1 /*
2  *    in2000.c -  Linux device driver for the
3  *                Always IN2000 ISA SCSI card.
4  *
5  * Copyright (c) 1996 John Shifflett, GeoLog Consulting
6  *    john@geolog.com
7  *    jshiffle@netcom.com
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  *
20  * Drew Eckhardt's excellent 'Generic NCR5380' sources provided
21  * much of the inspiration and some of the code for this driver.
22  * The Linux IN2000 driver distributed in the Linux kernels through
23  * version 1.2.13 was an extremely valuable reference on the arcane
24  * (and still mysterious) workings of the IN2000's fifo. It also
25  * is where I lifted in2000_biosparam(), the gist of the card
26  * detection scheme, and other bits of code. Many thanks to the
27  * talented and courageous people who wrote, contributed to, and
28  * maintained that driver (including Brad McLean, Shaun Savage,
29  * Bill Earnest, Larry Doolittle, Roger Sunshine, John Luckey,
30  * Matt Postiff, Peter Lu, zerucha@shell.portal.com, and Eric
31  * Youngdale). I should also mention the driver written by
32  * Hamish Macdonald for the (GASP!) Amiga A2091 card, included
33  * in the Linux-m68k distribution; it gave me a good initial
34  * understanding of the proper way to run a WD33c93 chip, and I
35  * ended up stealing lots of code from it.
36  *
37  * _This_ driver is (I feel) an improvement over the old one in
38  * several respects:
39  *    -  All problems relating to the data size of a SCSI request are
40  *          gone (as far as I know). The old driver couldn't handle
41  *          swapping to partitions because that involved 4k blocks, nor
42  *          could it deal with the st.c tape driver unmodified, because
43  *          that usually involved 4k - 32k blocks. The old driver never
44  *          quite got away from a morbid dependence on 2k block sizes -
45  *          which of course is the size of the card's fifo.
46  *
47  *    -  Target Disconnection/Reconnection is now supported. Any
48  *          system with more than one device active on the SCSI bus
49  *          will benefit from this. The driver defaults to what I'm
50  *          calling 'adaptive disconnect' - meaning that each command
51  *          is evaluated individually as to whether or not it should
52  *          be run with the option to disconnect/reselect (if the
53  *          device chooses), or as a "SCSI-bus-hog".
54  *
55  *    -  Synchronous data transfers are now supported. Because there
56  *          are a few devices (and many improperly terminated systems)
57  *          that choke when doing sync, the default is sync DISABLED
58  *          for all devices. This faster protocol can (and should!)
59  *          be enabled on selected devices via the command-line.
60  *
61  *    -  Runtime operating parameters can now be specified through
62  *       either the LILO or the 'insmod' command line. For LILO do:
63  *          "in2000=blah,blah,blah"
64  *       and with insmod go like:
65  *          "insmod /usr/src/linux/modules/in2000.o setup_strings=blah,blah"
66  *       The defaults should be good for most people. See the comment
67  *       for 'setup_strings' below for more details.
68  *
69  *    -  The old driver relied exclusively on what the Western Digital
70  *          docs call "Combination Level 2 Commands", which are a great
71  *          idea in that the CPU is relieved of a lot of interrupt
72  *          overhead. However, by accepting a certain (user-settable)
73  *          amount of additional interrupts, this driver achieves
74  *          better control over the SCSI bus, and data transfers are
75  *          almost as fast while being much easier to define, track,
76  *          and debug.
77  *
78  *    -  You can force detection of a card whose BIOS has been disabled.
79  *
80  *    -  Multiple IN2000 cards might almost be supported. I've tried to
81  *       keep it in mind, but have no way to test...
82  *
83  *
84  * TODO:
85  *       tagged queuing. multiple cards.
86  *
87  *
88  * NOTE:
89  *       When using this or any other SCSI driver as a module, you'll
90  *       find that with the stock kernel, at most _two_ SCSI hard
91  *       drives will be linked into the device list (ie, usable).
92  *       If your IN2000 card has more than 2 disks on its bus, you
93  *       might want to change the define of 'SD_EXTRA_DEVS' in the
94  *       'hosts.h' file from 2 to whatever is appropriate. It took
95  *       me a while to track down this surprisingly obscure and
96  *       undocumented little "feature".
97  *
98  *
99  * People with bug reports, wish-lists, complaints, comments,
100  * or improvements are asked to pah-leeez email me (John Shifflett)
101  * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
102  * this thing into as good a shape as possible, and I'm positive
103  * there are lots of lurking bugs and "Stupid Places".
104  *
105  */
106 
107 #include <linux/module.h>
108 
109 #include <asm/system.h>
110 #include <linux/sched.h>
111 #include <linux/string.h>
112 #include <linux/delay.h>
113 #include <linux/proc_fs.h>
114 #include <asm/io.h>
115 #include <linux/ioport.h>
116 #include <linux/blkdev.h>
117 
118 #include <linux/blk.h>
119 #include <linux/stat.h>
120 
121 #include "scsi.h"
122 #include "sd.h"
123 #include "hosts.h"
124 
125 #define IN2000_VERSION    "1.33"
126 #define IN2000_DATE       "26/August/1998"
127 
128 #include "in2000.h"
129 
130 
131 /*
132  * 'setup_strings' is a single string used to pass operating parameters and
133  * settings from the kernel/module command-line to the driver. 'setup_args[]'
134  * is an array of strings that define the compile-time default values for
135  * these settings. If Linux boots with a LILO or insmod command-line, those
136  * settings are combined with 'setup_args[]'. Note that LILO command-lines
137  * are prefixed with "in2000=" while insmod uses a "setup_strings=" prefix.
138  * The driver recognizes the following keywords (lower case required) and
139  * arguments:
140  *
141  * -  ioport:addr    -Where addr is IO address of a (usually ROM-less) card.
142  * -  noreset        -No optional args. Prevents SCSI bus reset at boot time.
143  * -  nosync:x       -x is a bitmask where the 1st 7 bits correspond with
144  *                    the 7 possible SCSI devices (bit 0 for device #0, etc).
145  *                    Set a bit to PREVENT sync negotiation on that device.
146  *                    The driver default is sync DISABLED on all devices.
147  * -  period:ns      -ns is the minimum # of nanoseconds in a SCSI data transfer
148  *                    period. Default is 500; acceptable values are 250 - 1000.
149  * -  disconnect:x   -x = 0 to never allow disconnects, 2 to always allow them.
150  *                    x = 1 does 'adaptive' disconnects, which is the default
151  *                    and generally the best choice.
152  * -  debug:x        -If 'DEBUGGING_ON' is defined, x is a bitmask that causes
153  *                    various types of debug output to printed - see the DB_xxx
154  *                    defines in in2000.h
155  * -  proc:x         -If 'PROC_INTERFACE' is defined, x is a bitmask that
156  *                    determines how the /proc interface works and what it
157  *                    does - see the PR_xxx defines in in2000.h
158  *
159  * Syntax Notes:
160  * -  Numeric arguments can be decimal or the '0x' form of hex notation. There
161  *    _must_ be a colon between a keyword and its numeric argument, with no
162  *    spaces.
163  * -  Keywords are separated by commas, no spaces, in the standard kernel
164  *    command-line manner.
165  * -  A keyword in the 'nth' comma-separated command-line member will overwrite
166  *    the 'nth' element of setup_args[]. A blank command-line member (in
167  *    other words, a comma with no preceding keyword) will _not_ overwrite
168  *    the corresponding setup_args[] element.
169  *
170  * A few LILO examples (for insmod, use 'setup_strings' instead of 'in2000'):
171  * -  in2000=ioport:0x220,noreset
172  * -  in2000=period:250,disconnect:2,nosync:0x03
173  * -  in2000=debug:0x1e
174  * -  in2000=proc:3
175  */
176 
177 /* Normally, no defaults are specified... */
178 static char *setup_args[] =
179       {"","","","","","","","",""};
180 
181 /* filled in by 'insmod' */
182 static char *setup_strings = 0;
183 
184 #ifdef MODULE_PARM
185 MODULE_PARM(setup_strings, "s");
186 #endif
187 
188 
189 static struct Scsi_Host *instance_list = 0;
190 
191 
192 
read_3393(struct IN2000_hostdata * hostdata,uchar reg_num)193 static inline uchar read_3393(struct IN2000_hostdata *hostdata, uchar reg_num)
194 {
195    write1_io(reg_num,IO_WD_ADDR);
196    return read1_io(IO_WD_DATA);
197 }
198 
199 
200 #define READ_AUX_STAT() read1_io(IO_WD_ASR)
201 
202 
write_3393(struct IN2000_hostdata * hostdata,uchar reg_num,uchar value)203 static inline void write_3393(struct IN2000_hostdata *hostdata, uchar reg_num, uchar value)
204 {
205    write1_io(reg_num,IO_WD_ADDR);
206    write1_io(value,IO_WD_DATA);
207 }
208 
209 
write_3393_cmd(struct IN2000_hostdata * hostdata,uchar cmd)210 static inline void write_3393_cmd(struct IN2000_hostdata *hostdata, uchar cmd)
211 {
212 /*   while (READ_AUX_STAT() & ASR_CIP)
213       printk("|");*/
214    write1_io(WD_COMMAND,IO_WD_ADDR);
215    write1_io(cmd,IO_WD_DATA);
216 }
217 
218 
read_1_byte(struct IN2000_hostdata * hostdata)219 static uchar read_1_byte(struct IN2000_hostdata *hostdata)
220 {
221 uchar asr, x = 0;
222 
223    write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
224    write_3393_cmd(hostdata,WD_CMD_TRANS_INFO|0x80);
225    do {
226       asr = READ_AUX_STAT();
227       if (asr & ASR_DBR)
228          x = read_3393(hostdata,WD_DATA);
229       } while (!(asr & ASR_INT));
230    return x;
231 }
232 
233 
write_3393_count(struct IN2000_hostdata * hostdata,unsigned long value)234 static void write_3393_count(struct IN2000_hostdata *hostdata, unsigned long value)
235 {
236    write1_io(WD_TRANSFER_COUNT_MSB,IO_WD_ADDR);
237    write1_io((value >> 16),IO_WD_DATA);
238    write1_io((value >> 8),IO_WD_DATA);
239    write1_io(value,IO_WD_DATA);
240 }
241 
242 
read_3393_count(struct IN2000_hostdata * hostdata)243 static unsigned long read_3393_count(struct IN2000_hostdata *hostdata)
244 {
245 unsigned long value;
246 
247    write1_io(WD_TRANSFER_COUNT_MSB,IO_WD_ADDR);
248    value = read1_io(IO_WD_DATA) << 16;
249    value |= read1_io(IO_WD_DATA) << 8;
250    value |= read1_io(IO_WD_DATA);
251    return value;
252 }
253 
254 
255 /* The 33c93 needs to be told which direction a command transfers its
256  * data; we use this function to figure it out. Returns true if there
257  * will be a DATA_OUT phase with this command, false otherwise.
258  * (Thanks to Joerg Dorchain for the research and suggestion.)
259  */
is_dir_out(Scsi_Cmnd * cmd)260 static int is_dir_out(Scsi_Cmnd *cmd)
261 {
262    switch (cmd->cmnd[0]) {
263       case WRITE_6:           case WRITE_10:          case WRITE_12:
264       case WRITE_LONG:        case WRITE_SAME:        case WRITE_BUFFER:
265       case WRITE_VERIFY:      case WRITE_VERIFY_12:
266       case COMPARE:           case COPY:              case COPY_VERIFY:
267       case SEARCH_EQUAL:      case SEARCH_HIGH:       case SEARCH_LOW:
268       case SEARCH_EQUAL_12:   case SEARCH_HIGH_12:    case SEARCH_LOW_12:
269       case FORMAT_UNIT:       case REASSIGN_BLOCKS:   case RESERVE:
270       case MODE_SELECT:       case MODE_SELECT_10:    case LOG_SELECT:
271       case SEND_DIAGNOSTIC:   case CHANGE_DEFINITION: case UPDATE_BLOCK:
272       case SET_WINDOW:        case MEDIUM_SCAN:       case SEND_VOLUME_TAG:
273       case 0xea:
274          return 1;
275       default:
276          return 0;
277       }
278 }
279 
280 
281 
282 static struct sx_period sx_table[] = {
283    {  1, 0x20},
284    {252, 0x20},
285    {376, 0x30},
286    {500, 0x40},
287    {624, 0x50},
288    {752, 0x60},
289    {876, 0x70},
290    {1000,0x00},
291    {0,   0} };
292 
round_period(unsigned int period)293 static int round_period(unsigned int period)
294 {
295 int x;
296 
297    for (x=1; sx_table[x].period_ns; x++) {
298       if ((period <= sx_table[x-0].period_ns) &&
299           (period >  sx_table[x-1].period_ns)) {
300          return x;
301          }
302       }
303    return 7;
304 }
305 
calc_sync_xfer(unsigned int period,unsigned int offset)306 static uchar calc_sync_xfer(unsigned int period, unsigned int offset)
307 {
308 uchar result;
309 
310    period *= 4;   /* convert SDTR code to ns */
311    result = sx_table[round_period(period)].reg_value;
312    result |= (offset < OPTIMUM_SX_OFF)?offset:OPTIMUM_SX_OFF;
313    return result;
314 }
315 
316 
317 
318 static void in2000_execute(struct Scsi_Host *instance);
319 
in2000_queuecommand(Scsi_Cmnd * cmd,void (* done)(Scsi_Cmnd *))320 int in2000_queuecommand (Scsi_Cmnd *cmd, void (*done)(Scsi_Cmnd *))
321 {
322 struct IN2000_hostdata *hostdata;
323 Scsi_Cmnd *tmp;
324 unsigned long flags;
325 
326    hostdata = (struct IN2000_hostdata *)cmd->host->hostdata;
327 
328 DB(DB_QUEUE_COMMAND,printk("Q-%d-%02x-%ld(",cmd->target,cmd->cmnd[0],cmd->pid))
329 
330 /* Set up a few fields in the Scsi_Cmnd structure for our own use:
331  *  - host_scribble is the pointer to the next cmd in the input queue
332  *  - scsi_done points to the routine we call when a cmd is finished
333  *  - result is what you'd expect
334  */
335 
336    cmd->host_scribble = NULL;
337    cmd->scsi_done = done;
338    cmd->result = 0;
339 
340 /* We use the Scsi_Pointer structure that's included with each command
341  * as a scratchpad (as it's intended to be used!). The handy thing about
342  * the SCp.xxx fields is that they're always associated with a given
343  * cmd, and are preserved across disconnect-reselect. This means we
344  * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
345  * if we keep all the critical pointers and counters in SCp:
346  *  - SCp.ptr is the pointer into the RAM buffer
347  *  - SCp.this_residual is the size of that buffer
348  *  - SCp.buffer points to the current scatter-gather buffer
349  *  - SCp.buffers_residual tells us how many S.G. buffers there are
350  *  - SCp.have_data_in helps keep track of >2048 byte transfers
351  *  - SCp.sent_command is not used
352  *  - SCp.phase records this command's SRCID_ER bit setting
353  */
354 
355    if (cmd->use_sg) {
356       cmd->SCp.buffer = (struct scatterlist *)cmd->buffer;
357       cmd->SCp.buffers_residual = cmd->use_sg - 1;
358       cmd->SCp.ptr = (char *)cmd->SCp.buffer->address;
359       cmd->SCp.this_residual = cmd->SCp.buffer->length;
360       }
361    else {
362       cmd->SCp.buffer = NULL;
363       cmd->SCp.buffers_residual = 0;
364       cmd->SCp.ptr = (char *)cmd->request_buffer;
365       cmd->SCp.this_residual = cmd->request_bufflen;
366       }
367    cmd->SCp.have_data_in = 0;
368 
369 /* We don't set SCp.phase here - that's done in in2000_execute() */
370 
371 /* WD docs state that at the conclusion of a "LEVEL2" command, the
372  * status byte can be retrieved from the LUN register. Apparently,
373  * this is the case only for *uninterrupted* LEVEL2 commands! If
374  * there are any unexpected phases entered, even if they are 100%
375  * legal (different devices may choose to do things differently),
376  * the LEVEL2 command sequence is exited. This often occurs prior
377  * to receiving the status byte, in which case the driver does a
378  * status phase interrupt and gets the status byte on its own.
379  * While such a command can then be "resumed" (ie restarted to
380  * finish up as a LEVEL2 command), the LUN register will NOT be
381  * a valid status byte at the command's conclusion, and we must
382  * use the byte obtained during the earlier interrupt. Here, we
383  * preset SCp.Status to an illegal value (0xff) so that when
384  * this command finally completes, we can tell where the actual
385  * status byte is stored.
386  */
387 
388    cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
389 
390 /* We need to disable interrupts before messing with the input
391  * queue and calling in2000_execute().
392  */
393 
394    save_flags(flags);
395    cli();
396 
397    /*
398     * Add the cmd to the end of 'input_Q'. Note that REQUEST_SENSE
399     * commands are added to the head of the queue so that the desired
400     * sense data is not lost before REQUEST_SENSE executes.
401     */
402 
403    if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
404       cmd->host_scribble = (uchar *)hostdata->input_Q;
405       hostdata->input_Q = cmd;
406       }
407    else {   /* find the end of the queue */
408       for (tmp=(Scsi_Cmnd *)hostdata->input_Q; tmp->host_scribble;
409             tmp=(Scsi_Cmnd *)tmp->host_scribble)
410          ;
411       tmp->host_scribble = (uchar *)cmd;
412       }
413 
414 /* We know that there's at least one command in 'input_Q' now.
415  * Go see if any of them are runnable!
416  */
417 
418    in2000_execute(cmd->host);
419 
420 DB(DB_QUEUE_COMMAND,printk(")Q-%ld ",cmd->pid))
421 
422    restore_flags(flags);
423    return 0;
424 }
425 
426 
427 
428 /*
429  * This routine attempts to start a scsi command. If the host_card is
430  * already connected, we give up immediately. Otherwise, look through
431  * the input_Q, using the first command we find that's intended
432  * for a currently non-busy target/lun.
433  * Note that this function is always called with interrupts already
434  * disabled (either from in2000_queuecommand() or in2000_intr()).
435  */
in2000_execute(struct Scsi_Host * instance)436 static void in2000_execute (struct Scsi_Host *instance)
437 {
438 struct IN2000_hostdata *hostdata;
439 Scsi_Cmnd *cmd, *prev;
440 int i;
441 unsigned short *sp;
442 unsigned short f;
443 unsigned short flushbuf[16];
444 
445 
446    hostdata = (struct IN2000_hostdata *)instance->hostdata;
447 
448 DB(DB_EXECUTE,printk("EX("))
449 
450    if (hostdata->selecting || hostdata->connected) {
451 
452 DB(DB_EXECUTE,printk(")EX-0 "))
453 
454       return;
455       }
456 
457     /*
458      * Search through the input_Q for a command destined
459      * for an idle target/lun.
460      */
461 
462    cmd = (Scsi_Cmnd *)hostdata->input_Q;
463    prev = 0;
464    while (cmd) {
465       if (!(hostdata->busy[cmd->target] & (1 << cmd->lun)))
466          break;
467       prev = cmd;
468       cmd = (Scsi_Cmnd *)cmd->host_scribble;
469       }
470 
471    /* quit if queue empty or all possible targets are busy */
472 
473    if (!cmd) {
474 
475 DB(DB_EXECUTE,printk(")EX-1 "))
476 
477       return;
478       }
479 
480    /*  remove command from queue */
481 
482    if (prev)
483       prev->host_scribble = cmd->host_scribble;
484    else
485       hostdata->input_Q = (Scsi_Cmnd *)cmd->host_scribble;
486 
487 #ifdef PROC_STATISTICS
488    hostdata->cmd_cnt[cmd->target]++;
489 #endif
490 
491 /*
492  * Start the selection process
493  */
494 
495    if (is_dir_out(cmd))
496       write_3393(hostdata,WD_DESTINATION_ID, cmd->target);
497    else
498       write_3393(hostdata,WD_DESTINATION_ID, cmd->target | DSTID_DPD);
499 
500 /* Now we need to figure out whether or not this command is a good
501  * candidate for disconnect/reselect. We guess to the best of our
502  * ability, based on a set of hierarchical rules. When several
503  * devices are operating simultaneously, disconnects are usually
504  * an advantage. In a single device system, or if only 1 device
505  * is being accessed, transfers usually go faster if disconnects
506  * are not allowed:
507  *
508  * + Commands should NEVER disconnect if hostdata->disconnect =
509  *   DIS_NEVER (this holds for tape drives also), and ALWAYS
510  *   disconnect if hostdata->disconnect = DIS_ALWAYS.
511  * + Tape drive commands should always be allowed to disconnect.
512  * + Disconnect should be allowed if disconnected_Q isn't empty.
513  * + Commands should NOT disconnect if input_Q is empty.
514  * + Disconnect should be allowed if there are commands in input_Q
515  *   for a different target/lun. In this case, the other commands
516  *   should be made disconnect-able, if not already.
517  *
518  * I know, I know - this code would flunk me out of any
519  * "C Programming 101" class ever offered. But it's easy
520  * to change around and experiment with for now.
521  */
522 
523    cmd->SCp.phase = 0;  /* assume no disconnect */
524    if (hostdata->disconnect == DIS_NEVER)
525       goto no;
526    if (hostdata->disconnect == DIS_ALWAYS)
527       goto yes;
528    if (cmd->device->type == 1)   /* tape drive? */
529       goto yes;
530    if (hostdata->disconnected_Q) /* other commands disconnected? */
531       goto yes;
532    if (!(hostdata->input_Q))     /* input_Q empty? */
533       goto no;
534    for (prev=(Scsi_Cmnd *)hostdata->input_Q; prev;
535          prev=(Scsi_Cmnd *)prev->host_scribble) {
536       if ((prev->target != cmd->target) || (prev->lun != cmd->lun)) {
537          for (prev=(Scsi_Cmnd *)hostdata->input_Q; prev;
538                prev=(Scsi_Cmnd *)prev->host_scribble)
539             prev->SCp.phase = 1;
540          goto yes;
541          }
542       }
543    goto no;
544 
545 yes:
546    cmd->SCp.phase = 1;
547 
548 #ifdef PROC_STATISTICS
549    hostdata->disc_allowed_cnt[cmd->target]++;
550 #endif
551 
552 no:
553    write_3393(hostdata,WD_SOURCE_ID,((cmd->SCp.phase)?SRCID_ER:0));
554 
555    write_3393(hostdata,WD_TARGET_LUN, cmd->lun);
556    write_3393(hostdata,WD_SYNCHRONOUS_TRANSFER,hostdata->sync_xfer[cmd->target]);
557    hostdata->busy[cmd->target] |= (1 << cmd->lun);
558 
559    if ((hostdata->level2 <= L2_NONE) ||
560        (hostdata->sync_stat[cmd->target] == SS_UNSET)) {
561 
562          /*
563           * Do a 'Select-With-ATN' command. This will end with
564           * one of the following interrupts:
565           *    CSR_RESEL_AM:  failure - can try again later.
566           *    CSR_TIMEOUT:   failure - give up.
567           *    CSR_SELECT:    success - proceed.
568           */
569 
570       hostdata->selecting = cmd;
571 
572 /* Every target has its own synchronous transfer setting, kept in
573  * the sync_xfer array, and a corresponding status byte in sync_stat[].
574  * Each target's sync_stat[] entry is initialized to SS_UNSET, and its
575  * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
576  * means that the parameters are undetermined as yet, and that we
577  * need to send an SDTR message to this device after selection is
578  * complete. We set SS_FIRST to tell the interrupt routine to do so,
579  * unless we don't want to even _try_ synchronous transfers: In this
580  * case we set SS_SET to make the defaults final.
581  */
582       if (hostdata->sync_stat[cmd->target] == SS_UNSET) {
583          if (hostdata->sync_off & (1 << cmd->target))
584             hostdata->sync_stat[cmd->target] = SS_SET;
585          else
586             hostdata->sync_stat[cmd->target] = SS_FIRST;
587          }
588       hostdata->state = S_SELECTING;
589       write_3393_count(hostdata,0); /* this guarantees a DATA_PHASE interrupt */
590       write_3393_cmd(hostdata,WD_CMD_SEL_ATN);
591       }
592 
593    else {
594 
595          /*
596           * Do a 'Select-With-ATN-Xfer' command. This will end with
597           * one of the following interrupts:
598           *    CSR_RESEL_AM:  failure - can try again later.
599           *    CSR_TIMEOUT:   failure - give up.
600           *    anything else: success - proceed.
601           */
602 
603       hostdata->connected = cmd;
604       write_3393(hostdata,WD_COMMAND_PHASE, 0);
605 
606    /* copy command_descriptor_block into WD chip
607     * (take advantage of auto-incrementing)
608     */
609 
610       write1_io(WD_CDB_1, IO_WD_ADDR);
611       for (i=0; i<cmd->cmd_len; i++)
612          write1_io(cmd->cmnd[i], IO_WD_DATA);
613 
614    /* The wd33c93 only knows about Group 0, 1, and 5 commands when
615     * it's doing a 'select-and-transfer'. To be safe, we write the
616     * size of the CDB into the OWN_ID register for every case. This
617     * way there won't be problems with vendor-unique, audio, etc.
618     */
619 
620       write_3393(hostdata, WD_OWN_ID, cmd->cmd_len);
621 
622    /* When doing a non-disconnect command, we can save ourselves a DATA
623     * phase interrupt later by setting everything up now. With writes we
624     * need to pre-fill the fifo; if there's room for the 32 flush bytes,
625     * put them in there too - that'll avoid a fifo interrupt. Reads are
626     * somewhat simpler.
627     * KLUDGE NOTE: It seems that you can't completely fill the fifo here:
628     * This results in the IO_FIFO_COUNT register rolling over to zero,
629     * and apparently the gate array logic sees this as empty, not full,
630     * so the 3393 chip is never signalled to start reading from the
631     * fifo. Or maybe it's seen as a permanent fifo interrupt condition.
632     * Regardless, we fix this by temporarily pretending that the fifo
633     * is 16 bytes smaller. (I see now that the old driver has a comment
634     * about "don't fill completely" in an analogous place - must be the
635     * same deal.) This results in CDROM, swap partitions, and tape drives
636     * needing an extra interrupt per write command - I think we can live
637     * with that!
638     */
639 
640       if (!(cmd->SCp.phase)) {
641          write_3393_count(hostdata, cmd->SCp.this_residual);
642          write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
643          write1_io(0, IO_FIFO_WRITE);  /* clear fifo counter, write mode */
644 
645          if (is_dir_out(cmd)) {
646             hostdata->fifo = FI_FIFO_WRITING;
647             if ((i = cmd->SCp.this_residual) > (IN2000_FIFO_SIZE - 16) )
648                i = IN2000_FIFO_SIZE - 16;
649             cmd->SCp.have_data_in = i;    /* this much data in fifo */
650             i >>= 1;                      /* Gulp. Assuming modulo 2. */
651             sp = (unsigned short *)cmd->SCp.ptr;
652             f = hostdata->io_base + IO_FIFO;
653 
654 #ifdef FAST_WRITE_IO
655 
656             FAST_WRITE2_IO();
657 #else
658             while (i--)
659                write2_io(*sp++,IO_FIFO);
660 
661 #endif
662 
663       /* Is there room for the flush bytes? */
664 
665             if (cmd->SCp.have_data_in <= ((IN2000_FIFO_SIZE - 16) - 32)) {
666                sp = flushbuf;
667                i = 16;
668 
669 #ifdef FAST_WRITE_IO
670 
671                FAST_WRITE2_IO();
672 #else
673                while (i--)
674                   write2_io(0,IO_FIFO);
675 
676 #endif
677 
678                }
679             }
680 
681          else {
682             write1_io(0, IO_FIFO_READ);   /* put fifo in read mode */
683             hostdata->fifo = FI_FIFO_READING;
684             cmd->SCp.have_data_in = 0;    /* nothing transferred yet */
685             }
686 
687          }
688       else {
689          write_3393_count(hostdata,0); /* this guarantees a DATA_PHASE interrupt */
690          }
691       hostdata->state = S_RUNNING_LEVEL2;
692       write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
693       }
694 
695    /*
696     * Since the SCSI bus can handle only 1 connection at a time,
697     * we get out of here now. If the selection fails, or when
698     * the command disconnects, we'll come back to this routine
699     * to search the input_Q again...
700     */
701 
702 DB(DB_EXECUTE,printk("%s%ld)EX-2 ",(cmd->SCp.phase)?"d:":"",cmd->pid))
703 
704 }
705 
706 
707 
transfer_pio(uchar * buf,int cnt,int data_in_dir,struct IN2000_hostdata * hostdata)708 static void transfer_pio(uchar *buf, int cnt,
709                   int data_in_dir, struct IN2000_hostdata *hostdata)
710 {
711 uchar asr;
712 
713 DB(DB_TRANSFER,printk("(%p,%d,%s)",buf,cnt,data_in_dir?"in":"out"))
714 
715    write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
716    write_3393_count(hostdata,cnt);
717    write_3393_cmd(hostdata,WD_CMD_TRANS_INFO);
718    if (data_in_dir) {
719       do {
720          asr = READ_AUX_STAT();
721          if (asr & ASR_DBR)
722             *buf++ = read_3393(hostdata,WD_DATA);
723          } while (!(asr & ASR_INT));
724       }
725    else {
726       do {
727          asr = READ_AUX_STAT();
728          if (asr & ASR_DBR)
729             write_3393(hostdata,WD_DATA, *buf++);
730          } while (!(asr & ASR_INT));
731       }
732 
733    /* Note: we are returning with the interrupt UN-cleared.
734    * Since (presumably) an entire I/O operation has
735    * completed, the bus phase is probably different, and
736    * the interrupt routine will discover this when it
737    * responds to the uncleared int.
738    */
739 
740 }
741 
742 
743 
transfer_bytes(Scsi_Cmnd * cmd,int data_in_dir)744 static void transfer_bytes(Scsi_Cmnd *cmd, int data_in_dir)
745 {
746 struct IN2000_hostdata *hostdata;
747 unsigned short *sp;
748 unsigned short f;
749 int i;
750 
751    hostdata = (struct IN2000_hostdata *)cmd->host->hostdata;
752 
753 /* Normally, you'd expect 'this_residual' to be non-zero here.
754  * In a series of scatter-gather transfers, however, this
755  * routine will usually be called with 'this_residual' equal
756  * to 0 and 'buffers_residual' non-zero. This means that a
757  * previous transfer completed, clearing 'this_residual', and
758  * now we need to setup the next scatter-gather buffer as the
759  * source or destination for THIS transfer.
760  */
761    if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
762       ++cmd->SCp.buffer;
763       --cmd->SCp.buffers_residual;
764       cmd->SCp.this_residual = cmd->SCp.buffer->length;
765       cmd->SCp.ptr = cmd->SCp.buffer->address;
766       }
767 
768 /* Set up hardware registers */
769 
770    write_3393(hostdata,WD_SYNCHRONOUS_TRANSFER,hostdata->sync_xfer[cmd->target]);
771    write_3393_count(hostdata,cmd->SCp.this_residual);
772    write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
773    write1_io(0,IO_FIFO_WRITE); /* zero counter, assume write */
774 
775 /* Reading is easy. Just issue the command and return - we'll
776  * get an interrupt later when we have actual data to worry about.
777  */
778 
779    if (data_in_dir) {
780       write1_io(0,IO_FIFO_READ);
781       if ((hostdata->level2 >= L2_DATA) ||
782           (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
783          write_3393(hostdata,WD_COMMAND_PHASE,0x45);
784          write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
785          hostdata->state = S_RUNNING_LEVEL2;
786          }
787       else
788          write_3393_cmd(hostdata,WD_CMD_TRANS_INFO);
789       hostdata->fifo = FI_FIFO_READING;
790       cmd->SCp.have_data_in = 0;
791       return;
792       }
793 
794 /* Writing is more involved - we'll start the WD chip and write as
795  * much data to the fifo as we can right now. Later interrupts will
796  * write any bytes that don't make it at this stage.
797  */
798 
799       if ((hostdata->level2 >= L2_DATA) ||
800           (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
801       write_3393(hostdata,WD_COMMAND_PHASE,0x45);
802       write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
803       hostdata->state = S_RUNNING_LEVEL2;
804       }
805    else
806       write_3393_cmd(hostdata,WD_CMD_TRANS_INFO);
807    hostdata->fifo = FI_FIFO_WRITING;
808    sp = (unsigned short *)cmd->SCp.ptr;
809 
810    if ((i = cmd->SCp.this_residual) > IN2000_FIFO_SIZE)
811       i = IN2000_FIFO_SIZE;
812    cmd->SCp.have_data_in = i;
813    i >>= 1;    /* Gulp. We assume this_residual is modulo 2 */
814    f = hostdata->io_base + IO_FIFO;
815 
816 #ifdef FAST_WRITE_IO
817 
818    FAST_WRITE2_IO();
819 #else
820    while (i--)
821       write2_io(*sp++,IO_FIFO);
822 
823 #endif
824 
825 }
826 
827 
828 /* We need to use spin_lock_irqsave() & spin_unlock_irqrestore() in this
829  * function in order to work in an SMP environment. (I'd be surprised
830  * if the driver is ever used by anyone on a real multi-CPU motherboard,
831  * but it _does_ need to be able to compile and run in an SMP kernel.)
832  */
833 
in2000_intr(int irqnum,void * dev_id,struct pt_regs * ptregs)834 static void in2000_intr (int irqnum, void * dev_id, struct pt_regs *ptregs)
835 {
836 struct Scsi_Host *instance;
837 struct IN2000_hostdata *hostdata;
838 Scsi_Cmnd *patch, *cmd;
839 uchar asr, sr, phs, id, lun, *ucp, msg;
840 int i,j;
841 unsigned long length;
842 unsigned short *sp;
843 unsigned short f;
844 unsigned long flags;
845 
846    for (instance = instance_list; instance; instance = instance->next) {
847       if (instance->irq == irqnum)
848          break;
849       }
850    if (!instance) {
851       printk("*** Hmm... interrupts are screwed up! ***\n");
852       return;
853       }
854    hostdata = (struct IN2000_hostdata *)instance->hostdata;
855 
856 /* Get the spin_lock and disable further ints, for SMP */
857 
858    CLISPIN_LOCK(flags);
859 
860 #ifdef PROC_STATISTICS
861    hostdata->int_cnt++;
862 #endif
863 
864 /* The IN2000 card has 2 interrupt sources OR'ed onto its IRQ line - the
865  * WD3393 chip and the 2k fifo (which is actually a dual-port RAM combined
866  * with a big logic array, so it's a little different than what you might
867  * expect). As far as I know, there's no reason that BOTH can't be active
868  * at the same time, but there's a problem: while we can read the 3393
869  * to tell if _it_ wants an interrupt, I don't know of a way to ask the
870  * fifo the same question. The best we can do is check the 3393 and if
871  * it _isn't_ the source of the interrupt, then we can be pretty sure
872  * that the fifo is the culprit.
873  *  UPDATE: I have it on good authority (Bill Earnest) that bit 0 of the
874  *          IO_FIFO_COUNT register mirrors the fifo interrupt state. I
875  *          assume that bit clear means interrupt active. As it turns
876  *          out, the driver really doesn't need to check for this after
877  *          all, so my remarks above about a 'problem' can safely be
878  *          ignored. The way the logic is set up, there's no advantage
879  *          (that I can see) to worrying about it.
880  *
881  * It seems that the fifo interrupt signal is negated when we extract
882  * bytes during read or write bytes during write.
883  *  - fifo will interrupt when data is moving from it to the 3393, and
884  *    there are 31 (or less?) bytes left to go. This is sort of short-
885  *    sighted: what if you don't WANT to do more? In any case, our
886  *    response is to push more into the fifo - either actual data or
887  *    dummy bytes if need be. Note that we apparently have to write at
888  *    least 32 additional bytes to the fifo after an interrupt in order
889  *    to get it to release the ones it was holding on to - writing fewer
890  *    than 32 will result in another fifo int.
891  *  UPDATE: Again, info from Bill Earnest makes this more understandable:
892  *          32 bytes = two counts of the fifo counter register. He tells
893  *          me that the fifo interrupt is a non-latching signal derived
894  *          from a straightforward boolean interpretation of the 7
895  *          highest bits of the fifo counter and the fifo-read/fifo-write
896  *          state. Who'd a thought?
897  */
898 
899    write1_io(0, IO_LED_ON);
900    asr = READ_AUX_STAT();
901    if (!(asr & ASR_INT)) {    /* no WD33c93 interrupt? */
902 
903 /* Ok. This is definitely a FIFO-only interrupt.
904  *
905  * If FI_FIFO_READING is set, there are up to 2048 bytes waiting to be read,
906  * maybe more to come from the SCSI bus. Read as many as we can out of the
907  * fifo and into memory at the location of SCp.ptr[SCp.have_data_in], and
908  * update have_data_in afterwards.
909  *
910  * If we have FI_FIFO_WRITING, the FIFO has almost run out of bytes to move
911  * into the WD3393 chip (I think the interrupt happens when there are 31
912  * bytes left, but it may be fewer...). The 3393 is still waiting, so we
913  * shove some more into the fifo, which gets things moving again. If the
914  * original SCSI command specified more than 2048 bytes, there may still
915  * be some of that data left: fine - use it (from SCp.ptr[SCp.have_data_in]).
916  * Don't forget to update have_data_in. If we've already written out the
917  * entire buffer, feed 32 dummy bytes to the fifo - they're needed to
918  * push out the remaining real data.
919  *    (Big thanks to Bill Earnest for getting me out of the mud in here.)
920  */
921 
922       cmd = (Scsi_Cmnd *)hostdata->connected;   /* assume we're connected */
923 CHECK_NULL(cmd,"fifo_int")
924 
925       if (hostdata->fifo == FI_FIFO_READING) {
926 
927 DB(DB_FIFO,printk("{R:%02x} ",read1_io(IO_FIFO_COUNT)))
928 
929          sp = (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in);
930          i = read1_io(IO_FIFO_COUNT) & 0xfe;
931          i <<= 2;    /* # of words waiting in the fifo */
932          f = hostdata->io_base + IO_FIFO;
933 
934 #ifdef FAST_READ_IO
935 
936          FAST_READ2_IO();
937 #else
938          while (i--)
939             *sp++ = read2_io(IO_FIFO);
940 
941 #endif
942 
943          i = sp - (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in);
944          i <<= 1;
945          cmd->SCp.have_data_in += i;
946          }
947 
948       else if (hostdata->fifo == FI_FIFO_WRITING) {
949 
950 DB(DB_FIFO,printk("{W:%02x} ",read1_io(IO_FIFO_COUNT)))
951 
952 /* If all bytes have been written to the fifo, flush out the stragglers.
953  * Note that while writing 16 dummy words seems arbitrary, we don't
954  * have another choice that I can see. What we really want is to read
955  * the 3393 transfer count register (that would tell us how many bytes
956  * needed flushing), but the TRANSFER_INFO command hasn't completed
957  * yet (not enough bytes!) and that register won't be accessible. So,
958  * we use 16 words - a number obtained through trial and error.
959  *  UPDATE: Bill says this is exactly what Always does, so there.
960  *          More thanks due him for help in this section.
961  */
962 
963          if (cmd->SCp.this_residual == cmd->SCp.have_data_in) {
964             i = 16;
965             while (i--)          /* write 32 dummy bytes */
966                write2_io(0,IO_FIFO);
967             }
968 
969 /* If there are still bytes left in the SCSI buffer, write as many as we
970  * can out to the fifo.
971  */
972 
973          else {
974             sp = (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in);
975             i = cmd->SCp.this_residual - cmd->SCp.have_data_in;   /* bytes yet to go */
976             j = read1_io(IO_FIFO_COUNT) & 0xfe;
977             j <<= 2;    /* how many words the fifo has room for */
978             if ((j << 1) > i)
979                j = (i >> 1);
980             while (j--)
981                write2_io(*sp++,IO_FIFO);
982 
983             i = sp - (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in);
984             i <<= 1;
985             cmd->SCp.have_data_in += i;
986             }
987          }
988 
989       else {
990             printk("*** Spurious FIFO interrupt ***");
991             }
992 
993       write1_io(0, IO_LED_OFF);
994 
995 /* release the SMP spin_lock and restore irq state */
996       CLISPIN_UNLOCK(flags);
997       return;
998       }
999 
1000 /* This interrupt was triggered by the WD33c93 chip. The fifo interrupt
1001  * may also be asserted, but we don't bother to check it: we get more
1002  * detailed info from FIFO_READING and FIFO_WRITING (see below).
1003  */
1004 
1005    cmd = (Scsi_Cmnd *)hostdata->connected;   /* assume we're connected */
1006    sr = read_3393(hostdata,WD_SCSI_STATUS);  /* clear the interrupt */
1007    phs = read_3393(hostdata,WD_COMMAND_PHASE);
1008 
1009    if (!cmd && (sr != CSR_RESEL_AM && sr != CSR_TIMEOUT && sr != CSR_SELECT)) {
1010       printk("\nNR:wd-intr-1\n");
1011       write1_io(0, IO_LED_OFF);
1012 
1013 /* release the SMP spin_lock and restore irq state */
1014       CLISPIN_UNLOCK(flags);
1015       return;
1016       }
1017 
1018 DB(DB_INTR,printk("{%02x:%02x-",asr,sr))
1019 
1020 /* After starting a FIFO-based transfer, the next _WD3393_ interrupt is
1021  * guaranteed to be in response to the completion of the transfer.
1022  * If we were reading, there's probably data in the fifo that needs
1023  * to be copied into RAM - do that here. Also, we have to update
1024  * 'this_residual' and 'ptr' based on the contents of the
1025  * TRANSFER_COUNT register, in case the device decided to do an
1026  * intermediate disconnect (a device may do this if it has to
1027  * do a seek,  or just to be nice and let other devices have
1028  * some bus time during long transfers).
1029  * After doing whatever is necessary with the fifo, we go on and
1030  * service the WD3393 interrupt normally.
1031  */
1032 
1033    if (hostdata->fifo == FI_FIFO_READING) {
1034 
1035 /* buffer index = start-of-buffer + #-of-bytes-already-read */
1036 
1037       sp = (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in);
1038 
1039 /* bytes remaining in fifo = (total-wanted - #-not-got) - #-already-read */
1040 
1041       i = (cmd->SCp.this_residual - read_3393_count(hostdata)) - cmd->SCp.have_data_in;
1042       i >>= 1;    /* Gulp. We assume this will always be modulo 2 */
1043       f = hostdata->io_base + IO_FIFO;
1044 
1045 #ifdef FAST_READ_IO
1046 
1047       FAST_READ2_IO();
1048 #else
1049       while (i--)
1050          *sp++ = read2_io(IO_FIFO);
1051 
1052 #endif
1053 
1054       hostdata->fifo = FI_FIFO_UNUSED;
1055       length = cmd->SCp.this_residual;
1056       cmd->SCp.this_residual = read_3393_count(hostdata);
1057       cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1058 
1059 DB(DB_TRANSFER,printk("(%p,%d)",cmd->SCp.ptr,cmd->SCp.this_residual))
1060 
1061       }
1062 
1063    else if (hostdata->fifo == FI_FIFO_WRITING) {
1064       hostdata->fifo = FI_FIFO_UNUSED;
1065       length = cmd->SCp.this_residual;
1066       cmd->SCp.this_residual = read_3393_count(hostdata);
1067       cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1068 
1069 DB(DB_TRANSFER,printk("(%p,%d)",cmd->SCp.ptr,cmd->SCp.this_residual))
1070 
1071       }
1072 
1073 /* Respond to the specific WD3393 interrupt - there are quite a few! */
1074 
1075    switch (sr) {
1076 
1077       case CSR_TIMEOUT:
1078 DB(DB_INTR,printk("TIMEOUT"))
1079 
1080          if (hostdata->state == S_RUNNING_LEVEL2)
1081             hostdata->connected = NULL;
1082          else {
1083             cmd = (Scsi_Cmnd *)hostdata->selecting;   /* get a valid cmd */
1084 CHECK_NULL(cmd,"csr_timeout")
1085             hostdata->selecting = NULL;
1086             }
1087 
1088          cmd->result = DID_NO_CONNECT << 16;
1089          hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
1090          hostdata->state = S_UNCONNECTED;
1091          cmd->scsi_done(cmd);
1092 
1093 /* We are not connected to a target - check to see if there
1094  * are commands waiting to be executed.
1095  */
1096 
1097          in2000_execute(instance);
1098          break;
1099 
1100 
1101 /* Note: this interrupt should not occur in a LEVEL2 command */
1102 
1103       case CSR_SELECT:
1104 DB(DB_INTR,printk("SELECT"))
1105          hostdata->connected = cmd = (Scsi_Cmnd *)hostdata->selecting;
1106 CHECK_NULL(cmd,"csr_select")
1107          hostdata->selecting = NULL;
1108 
1109       /* construct an IDENTIFY message with correct disconnect bit */
1110 
1111          hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->lun);
1112          if (cmd->SCp.phase)
1113             hostdata->outgoing_msg[0] |= 0x40;
1114 
1115          if (hostdata->sync_stat[cmd->target] == SS_FIRST) {
1116 #ifdef SYNC_DEBUG
1117 printk(" sending SDTR ");
1118 #endif
1119 
1120             hostdata->sync_stat[cmd->target] = SS_WAITING;
1121 
1122       /* tack on a 2nd message to ask about synchronous transfers */
1123 
1124             hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
1125             hostdata->outgoing_msg[2] = 3;
1126             hostdata->outgoing_msg[3] = EXTENDED_SDTR;
1127             hostdata->outgoing_msg[4] = OPTIMUM_SX_PER/4;
1128             hostdata->outgoing_msg[5] = OPTIMUM_SX_OFF;
1129             hostdata->outgoing_len = 6;
1130             }
1131          else
1132             hostdata->outgoing_len = 1;
1133 
1134          hostdata->state = S_CONNECTED;
1135          break;
1136 
1137 
1138       case CSR_XFER_DONE|PHS_DATA_IN:
1139       case CSR_UNEXP    |PHS_DATA_IN:
1140       case CSR_SRV_REQ  |PHS_DATA_IN:
1141 DB(DB_INTR,printk("IN-%d.%d",cmd->SCp.this_residual,cmd->SCp.buffers_residual))
1142          transfer_bytes(cmd, DATA_IN_DIR);
1143          if (hostdata->state != S_RUNNING_LEVEL2)
1144             hostdata->state = S_CONNECTED;
1145          break;
1146 
1147 
1148       case CSR_XFER_DONE|PHS_DATA_OUT:
1149       case CSR_UNEXP    |PHS_DATA_OUT:
1150       case CSR_SRV_REQ  |PHS_DATA_OUT:
1151 DB(DB_INTR,printk("OUT-%d.%d",cmd->SCp.this_residual,cmd->SCp.buffers_residual))
1152          transfer_bytes(cmd, DATA_OUT_DIR);
1153          if (hostdata->state != S_RUNNING_LEVEL2)
1154             hostdata->state = S_CONNECTED;
1155          break;
1156 
1157 
1158 /* Note: this interrupt should not occur in a LEVEL2 command */
1159 
1160       case CSR_XFER_DONE|PHS_COMMAND:
1161       case CSR_UNEXP    |PHS_COMMAND:
1162       case CSR_SRV_REQ  |PHS_COMMAND:
1163 DB(DB_INTR,printk("CMND-%02x,%ld",cmd->cmnd[0],cmd->pid))
1164          transfer_pio(cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, hostdata);
1165          hostdata->state = S_CONNECTED;
1166          break;
1167 
1168 
1169       case CSR_XFER_DONE|PHS_STATUS:
1170       case CSR_UNEXP    |PHS_STATUS:
1171       case CSR_SRV_REQ  |PHS_STATUS:
1172 DB(DB_INTR,printk("STATUS="))
1173 
1174          cmd->SCp.Status = read_1_byte(hostdata);
1175 DB(DB_INTR,printk("%02x",cmd->SCp.Status))
1176          if (hostdata->level2 >= L2_BASIC) {
1177             sr = read_3393(hostdata,WD_SCSI_STATUS);  /* clear interrupt */
1178             hostdata->state = S_RUNNING_LEVEL2;
1179             write_3393(hostdata,WD_COMMAND_PHASE, 0x50);
1180             write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
1181             }
1182          else {
1183             hostdata->state = S_CONNECTED;
1184             }
1185          break;
1186 
1187 
1188       case CSR_XFER_DONE|PHS_MESS_IN:
1189       case CSR_UNEXP    |PHS_MESS_IN:
1190       case CSR_SRV_REQ  |PHS_MESS_IN:
1191 DB(DB_INTR,printk("MSG_IN="))
1192 
1193          msg = read_1_byte(hostdata);
1194          sr = read_3393(hostdata,WD_SCSI_STATUS);  /* clear interrupt */
1195 
1196          hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
1197          if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
1198             msg = EXTENDED_MESSAGE;
1199          else
1200             hostdata->incoming_ptr = 0;
1201 
1202          cmd->SCp.Message = msg;
1203          switch (msg) {
1204 
1205             case COMMAND_COMPLETE:
1206 DB(DB_INTR,printk("CCMP-%ld",cmd->pid))
1207                write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1208                hostdata->state = S_PRE_CMP_DISC;
1209                break;
1210 
1211             case SAVE_POINTERS:
1212 DB(DB_INTR,printk("SDP"))
1213                write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1214                hostdata->state = S_CONNECTED;
1215                break;
1216 
1217             case RESTORE_POINTERS:
1218 DB(DB_INTR,printk("RDP"))
1219                if (hostdata->level2 >= L2_BASIC) {
1220                   write_3393(hostdata,WD_COMMAND_PHASE, 0x45);
1221                   write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
1222                   hostdata->state = S_RUNNING_LEVEL2;
1223                   }
1224                else {
1225                   write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1226                   hostdata->state = S_CONNECTED;
1227                   }
1228                break;
1229 
1230             case DISCONNECT:
1231 DB(DB_INTR,printk("DIS"))
1232                cmd->device->disconnect = 1;
1233                write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1234                hostdata->state = S_PRE_TMP_DISC;
1235                break;
1236 
1237             case MESSAGE_REJECT:
1238 DB(DB_INTR,printk("REJ"))
1239 #ifdef SYNC_DEBUG
1240 printk("-REJ-");
1241 #endif
1242                if (hostdata->sync_stat[cmd->target] == SS_WAITING)
1243                   hostdata->sync_stat[cmd->target] = SS_SET;
1244                write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1245                hostdata->state = S_CONNECTED;
1246                break;
1247 
1248             case EXTENDED_MESSAGE:
1249 DB(DB_INTR,printk("EXT"))
1250 
1251                ucp = hostdata->incoming_msg;
1252 
1253 #ifdef SYNC_DEBUG
1254 printk("%02x",ucp[hostdata->incoming_ptr]);
1255 #endif
1256          /* Is this the last byte of the extended message? */
1257 
1258                if ((hostdata->incoming_ptr >= 2) &&
1259                    (hostdata->incoming_ptr == (ucp[1] + 1))) {
1260 
1261                   switch (ucp[2]) {   /* what's the EXTENDED code? */
1262                      case EXTENDED_SDTR:
1263                         id = calc_sync_xfer(ucp[3],ucp[4]);
1264                         if (hostdata->sync_stat[cmd->target] != SS_WAITING) {
1265 
1266 /* A device has sent an unsolicited SDTR message; rather than go
1267  * through the effort of decoding it and then figuring out what
1268  * our reply should be, we're just gonna say that we have a
1269  * synchronous fifo depth of 0. This will result in asynchronous
1270  * transfers - not ideal but so much easier.
1271  * Actually, this is OK because it assures us that if we don't
1272  * specifically ask for sync transfers, we won't do any.
1273  */
1274 
1275                            write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1276                            hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1277                            hostdata->outgoing_msg[1] = 3;
1278                            hostdata->outgoing_msg[2] = EXTENDED_SDTR;
1279                            hostdata->outgoing_msg[3] = hostdata->default_sx_per/4;
1280                            hostdata->outgoing_msg[4] = 0;
1281                            hostdata->outgoing_len = 5;
1282                            hostdata->sync_xfer[cmd->target] =
1283                                        calc_sync_xfer(hostdata->default_sx_per/4,0);
1284                            }
1285                         else {
1286                            hostdata->sync_xfer[cmd->target] = id;
1287                            }
1288 #ifdef SYNC_DEBUG
1289 printk("sync_xfer=%02x",hostdata->sync_xfer[cmd->target]);
1290 #endif
1291                         hostdata->sync_stat[cmd->target] = SS_SET;
1292                         write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1293                         hostdata->state = S_CONNECTED;
1294                         break;
1295                      case EXTENDED_WDTR:
1296                         write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1297                         printk("sending WDTR ");
1298                         hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1299                         hostdata->outgoing_msg[1] = 2;
1300                         hostdata->outgoing_msg[2] = EXTENDED_WDTR;
1301                         hostdata->outgoing_msg[3] = 0;   /* 8 bit transfer width */
1302                         hostdata->outgoing_len = 4;
1303                         write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1304                         hostdata->state = S_CONNECTED;
1305                         break;
1306                      default:
1307                         write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1308                         printk("Rejecting Unknown Extended Message(%02x). ",ucp[2]);
1309                         hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1310                         hostdata->outgoing_len = 1;
1311                         write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1312                         hostdata->state = S_CONNECTED;
1313                         break;
1314                      }
1315                   hostdata->incoming_ptr = 0;
1316                   }
1317 
1318          /* We need to read more MESS_IN bytes for the extended message */
1319 
1320                else {
1321                   hostdata->incoming_ptr++;
1322                   write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1323                   hostdata->state = S_CONNECTED;
1324                   }
1325                break;
1326 
1327             default:
1328                printk("Rejecting Unknown Message(%02x) ",msg);
1329                write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1330                hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1331                hostdata->outgoing_len = 1;
1332                write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1333                hostdata->state = S_CONNECTED;
1334             }
1335          break;
1336 
1337 
1338 /* Note: this interrupt will occur only after a LEVEL2 command */
1339 
1340       case CSR_SEL_XFER_DONE:
1341 
1342 /* Make sure that reselection is enabled at this point - it may
1343  * have been turned off for the command that just completed.
1344  */
1345 
1346          write_3393(hostdata,WD_SOURCE_ID, SRCID_ER);
1347          if (phs == 0x60) {
1348 DB(DB_INTR,printk("SX-DONE-%ld",cmd->pid))
1349             cmd->SCp.Message = COMMAND_COMPLETE;
1350             lun = read_3393(hostdata,WD_TARGET_LUN);
1351 DB(DB_INTR,printk(":%d.%d",cmd->SCp.Status,lun))
1352             hostdata->connected = NULL;
1353             hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
1354             hostdata->state = S_UNCONNECTED;
1355             if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
1356                cmd->SCp.Status = lun;
1357             if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1358                cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1359             else
1360                cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1361             cmd->scsi_done(cmd);
1362 
1363 /* We are no longer connected to a target - check to see if
1364  * there are commands waiting to be executed.
1365  */
1366 
1367             in2000_execute(instance);
1368             }
1369          else {
1370             printk("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---",asr,sr,phs,cmd->pid);
1371             }
1372          break;
1373 
1374 
1375 /* Note: this interrupt will occur only after a LEVEL2 command */
1376 
1377       case CSR_SDP:
1378 DB(DB_INTR,printk("SDP"))
1379             hostdata->state = S_RUNNING_LEVEL2;
1380             write_3393(hostdata,WD_COMMAND_PHASE, 0x41);
1381             write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
1382          break;
1383 
1384 
1385       case CSR_XFER_DONE|PHS_MESS_OUT:
1386       case CSR_UNEXP    |PHS_MESS_OUT:
1387       case CSR_SRV_REQ  |PHS_MESS_OUT:
1388 DB(DB_INTR,printk("MSG_OUT="))
1389 
1390 /* To get here, we've probably requested MESSAGE_OUT and have
1391  * already put the correct bytes in outgoing_msg[] and filled
1392  * in outgoing_len. We simply send them out to the SCSI bus.
1393  * Sometimes we get MESSAGE_OUT phase when we're not expecting
1394  * it - like when our SDTR message is rejected by a target. Some
1395  * targets send the REJECT before receiving all of the extended
1396  * message, and then seem to go back to MESSAGE_OUT for a byte
1397  * or two. Not sure why, or if I'm doing something wrong to
1398  * cause this to happen. Regardless, it seems that sending
1399  * NOP messages in these situations results in no harm and
1400  * makes everyone happy.
1401  */
1402 
1403          if (hostdata->outgoing_len == 0) {
1404             hostdata->outgoing_len = 1;
1405             hostdata->outgoing_msg[0] = NOP;
1406             }
1407          transfer_pio(hostdata->outgoing_msg, hostdata->outgoing_len,
1408                       DATA_OUT_DIR, hostdata);
1409 DB(DB_INTR,printk("%02x",hostdata->outgoing_msg[0]))
1410          hostdata->outgoing_len = 0;
1411          hostdata->state = S_CONNECTED;
1412          break;
1413 
1414 
1415       case CSR_UNEXP_DISC:
1416 
1417 /* I think I've seen this after a request-sense that was in response
1418  * to an error condition, but not sure. We certainly need to do
1419  * something when we get this interrupt - the question is 'what?'.
1420  * Let's think positively, and assume some command has finished
1421  * in a legal manner (like a command that provokes a request-sense),
1422  * so we treat it as a normal command-complete-disconnect.
1423  */
1424 
1425 
1426 /* Make sure that reselection is enabled at this point - it may
1427  * have been turned off for the command that just completed.
1428  */
1429 
1430          write_3393(hostdata,WD_SOURCE_ID, SRCID_ER);
1431          if (cmd == NULL) {
1432             printk(" - Already disconnected! ");
1433             hostdata->state = S_UNCONNECTED;
1434 
1435 /* release the SMP spin_lock and restore irq state */
1436             CLISPIN_UNLOCK(flags);
1437             return;
1438             }
1439 DB(DB_INTR,printk("UNEXP_DISC-%ld",cmd->pid))
1440          hostdata->connected = NULL;
1441          hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
1442          hostdata->state = S_UNCONNECTED;
1443          if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1444             cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1445          else
1446             cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1447          cmd->scsi_done(cmd);
1448 
1449 /* We are no longer connected to a target - check to see if
1450  * there are commands waiting to be executed.
1451  */
1452 
1453          in2000_execute(instance);
1454          break;
1455 
1456 
1457       case CSR_DISC:
1458 
1459 /* Make sure that reselection is enabled at this point - it may
1460  * have been turned off for the command that just completed.
1461  */
1462 
1463          write_3393(hostdata,WD_SOURCE_ID, SRCID_ER);
1464 DB(DB_INTR,printk("DISC-%ld",cmd->pid))
1465          if (cmd == NULL) {
1466             printk(" - Already disconnected! ");
1467             hostdata->state = S_UNCONNECTED;
1468             }
1469          switch (hostdata->state) {
1470             case S_PRE_CMP_DISC:
1471                hostdata->connected = NULL;
1472                hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
1473                hostdata->state = S_UNCONNECTED;
1474 DB(DB_INTR,printk(":%d",cmd->SCp.Status))
1475                if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1476                   cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1477                else
1478                   cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1479                cmd->scsi_done(cmd);
1480                break;
1481             case S_PRE_TMP_DISC:
1482             case S_RUNNING_LEVEL2:
1483                cmd->host_scribble = (uchar *)hostdata->disconnected_Q;
1484                hostdata->disconnected_Q = cmd;
1485                hostdata->connected = NULL;
1486                hostdata->state = S_UNCONNECTED;
1487 
1488 #ifdef PROC_STATISTICS
1489                hostdata->disc_done_cnt[cmd->target]++;
1490 #endif
1491 
1492                break;
1493             default:
1494                printk("*** Unexpected DISCONNECT interrupt! ***");
1495                hostdata->state = S_UNCONNECTED;
1496             }
1497 
1498 /* We are no longer connected to a target - check to see if
1499  * there are commands waiting to be executed.
1500  */
1501 
1502          in2000_execute(instance);
1503          break;
1504 
1505 
1506       case CSR_RESEL_AM:
1507 DB(DB_INTR,printk("RESEL"))
1508 
1509    /* First we have to make sure this reselection didn't */
1510    /* happen during Arbitration/Selection of some other device. */
1511    /* If yes, put losing command back on top of input_Q. */
1512 
1513          if (hostdata->level2 <= L2_NONE) {
1514 
1515             if (hostdata->selecting) {
1516                cmd = (Scsi_Cmnd *)hostdata->selecting;
1517                hostdata->selecting = NULL;
1518                hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
1519                cmd->host_scribble = (uchar *)hostdata->input_Q;
1520                hostdata->input_Q = cmd;
1521                }
1522             }
1523 
1524          else {
1525 
1526             if (cmd) {
1527                if (phs == 0x00) {
1528                   hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
1529                   cmd->host_scribble = (uchar *)hostdata->input_Q;
1530                   hostdata->input_Q = cmd;
1531                   }
1532                else {
1533                   printk("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",asr,sr,phs);
1534                   while (1)
1535                      printk("\r");
1536                   }
1537                }
1538 
1539             }
1540 
1541    /* OK - find out which device reselected us. */
1542 
1543          id = read_3393(hostdata,WD_SOURCE_ID);
1544          id &= SRCID_MASK;
1545 
1546    /* and extract the lun from the ID message. (Note that we don't
1547     * bother to check for a valid message here - I guess this is
1548     * not the right way to go, but....)
1549     */
1550 
1551          lun = read_3393(hostdata,WD_DATA);
1552          if (hostdata->level2 < L2_RESELECT)
1553             write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
1554          lun &= 7;
1555 
1556    /* Now we look for the command that's reconnecting. */
1557 
1558          cmd = (Scsi_Cmnd *)hostdata->disconnected_Q;
1559          patch = NULL;
1560          while (cmd) {
1561             if (id == cmd->target && lun == cmd->lun)
1562                break;
1563             patch = cmd;
1564             cmd = (Scsi_Cmnd *)cmd->host_scribble;
1565             }
1566 
1567    /* Hmm. Couldn't find a valid command.... What to do? */
1568 
1569          if (!cmd) {
1570             printk("---TROUBLE: target %d.%d not in disconnect queue---",id,lun);
1571             break;
1572             }
1573 
1574    /* Ok, found the command - now start it up again. */
1575 
1576          if (patch)
1577             patch->host_scribble = cmd->host_scribble;
1578          else
1579             hostdata->disconnected_Q = (Scsi_Cmnd *)cmd->host_scribble;
1580          hostdata->connected = cmd;
1581 
1582    /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1583     * because these things are preserved over a disconnect.
1584     * But we DO need to fix the DPD bit so it's correct for this command.
1585     */
1586 
1587          if (is_dir_out(cmd))
1588             write_3393(hostdata,WD_DESTINATION_ID,cmd->target);
1589          else
1590             write_3393(hostdata,WD_DESTINATION_ID,cmd->target | DSTID_DPD);
1591          if (hostdata->level2 >= L2_RESELECT) {
1592             write_3393_count(hostdata,0); /* we want a DATA_PHASE interrupt */
1593             write_3393(hostdata,WD_COMMAND_PHASE, 0x45);
1594             write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
1595             hostdata->state = S_RUNNING_LEVEL2;
1596             }
1597          else
1598             hostdata->state = S_CONNECTED;
1599 
1600 DB(DB_INTR,printk("-%ld",cmd->pid))
1601          break;
1602 
1603       default:
1604          printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--",asr,sr,phs);
1605       }
1606 
1607    write1_io(0, IO_LED_OFF);
1608 
1609 DB(DB_INTR,printk("} "))
1610 
1611 /* release the SMP spin_lock and restore irq state */
1612    CLISPIN_UNLOCK(flags);
1613 
1614 }
1615 
1616 
1617 
1618 #define RESET_CARD         0
1619 #define RESET_CARD_AND_BUS 1
1620 #define B_FLAG 0x80
1621 
reset_hardware(struct Scsi_Host * instance,int type)1622 static int reset_hardware(struct Scsi_Host *instance, int type)
1623 {
1624 struct IN2000_hostdata *hostdata;
1625 int qt,x;
1626 unsigned long flags;
1627 
1628    hostdata = (struct IN2000_hostdata *)instance->hostdata;
1629 
1630    write1_io(0, IO_LED_ON);
1631    if (type == RESET_CARD_AND_BUS) {
1632       write1_io(0,IO_CARD_RESET);
1633       x = read1_io(IO_HARDWARE);
1634       }
1635    x = read_3393(hostdata,WD_SCSI_STATUS);   /* clear any WD intrpt */
1636    write_3393(hostdata,WD_OWN_ID, instance->this_id |
1637                            OWNID_EAF | OWNID_RAF | OWNID_FS_8);
1638    write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1639    write_3393(hostdata,WD_SYNCHRONOUS_TRANSFER,
1640               calc_sync_xfer(hostdata->default_sx_per/4,DEFAULT_SX_OFF));
1641    save_flags(flags);
1642    cli();
1643    write1_io(0,IO_FIFO_WRITE);            /* clear fifo counter */
1644    write1_io(0,IO_FIFO_READ);             /* start fifo out in read mode */
1645    write_3393(hostdata,WD_COMMAND, WD_CMD_RESET);
1646    while (!(READ_AUX_STAT() & ASR_INT))
1647       ;                                   /* wait for RESET to complete */
1648 
1649    x = read_3393(hostdata,WD_SCSI_STATUS);   /* clear interrupt */
1650    restore_flags(flags);
1651    write_3393(hostdata,WD_QUEUE_TAG,0xa5);   /* any random number */
1652    qt = read_3393(hostdata,WD_QUEUE_TAG);
1653    if (qt == 0xa5) {
1654       x |= B_FLAG;
1655       write_3393(hostdata,WD_QUEUE_TAG,0);
1656       }
1657    write_3393(hostdata,WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1658    write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1659    write1_io(0, IO_LED_OFF);
1660    return x;
1661 }
1662 
1663 
1664 
in2000_reset(Scsi_Cmnd * cmd,unsigned int reset_flags)1665 int in2000_reset(Scsi_Cmnd *cmd, unsigned int reset_flags)
1666 {
1667 unsigned long flags;
1668 struct Scsi_Host *instance;
1669 struct IN2000_hostdata *hostdata;
1670 int x;
1671 
1672    instance = cmd->host;
1673    hostdata = (struct IN2000_hostdata *)instance->hostdata;
1674 
1675    printk("scsi%d: Reset. ", instance->host_no);
1676    save_flags(flags);
1677    cli();
1678 
1679    /* do scsi-reset here */
1680 
1681    reset_hardware(instance, RESET_CARD_AND_BUS);
1682    for (x = 0; x < 8; x++) {
1683       hostdata->busy[x] = 0;
1684       hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER/4,DEFAULT_SX_OFF);
1685       hostdata->sync_stat[x] = SS_UNSET;  /* using default sync values */
1686       }
1687    hostdata->input_Q = NULL;
1688    hostdata->selecting = NULL;
1689    hostdata->connected = NULL;
1690    hostdata->disconnected_Q = NULL;
1691    hostdata->state = S_UNCONNECTED;
1692    hostdata->fifo = FI_FIFO_UNUSED;
1693    hostdata->incoming_ptr = 0;
1694    hostdata->outgoing_len = 0;
1695 
1696    cmd->result = DID_RESET << 16;
1697    restore_flags(flags);
1698    return 0;
1699 }
1700 
1701 
1702 
in2000_abort(Scsi_Cmnd * cmd)1703 int in2000_abort (Scsi_Cmnd *cmd)
1704 {
1705 struct Scsi_Host *instance;
1706 struct IN2000_hostdata *hostdata;
1707 Scsi_Cmnd *tmp, *prev;
1708 unsigned long flags;
1709 uchar sr, asr;
1710 unsigned long timeout;
1711 
1712    save_flags (flags);
1713    cli();
1714 
1715    instance = cmd->host;
1716    hostdata = (struct IN2000_hostdata *)instance->hostdata;
1717 
1718    printk ("scsi%d: Abort-", instance->host_no);
1719    printk("(asr=%02x,count=%ld,resid=%d,buf_resid=%d,have_data=%d,FC=%02x)- ",
1720             READ_AUX_STAT(),read_3393_count(hostdata),cmd->SCp.this_residual,cmd->SCp.buffers_residual,
1721             cmd->SCp.have_data_in,read1_io(IO_FIFO_COUNT));
1722 
1723 /*
1724  * Case 1 : If the command hasn't been issued yet, we simply remove it
1725  *     from the inout_Q.
1726  */
1727 
1728    tmp = (Scsi_Cmnd *)hostdata->input_Q;
1729    prev = 0;
1730    while (tmp) {
1731       if (tmp == cmd) {
1732          if (prev)
1733             prev->host_scribble = cmd->host_scribble;
1734          cmd->host_scribble = NULL;
1735          cmd->result = DID_ABORT << 16;
1736          printk("scsi%d: Abort - removing command %ld from input_Q. ",
1737            instance->host_no, cmd->pid);
1738          cmd->scsi_done(cmd);
1739          restore_flags(flags);
1740          return SCSI_ABORT_SUCCESS;
1741          }
1742       prev = tmp;
1743       tmp = (Scsi_Cmnd *)tmp->host_scribble;
1744       }
1745 
1746 /*
1747  * Case 2 : If the command is connected, we're going to fail the abort
1748  *     and let the high level SCSI driver retry at a later time or
1749  *     issue a reset.
1750  *
1751  *     Timeouts, and therefore aborted commands, will be highly unlikely
1752  *     and handling them cleanly in this situation would make the common
1753  *     case of noresets less efficient, and would pollute our code.  So,
1754  *     we fail.
1755  */
1756 
1757    if (hostdata->connected == cmd) {
1758 
1759       printk("scsi%d: Aborting connected command %ld - ",
1760               instance->host_no, cmd->pid);
1761 
1762       printk("sending wd33c93 ABORT command - ");
1763       write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1764       write_3393_cmd(hostdata, WD_CMD_ABORT);
1765 
1766 /* Now we have to attempt to flush out the FIFO... */
1767 
1768       printk("flushing fifo - ");
1769       timeout = 1000000;
1770       do {
1771          asr = READ_AUX_STAT();
1772          if (asr & ASR_DBR)
1773             read_3393(hostdata, WD_DATA);
1774          } while (!(asr & ASR_INT) && timeout-- > 0);
1775       sr = read_3393(hostdata, WD_SCSI_STATUS);
1776       printk("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ",
1777              asr, sr, read_3393_count(hostdata), timeout);
1778 
1779    /*
1780     * Abort command processed.
1781     * Still connected.
1782     * We must disconnect.
1783     */
1784 
1785       printk("sending wd33c93 DISCONNECT command - ");
1786       write_3393_cmd(hostdata, WD_CMD_DISCONNECT);
1787 
1788       timeout = 1000000;
1789       asr = READ_AUX_STAT();
1790       while ((asr & ASR_CIP) && timeout-- > 0)
1791          asr = READ_AUX_STAT();
1792       sr = read_3393(hostdata, WD_SCSI_STATUS);
1793       printk("asr=%02x, sr=%02x.",asr,sr);
1794 
1795       hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
1796       hostdata->connected = NULL;
1797       hostdata->state = S_UNCONNECTED;
1798       cmd->result = DID_ABORT << 16;
1799       cmd->scsi_done(cmd);
1800 
1801       in2000_execute (instance);
1802 
1803       restore_flags(flags);
1804       return SCSI_ABORT_SUCCESS;
1805       }
1806 
1807 /*
1808  * Case 3: If the command is currently disconnected from the bus,
1809  * we're not going to expend much effort here: Let's just return
1810  * an ABORT_SNOOZE and hope for the best...
1811  */
1812 
1813    for (tmp=(Scsi_Cmnd *)hostdata->disconnected_Q; tmp;
1814          tmp=(Scsi_Cmnd *)tmp->host_scribble)
1815       if (cmd == tmp) {
1816          restore_flags(flags);
1817          printk("Sending ABORT_SNOOZE. ");
1818          return SCSI_ABORT_SNOOZE;
1819          }
1820 
1821 /*
1822  * Case 4 : If we reached this point, the command was not found in any of
1823  *     the queues.
1824  *
1825  * We probably reached this point because of an unlikely race condition
1826  * between the command completing successfully and the abortion code,
1827  * so we won't panic, but we will notify the user in case something really
1828  * broke.
1829  */
1830 
1831    in2000_execute (instance);
1832 
1833    restore_flags(flags);
1834    printk("scsi%d: warning : SCSI command probably completed successfully"
1835       "         before abortion. ", instance->host_no);
1836    return SCSI_ABORT_NOT_RUNNING;
1837 }
1838 
1839 
1840 
1841 #define MAX_IN2000_HOSTS 3
1842 #define MAX_SETUP_ARGS (sizeof(setup_args) / sizeof(char *))
1843 #define SETUP_BUFFER_SIZE 200
1844 static char setup_buffer[SETUP_BUFFER_SIZE];
1845 static char setup_used[MAX_SETUP_ARGS];
1846 static int done_setup = 0;
1847 
in2000_setup(char * str,int * ints)1848 void __init in2000_setup (char *str, int *ints)
1849 {
1850 int i;
1851 char *p1,*p2;
1852 
1853    strncpy(setup_buffer,str,SETUP_BUFFER_SIZE);
1854    setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0';
1855    p1 = setup_buffer;
1856    i = 0;
1857    while (*p1 && (i < MAX_SETUP_ARGS)) {
1858       p2 = strchr(p1, ',');
1859       if (p2) {
1860          *p2 = '\0';
1861          if (p1 != p2)
1862             setup_args[i] = p1;
1863          p1 = p2 + 1;
1864          i++;
1865          }
1866       else {
1867          setup_args[i] = p1;
1868          break;
1869          }
1870       }
1871    for (i=0; i<MAX_SETUP_ARGS; i++)
1872       setup_used[i] = 0;
1873    done_setup = 1;
1874 }
1875 
1876 
1877 /* check_setup_args() returns index if key found, 0 if not
1878  */
1879 
check_setup_args(char * key,int * flags,int * val,char * buf)1880 static int __init check_setup_args(char *key, int *flags, int *val, char *buf)
1881 {
1882 int x;
1883 char *cp;
1884 
1885    for  (x=0; x<MAX_SETUP_ARGS; x++) {
1886       if (setup_used[x])
1887          continue;
1888       if (!strncmp(setup_args[x], key, strlen(key)))
1889          break;
1890       }
1891    if (x == MAX_SETUP_ARGS)
1892       return 0;
1893    setup_used[x] = 1;
1894    cp = setup_args[x] + strlen(key);
1895    *val = -1;
1896    if (*cp != ':')
1897       return ++x;
1898    cp++;
1899    if ((*cp >= '0') && (*cp <= '9')) {
1900       *val = simple_strtoul(cp,NULL,0);
1901       }
1902    return ++x;
1903 }
1904 
1905 
1906 
1907 /* The "correct" (ie portable) way to access memory-mapped hardware
1908  * such as the IN2000 EPROM and dip switch is through the use of
1909  * special macros declared in 'asm/io.h'. We use readb() and readl()
1910  * when reading from the card's BIOS area in in2000_detect().
1911  */
1912 static u32 bios_tab[] in2000__INITDATA = {
1913    0xc8000,
1914    0xd0000,
1915    0xd8000,
1916    0
1917    };
1918 
1919 static unsigned short base_tab[] in2000__INITDATA = {
1920    0x220,
1921    0x200,
1922    0x110,
1923    0x100,
1924    };
1925 
1926 static int int_tab[] in2000__INITDATA = {
1927    15,
1928    14,
1929    11,
1930    10
1931    };
1932 
1933 
in2000_detect(Scsi_Host_Template * tpnt)1934 int __init in2000_detect(Scsi_Host_Template * tpnt)
1935 {
1936 struct Scsi_Host *instance;
1937 struct IN2000_hostdata *hostdata;
1938 int detect_count;
1939 int bios;
1940 int x;
1941 unsigned short base;
1942 uchar switches;
1943 uchar hrev;
1944 int flags;
1945 int val;
1946 char buf[32];
1947 
1948 /* Thanks to help from Bill Earnest, probing for IN2000 cards is a
1949  * pretty straightforward and fool-proof operation. There are 3
1950  * possible locations for the IN2000 EPROM in memory space - if we
1951  * find a BIOS signature, we can read the dip switch settings from
1952  * the byte at BIOS+32 (shadowed in by logic on the card). From 2
1953  * of the switch bits we get the card's address in IO space. There's
1954  * an image of the dip switch there, also, so we have a way to back-
1955  * check that this really is an IN2000 card. Very nifty. Use the
1956  * 'ioport:xx' command-line parameter if your BIOS EPROM is absent
1957  * or disabled.
1958  */
1959 
1960    if (!done_setup && setup_strings)
1961       in2000_setup(setup_strings,0);
1962 
1963    detect_count = 0;
1964    for (bios = 0; bios_tab[bios]; bios++) {
1965       if (check_setup_args("ioport",&flags,&val,buf)) {
1966          base = val;
1967          switches = ~inb(base + IO_SWITCHES) & 0xff;
1968          printk("Forcing IN2000 detection at IOport 0x%x ",base);
1969          bios = 2;
1970          }
1971 /*
1972  * There have been a couple of BIOS versions with different layouts
1973  * for the obvious ID strings. We look for the 2 most common ones and
1974  * hope that they cover all the cases...
1975  */
1976       else if (isa_readl(bios_tab[bios]+0x10) == 0x41564f4e ||
1977                isa_readl(bios_tab[bios]+0x30) == 0x61776c41) {
1978          printk("Found IN2000 BIOS at 0x%x ",(unsigned int)bios_tab[bios]);
1979 
1980 /* Read the switch image that's mapped into EPROM space */
1981 
1982          switches = ~((isa_readb(bios_tab[bios]+0x20) & 0xff));
1983 
1984 /* Find out where the IO space is */
1985 
1986          x = switches & (SW_ADDR0 | SW_ADDR1);
1987          base = base_tab[x];
1988 
1989 /* Check for the IN2000 signature in IO space. */
1990 
1991          x = ~inb(base + IO_SWITCHES) & 0xff;
1992          if (x != switches) {
1993             printk("Bad IO signature: %02x vs %02x.\n",x,switches);
1994             continue;
1995             }
1996          }
1997       else
1998          continue;
1999 
2000 /* OK. We have a base address for the IO ports - run a few safety checks */
2001 
2002       if (!(switches & SW_BIT7)) {        /* I _think_ all cards do this */
2003          printk("There is no IN-2000 SCSI card at IOport 0x%03x!\n",base);
2004          continue;
2005          }
2006 
2007 /* Let's assume any hardware version will work, although the driver
2008  * has only been tested on 0x21, 0x22, 0x25, 0x26, and 0x27. We'll
2009  * print out the rev number for reference later, but accept them all.
2010  */
2011 
2012       hrev = inb(base + IO_HARDWARE);
2013 
2014   /* Bit 2 tells us if interrupts are disabled */
2015       if (switches & SW_DISINT) {
2016          printk("The IN-2000 SCSI card at IOport 0x%03x ",base);
2017          printk("is not configured for interrupt operation!\n");
2018          printk("This driver requires an interrupt: cancelling detection.\n");
2019          continue;
2020          }
2021 
2022 /* Ok. We accept that there's an IN2000 at ioaddr 'base'. Now
2023  * initialize it.
2024  */
2025 
2026       tpnt->proc_name = "in2000";
2027       instance  = scsi_register(tpnt, sizeof(struct IN2000_hostdata));
2028       if(instance == NULL)
2029       	continue;
2030       detect_count++;
2031       if (!instance_list)
2032          instance_list = instance;
2033       hostdata = (struct IN2000_hostdata *)instance->hostdata;
2034       instance->io_port = hostdata->io_base = base;
2035       hostdata->dip_switch = switches;
2036       hostdata->hrev = hrev;
2037 
2038       write1_io(0,IO_FIFO_WRITE);            /* clear fifo counter */
2039       write1_io(0,IO_FIFO_READ);             /* start fifo out in read mode */
2040       write1_io(0,IO_INTR_MASK);    /* allow all ints */
2041       x = int_tab[(switches & (SW_INT0 | SW_INT1)) >> SW_INT_SHIFT];
2042       if (request_irq(x, in2000_intr, SA_INTERRUPT, "in2000", NULL)) {
2043          printk("in2000_detect: Unable to allocate IRQ.\n");
2044          detect_count--;
2045          continue;
2046          }
2047       instance->irq = x;
2048       instance->n_io_port = 13;
2049       request_region(base, 13, "in2000"); /* lock in this IO space for our use */
2050 
2051       for (x = 0; x < 8; x++) {
2052          hostdata->busy[x] = 0;
2053          hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER/4,DEFAULT_SX_OFF);
2054          hostdata->sync_stat[x] = SS_UNSET;  /* using default sync values */
2055 #ifdef PROC_STATISTICS
2056          hostdata->cmd_cnt[x] = 0;
2057          hostdata->disc_allowed_cnt[x] = 0;
2058          hostdata->disc_done_cnt[x] = 0;
2059 #endif
2060          }
2061       hostdata->input_Q = NULL;
2062       hostdata->selecting = NULL;
2063       hostdata->connected = NULL;
2064       hostdata->disconnected_Q = NULL;
2065       hostdata->state = S_UNCONNECTED;
2066       hostdata->fifo = FI_FIFO_UNUSED;
2067       hostdata->level2 = L2_BASIC;
2068       hostdata->disconnect = DIS_ADAPTIVE;
2069       hostdata->args = DEBUG_DEFAULTS;
2070       hostdata->incoming_ptr = 0;
2071       hostdata->outgoing_len = 0;
2072       hostdata->default_sx_per = DEFAULT_SX_PER;
2073 
2074 /* Older BIOS's had a 'sync on/off' switch - use its setting */
2075 
2076       if (isa_readl(bios_tab[bios]+0x10) == 0x41564f4e && (switches & SW_SYNC_DOS5))
2077          hostdata->sync_off = 0x00;    /* sync defaults to on */
2078       else
2079          hostdata->sync_off = 0xff;    /* sync defaults to off */
2080 
2081 #ifdef PROC_INTERFACE
2082       hostdata->proc = PR_VERSION|PR_INFO|PR_STATISTICS|
2083                        PR_CONNECTED|PR_INPUTQ|PR_DISCQ|
2084                        PR_STOP;
2085 #ifdef PROC_STATISTICS
2086       hostdata->int_cnt = 0;
2087 #endif
2088 #endif
2089 
2090       if (check_setup_args("nosync",&flags,&val,buf))
2091          hostdata->sync_off = val;
2092 
2093       if (check_setup_args("period",&flags,&val,buf))
2094          hostdata->default_sx_per = sx_table[round_period((unsigned int)val)].period_ns;
2095 
2096       if (check_setup_args("disconnect",&flags,&val,buf)) {
2097          if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
2098             hostdata->disconnect = val;
2099          else
2100             hostdata->disconnect = DIS_ADAPTIVE;
2101          }
2102 
2103       if (check_setup_args("noreset",&flags,&val,buf))
2104          hostdata->args ^= A_NO_SCSI_RESET;
2105 
2106       if (check_setup_args("level2",&flags,&val,buf))
2107          hostdata->level2 = val;
2108 
2109       if (check_setup_args("debug",&flags,&val,buf))
2110          hostdata->args = (val & DB_MASK);
2111 
2112 #ifdef PROC_INTERFACE
2113       if (check_setup_args("proc",&flags,&val,buf))
2114          hostdata->proc = val;
2115 #endif
2116 
2117 
2118       x = reset_hardware(instance,(hostdata->args & A_NO_SCSI_RESET)?RESET_CARD:RESET_CARD_AND_BUS);
2119 
2120       hostdata->microcode = read_3393(hostdata,WD_CDB_1);
2121       if (x & 0x01) {
2122          if (x & B_FLAG)
2123             hostdata->chip = C_WD33C93B;
2124          else
2125             hostdata->chip = C_WD33C93A;
2126          }
2127       else
2128          hostdata->chip = C_WD33C93;
2129 
2130       printk("dip_switch=%02x irq=%d ioport=%02x floppy=%s sync/DOS5=%s ",
2131                   (switches & 0x7f),
2132                   instance->irq,hostdata->io_base,
2133                   (switches & SW_FLOPPY)?"Yes":"No",
2134                   (switches & SW_SYNC_DOS5)?"Yes":"No");
2135       printk("hardware_ver=%02x chip=%s microcode=%02x\n",
2136                   hrev,
2137                   (hostdata->chip==C_WD33C93)?"WD33c93":
2138                   (hostdata->chip==C_WD33C93A)?"WD33c93A":
2139                   (hostdata->chip==C_WD33C93B)?"WD33c93B":"unknown",
2140                   hostdata->microcode);
2141 #ifdef DEBUGGING_ON
2142       printk("setup_args = ");
2143       for (x=0; x<MAX_SETUP_ARGS; x++)
2144          printk("%s,",setup_args[x]);
2145       printk("\n");
2146 #endif
2147       if (hostdata->sync_off == 0xff)
2148          printk("Sync-transfer DISABLED on all devices: ENABLE from command-line\n");
2149       printk("IN2000 driver version %s - %s\n",IN2000_VERSION,IN2000_DATE);
2150       }
2151 
2152    return detect_count;
2153 }
2154 
2155 
2156 /* NOTE: I lifted this function straight out of the old driver,
2157  *       and have not tested it. Presumably it does what it's
2158  *       supposed to do...
2159  */
2160 
in2000_biosparam(Disk * disk,kdev_t dev,int * iinfo)2161 int in2000_biosparam(Disk *disk, kdev_t dev, int *iinfo)
2162 {
2163 int size;
2164 
2165    size  = disk->capacity;
2166    iinfo[0] = 64;
2167    iinfo[1] = 32;
2168    iinfo[2] = size >> 11;
2169 
2170 /* This should approximate the large drive handling that the DOS ASPI manager
2171    uses.  Drives very near the boundaries may not be handled correctly (i.e.
2172    near 2.0 Gb and 4.0 Gb) */
2173 
2174    if (iinfo[2] > 1024) {
2175       iinfo[0] = 64;
2176       iinfo[1] = 63;
2177       iinfo[2] = disk->capacity / (iinfo[0] * iinfo[1]);
2178       }
2179    if (iinfo[2] > 1024) {
2180       iinfo[0] = 128;
2181       iinfo[1] = 63;
2182       iinfo[2] = disk->capacity / (iinfo[0] * iinfo[1]);
2183       }
2184    if (iinfo[2] > 1024) {
2185       iinfo[0] = 255;
2186       iinfo[1] = 63;
2187       iinfo[2] = disk->capacity / (iinfo[0] * iinfo[1]);
2188       }
2189     return 0;
2190 }
2191 
2192 
in2000_proc_info(char * buf,char ** start,off_t off,int len,int hn,int in)2193 int in2000_proc_info(char *buf, char **start, off_t off, int len, int hn, int in)
2194 {
2195 
2196 #ifdef PROC_INTERFACE
2197 
2198 char *bp;
2199 char tbuf[128];
2200 unsigned long flags;
2201 struct Scsi_Host *instance;
2202 struct IN2000_hostdata *hd;
2203 Scsi_Cmnd *cmd;
2204 int x,i;
2205 static int stop = 0;
2206 
2207    for (instance=instance_list; instance; instance=instance->next) {
2208       if (instance->host_no == hn)
2209          break;
2210       }
2211    if (!instance) {
2212       printk("*** Hmm... Can't find host #%d!\n",hn);
2213       return (-ESRCH);
2214       }
2215    hd = (struct IN2000_hostdata *)instance->hostdata;
2216 
2217 /* If 'in' is TRUE we need to _read_ the proc file. We accept the following
2218  * keywords (same format as command-line, but only ONE per read):
2219  *    debug
2220  *    disconnect
2221  *    period
2222  *    resync
2223  *    proc
2224  */
2225 
2226    if (in) {
2227       buf[len] = '\0';
2228       bp = buf;
2229       if (!strncmp(bp,"debug:",6)) {
2230          bp += 6;
2231          hd->args = simple_strtoul(bp,NULL,0) & DB_MASK;
2232          }
2233       else if (!strncmp(bp,"disconnect:",11)) {
2234          bp += 11;
2235          x = simple_strtoul(bp,NULL,0);
2236          if (x < DIS_NEVER || x > DIS_ALWAYS)
2237             x = DIS_ADAPTIVE;
2238          hd->disconnect = x;
2239          }
2240       else if (!strncmp(bp,"period:",7)) {
2241          bp += 7;
2242          x = simple_strtoul(bp,NULL,0);
2243          hd->default_sx_per = sx_table[round_period((unsigned int)x)].period_ns;
2244          }
2245       else if (!strncmp(bp,"resync:",7)) {
2246          bp += 7;
2247          x = simple_strtoul(bp,NULL,0);
2248          for (i=0; i<7; i++)
2249             if (x & (1<<i))
2250                hd->sync_stat[i] = SS_UNSET;
2251          }
2252       else if (!strncmp(bp,"proc:",5)) {
2253          bp += 5;
2254          hd->proc = simple_strtoul(bp,NULL,0);
2255          }
2256       else if (!strncmp(bp,"level2:",7)) {
2257          bp += 7;
2258          hd->level2 = simple_strtoul(bp,NULL,0);
2259          }
2260       return len;
2261       }
2262 
2263    save_flags(flags);
2264    cli();
2265    bp = buf;
2266    *bp = '\0';
2267    if (hd->proc & PR_VERSION) {
2268       sprintf(tbuf,"\nVersion %s - %s. Compiled %s %s",
2269             IN2000_VERSION,IN2000_DATE,__DATE__,__TIME__);
2270       strcat(bp,tbuf);
2271       }
2272    if (hd->proc & PR_INFO) {
2273       sprintf(tbuf,"\ndip_switch=%02x: irq=%d io=%02x floppy=%s sync/DOS5=%s",
2274                   (hd->dip_switch & 0x7f), instance->irq, hd->io_base,
2275                   (hd->dip_switch & 0x40)?"Yes":"No",
2276                   (hd->dip_switch & 0x20)?"Yes":"No");
2277       strcat(bp,tbuf);
2278       strcat(bp,"\nsync_xfer[] =       ");
2279       for (x=0; x<7; x++) {
2280          sprintf(tbuf,"\t%02x",hd->sync_xfer[x]);
2281          strcat(bp,tbuf);
2282          }
2283       strcat(bp,"\nsync_stat[] =       ");
2284       for (x=0; x<7; x++) {
2285          sprintf(tbuf,"\t%02x",hd->sync_stat[x]);
2286          strcat(bp,tbuf);
2287          }
2288       }
2289 #ifdef PROC_STATISTICS
2290    if (hd->proc & PR_STATISTICS) {
2291       strcat(bp,"\ncommands issued:    ");
2292       for (x=0; x<7; x++) {
2293          sprintf(tbuf,"\t%ld",hd->cmd_cnt[x]);
2294          strcat(bp,tbuf);
2295          }
2296       strcat(bp,"\ndisconnects allowed:");
2297       for (x=0; x<7; x++) {
2298          sprintf(tbuf,"\t%ld",hd->disc_allowed_cnt[x]);
2299          strcat(bp,tbuf);
2300          }
2301       strcat(bp,"\ndisconnects done:   ");
2302       for (x=0; x<7; x++) {
2303          sprintf(tbuf,"\t%ld",hd->disc_done_cnt[x]);
2304          strcat(bp,tbuf);
2305          }
2306       sprintf(tbuf,"\ninterrupts:      \t%ld",hd->int_cnt);
2307       strcat(bp,tbuf);
2308       }
2309 #endif
2310    if (hd->proc & PR_CONNECTED) {
2311       strcat(bp,"\nconnected:     ");
2312       if (hd->connected) {
2313          cmd = (Scsi_Cmnd *)hd->connected;
2314          sprintf(tbuf," %ld-%d:%d(%02x)",
2315                cmd->pid, cmd->target, cmd->lun, cmd->cmnd[0]);
2316          strcat(bp,tbuf);
2317          }
2318       }
2319    if (hd->proc & PR_INPUTQ) {
2320       strcat(bp,"\ninput_Q:       ");
2321       cmd = (Scsi_Cmnd *)hd->input_Q;
2322       while (cmd) {
2323          sprintf(tbuf," %ld-%d:%d(%02x)",
2324                cmd->pid, cmd->target, cmd->lun, cmd->cmnd[0]);
2325          strcat(bp,tbuf);
2326          cmd = (Scsi_Cmnd *)cmd->host_scribble;
2327          }
2328       }
2329    if (hd->proc & PR_DISCQ) {
2330       strcat(bp,"\ndisconnected_Q:");
2331       cmd = (Scsi_Cmnd *)hd->disconnected_Q;
2332       while (cmd) {
2333          sprintf(tbuf," %ld-%d:%d(%02x)",
2334                cmd->pid, cmd->target, cmd->lun, cmd->cmnd[0]);
2335          strcat(bp,tbuf);
2336          cmd = (Scsi_Cmnd *)cmd->host_scribble;
2337          }
2338       }
2339    if (hd->proc & PR_TEST) {
2340       ;  /* insert your own custom function here */
2341       }
2342    strcat(bp,"\n");
2343    restore_flags(flags);
2344    *start = buf;
2345    if (stop) {
2346       stop = 0;
2347       return 0;         /* return 0 to signal end-of-file */
2348       }
2349    if (off > 0x40000)   /* ALWAYS stop after 256k bytes have been read */
2350       stop = 1;;
2351    if (hd->proc & PR_STOP)    /* stop every other time */
2352       stop = 1;
2353    return strlen(bp);
2354 
2355 #else    /* PROC_INTERFACE */
2356 
2357    return 0;
2358 
2359 #endif   /* PROC_INTERFACE */
2360 
2361 }
2362 
2363 MODULE_LICENSE("GPL");
2364 
2365 
2366 static Scsi_Host_Template driver_template = IN2000;
2367 #include "scsi_module.c"
2368 
2369