1 /*
2  *  linux/amiga/amiflop.c
3  *
4  *  Copyright (C) 1993  Greg Harp
5  *  Portions of this driver are based on code contributed by Brad Pepers
6  *
7  *  revised 28.5.95 by Joerg Dorchain
8  *  - now no bugs(?) any more for both HD & DD
9  *  - added support for 40 Track 5.25" drives, 80-track hopefully behaves
10  *    like 3.5" dd (no way to test - are there any 5.25" drives out there
11  *    that work on an A4000?)
12  *  - wrote formatting routine (maybe dirty, but works)
13  *
14  *  june/july 1995 added ms-dos support by Joerg Dorchain
15  *  (portions based on messydos.device and various contributors)
16  *  - currently only 9 and 18 sector disks
17  *
18  *  - fixed a bug with the internal trackbuffer when using multiple
19  *    disks the same time
20  *  - made formatting a bit safer
21  *  - added command line and machine based default for "silent" df0
22  *
23  *  december 1995 adapted for 1.2.13pl4 by Joerg Dorchain
24  *  - works but I think it's inefficient. (look in redo_fd_request)
25  *    But the changes were very efficient. (only three and a half lines)
26  *
27  *  january 1996 added special ioctl for tracking down read/write problems
28  *  - usage ioctl(d, RAW_TRACK, ptr); the raw track buffer (MFM-encoded data
29  *    is copied to area. (area should be large enough since no checking is
30  *    done - 30K is currently sufficient). return the actual size of the
31  *    trackbuffer
32  *  - replaced udelays() by a timer (CIAA timer B) for the waits
33  *    needed for the disk mechanic.
34  *
35  *  february 1996 fixed error recovery and multiple disk access
36  *  - both got broken the first time I tampered with the driver :-(
37  *  - still not safe, but better than before
38  *
39  *  revised Marts 3rd, 1996 by Jes Sorensen for use in the 1.3.28 kernel.
40  *  - Minor changes to accept the kdev_t.
41  *  - Replaced some more udelays with ms_delays. Udelay is just a loop,
42  *    and so the delay will be different depending on the given
43  *    processor :-(
44  *  - The driver could use a major cleanup because of the new
45  *    major/minor handling that came with kdev_t. It seems to work for
46  *    the time being, but I can't guarantee that it will stay like
47  *    that when we start using 16 (24?) bit minors.
48  *
49  * restructured jan 1997 by Joerg Dorchain
50  * - Fixed Bug accessing multiple disks
51  * - some code cleanup
52  * - added trackbuffer for each drive to speed things up
53  * - fixed some race conditions (who finds the next may send it to me ;-)
54  */
55 
56 #include <linux/module.h>
57 
58 #include <linux/sched.h>
59 #include <linux/fs.h>
60 #include <linux/fcntl.h>
61 #include <linux/kernel.h>
62 #include <linux/timer.h>
63 #include <linux/fd.h>
64 #include <linux/hdreg.h>
65 #include <linux/errno.h>
66 #include <linux/types.h>
67 #include <linux/delay.h>
68 #include <linux/string.h>
69 #include <linux/slab.h>
70 #include <linux/init.h>
71 #include <linux/amifdreg.h>
72 #include <linux/amifd.h>
73 #include <linux/ioport.h>
74 
75 #include <asm/setup.h>
76 #include <asm/uaccess.h>
77 #include <asm/amigahw.h>
78 #include <asm/amigaints.h>
79 #include <asm/irq.h>
80 
81 #define MAJOR_NR FLOPPY_MAJOR
82 #include <linux/blk.h>
83 
84 #undef DEBUG /* print _LOTS_ of infos */
85 
86 #define RAW_IOCTL
87 #ifdef RAW_IOCTL
88 #define IOCTL_RAW_TRACK 0x5254524B  /* 'RTRK' */
89 #endif
90 
91 /*
92  *  Defines
93  */
94 
95 /*
96  *  Error codes
97  */
98 #define FD_OK		0	/* operation succeeded */
99 #define FD_ERROR	-1	/* general error (seek, read, write, etc) */
100 #define FD_NOUNIT	1	/* unit does not exist */
101 #define FD_UNITBUSY	2	/* unit already active */
102 #define FD_NOTACTIVE	3	/* unit is not active */
103 #define FD_NOTREADY	4	/* unit is not ready (motor not on/no disk) */
104 
105 #define MFM_NOSYNC	1
106 #define MFM_HEADER	2
107 #define MFM_DATA	3
108 #define MFM_TRACK	4
109 
110 /*
111  *  Floppy ID values
112  */
113 #define FD_NODRIVE	0x00000000  /* response when no unit is present */
114 #define FD_DD_3 	0xffffffff  /* double-density 3.5" (880K) drive */
115 #define FD_HD_3 	0x55555555  /* high-density 3.5" (1760K) drive */
116 #define FD_DD_5 	0xaaaaaaaa  /* double-density 5.25" (440K) drive */
117 
118 static long int fd_def_df0 = FD_DD_3;     /* default for df0 if it doesn't identify */
119 
120 MODULE_PARM(fd_def_df0,"l");
121 MODULE_LICENSE("GPL");
122 
123 /*
124  *  Macros
125  */
126 #define MOTOR_ON	(ciab.prb &= ~DSKMOTOR)
127 #define MOTOR_OFF	(ciab.prb |= DSKMOTOR)
128 #define SELECT(mask)    (ciab.prb &= ~mask)
129 #define DESELECT(mask)  (ciab.prb |= mask)
130 #define SELMASK(drive)  (1 << (3 + (drive & 3)))
131 
132 static struct fd_drive_type drive_types[] = {
133 /*  code	name	   tr he   rdsz   wrsz sm pc1 pc2 sd  st st*/
134 /*  warning: times are now in milliseconds (ms)                    */
135 { FD_DD_3,	"DD 3.5",  80, 2, 14716, 13630, 1, 80,161, 3, 18, 1},
136 { FD_HD_3,	"HD 3.5",  80, 2, 28344, 27258, 2, 80,161, 3, 18, 1},
137 { FD_DD_5,	"DD 5.25", 40, 2, 14716, 13630, 1, 40, 81, 6, 30, 2},
138 { FD_NODRIVE, "No Drive", 0, 0,     0,     0, 0,  0,  0,  0,  0, 0}
139 };
140 static int num_dr_types = sizeof(drive_types) / sizeof(drive_types[0]);
141 
142 /* defaults for 3 1/2" HD-Disks */
143 static int floppy_sizes[256]={880,880,880,880,720,720,720,720,};
144 static int floppy_blocksizes[256];
145 /* hardsector size assumed to be 512 */
146 
147 static int amiga_read(int), dos_read(int);
148 static void amiga_write(int), dos_write(int);
149 static struct fd_data_type data_types[] = {
150 	{ "Amiga", 11 , amiga_read, amiga_write},
151 	{ "MS-Dos", 9, dos_read, dos_write}
152 };
153 
154 /* current info on each unit */
155 static struct amiga_floppy_struct unit[FD_MAX_UNITS];
156 
157 static struct timer_list flush_track_timer[FD_MAX_UNITS];
158 static struct timer_list post_write_timer;
159 static struct timer_list motor_on_timer;
160 static struct timer_list motor_off_timer[FD_MAX_UNITS];
161 static int on_attempts;
162 
163 /* Synchronization of FDC access */
164 /* request loop (trackbuffer) */
165 static volatile int fdc_busy = -1;
166 static volatile int fdc_nested;
167 static DECLARE_WAIT_QUEUE_HEAD(fdc_wait);
168 
169 static DECLARE_WAIT_QUEUE_HEAD(motor_wait);
170 
171 static volatile int selected = -1;	/* currently selected drive */
172 
173 static int writepending;
174 static int writefromint;
175 static char *raw_buf;
176 
177 #define RAW_BUF_SIZE 30000  /* size of raw disk data */
178 
179 /*
180  * These are global variables, as that's the easiest way to give
181  * information to interrupts. They are the data used for the current
182  * request.
183  */
184 static volatile char block_flag;
185 static DECLARE_WAIT_QUEUE_HEAD(wait_fd_block);
186 
187 /* MS-Dos MFM Coding tables (should go quick and easy) */
188 static unsigned char mfmencode[16]={
189 	0x2a, 0x29, 0x24, 0x25, 0x12, 0x11, 0x14, 0x15,
190 	0x4a, 0x49, 0x44, 0x45, 0x52, 0x51, 0x54, 0x55
191 };
192 static unsigned char mfmdecode[128];
193 
194 /* floppy internal millisecond timer stuff */
195 static volatile int ms_busy = -1;
196 static DECLARE_WAIT_QUEUE_HEAD(ms_wait);
197 #define MS_TICKS ((amiga_eclock+50)/1000)
198 
199 /*
200  * Note that MAX_ERRORS=X doesn't imply that we retry every bad read
201  * max X times - some types of errors increase the errorcount by 2 or
202  * even 3, so we might actually retry only X/2 times before giving up.
203  */
204 #define MAX_ERRORS 12
205 
206 /* Prevent "aliased" accesses. */
207 static int fd_ref[4] = { 0,0,0,0 };
208 static int fd_device[4] = { 0,0,0,0 };
209 
210 /*
211  * Current device number. Taken either from the block header or from the
212  * format request descriptor.
213  */
214 #define CURRENT_DEVICE (CURRENT->rq_dev)
215 
216 /* Current error count. */
217 #define CURRENT_ERRORS (CURRENT->errors)
218 
219 
220 
221 /*
222  * Here come the actual hardware access and helper functions.
223  * They are not reentrant and single threaded because all drives
224  * share the same hardware and the same trackbuffer.
225  */
226 
227 /* Milliseconds timer */
228 
ms_isr(int irq,void * dummy,struct pt_regs * fp)229 static void ms_isr(int irq, void *dummy, struct pt_regs *fp)
230 {
231 	ms_busy = -1;
232 	wake_up(&ms_wait);
233 }
234 
235 /* all waits are queued up
236    A more generic routine would do a schedule a la timer.device */
ms_delay(int ms)237 static void ms_delay(int ms)
238 {
239 	unsigned long flags;
240 	int ticks;
241 	if (ms > 0) {
242 		save_flags(flags);
243 		cli();
244 		while (ms_busy == 0)
245 			sleep_on(&ms_wait);
246 		ms_busy = 0;
247 		restore_flags(flags);
248 		ticks = MS_TICKS*ms-1;
249 		ciaa.tblo=ticks%256;
250 		ciaa.tbhi=ticks/256;
251 		ciaa.crb=0x19; /*count eclock, force load, one-shoot, start */
252 		sleep_on(&ms_wait);
253 	}
254 }
255 
256 /* Hardware semaphore */
257 
258 /* returns true when we would get the semaphore */
try_fdc(int drive)259 static inline int try_fdc(int drive)
260 {
261 	drive &= 3;
262 	return ((fdc_busy < 0) || (fdc_busy == drive));
263 }
264 
get_fdc(int drive)265 static void get_fdc(int drive)
266 {
267 	unsigned long flags;
268 
269 	drive &= 3;
270 #ifdef DEBUG
271 	printk("get_fdc: drive %d  fdc_busy %d  fdc_nested %d\n",drive,fdc_busy,fdc_nested);
272 #endif
273 	save_flags(flags);
274 	cli();
275 	while (!try_fdc(drive))
276 		sleep_on(&fdc_wait);
277 	fdc_busy = drive;
278 	fdc_nested++;
279 	restore_flags(flags);
280 }
281 
rel_fdc(void)282 static inline void rel_fdc(void)
283 {
284 #ifdef DEBUG
285 	if (fdc_nested == 0)
286 		printk("fd: unmatched rel_fdc\n");
287 	printk("rel_fdc: fdc_busy %d fdc_nested %d\n",fdc_busy,fdc_nested);
288 #endif
289 	fdc_nested--;
290 	if (fdc_nested == 0) {
291 		fdc_busy = -1;
292 		wake_up(&fdc_wait);
293 	}
294 }
295 
fd_select(int drive)296 static void fd_select (int drive)
297 {
298 	unsigned char prb = ~0;
299 
300 	drive&=3;
301 #ifdef DEBUG
302 	printk("selecting %d\n",drive);
303 #endif
304 	if (drive == selected)
305 		return;
306 	get_fdc(drive);
307 	selected = drive;
308 
309 	if (unit[drive].track % 2 != 0)
310 		prb &= ~DSKSIDE;
311 	if (unit[drive].motor == 1)
312 		prb &= ~DSKMOTOR;
313 	ciab.prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3));
314 	ciab.prb = prb;
315 	prb &= ~SELMASK(drive);
316 	ciab.prb = prb;
317 	rel_fdc();
318 }
319 
fd_deselect(int drive)320 static void fd_deselect (int drive)
321 {
322 	unsigned char prb;
323 	unsigned long flags;
324 
325 	drive&=3;
326 #ifdef DEBUG
327 	printk("deselecting %d\n",drive);
328 #endif
329 	if (drive != selected) {
330 		printk(KERN_WARNING "Deselecting drive %d while %d was selected!\n",drive,selected);
331 		return;
332 	}
333 
334 	get_fdc(drive);
335 	save_flags (flags);
336 	cli();
337 
338 	selected = -1;
339 
340 	prb = ciab.prb;
341 	prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3));
342 	ciab.prb = prb;
343 
344 	restore_flags (flags);
345 	rel_fdc();
346 
347 }
348 
motor_on_callback(unsigned long nr)349 static void motor_on_callback(unsigned long nr)
350 {
351 	if (!(ciaa.pra & DSKRDY) || --on_attempts == 0) {
352 		wake_up (&motor_wait);
353 	} else {
354 		motor_on_timer.expires = jiffies + HZ/10;
355 		add_timer(&motor_on_timer);
356 	}
357 }
358 
fd_motor_on(int nr)359 static int fd_motor_on(int nr)
360 {
361 	nr &= 3;
362 
363 	del_timer(motor_off_timer + nr);
364 
365 	if (!unit[nr].motor) {
366 		unit[nr].motor = 1;
367 		fd_select(nr);
368 
369 		motor_on_timer.data = nr;
370 		mod_timer(&motor_on_timer, jiffies + HZ/2);
371 
372 		on_attempts = 10;
373 		sleep_on (&motor_wait);
374 		fd_deselect(nr);
375 	}
376 
377 	if (on_attempts == 0) {
378 		on_attempts = -1;
379 #if 0
380 		printk (KERN_ERR "motor_on failed, turning motor off\n");
381 		fd_motor_off (nr);
382 		return 0;
383 #else
384 		printk (KERN_WARNING "DSKRDY not set after 1.5 seconds - assuming drive is spinning notwithstanding\n");
385 #endif
386 	}
387 
388 	return 1;
389 }
390 
fd_motor_off(unsigned long drive)391 static void fd_motor_off(unsigned long drive)
392 {
393 	long calledfromint;
394 #ifdef MODULE
395 	long decusecount;
396 
397 	decusecount = drive & 0x40000000;
398 #endif
399 	calledfromint = drive & 0x80000000;
400 	drive&=3;
401 	if (calledfromint && !try_fdc(drive)) {
402 		/* We would be blocked in an interrupt, so try again later */
403 		motor_off_timer[drive].expires = jiffies + 1;
404 		add_timer(motor_off_timer + drive);
405 		return;
406 	}
407 	unit[drive].motor = 0;
408 	fd_select(drive);
409 	udelay (1);
410 	fd_deselect(drive);
411 
412 #ifdef MODULE
413 /*
414   this is the last interrupt for any drive access, happens after
415   release (from floppy_off). So we have to wait until now to decrease
416   the use count.
417 */
418 	if (decusecount)
419 		MOD_DEC_USE_COUNT;
420 #endif
421 }
422 
floppy_off(unsigned int nr)423 static void floppy_off (unsigned int nr)
424 {
425 	int drive;
426 
427 	drive = nr & 3;
428 	/* called this way it is always from interrupt */
429 	motor_off_timer[drive].data = nr | 0x80000000;
430 	mod_timer(motor_off_timer + drive, jiffies + 3*HZ);
431 }
432 
fd_calibrate(int drive)433 static int fd_calibrate(int drive)
434 {
435 	unsigned char prb;
436 	int n;
437 
438 	drive &= 3;
439 	get_fdc(drive);
440 	if (!fd_motor_on (drive))
441 		return 0;
442 	fd_select (drive);
443 	prb = ciab.prb;
444 	prb |= DSKSIDE;
445 	prb &= ~DSKDIREC;
446 	ciab.prb = prb;
447 	for (n = unit[drive].type->tracks/2; n != 0; --n) {
448 		if (ciaa.pra & DSKTRACK0)
449 			break;
450 		prb &= ~DSKSTEP;
451 		ciab.prb = prb;
452 		prb |= DSKSTEP;
453 		udelay (2);
454 		ciab.prb = prb;
455 		ms_delay(unit[drive].type->step_delay);
456 	}
457 	ms_delay (unit[drive].type->settle_time);
458 	prb |= DSKDIREC;
459 	n = unit[drive].type->tracks + 20;
460 	for (;;) {
461 		prb &= ~DSKSTEP;
462 		ciab.prb = prb;
463 		prb |= DSKSTEP;
464 		udelay (2);
465 		ciab.prb = prb;
466 		ms_delay(unit[drive].type->step_delay + 1);
467 		if ((ciaa.pra & DSKTRACK0) == 0)
468 			break;
469 		if (--n == 0) {
470 			printk (KERN_ERR "fd%d: calibrate failed, turning motor off\n", drive);
471 			fd_motor_off (drive);
472 			unit[drive].track = -1;
473 			rel_fdc();
474 			return 0;
475 		}
476 	}
477 	unit[drive].track = 0;
478 	ms_delay(unit[drive].type->settle_time);
479 
480 	rel_fdc();
481 	fd_deselect(drive);
482 	return 1;
483 }
484 
fd_seek(int drive,int track)485 static int fd_seek(int drive, int track)
486 {
487 	unsigned char prb;
488 	int cnt;
489 
490 #ifdef DEBUG
491 	printk("seeking drive %d to track %d\n",drive,track);
492 #endif
493 	drive &= 3;
494 	get_fdc(drive);
495 	if (unit[drive].track == track) {
496 		rel_fdc();
497 		return 1;
498 	}
499 	if (!fd_motor_on(drive)) {
500 		rel_fdc();
501 		return 0;
502 	}
503 	if (unit[drive].track < 0 && !fd_calibrate(drive)) {
504 		rel_fdc();
505 		return 0;
506 	}
507 
508 	fd_select (drive);
509 	cnt = unit[drive].track/2 - track/2;
510 	prb = ciab.prb;
511 	prb |= DSKSIDE | DSKDIREC;
512 	if (track % 2 != 0)
513 		prb &= ~DSKSIDE;
514 	if (cnt < 0) {
515 		cnt = - cnt;
516 		prb &= ~DSKDIREC;
517 	}
518 	ciab.prb = prb;
519 	if (track % 2 != unit[drive].track % 2)
520 		ms_delay (unit[drive].type->side_time);
521 	unit[drive].track = track;
522 	if (cnt == 0) {
523 		rel_fdc();
524 		fd_deselect(drive);
525 		return 1;
526 	}
527 	do {
528 		prb &= ~DSKSTEP;
529 		ciab.prb = prb;
530 		prb |= DSKSTEP;
531 		udelay (1);
532 		ciab.prb = prb;
533 		ms_delay (unit[drive].type->step_delay);
534 	} while (--cnt != 0);
535 	ms_delay (unit[drive].type->settle_time);
536 
537 	rel_fdc();
538 	fd_deselect(drive);
539 	return 1;
540 }
541 
fd_get_drive_id(int drive)542 static unsigned long fd_get_drive_id(int drive)
543 {
544 	int i;
545 	ulong id = 0;
546 
547   	drive&=3;
548   	get_fdc(drive);
549 	/* set up for ID */
550 	MOTOR_ON;
551 	udelay(2);
552 	SELECT(SELMASK(drive));
553 	udelay(2);
554 	DESELECT(SELMASK(drive));
555 	udelay(2);
556 	MOTOR_OFF;
557 	udelay(2);
558 	SELECT(SELMASK(drive));
559 	udelay(2);
560 	DESELECT(SELMASK(drive));
561 	udelay(2);
562 
563 	/* loop and read disk ID */
564 	for (i=0; i<32; i++) {
565 		SELECT(SELMASK(drive));
566 		udelay(2);
567 
568 		/* read and store value of DSKRDY */
569 		id <<= 1;
570 		id |= (ciaa.pra & DSKRDY) ? 0 : 1;	/* cia regs are low-active! */
571 
572 		DESELECT(SELMASK(drive));
573 	}
574 
575 	rel_fdc();
576 
577         /*
578          * RB: At least A500/A2000's df0: don't identify themselves.
579          * As every (real) Amiga has at least a 3.5" DD drive as df0:
580          * we default to that if df0: doesn't identify as a certain
581          * type.
582          */
583         if(drive == 0 && id == FD_NODRIVE)
584 	{
585                 id = fd_def_df0;
586                 printk(KERN_NOTICE "fd: drive 0 didn't identify, setting default %08lx\n", (ulong)fd_def_df0);
587 	}
588 	/* return the ID value */
589 	return (id);
590 }
591 
fd_block_done(int irq,void * dummy,struct pt_regs * fp)592 static void fd_block_done(int irq, void *dummy, struct pt_regs *fp)
593 {
594 	if (block_flag)
595 		custom.dsklen = 0x4000;
596 
597 	if (block_flag == 2) { /* writing */
598 		writepending = 2;
599 		post_write_timer.expires = jiffies + 1; /* at least 2 ms */
600 		post_write_timer.data = selected;
601 		add_timer(&post_write_timer);
602 	}
603 	else {                /* reading */
604 		block_flag = 0;
605 		wake_up (&wait_fd_block);
606 	}
607 }
608 
raw_read(int drive)609 static void raw_read(int drive)
610 {
611 	drive&=3;
612 	get_fdc(drive);
613 	while (block_flag)
614 		sleep_on(&wait_fd_block);
615 	fd_select(drive);
616 	/* setup adkcon bits correctly */
617 	custom.adkcon = ADK_MSBSYNC;
618 	custom.adkcon = ADK_SETCLR|ADK_WORDSYNC|ADK_FAST;
619 
620 	custom.dsksync = MFM_SYNC;
621 
622 	custom.dsklen = 0;
623 	custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf);
624 	custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN;
625 	custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN;
626 
627 	block_flag = 1;
628 
629 	while (block_flag)
630 		sleep_on (&wait_fd_block);
631 
632 	custom.dsklen = 0;
633 	fd_deselect(drive);
634 	rel_fdc();
635 }
636 
raw_write(int drive)637 static int raw_write(int drive)
638 {
639 	ushort adk;
640 
641 	drive&=3;
642 	get_fdc(drive); /* corresponds to rel_fdc() in post_write() */
643 	if ((ciaa.pra & DSKPROT) == 0) {
644 		rel_fdc();
645 		return 0;
646 	}
647 	while (block_flag)
648 		sleep_on(&wait_fd_block);
649 	fd_select(drive);
650 	/* clear adkcon bits */
651 	custom.adkcon = ADK_PRECOMP1|ADK_PRECOMP0|ADK_WORDSYNC|ADK_MSBSYNC;
652 	/* set appropriate adkcon bits */
653 	adk = ADK_SETCLR|ADK_FAST;
654 	if ((ulong)unit[drive].track >= unit[drive].type->precomp2)
655 		adk |= ADK_PRECOMP1;
656 	else if ((ulong)unit[drive].track >= unit[drive].type->precomp1)
657 		adk |= ADK_PRECOMP0;
658 	custom.adkcon = adk;
659 
660 	custom.dsklen = DSKLEN_WRITE;
661 	custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf);
662 	custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE;
663 	custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE;
664 
665 	block_flag = 2;
666 	return 1;
667 }
668 
669 /*
670  * to be called at least 2ms after the write has finished but before any
671  * other access to the hardware.
672  */
post_write(unsigned long drive)673 static void post_write (unsigned long drive)
674 {
675 #ifdef DEBUG
676 	printk("post_write for drive %ld\n",drive);
677 #endif
678 	drive &= 3;
679 	custom.dsklen = 0;
680 	block_flag = 0;
681 	writepending = 0;
682 	writefromint = 0;
683 	unit[drive].dirty = 0;
684 	wake_up(&wait_fd_block);
685 	fd_deselect(drive);
686 	rel_fdc(); /* corresponds to get_fdc() in raw_write */
687 }
688 
689 
690 /*
691  * The following functions are to convert the block contents into raw data
692  * written to disk and vice versa.
693  * (Add other formats here ;-))
694  */
695 
scan_sync(unsigned long raw,unsigned long end)696 static unsigned long scan_sync(unsigned long raw, unsigned long end)
697 {
698 	ushort *ptr = (ushort *)raw, *endp = (ushort *)end;
699 
700 	while (ptr < endp && *ptr++ != 0x4489)
701 		;
702 	if (ptr < endp) {
703 		while (*ptr == 0x4489 && ptr < endp)
704 			ptr++;
705 		return (ulong)ptr;
706 	}
707 	return 0;
708 }
709 
checksum(unsigned long * addr,int len)710 static inline unsigned long checksum(unsigned long *addr, int len)
711 {
712 	unsigned long csum = 0;
713 
714 	len /= sizeof(*addr);
715 	while (len-- > 0)
716 		csum ^= *addr++;
717 	csum = ((csum>>1) & 0x55555555)  ^  (csum & 0x55555555);
718 
719 	return csum;
720 }
721 
decode(unsigned long * data,unsigned long * raw,int len)722 static unsigned long decode (unsigned long *data, unsigned long *raw,
723 			     int len)
724 {
725 	ulong *odd, *even;
726 
727 	/* convert length from bytes to longwords */
728 	len >>= 2;
729 	odd = raw;
730 	even = odd + len;
731 
732 	/* prepare return pointer */
733 	raw += len * 2;
734 
735 	do {
736 		*data++ = ((*odd++ & 0x55555555) << 1) | (*even++ & 0x55555555);
737 	} while (--len != 0);
738 
739 	return (ulong)raw;
740 }
741 
742 struct header {
743 	unsigned char magic;
744 	unsigned char track;
745 	unsigned char sect;
746 	unsigned char ord;
747 	unsigned char labels[16];
748 	unsigned long hdrchk;
749 	unsigned long datachk;
750 };
751 
amiga_read(int drive)752 static int amiga_read(int drive)
753 {
754 	unsigned long raw;
755 	unsigned long end;
756 	int scnt;
757 	unsigned long csum;
758 	struct header hdr;
759 
760 	drive&=3;
761 	raw = (long) raw_buf;
762 	end = raw + unit[drive].type->read_size;
763 
764 	for (scnt = 0;scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) {
765 		if (!(raw = scan_sync(raw, end))) {
766 			printk (KERN_INFO "can't find sync for sector %d\n", scnt);
767 			return MFM_NOSYNC;
768 		}
769 
770 		raw = decode ((ulong *)&hdr.magic, (ulong *)raw, 4);
771 		raw = decode ((ulong *)&hdr.labels, (ulong *)raw, 16);
772 		raw = decode ((ulong *)&hdr.hdrchk, (ulong *)raw, 4);
773 		raw = decode ((ulong *)&hdr.datachk, (ulong *)raw, 4);
774 		csum = checksum((ulong *)&hdr,
775 				(char *)&hdr.hdrchk-(char *)&hdr);
776 
777 #ifdef DEBUG
778 		printk ("(%x,%d,%d,%d) (%lx,%lx,%lx,%lx) %lx %lx\n",
779 			hdr.magic, hdr.track, hdr.sect, hdr.ord,
780 			*(ulong *)&hdr.labels[0], *(ulong *)&hdr.labels[4],
781 			*(ulong *)&hdr.labels[8], *(ulong *)&hdr.labels[12],
782 			hdr.hdrchk, hdr.datachk);
783 #endif
784 
785 		if (hdr.hdrchk != csum) {
786 			printk(KERN_INFO "MFM_HEADER: %08lx,%08lx\n", hdr.hdrchk, csum);
787 			return MFM_HEADER;
788 		}
789 
790 		/* verify track */
791 		if (hdr.track != unit[drive].track) {
792 			printk(KERN_INFO "MFM_TRACK: %d, %d\n", hdr.track, unit[drive].track);
793 			return MFM_TRACK;
794 		}
795 
796 		raw = decode ((ulong *)(unit[drive].trackbuf + hdr.sect*512),
797 			      (ulong *)raw, 512);
798 		csum = checksum((ulong *)(unit[drive].trackbuf + hdr.sect*512), 512);
799 
800 		if (hdr.datachk != csum) {
801 			printk(KERN_INFO "MFM_DATA: (%x:%d:%d:%d) sc=%d %lx, %lx\n",
802 			       hdr.magic, hdr.track, hdr.sect, hdr.ord, scnt,
803 			       hdr.datachk, csum);
804 			printk (KERN_INFO "data=(%lx,%lx,%lx,%lx)\n",
805 				((ulong *)(unit[drive].trackbuf+hdr.sect*512))[0],
806 				((ulong *)(unit[drive].trackbuf+hdr.sect*512))[1],
807 				((ulong *)(unit[drive].trackbuf+hdr.sect*512))[2],
808 				((ulong *)(unit[drive].trackbuf+hdr.sect*512))[3]);
809 			return MFM_DATA;
810 		}
811 	}
812 
813 	return 0;
814 }
815 
encode(unsigned long data,unsigned long * dest)816 static void encode(unsigned long data, unsigned long *dest)
817 {
818 	unsigned long data2;
819 
820 	data &= 0x55555555;
821 	data2 = data ^ 0x55555555;
822 	data |= ((data2 >> 1) | 0x80000000) & (data2 << 1);
823 
824 	if (*(dest - 1) & 0x00000001)
825 		data &= 0x7FFFFFFF;
826 
827 	*dest = data;
828 }
829 
encode_block(unsigned long * dest,unsigned long * src,int len)830 static void encode_block(unsigned long *dest, unsigned long *src, int len)
831 {
832 	int cnt, to_cnt = 0;
833 	unsigned long data;
834 
835 	/* odd bits */
836 	for (cnt = 0; cnt < len / 4; cnt++) {
837 		data = src[cnt] >> 1;
838 		encode(data, dest + to_cnt++);
839 	}
840 
841 	/* even bits */
842 	for (cnt = 0; cnt < len / 4; cnt++) {
843 		data = src[cnt];
844 		encode(data, dest + to_cnt++);
845 	}
846 }
847 
putsec(int disk,unsigned long * raw,int cnt)848 static unsigned long *putsec(int disk, unsigned long *raw, int cnt)
849 {
850 	struct header hdr;
851 	int i;
852 
853 	disk&=3;
854 	*raw = (raw[-1]&1) ? 0x2AAAAAAA : 0xAAAAAAAA;
855 	raw++;
856 	*raw++ = 0x44894489;
857 
858 	hdr.magic = 0xFF;
859 	hdr.track = unit[disk].track;
860 	hdr.sect = cnt;
861 	hdr.ord = unit[disk].dtype->sects * unit[disk].type->sect_mult - cnt;
862 	for (i = 0; i < 16; i++)
863 		hdr.labels[i] = 0;
864 	hdr.hdrchk = checksum((ulong *)&hdr,
865 			      (char *)&hdr.hdrchk-(char *)&hdr);
866 	hdr.datachk = checksum((ulong *)(unit[disk].trackbuf+cnt*512), 512);
867 
868 	encode_block(raw, (ulong *)&hdr.magic, 4);
869 	raw += 2;
870 	encode_block(raw, (ulong *)&hdr.labels, 16);
871 	raw += 8;
872 	encode_block(raw, (ulong *)&hdr.hdrchk, 4);
873 	raw += 2;
874 	encode_block(raw, (ulong *)&hdr.datachk, 4);
875 	raw += 2;
876 	encode_block(raw, (ulong *)(unit[disk].trackbuf+cnt*512), 512);
877 	raw += 256;
878 
879 	return raw;
880 }
881 
amiga_write(int disk)882 static void amiga_write(int disk)
883 {
884 	unsigned int cnt;
885 	unsigned long *ptr = (unsigned long *)raw_buf;
886 
887 	disk&=3;
888 	/* gap space */
889 	for (cnt = 0; cnt < 415 * unit[disk].type->sect_mult; cnt++)
890 		*ptr++ = 0xaaaaaaaa;
891 
892 	/* sectors */
893 	for (cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++)
894 		ptr = putsec (disk, ptr, cnt);
895 	*(ushort *)ptr = (ptr[-1]&1) ? 0x2AA8 : 0xAAA8;
896 }
897 
898 
899 struct dos_header {
900 	unsigned char track,   /* 0-80 */
901 		side,    /* 0-1 */
902 		sec,     /* 0-...*/
903 		len_desc;/* 2 */
904 	unsigned short crc;     /* on 68000 we got an alignment problem,
905 				   but this compiler solves it  by adding silently
906 				   adding a pad byte so data won't fit
907 				   and this took about 3h to discover.... */
908 	unsigned char gap1[22];     /* for longword-alignedness (0x4e) */
909 };
910 
911 /* crc routines are borrowed from the messydos-handler  */
912 
913 /* excerpt from the messydos-device
914 ; The CRC is computed not only over the actual data, but including
915 ; the SYNC mark (3 * $a1) and the 'ID/DATA - Address Mark' ($fe/$fb).
916 ; As we don't read or encode these fields into our buffers, we have to
917 ; preload the registers containing the CRC with the values they would have
918 ; after stepping over these fields.
919 ;
920 ; How CRCs "really" work:
921 ;
922 ; First, you should regard a bitstring as a series of coefficients of
923 ; polynomials. We calculate with these polynomials in modulo-2
924 ; arithmetic, in which both add and subtract are done the same as
925 ; exclusive-or. Now, we modify our data (a very long polynomial) in
926 ; such a way that it becomes divisible by the CCITT-standard 16-bit
927 ;		 16   12   5
928 ; polynomial:	x  + x	+ x + 1, represented by $11021. The easiest
929 ; way to do this would be to multiply (using proper arithmetic) our
930 ; datablock with $11021. So we have:
931 ;   data * $11021		 =
932 ;   data * ($10000 + $1021)      =
933 ;   data * $10000 + data * $1021
934 ; The left part of this is simple: Just add two 0 bytes. But then
935 ; the right part (data $1021) remains difficult and even could have
936 ; a carry into the left part. The solution is to use a modified
937 ; multiplication, which has a result that is not correct, but with
938 ; a difference of any multiple of $11021. We then only need to keep
939 ; the 16 least significant bits of the result.
940 ;
941 ; The following algorithm does this for us:
942 ;
943 ;   unsigned char *data, c, crclo, crchi;
944 ;   while (not done) {
945 ;	c = *data++ + crchi;
946 ;	crchi = (@ c) >> 8 + crclo;
947 ;	crclo = @ c;
948 ;   }
949 ;
950 ; Remember, + is done with EOR, the @ operator is in two tables (high
951 ; and low byte separately), which is calculated as
952 ;
953 ;      $1021 * (c & $F0)
954 ;  xor $1021 * (c & $0F)
955 ;  xor $1021 * (c >> 4)         (* is regular multiplication)
956 ;
957 ;
958 ; Anyway, the end result is the same as the remainder of the division of
959 ; the data by $11021. I am afraid I need to study theory a bit more...
960 
961 
962 my only works was to code this from manx to C....
963 
964 */
965 
dos_crc(void * data_a3,int data_d0,int data_d1,int data_d3)966 static ushort dos_crc(void * data_a3, int data_d0, int data_d1, int data_d3)
967 {
968 	static unsigned char CRCTable1[] = {
969 		0x00,0x10,0x20,0x30,0x40,0x50,0x60,0x70,0x81,0x91,0xa1,0xb1,0xc1,0xd1,0xe1,0xf1,
970 		0x12,0x02,0x32,0x22,0x52,0x42,0x72,0x62,0x93,0x83,0xb3,0xa3,0xd3,0xc3,0xf3,0xe3,
971 		0x24,0x34,0x04,0x14,0x64,0x74,0x44,0x54,0xa5,0xb5,0x85,0x95,0xe5,0xf5,0xc5,0xd5,
972 		0x36,0x26,0x16,0x06,0x76,0x66,0x56,0x46,0xb7,0xa7,0x97,0x87,0xf7,0xe7,0xd7,0xc7,
973 		0x48,0x58,0x68,0x78,0x08,0x18,0x28,0x38,0xc9,0xd9,0xe9,0xf9,0x89,0x99,0xa9,0xb9,
974 		0x5a,0x4a,0x7a,0x6a,0x1a,0x0a,0x3a,0x2a,0xdb,0xcb,0xfb,0xeb,0x9b,0x8b,0xbb,0xab,
975 		0x6c,0x7c,0x4c,0x5c,0x2c,0x3c,0x0c,0x1c,0xed,0xfd,0xcd,0xdd,0xad,0xbd,0x8d,0x9d,
976 		0x7e,0x6e,0x5e,0x4e,0x3e,0x2e,0x1e,0x0e,0xff,0xef,0xdf,0xcf,0xbf,0xaf,0x9f,0x8f,
977 		0x91,0x81,0xb1,0xa1,0xd1,0xc1,0xf1,0xe1,0x10,0x00,0x30,0x20,0x50,0x40,0x70,0x60,
978 		0x83,0x93,0xa3,0xb3,0xc3,0xd3,0xe3,0xf3,0x02,0x12,0x22,0x32,0x42,0x52,0x62,0x72,
979 		0xb5,0xa5,0x95,0x85,0xf5,0xe5,0xd5,0xc5,0x34,0x24,0x14,0x04,0x74,0x64,0x54,0x44,
980 		0xa7,0xb7,0x87,0x97,0xe7,0xf7,0xc7,0xd7,0x26,0x36,0x06,0x16,0x66,0x76,0x46,0x56,
981 		0xd9,0xc9,0xf9,0xe9,0x99,0x89,0xb9,0xa9,0x58,0x48,0x78,0x68,0x18,0x08,0x38,0x28,
982 		0xcb,0xdb,0xeb,0xfb,0x8b,0x9b,0xab,0xbb,0x4a,0x5a,0x6a,0x7a,0x0a,0x1a,0x2a,0x3a,
983 		0xfd,0xed,0xdd,0xcd,0xbd,0xad,0x9d,0x8d,0x7c,0x6c,0x5c,0x4c,0x3c,0x2c,0x1c,0x0c,
984 		0xef,0xff,0xcf,0xdf,0xaf,0xbf,0x8f,0x9f,0x6e,0x7e,0x4e,0x5e,0x2e,0x3e,0x0e,0x1e
985 	};
986 
987 	static unsigned char CRCTable2[] = {
988 		0x00,0x21,0x42,0x63,0x84,0xa5,0xc6,0xe7,0x08,0x29,0x4a,0x6b,0x8c,0xad,0xce,0xef,
989 		0x31,0x10,0x73,0x52,0xb5,0x94,0xf7,0xd6,0x39,0x18,0x7b,0x5a,0xbd,0x9c,0xff,0xde,
990 		0x62,0x43,0x20,0x01,0xe6,0xc7,0xa4,0x85,0x6a,0x4b,0x28,0x09,0xee,0xcf,0xac,0x8d,
991 		0x53,0x72,0x11,0x30,0xd7,0xf6,0x95,0xb4,0x5b,0x7a,0x19,0x38,0xdf,0xfe,0x9d,0xbc,
992 		0xc4,0xe5,0x86,0xa7,0x40,0x61,0x02,0x23,0xcc,0xed,0x8e,0xaf,0x48,0x69,0x0a,0x2b,
993 		0xf5,0xd4,0xb7,0x96,0x71,0x50,0x33,0x12,0xfd,0xdc,0xbf,0x9e,0x79,0x58,0x3b,0x1a,
994 		0xa6,0x87,0xe4,0xc5,0x22,0x03,0x60,0x41,0xae,0x8f,0xec,0xcd,0x2a,0x0b,0x68,0x49,
995 		0x97,0xb6,0xd5,0xf4,0x13,0x32,0x51,0x70,0x9f,0xbe,0xdd,0xfc,0x1b,0x3a,0x59,0x78,
996 		0x88,0xa9,0xca,0xeb,0x0c,0x2d,0x4e,0x6f,0x80,0xa1,0xc2,0xe3,0x04,0x25,0x46,0x67,
997 		0xb9,0x98,0xfb,0xda,0x3d,0x1c,0x7f,0x5e,0xb1,0x90,0xf3,0xd2,0x35,0x14,0x77,0x56,
998 		0xea,0xcb,0xa8,0x89,0x6e,0x4f,0x2c,0x0d,0xe2,0xc3,0xa0,0x81,0x66,0x47,0x24,0x05,
999 		0xdb,0xfa,0x99,0xb8,0x5f,0x7e,0x1d,0x3c,0xd3,0xf2,0x91,0xb0,0x57,0x76,0x15,0x34,
1000 		0x4c,0x6d,0x0e,0x2f,0xc8,0xe9,0x8a,0xab,0x44,0x65,0x06,0x27,0xc0,0xe1,0x82,0xa3,
1001 		0x7d,0x5c,0x3f,0x1e,0xf9,0xd8,0xbb,0x9a,0x75,0x54,0x37,0x16,0xf1,0xd0,0xb3,0x92,
1002 		0x2e,0x0f,0x6c,0x4d,0xaa,0x8b,0xe8,0xc9,0x26,0x07,0x64,0x45,0xa2,0x83,0xe0,0xc1,
1003 		0x1f,0x3e,0x5d,0x7c,0x9b,0xba,0xd9,0xf8,0x17,0x36,0x55,0x74,0x93,0xb2,0xd1,0xf0
1004 	};
1005 
1006 /* look at the asm-code - what looks in C a bit strange is almost as good as handmade */
1007 	register int i;
1008 	register unsigned char *CRCT1, *CRCT2, *data, c, crch, crcl;
1009 
1010 	CRCT1=CRCTable1;
1011 	CRCT2=CRCTable2;
1012 	data=data_a3;
1013 	crcl=data_d1;
1014 	crch=data_d0;
1015 	for (i=data_d3; i>=0; i--) {
1016 		c = (*data++) ^ crch;
1017 		crch = CRCT1[c] ^ crcl;
1018 		crcl = CRCT2[c];
1019 	}
1020 	return (crch<<8)|crcl;
1021 }
1022 
dos_hdr_crc(struct dos_header * hdr)1023 static inline ushort dos_hdr_crc (struct dos_header *hdr)
1024 {
1025 	return dos_crc(&(hdr->track), 0xb2, 0x30, 3); /* precomputed magic */
1026 }
1027 
dos_data_crc(unsigned char * data)1028 static inline ushort dos_data_crc(unsigned char *data)
1029 {
1030 	return dos_crc(data, 0xe2, 0x95 ,511); /* precomputed magic */
1031 }
1032 
dos_decode_byte(ushort word)1033 static inline unsigned char dos_decode_byte(ushort word)
1034 {
1035 	register ushort w2;
1036 	register unsigned char byte;
1037 	register unsigned char *dec = mfmdecode;
1038 
1039 	w2=word;
1040 	w2>>=8;
1041 	w2&=127;
1042 	byte = dec[w2];
1043 	byte <<= 4;
1044 	w2 = word & 127;
1045 	byte |= dec[w2];
1046 	return byte;
1047 }
1048 
dos_decode(unsigned char * data,unsigned short * raw,int len)1049 static unsigned long dos_decode(unsigned char *data, unsigned short *raw, int len)
1050 {
1051 	int i;
1052 
1053 	for (i = 0; i < len; i++)
1054 		*data++=dos_decode_byte(*raw++);
1055 	return ((ulong)raw);
1056 }
1057 
1058 #ifdef DEBUG
dbg(unsigned long ptr)1059 static void dbg(unsigned long ptr)
1060 {
1061 	printk("raw data @%08lx: %08lx, %08lx ,%08lx, %08lx\n", ptr,
1062 	       ((ulong *)ptr)[0], ((ulong *)ptr)[1],
1063 	       ((ulong *)ptr)[2], ((ulong *)ptr)[3]);
1064 }
1065 #endif
1066 
dos_read(int drive)1067 static int dos_read(int drive)
1068 {
1069 	unsigned long end;
1070 	unsigned long raw;
1071 	int scnt;
1072 	unsigned short crc,data_crc[2];
1073 	struct dos_header hdr;
1074 
1075 	drive&=3;
1076 	raw = (long) raw_buf;
1077 	end = raw + unit[drive].type->read_size;
1078 
1079 	for (scnt=0; scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) {
1080 		do { /* search for the right sync of each sec-hdr */
1081 			if (!(raw = scan_sync (raw, end))) {
1082 				printk(KERN_INFO "dos_read: no hdr sync on "
1083 				       "track %d, unit %d for sector %d\n",
1084 				       unit[drive].track,drive,scnt);
1085 				return MFM_NOSYNC;
1086 			}
1087 #ifdef DEBUG
1088 			dbg(raw);
1089 #endif
1090 		} while (*((ushort *)raw)!=0x5554); /* loop usually only once done */
1091 		raw+=2; /* skip over headermark */
1092 		raw = dos_decode((unsigned char *)&hdr,(ushort *) raw,8);
1093 		crc = dos_hdr_crc(&hdr);
1094 
1095 #ifdef DEBUG
1096 		printk("(%3d,%d,%2d,%d) %x\n", hdr.track, hdr.side,
1097 		       hdr.sec, hdr.len_desc, hdr.crc);
1098 #endif
1099 
1100 		if (crc != hdr.crc) {
1101 			printk(KERN_INFO "dos_read: MFM_HEADER %04x,%04x\n",
1102 			       hdr.crc, crc);
1103 			return MFM_HEADER;
1104 		}
1105 		if (hdr.track != unit[drive].track/unit[drive].type->heads) {
1106 			printk(KERN_INFO "dos_read: MFM_TRACK %d, %d\n",
1107 			       hdr.track,
1108 			       unit[drive].track/unit[drive].type->heads);
1109 			return MFM_TRACK;
1110 		}
1111 
1112 		if (hdr.side != unit[drive].track%unit[drive].type->heads) {
1113 			printk(KERN_INFO "dos_read: MFM_SIDE %d, %d\n",
1114 			       hdr.side,
1115 			       unit[drive].track%unit[drive].type->heads);
1116 			return MFM_TRACK;
1117 		}
1118 
1119 		if (hdr.len_desc != 2) {
1120 			printk(KERN_INFO "dos_read: unknown sector len "
1121 			       "descriptor %d\n", hdr.len_desc);
1122 			return MFM_DATA;
1123 		}
1124 #ifdef DEBUG
1125 		printk("hdr accepted\n");
1126 #endif
1127 		if (!(raw = scan_sync (raw, end))) {
1128 			printk(KERN_INFO "dos_read: no data sync on track "
1129 			       "%d, unit %d for sector%d, disk sector %d\n",
1130 			       unit[drive].track, drive, scnt, hdr.sec);
1131 			return MFM_NOSYNC;
1132 		}
1133 #ifdef DEBUG
1134 		dbg(raw);
1135 #endif
1136 
1137 		if (*((ushort *)raw)!=0x5545) {
1138 			printk(KERN_INFO "dos_read: no data mark after "
1139 			       "sync (%d,%d,%d,%d) sc=%d\n",
1140 			       hdr.track,hdr.side,hdr.sec,hdr.len_desc,scnt);
1141 			return MFM_NOSYNC;
1142 		}
1143 
1144 		raw+=2;  /* skip data mark (included in checksum) */
1145 		raw = dos_decode((unsigned char *)(unit[drive].trackbuf + (hdr.sec - 1) * 512), (ushort *) raw, 512);
1146 		raw = dos_decode((unsigned char  *)data_crc,(ushort *) raw,4);
1147 		crc = dos_data_crc(unit[drive].trackbuf + (hdr.sec - 1) * 512);
1148 
1149 		if (crc != data_crc[0]) {
1150 			printk(KERN_INFO "dos_read: MFM_DATA (%d,%d,%d,%d) "
1151 			       "sc=%d, %x %x\n", hdr.track, hdr.side,
1152 			       hdr.sec, hdr.len_desc, scnt,data_crc[0], crc);
1153 			printk(KERN_INFO "data=(%lx,%lx,%lx,%lx,...)\n",
1154 			       ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[0],
1155 			       ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[1],
1156 			       ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[2],
1157 			       ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[3]);
1158 			return MFM_DATA;
1159 		}
1160 	}
1161 	return 0;
1162 }
1163 
dos_encode_byte(unsigned char byte)1164 static inline ushort dos_encode_byte(unsigned char byte)
1165 {
1166 	register unsigned char *enc, b2, b1;
1167 	register ushort word;
1168 
1169 	enc=mfmencode;
1170 	b1=byte;
1171 	b2=b1>>4;
1172 	b1&=15;
1173 	word=enc[b2] <<8 | enc [b1];
1174 	return (word|((word&(256|64)) ? 0: 128));
1175 }
1176 
dos_encode_block(ushort * dest,unsigned char * src,int len)1177 static void dos_encode_block(ushort *dest, unsigned char *src, int len)
1178 {
1179 	int i;
1180 
1181 	for (i = 0; i < len; i++) {
1182 		*dest=dos_encode_byte(*src++);
1183 		*dest|=((dest[-1]&1)||(*dest&0x4000))? 0: 0x8000;
1184 		dest++;
1185 	}
1186 }
1187 
ms_putsec(int drive,unsigned long * raw,int cnt)1188 static unsigned long *ms_putsec(int drive, unsigned long *raw, int cnt)
1189 {
1190 	static struct dos_header hdr={0,0,0,2,0,
1191 	  {78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78}};
1192 	int i;
1193 	static ushort crc[2]={0,0x4e4e};
1194 
1195 	drive&=3;
1196 /* id gap 1 */
1197 /* the MFM word before is always 9254 */
1198 	for(i=0;i<6;i++)
1199 		*raw++=0xaaaaaaaa;
1200 /* 3 sync + 1 headermark */
1201 	*raw++=0x44894489;
1202 	*raw++=0x44895554;
1203 
1204 /* fill in the variable parts of the header */
1205 	hdr.track=unit[drive].track/unit[drive].type->heads;
1206 	hdr.side=unit[drive].track%unit[drive].type->heads;
1207 	hdr.sec=cnt+1;
1208 	hdr.crc=dos_hdr_crc(&hdr);
1209 
1210 /* header (without "magic") and id gap 2*/
1211 	dos_encode_block((ushort *)raw,(unsigned char *) &hdr.track,28);
1212 	raw+=14;
1213 
1214 /*id gap 3 */
1215 	for(i=0;i<6;i++)
1216 		*raw++=0xaaaaaaaa;
1217 
1218 /* 3 syncs and 1 datamark */
1219 	*raw++=0x44894489;
1220 	*raw++=0x44895545;
1221 
1222 /* data */
1223 	dos_encode_block((ushort *)raw,
1224 			 (unsigned char *)unit[drive].trackbuf+cnt*512,512);
1225 	raw+=256;
1226 
1227 /*data crc + jd's special gap (long words :-/) */
1228 	crc[0]=dos_data_crc(unit[drive].trackbuf+cnt*512);
1229 	dos_encode_block((ushort *) raw,(unsigned char *)crc,4);
1230 	raw+=2;
1231 
1232 /* data gap */
1233 	for(i=0;i<38;i++)
1234 		*raw++=0x92549254;
1235 
1236 	return raw; /* wrote 652 MFM words */
1237 }
1238 
dos_write(int disk)1239 static void dos_write(int disk)
1240 {
1241 	int cnt;
1242 	unsigned long raw = (unsigned long) raw_buf;
1243 	unsigned long *ptr=(unsigned long *)raw;
1244 
1245 	disk&=3;
1246 /* really gap4 + indexgap , but we write it first and round it up */
1247 	for (cnt=0;cnt<425;cnt++)
1248 		*ptr++=0x92549254;
1249 
1250 /* the following is just guessed */
1251 	if (unit[disk].type->sect_mult==2)  /* check for HD-Disks */
1252 		for(cnt=0;cnt<473;cnt++)
1253 			*ptr++=0x92549254;
1254 
1255 /* now the index marks...*/
1256 	for (cnt=0;cnt<20;cnt++)
1257 		*ptr++=0x92549254;
1258 	for (cnt=0;cnt<6;cnt++)
1259 		*ptr++=0xaaaaaaaa;
1260 	*ptr++=0x52245224;
1261 	*ptr++=0x52245552;
1262 	for (cnt=0;cnt<20;cnt++)
1263 		*ptr++=0x92549254;
1264 
1265 /* sectors */
1266 	for(cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++)
1267 		ptr=ms_putsec(disk,ptr,cnt);
1268 
1269 	*(ushort *)ptr = 0xaaa8; /* MFM word before is always 0x9254 */
1270 }
1271 
1272 /*
1273  * Here comes the high level stuff (i.e. the filesystem interface)
1274  * and helper functions.
1275  * Normally this should be the only part that has to be adapted to
1276  * different kernel versions.
1277  */
1278 
1279 /* FIXME: this assumes the drive is still spinning -
1280  * which is only true if we complete writing a track within three seconds
1281  */
flush_track_callback(unsigned long nr)1282 static void flush_track_callback(unsigned long nr)
1283 {
1284 	nr&=3;
1285 	writefromint = 1;
1286 	if (!try_fdc(nr)) {
1287 		/* we might block in an interrupt, so try again later */
1288 		flush_track_timer[nr].expires = jiffies + 1;
1289 		add_timer(flush_track_timer + nr);
1290 		return;
1291 	}
1292 	get_fdc(nr);
1293 	(*unit[nr].dtype->write_fkt)(nr);
1294 	if (!raw_write(nr)) {
1295 		printk (KERN_NOTICE "floppy disk write protected\n");
1296 		writefromint = 0;
1297 		writepending = 0;
1298 	}
1299 	rel_fdc();
1300 }
1301 
non_int_flush_track(unsigned long nr)1302 static int non_int_flush_track (unsigned long nr)
1303 {
1304 	unsigned long flags;
1305 
1306 	nr&=3;
1307 	writefromint = 0;
1308 	del_timer(&post_write_timer);
1309 	get_fdc(nr);
1310 	if (!fd_motor_on(nr)) {
1311 		writepending = 0;
1312 		rel_fdc();
1313 		return 0;
1314 	}
1315 	save_flags(flags);
1316 	cli();
1317 	if (writepending != 2) {
1318 		restore_flags(flags);
1319 		(*unit[nr].dtype->write_fkt)(nr);
1320 		if (!raw_write(nr)) {
1321 			printk (KERN_NOTICE "floppy disk write protected "
1322 				"in write!\n");
1323 			writepending = 0;
1324 			return 0;
1325 		}
1326 		while (block_flag == 2)
1327 			sleep_on (&wait_fd_block);
1328 	}
1329 	else {
1330 		restore_flags(flags);
1331 		ms_delay(2); /* 2 ms post_write delay */
1332 		post_write(nr);
1333 	}
1334 	rel_fdc();
1335 	return 1;
1336 }
1337 
get_track(int drive,int track)1338 static int get_track(int drive, int track)
1339 {
1340 	int error, errcnt;
1341 
1342 	drive&=3;
1343 	if (unit[drive].track == track)
1344 		return 0;
1345 	get_fdc(drive);
1346 	if (!fd_motor_on(drive)) {
1347 		rel_fdc();
1348 		return -1;
1349 	}
1350 
1351 	if (unit[drive].dirty == 1) {
1352 		del_timer (flush_track_timer + drive);
1353 		non_int_flush_track (drive);
1354 	}
1355 	errcnt = 0;
1356 	while (errcnt < MAX_ERRORS) {
1357 		if (!fd_seek(drive, track))
1358 			return -1;
1359 		raw_read(drive);
1360 		error = (*unit[drive].dtype->read_fkt)(drive);
1361 		if (error == 0) {
1362 			rel_fdc();
1363 			return 0;
1364 		}
1365 		/* Read Error Handling: recalibrate and try again */
1366 		unit[drive].track = -1;
1367 		errcnt++;
1368 	}
1369 	rel_fdc();
1370 	return -1;
1371 }
1372 
redo_fd_request(void)1373 static void redo_fd_request(void)
1374 {
1375 	unsigned int cnt, block, track, sector;
1376 	int device, drive;
1377 	struct amiga_floppy_struct *floppy;
1378 	char *data;
1379 	unsigned long flags;
1380 
1381 	if (!QUEUE_EMPTY && CURRENT->rq_status == RQ_INACTIVE){
1382 		return;
1383 	}
1384 
1385  repeat:
1386 	if (QUEUE_EMPTY) {
1387 		/* Nothing left to do */
1388 		return;
1389 	}
1390 
1391 	if (MAJOR(CURRENT->rq_dev) != MAJOR_NR)
1392 		panic(DEVICE_NAME ": request list destroyed");
1393 
1394 	if (CURRENT->bh && !buffer_locked(CURRENT->bh))
1395 		panic(DEVICE_NAME ": block not locked");
1396 
1397 	device = MINOR(CURRENT_DEVICE);
1398 	if (device < 8) {
1399 		/* manual selection */
1400 		drive = device & 3;
1401 		floppy = unit + drive;
1402 	} else {
1403 		/* Auto-detection */
1404 #ifdef DEBUG
1405 		printk("redo_fd_request: can't handle auto detect\n");
1406 		printk("redo_fd_request: default to normal\n");
1407 #endif
1408 		drive = device & 3;
1409 		floppy = unit + drive;
1410 	}
1411 
1412 	/* Here someone could investigate to be more efficient */
1413 	for (cnt = 0; cnt < CURRENT->current_nr_sectors; cnt++) {
1414 #ifdef DEBUG
1415 		printk("fd: sector %ld + %d requested for %s\n",
1416 		       CURRENT->sector,cnt,
1417 		       (CURRENT->cmd==READ)?"read":"write");
1418 #endif
1419 		block = CURRENT->sector + cnt;
1420 		if ((int)block > floppy->blocks) {
1421 			end_request(0);
1422 			goto repeat;
1423 		}
1424 
1425 		track = block / (floppy->dtype->sects * floppy->type->sect_mult);
1426 		sector = block % (floppy->dtype->sects * floppy->type->sect_mult);
1427 		data = CURRENT->buffer + 512 * cnt;
1428 #ifdef DEBUG
1429 		printk("access to track %d, sector %d, with buffer at "
1430 		       "0x%08lx\n", track, sector, data);
1431 #endif
1432 
1433 		if ((CURRENT->cmd != READ) && (CURRENT->cmd != WRITE)) {
1434 			printk(KERN_WARNING "do_fd_request: unknown command\n");
1435 			end_request(0);
1436 			goto repeat;
1437 		}
1438 		if (get_track(drive, track) == -1) {
1439 			end_request(0);
1440 			goto repeat;
1441 		}
1442 
1443 		switch (CURRENT->cmd) {
1444 		case READ:
1445 			memcpy(data, unit[drive].trackbuf + sector * 512, 512);
1446 			break;
1447 
1448 		case WRITE:
1449 			memcpy(unit[drive].trackbuf + sector * 512, data, 512);
1450 
1451 			/* keep the drive spinning while writes are scheduled */
1452 			if (!fd_motor_on(drive)) {
1453 				end_request(0);
1454 				goto repeat;
1455 			}
1456 			/*
1457 			 * setup a callback to write the track buffer
1458 			 * after a short (1 tick) delay.
1459 			 */
1460 			save_flags (flags);
1461 			cli();
1462 
1463 			unit[drive].dirty = 1;
1464 		        /* reset the timer */
1465 			mod_timer(flush_track_timer + drive, jiffies + 1);
1466 			restore_flags (flags);
1467 			break;
1468 		}
1469 	}
1470 	CURRENT->nr_sectors -= CURRENT->current_nr_sectors;
1471 	CURRENT->sector += CURRENT->current_nr_sectors;
1472 
1473 	end_request(1);
1474 	goto repeat;
1475 }
1476 
do_fd_request(request_queue_t * q)1477 static void do_fd_request(request_queue_t * q)
1478 {
1479 	redo_fd_request();
1480 }
1481 
fd_ioctl(struct inode * inode,struct file * filp,unsigned int cmd,unsigned long param)1482 static int fd_ioctl(struct inode *inode, struct file *filp,
1483 		    unsigned int cmd, unsigned long param)
1484 {
1485 	int drive = inode->i_rdev & 3;
1486 	static struct floppy_struct getprm;
1487 
1488 	switch(cmd){
1489 	case HDIO_GETGEO:
1490 	{
1491 		struct hd_geometry loc;
1492 		loc.heads = unit[drive].type->heads;
1493 		loc.sectors = unit[drive].dtype->sects * unit[drive].type->sect_mult;
1494 		loc.cylinders = unit[drive].type->tracks;
1495 		loc.start = 0;
1496 		if (copy_to_user((void *)param, (void *)&loc,
1497 				 sizeof(struct hd_geometry)))
1498 			return -EFAULT;
1499 		break;
1500 	}
1501 	case FDFMTBEG:
1502 		get_fdc(drive);
1503 		if (fd_ref[drive] > 1) {
1504 			rel_fdc();
1505 			return -EBUSY;
1506 		}
1507 		fsync_dev(inode->i_rdev);
1508 		if (fd_motor_on(drive) == 0) {
1509 			rel_fdc();
1510 			return -ENODEV;
1511 		}
1512 		if (fd_calibrate(drive) == 0) {
1513 			rel_fdc();
1514 			return -ENXIO;
1515 		}
1516 		floppy_off(drive);
1517 		rel_fdc();
1518 		break;
1519 	case FDFMTTRK:
1520 		if (param < unit[drive].type->tracks * unit[drive].type->heads)
1521 		{
1522 			get_fdc(drive);
1523 			if (fd_seek(drive,param) != 0){
1524 				memset(unit[drive].trackbuf, FD_FILL_BYTE,
1525 				       unit[drive].dtype->sects * unit[drive].type->sect_mult * 512);
1526 				non_int_flush_track(drive);
1527 			}
1528 			floppy_off(drive);
1529 			rel_fdc();
1530 		}
1531 		else
1532 			return -EINVAL;
1533 		break;
1534 	case FDFMTEND:
1535 		floppy_off(drive);
1536 		invalidate_device(inode->i_rdev, 0);
1537 		break;
1538 	case FDGETPRM:
1539 		memset((void *)&getprm, 0, sizeof (getprm));
1540 		getprm.track=unit[drive].type->tracks;
1541 		getprm.head=unit[drive].type->heads;
1542 		getprm.sect=unit[drive].dtype->sects * unit[drive].type->sect_mult;
1543 		getprm.size=unit[drive].blocks;
1544 		if (copy_to_user((void *)param,
1545 				 (void *)&getprm,
1546 				 sizeof(struct floppy_struct)))
1547 			return -EFAULT;
1548 		break;
1549 	case BLKGETSIZE:
1550 		return put_user(unit[drive].blocks,(unsigned long *)param);
1551 		break;
1552 	case BLKGETSIZE64:
1553 		return put_user((u64)unit[drive].blocks << 9, (u64 *)param);
1554 		break;
1555 	case FDSETPRM:
1556 	case FDDEFPRM:
1557 		return -EINVAL;
1558 	case FDFLUSH: /* unconditionally, even if not needed */
1559 		del_timer (flush_track_timer + drive);
1560 		non_int_flush_track(drive);
1561 		break;
1562 #ifdef RAW_IOCTL
1563 	case IOCTL_RAW_TRACK:
1564 		if (copy_to_user((void *)param, raw_buf,
1565 				 unit[drive].type->read_size))
1566 			return -EFAULT;
1567 		else
1568 			return unit[drive].type->read_size;
1569 #endif
1570 	default:
1571 		printk(KERN_DEBUG "fd_ioctl: unknown cmd %d for drive %d.",
1572 		       cmd, drive);
1573 		return -ENOSYS;
1574 	}
1575 	return 0;
1576 }
1577 
fd_probe(int dev)1578 static void fd_probe(int dev)
1579 {
1580 	unsigned long code;
1581 	int type;
1582 	int drive;
1583 
1584 	drive = dev & 3;
1585 	code = fd_get_drive_id(drive);
1586 
1587 	/* get drive type */
1588 	for (type = 0; type < num_dr_types; type++)
1589 		if (drive_types[type].code == code)
1590 			break;
1591 
1592 	if (type >= num_dr_types) {
1593 		printk(KERN_WARNING "fd_probe: unsupported drive type "
1594 		       "%08lx found\n", code);
1595 		unit[drive].type = &drive_types[num_dr_types-1]; /* FD_NODRIVE */
1596 		return;
1597 	}
1598 
1599 	unit[drive].type = drive_types + type;
1600 	unit[drive].track = -1;
1601 
1602 	unit[drive].disk = -1;
1603 	unit[drive].motor = 0;
1604 	unit[drive].busy = 0;
1605 	unit[drive].status = -1;
1606 }
1607 
1608 /*
1609  * floppy_open check for aliasing (/dev/fd0 can be the same as
1610  * /dev/PS0 etc), and disallows simultaneous access to the same
1611  * drive with different device numbers.
1612  */
floppy_open(struct inode * inode,struct file * filp)1613 static int floppy_open(struct inode *inode, struct file *filp)
1614 {
1615 	int drive;
1616 	int old_dev;
1617 	int system;
1618 	unsigned long flags;
1619 
1620 	drive = MINOR(inode->i_rdev) & 3;
1621 	old_dev = fd_device[drive];
1622 
1623 	if (fd_ref[drive])
1624 		if (old_dev != inode->i_rdev)
1625 			return -EBUSY;
1626 
1627 	if (unit[drive].type->code == FD_NODRIVE)
1628 		return -ENODEV;
1629 
1630 	if (filp && filp->f_mode & 3) {
1631 		check_disk_change(inode->i_rdev);
1632 		if (filp->f_mode & 2 ) {
1633 			int wrprot;
1634 
1635 			get_fdc(drive);
1636 			fd_select (drive);
1637 			wrprot = !(ciaa.pra & DSKPROT);
1638 			fd_deselect (drive);
1639 			rel_fdc();
1640 
1641 			if (wrprot)
1642 				return -EROFS;
1643 		}
1644 	}
1645 
1646 	save_flags(flags);
1647 	cli();
1648 	fd_ref[drive]++;
1649 	fd_device[drive] = inode->i_rdev;
1650 #ifdef MODULE
1651 	if (unit[drive].motor == 0)
1652 		MOD_INC_USE_COUNT;
1653 #endif
1654 	restore_flags(flags);
1655 
1656 	if (old_dev && old_dev != inode->i_rdev)
1657 		invalidate_buffers(old_dev);
1658 
1659 	system=(inode->i_rdev & 4)>>2;
1660 	unit[drive].dtype=&data_types[system];
1661 	unit[drive].blocks=unit[drive].type->heads*unit[drive].type->tracks*
1662 		data_types[system].sects*unit[drive].type->sect_mult;
1663 	floppy_sizes[MINOR(inode->i_rdev)] = unit[drive].blocks >> 1;
1664 
1665 	printk(KERN_INFO "fd%d: accessing %s-disk with %s-layout\n",drive,
1666 	       unit[drive].type->name, data_types[system].name);
1667 
1668 	return 0;
1669 }
1670 
floppy_release(struct inode * inode,struct file * filp)1671 static int floppy_release(struct inode * inode, struct file * filp)
1672 {
1673 	int drive = MINOR(inode->i_rdev) & 3;
1674 
1675 	if (unit[drive].dirty == 1) {
1676 		del_timer (flush_track_timer + drive);
1677 		non_int_flush_track (drive);
1678 	}
1679 
1680 	if (!fd_ref[drive]--) {
1681 		printk(KERN_CRIT "floppy_release with fd_ref == 0");
1682 		fd_ref[drive] = 0;
1683 	}
1684 #ifdef MODULE
1685 /* the mod_use counter is handled this way */
1686 	floppy_off (drive | 0x40000000);
1687 #endif
1688 	return 0;
1689 }
1690 
1691 /*
1692  * floppy-change is never called from an interrupt, so we can relax a bit
1693  * here, sleep etc. Note that floppy-on tries to set current_DOR to point
1694  * to the desired drive, but it will probably not survive the sleep if
1695  * several floppies are used at the same time: thus the loop.
1696  */
amiga_floppy_change(kdev_t dev)1697 static int amiga_floppy_change(kdev_t dev)
1698 {
1699 	int drive = MINOR(dev) & 3;
1700 	int changed;
1701 	static int first_time = 1;
1702 
1703 	if (MAJOR(dev) != MAJOR_NR) {
1704 		printk(KERN_CRIT "floppy_change: not a floppy\n");
1705 		return 0;
1706 	}
1707 
1708 	if (first_time)
1709 		changed = first_time--;
1710 	else {
1711 		get_fdc(drive);
1712 		fd_select (drive);
1713 		changed = !(ciaa.pra & DSKCHANGE);
1714 		fd_deselect (drive);
1715 		rel_fdc();
1716 	}
1717 
1718 	if (changed) {
1719 		fd_probe(drive);
1720 		unit[drive].track = -1;
1721 		unit[drive].dirty = 0;
1722 		writepending = 0; /* if this was true before, too bad! */
1723 		writefromint = 0;
1724 		return 1;
1725 	}
1726 	return 0;
1727 }
1728 
1729 static struct block_device_operations floppy_fops = {
1730 	owner:			THIS_MODULE,
1731 	open:			floppy_open,
1732 	release:		floppy_release,
1733 	ioctl:			fd_ioctl,
1734 	check_media_change:	amiga_floppy_change,
1735 };
1736 
amiga_floppy_setup(char * str,int * ints)1737 void __init amiga_floppy_setup (char *str, int *ints)
1738 {
1739 	printk (KERN_INFO "amiflop: Setting default df0 to %x\n", ints[1]);
1740 	fd_def_df0 = ints[1];
1741 }
1742 
fd_probe_drives(void)1743 static int __init fd_probe_drives(void)
1744 {
1745 	int drive,drives,nomem;
1746 
1747 	printk(KERN_INFO "FD: probing units\n" KERN_INFO "found ");
1748 	drives=0;
1749 	nomem=0;
1750 	for(drive=0;drive<FD_MAX_UNITS;drive++) {
1751 		fd_probe(drive);
1752 		if (unit[drive].type->code != FD_NODRIVE) {
1753 			drives++;
1754 			if ((unit[drive].trackbuf = kmalloc(FLOPPY_MAX_SECTORS * 512, GFP_KERNEL)) == NULL) {
1755 				printk("no mem for ");
1756 				unit[drive].type = &drive_types[num_dr_types - 1]; /* FD_NODRIVE */
1757 				drives--;
1758 				nomem = 1;
1759 			}
1760 			printk("fd%d ",drive);
1761 		}
1762 	}
1763 	if ((drives > 0) || (nomem == 0)) {
1764 		if (drives == 0)
1765 			printk("no drives");
1766 		printk("\n");
1767 		return drives;
1768 	}
1769 	printk("\n");
1770 	return -ENOMEM;
1771 }
1772 
amiga_floppy_init(void)1773 int __init amiga_floppy_init(void)
1774 {
1775 	int i;
1776 
1777 	if (!AMIGAHW_PRESENT(AMI_FLOPPY))
1778 		return -ENXIO;
1779 
1780 	if (register_blkdev(MAJOR_NR,"fd",&floppy_fops)) {
1781 		printk("fd: Unable to get major %d for floppy\n",MAJOR_NR);
1782 		return -EBUSY;
1783 	}
1784 	/*
1785 	 *  We request DSKPTR, DSKLEN and DSKDATA only, because the other
1786 	 *  floppy registers are too spreaded over the custom register space
1787 	 */
1788 	if (!request_mem_region(CUSTOM_PHYSADDR+0x20, 8, "amiflop [Paula]")) {
1789 		printk("fd: cannot get floppy registers\n");
1790 		unregister_blkdev(MAJOR_NR,"fd");
1791 		return -EBUSY;
1792 	}
1793 	if ((raw_buf = (char *)amiga_chip_alloc (RAW_BUF_SIZE, "Floppy")) ==
1794 	    NULL) {
1795 		printk("fd: cannot get chip mem buffer\n");
1796 		release_mem_region(CUSTOM_PHYSADDR+0x20, 8);
1797 		unregister_blkdev(MAJOR_NR,"fd");
1798 		return -ENOMEM;
1799 	}
1800 	if (request_irq(IRQ_AMIGA_DSKBLK, fd_block_done, 0, "floppy_dma", NULL)) {
1801 		printk("fd: cannot get irq for dma\n");
1802 		amiga_chip_free(raw_buf);
1803 		release_mem_region(CUSTOM_PHYSADDR+0x20, 8);
1804 		unregister_blkdev(MAJOR_NR,"fd");
1805 		return -EBUSY;
1806 	}
1807 	if (request_irq(IRQ_AMIGA_CIAA_TB, ms_isr, 0, "floppy_timer", NULL)) {
1808 		printk("fd: cannot get irq for timer\n");
1809 		free_irq(IRQ_AMIGA_DSKBLK, NULL);
1810 		amiga_chip_free(raw_buf);
1811 		release_mem_region(CUSTOM_PHYSADDR+0x20, 8);
1812 		unregister_blkdev(MAJOR_NR,"fd");
1813 		return -EBUSY;
1814 	}
1815 	if (fd_probe_drives() < 1) { /* No usable drives */
1816 		free_irq(IRQ_AMIGA_CIAA_TB, NULL);
1817 		free_irq(IRQ_AMIGA_DSKBLK, NULL);
1818 		amiga_chip_free(raw_buf);
1819 		release_mem_region(CUSTOM_PHYSADDR+0x20, 8);
1820 		unregister_blkdev(MAJOR_NR,"fd");
1821 		return -ENXIO;
1822 	}
1823 
1824 	/* initialize variables */
1825 	init_timer(&motor_on_timer);
1826 	motor_on_timer.expires = 0;
1827 	motor_on_timer.data = 0;
1828 	motor_on_timer.function = motor_on_callback;
1829 	for (i = 0; i < FD_MAX_UNITS; i++) {
1830 		init_timer(&motor_off_timer[i]);
1831 		motor_off_timer[i].expires = 0;
1832 		motor_off_timer[i].data = i|0x80000000;
1833 		motor_off_timer[i].function = fd_motor_off;
1834 		init_timer(&flush_track_timer[i]);
1835 		flush_track_timer[i].expires = 0;
1836 		flush_track_timer[i].data = i;
1837 		flush_track_timer[i].function = flush_track_callback;
1838 
1839 		unit[i].track = -1;
1840 	}
1841 
1842 	init_timer(&post_write_timer);
1843 	post_write_timer.expires = 0;
1844 	post_write_timer.data = 0;
1845 	post_write_timer.function = post_write;
1846 
1847 	blk_init_queue(BLK_DEFAULT_QUEUE(MAJOR_NR), DEVICE_REQUEST);
1848 	blksize_size[MAJOR_NR] = floppy_blocksizes;
1849 	blk_size[MAJOR_NR] = floppy_sizes;
1850 
1851 	for (i = 0; i < 128; i++)
1852 		mfmdecode[i]=255;
1853 	for (i = 0; i < 16; i++)
1854 		mfmdecode[mfmencode[i]]=i;
1855 
1856 	/* make sure that disk DMA is enabled */
1857 	custom.dmacon = DMAF_SETCLR | DMAF_DISK;
1858 
1859 	/* init ms timer */
1860 	ciaa.crb = 8; /* one-shot, stop */
1861 
1862 	(void)do_floppy; /* avoid warning about unused variable */
1863 	return 0;
1864 }
1865 
1866 #ifdef MODULE
1867 #include <linux/version.h>
1868 
init_module(void)1869 int init_module(void)
1870 {
1871 	if (!MACH_IS_AMIGA)
1872 		return -ENXIO;
1873 	return amiga_floppy_init();
1874 }
1875 
cleanup_module(void)1876 void cleanup_module(void)
1877 {
1878 	int i;
1879 
1880 	for( i = 0; i < FD_MAX_UNITS; i++)
1881 		if (unit[i].type->code != FD_NODRIVE)
1882 			kfree(unit[i].trackbuf);
1883 	free_irq(IRQ_AMIGA_CIAA_TB, NULL);
1884 	free_irq(IRQ_AMIGA_DSKBLK, NULL);
1885 	custom.dmacon = DMAF_DISK; /* disable DMA */
1886 	amiga_chip_free(raw_buf);
1887 	blk_size[MAJOR_NR] = NULL;
1888 	blksize_size[MAJOR_NR] = NULL;
1889 	blk_cleanup_queue(BLK_DEFAULT_QUEUE(MAJOR_NR));
1890 	release_mem_region(CUSTOM_PHYSADDR+0x20, 8);
1891 	unregister_blkdev(MAJOR_NR, "fd");
1892 }
1893 #endif
1894