags);
2264 cli();
2265 bp = buf;
2266 *bp = '\0';
2267 if (hd->proc & PR_VERSION) {
2268 sprintf(tbuf,"\nVersion %s - %s. Compiled %s %s",
2269 IN2000_VERSION,IN2000_DATE,__DATE__,__TIME__);
2270 strcat(bp,tbuf);
2271 }
2272 if (hd->proc & PR_INFO) {
2273 sprintf(tbuf,"\ndip_switch=%02x: irq=%d io=%02x floppy=%s sync/DOS5=%s",
2274 (hd->dip_switch & 0x7f), instance->irq, hd->io_base,
2275 (hd->dip_switch & 0x40)?"Yes":"No",
2276 (hd->dip_switch & 0x20)?"Yes":"No");
2277 strcat(bp,tbuf);
2278 strcat(bp,"\nsync_xfer[] = ");
2279 for (x=0; x<7; x++) {
2280 sprintf(tbuf,"\t%02x",hd->sync_xfer[x]);
2281 strcat(bp,tbuf);
2282 }
2283 strcat(bp,"\nsync_stat[] = ");
2284 for (x=0; x<7; x++) {
2285 sprintf(tbuf,"\t%02x",hd->sync_stat[x]);
2286 strcat(bp,tbuf);
2287 }
2288 }
2289 #ifdef PROC_STATISTICS
2290 if (hd->proc & PR_STATISTICS) {
2291 strcat(bp,"\ncommands issued: ");
2292 for (x=0; x<7; x++) {
2293 sprintf(tbuf,"\t%ld",hd->cmd_cnt[x]);
2294 strcat(bp,tbuf);
2295 }
2296 strcat(bp,"\ndisconnects allowed:");
2297 for (x=0; x<7; x++) {
2298 sprintf(tbuf,"\t%ld",hd->disc_allowed_cnt[x]);
2299 strcat(bp,tbuf);
2300 }
2301 strcat(bp,"\ndisconnects done: ");
2302 for (x=0; x<7; x++) {
2303 sprintf(tbuf,"\t%ld",hd->disc_done_cnt[x]);
2304 strcat(bp,tbuf);
2305 }
2306 sprintf(tbuf,"\ninterrupts: \t%ld",hd->int_cnt);
2307 strcat(bp,tbuf);
2308 }
2309 #endif
2310 if (hd->proc & PR_CONNECTED) {
2311 strcat(bp,"\nconnected: ");
2312 if (hd->connected) {
2313 cmd = (Scsi_Cmnd *)hd->connected;
2314 sprintf(tbuf," %ld-%d:%d(%02x)",
2315 cmd->pid, cmd->target, cmd->lun, cmd->cmnd[0]);
2316 strcat(bp,tbuf);
2317 }
2318 }
2319 if (hd->proc & PR_INPUTQ) {
2320 strcat(bp,"\ninput_Q: ");
2321 cmd = (Scsi_Cmnd *)hd->input_Q;
2322 while (cmd) {
2323 sprintf(tbuf," %ld-%d:%d(%02x)",
2324 cmd->pid, cmd->target, cmd->lun, cmd->cmnd[0]);
2325 strcat(bp,tbuf);
2326 cmd = (Scsi_Cmnd *)cmd->host_scribble;
2327 }
2328 }
2329 if (hd->proc & PR_DISCQ) {
2330 strcat(bp,"\ndisconnected_Q:");
2331 cmd = (Scsi_Cmnd *)hd->disconnected_Q;
2332 while (cmd) {
2333 sprintf(tbuf," %ld-%d:%d(%02x)",
2334 cmd->pid, cmd->target, cmd->lun, cmd->cmnd[0]);
2335 strcat(bp,tbuf);
2336 cmd = (Scsi_Cmnd *)cmd->host_scribble;
2337 }
2338 }
2339 if (hd->proc & PR_TEST) {
2340 ; /* insert your own custom function here */
2341 }
2342 strcat(bp,"\n");
2343 restore_flags(flags);
2344 *start = buf;
2345 if (stop) {
2346 stop = 0;
2347 return 0; /* return 0 to signal end-of-file */
2348 }
2349 if (off > 0x40000) /* ALWAYS stop after 256k bytes have been read */
2350 stop = 1;;
2351 if (hd->proc & PR_STOP) /* stop every other time */
2352 stop = 1;
2353 return strlen(bp);
2354
2355 #else /* PROC_INTERFACE */
2356
2357 return 0;
2358
2359 #endif /* PROC_INTERFACE */
2360
2361 }
2362
2363 MODULE_LICENSE("GPL");
2364
2365
2366 static Scsi_Host_Template driver_template = IN2000;
2367 #include "scsi_module.c"
2368
2369