1 /* Generate expected output for libm tests with MPFR and MPC.
2 Copyright (C) 2013-2022 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
18
19 /* Compile this program as:
20
21 gcc -std=gnu11 -O2 -Wall -Wextra gen-auto-libm-tests.c -lmpc -lmpfr -lgmp \
22 -o gen-auto-libm-tests
23
24 (use of current MPC and MPFR versions recommended) and run it as:
25
26 gen-auto-libm-tests auto-libm-test-in <func> auto-libm-test-out-<func>
27
28 to generate results for normal libm functions, or
29
30 gen-auto-libm-tests --narrow auto-libm-test-in <func> \
31 auto-libm-test-out-narrow-<func>
32
33 to generate results for a function rounding results to a narrower
34 type (in the case of fma and sqrt, both output files are generated
35 from the same test inputs).
36
37 The input file auto-libm-test-in contains three kinds of lines:
38
39 Lines beginning with "#" are comments, and are ignored, as are
40 empty lines.
41
42 Other lines are test lines, of the form "function input1 input2
43 ... [flag1 flag2 ...]". Inputs are either finite real numbers or
44 integers, depending on the function under test. Real numbers may
45 be in any form acceptable to mpfr_strtofr (base 0); integers in any
46 form acceptable to mpz_set_str (base 0). In addition, real numbers
47 may be certain special strings such as "pi", as listed in the
48 special_real_inputs array.
49
50 Each flag is a flag name possibly followed by a series of
51 ":condition". Conditions may be any of the names of floating-point
52 formats in the floating_point_formats array, "long32" and "long64"
53 to indicate the number of bits in the "long" type, or other strings
54 for which libm-test.inc defines a TEST_COND_<condition> macro (with
55 "-"- changed to "_" in the condition name) evaluating to nonzero
56 when the condition is true and zero when the condition is false.
57 The meaning is that the flag applies to the test if all the listed
58 conditions are true. "flag:cond1:cond2 flag:cond3:cond4" means the
59 flag applies if ((cond1 && cond2) || (cond3 && cond4)).
60
61 A real number specified as an input is considered to represent the
62 set of real numbers arising from rounding the given number in any
63 direction for any supported floating-point format; any roundings
64 that give infinity are ignored. Each input on a test line has all
65 the possible roundings considered independently. Each resulting
66 choice of the tuple of inputs to the function is ignored if the
67 mathematical result of the function involves a NaN or an exact
68 infinity, and is otherwise considered for each floating-point
69 format for which all those inputs are exactly representable. Thus
70 tests may result in "overflow", "underflow" and "inexact"
71 exceptions; "invalid" may arise only when the final result type is
72 an integer type and it is the conversion of a mathematically
73 defined finite result to integer type that results in that
74 exception.
75
76 By default, it is assumed that "overflow" and "underflow"
77 exceptions should be correct, but that "inexact" exceptions should
78 only be correct for functions listed as exactly determined. For
79 such functions, "underflow" exceptions should respect whether the
80 machine has before-rounding or after-rounding tininess detection.
81 For other functions, it is considered that if the exact result is
82 somewhere between the greatest magnitude subnormal of a given sign
83 (exclusive) and the least magnitude normal of that sign
84 (inclusive), underflow exceptions are permitted but optional on all
85 machines, and they are also permitted but optional for smaller
86 subnormal exact results for functions that are not exactly
87 determined. errno setting is expected for overflow to infinity and
88 underflow to zero (for real functions), and for out-of-range
89 conversion of a finite result to integer type, and is considered
90 permitted but optional for all other cases where overflow
91 exceptions occur, and where underflow exceptions occur or are
92 permitted. In other cases (where no overflow or underflow is
93 permitted), errno is expected to be left unchanged.
94
95 The flag "ignore-zero-inf-sign" indicates the the signs of
96 zero and infinite results should be ignored; "xfail" indicates the
97 test is disabled as expected to produce incorrect results,
98 "xfail-rounding" indicates the test is disabled only in rounding
99 modes other than round-to-nearest. Otherwise, test flags are of
100 the form "spurious-<exception>" and "missing-<exception>", for any
101 exception ("overflow", "underflow", "inexact", "invalid",
102 "divbyzero"), "spurious-errno" and "missing-errno", to indicate
103 when tests are expected to deviate from the exception and errno
104 settings corresponding to the mathematical results. "xfail",
105 "xfail-rounding", "spurious-" and "missing-" flags should be
106 accompanied by a comment referring to an open bug in glibc
107 Bugzilla.
108
109 The output file auto-libm-test-out-<func> contains the test lines from
110 auto-libm-test-in, and, after the line for a given test, some
111 number of output test lines. An output test line is of the form "=
112 function rounding-mode format input1 input2 ... : output1 output2
113 ... : flags". rounding-mode is "tonearest", "towardzero", "upward"
114 or "downward". format is a name from the floating_point_formats
115 array, possibly followed by a sequence of ":flag" for flags from
116 "long32" and "long64". Inputs and outputs are specified as hex
117 floats with the required suffix for the floating-point type, or
118 plus_infty or minus_infty for infinite expected results, or as
119 integer constant expressions (not necessarily with the right type)
120 or IGNORE for integer inputs and outputs. Flags are
121 "ignore-zero-info-sign", "xfail", "<exception>",
122 "<exception>-ok", "errno-<value>", "errno-<value>-ok", which may be
123 unconditional or conditional. "<exception>" indicates that a
124 correct result means the given exception should be raised.
125 "errno-<value>" indicates that a correct result means errno should
126 be set to the given value. "-ok" means not to test for the given
127 exception or errno value (whether because it was marked as possibly
128 missing or spurious, or because the calculation of correct results
129 indicated it was optional). Conditions "before-rounding" and
130 "after-rounding" indicate tests where expectations for underflow
131 exceptions depend on how the architecture detects tininess.
132
133 For functions rounding their results to a narrower type, the format
134 given on an output test line is the result format followed by
135 information about the requirements on the argument format to be
136 able to represent the argument values, in the form
137 "format:arg_fmt(MAX_EXP,NUM_ONES,MIN_EXP,MAX_PREC)". Instead of
138 separate lines for separate argument formats, an output test line
139 relates to all argument formats that can represent the values.
140 MAX_EXP is the maximum exponent of a nonzero bit in any argument,
141 or 0 if all arguments are zero; NUM_ONES is the maximum number of
142 leading bits with value 1 in an argument with exponent MAX_EXP, or
143 0 if all arguments are zero; MIN_EXP is the minimum exponent of a
144 nonzero bit in any argument, or 0 if all arguments are zero;
145 MAX_PREC is the maximum precision required to represent all
146 arguments, or 0 if all arguments are zero. */
147
148 #define _GNU_SOURCE
149
150 #include <assert.h>
151 #include <ctype.h>
152 #include <errno.h>
153 #include <error.h>
154 #include <stdbool.h>
155 #include <stdint.h>
156 #include <stdio.h>
157 #include <stdlib.h>
158 #include <string.h>
159
160 #include <gmp.h>
161 #include <mpfr.h>
162 #include <mpc.h>
163
164 #define ARRAY_SIZE(A) (sizeof (A) / sizeof ((A)[0]))
165
166 /* The supported floating-point formats. */
167 typedef enum
168 {
169 fp_flt_32,
170 fp_dbl_64,
171 fp_ldbl_96_intel,
172 fp_ldbl_96_m68k,
173 fp_ldbl_128,
174 fp_ldbl_128ibm,
175 fp_num_formats,
176 fp_first_format = 0
177 } fp_format;
178
179 /* Structure describing a single floating-point format. */
180 typedef struct
181 {
182 /* The name of the format. */
183 const char *name;
184 /* A string for the largest normal value, or NULL for IEEE formats
185 where this can be determined automatically. */
186 const char *max_string;
187 /* The number of mantissa bits. */
188 int mant_dig;
189 /* The least N such that 2^N overflows. */
190 int max_exp;
191 /* One more than the least N such that 2^N is normal. */
192 int min_exp;
193 /* The largest normal value. */
194 mpfr_t max;
195 /* The value 0.5ulp above the least positive normal value. */
196 mpfr_t min_plus_half;
197 /* The least positive normal value, 2^(MIN_EXP-1). */
198 mpfr_t min;
199 /* The greatest positive subnormal value. */
200 mpfr_t subnorm_max;
201 /* The least positive subnormal value, 2^(MIN_EXP-MANT_DIG). */
202 mpfr_t subnorm_min;
203 } fp_format_desc;
204
205 /* List of floating-point formats, in the same order as the fp_format
206 enumeration. */
207 static fp_format_desc fp_formats[fp_num_formats] =
208 {
209 { "binary32", NULL, 24, 128, -125, {}, {}, {}, {}, {} },
210 { "binary64", NULL, 53, 1024, -1021, {}, {}, {}, {}, {} },
211 { "intel96", NULL, 64, 16384, -16381, {}, {}, {}, {}, {} },
212 { "m68k96", NULL, 64, 16384, -16382, {}, {}, {}, {}, {} },
213 { "binary128", NULL, 113, 16384, -16381, {}, {}, {}, {}, {} },
214 { "ibm128", "0x1.fffffffffffff7ffffffffffff8p+1023",
215 106, 1024, -968, {}, {}, {}, {}, {} },
216 };
217
218 /* The supported rounding modes. */
219 typedef enum
220 {
221 rm_downward,
222 rm_tonearest,
223 rm_towardzero,
224 rm_upward,
225 rm_num_modes,
226 rm_first_mode = 0
227 } rounding_mode;
228
229 /* Structure describing a single rounding mode. */
230 typedef struct
231 {
232 /* The name of the rounding mode. */
233 const char *name;
234 /* The MPFR rounding mode. */
235 mpfr_rnd_t mpfr_mode;
236 /* The MPC rounding mode. */
237 mpc_rnd_t mpc_mode;
238 } rounding_mode_desc;
239
240 /* List of rounding modes, in the same order as the rounding_mode
241 enumeration. */
242 static const rounding_mode_desc rounding_modes[rm_num_modes] =
243 {
244 { "downward", MPFR_RNDD, MPC_RNDDD },
245 { "tonearest", MPFR_RNDN, MPC_RNDNN },
246 { "towardzero", MPFR_RNDZ, MPC_RNDZZ },
247 { "upward", MPFR_RNDU, MPC_RNDUU },
248 };
249
250 /* The supported exceptions. */
251 typedef enum
252 {
253 exc_divbyzero,
254 exc_inexact,
255 exc_invalid,
256 exc_overflow,
257 exc_underflow,
258 exc_num_exceptions,
259 exc_first_exception = 0
260 } fp_exception;
261
262 /* List of exceptions, in the same order as the fp_exception
263 enumeration. */
264 static const char *const exceptions[exc_num_exceptions] =
265 {
266 "divbyzero",
267 "inexact",
268 "invalid",
269 "overflow",
270 "underflow",
271 };
272
273 /* The internal precision to use for most MPFR calculations, which
274 must be at least 2 more than the greatest precision of any
275 supported floating-point format. */
276 static int internal_precision;
277
278 /* A value that overflows all supported floating-point formats. */
279 static mpfr_t global_max;
280
281 /* A value that is at most half the least subnormal in any
282 floating-point format and so is rounded the same way as all
283 sufficiently small positive values. */
284 static mpfr_t global_min;
285
286 /* The maximum number of (real or integer) arguments to a function
287 handled by this program (complex arguments count as two real
288 arguments). */
289 #define MAX_NARGS 4
290
291 /* The maximum number of (real or integer) return values from a
292 function handled by this program. */
293 #define MAX_NRET 2
294
295 /* A type of a function argument or return value. */
296 typedef enum
297 {
298 /* No type (not a valid argument or return value). */
299 type_none,
300 /* A floating-point value with the type corresponding to that of
301 the function. */
302 type_fp,
303 /* An integer value of type int. */
304 type_int,
305 /* An integer value of type long. */
306 type_long,
307 /* An integer value of type long long. */
308 type_long_long,
309 } arg_ret_type;
310
311 /* A type of a generic real or integer value. */
312 typedef enum
313 {
314 /* No type. */
315 gtype_none,
316 /* Floating-point (represented with MPFR). */
317 gtype_fp,
318 /* Integer (represented with GMP). */
319 gtype_int,
320 } generic_value_type;
321
322 /* A generic value (argument or result). */
323 typedef struct
324 {
325 /* The type of this value. */
326 generic_value_type type;
327 /* Its value. */
328 union
329 {
330 mpfr_t f;
331 mpz_t i;
332 } value;
333 } generic_value;
334
335 /* A type of input flag. */
336 typedef enum
337 {
338 flag_ignore_zero_inf_sign,
339 flag_xfail,
340 flag_xfail_rounding,
341 /* The "spurious" and "missing" flags must be in the same order as
342 the fp_exception enumeration. */
343 flag_spurious_divbyzero,
344 flag_spurious_inexact,
345 flag_spurious_invalid,
346 flag_spurious_overflow,
347 flag_spurious_underflow,
348 flag_spurious_errno,
349 flag_missing_divbyzero,
350 flag_missing_inexact,
351 flag_missing_invalid,
352 flag_missing_overflow,
353 flag_missing_underflow,
354 flag_missing_errno,
355 num_input_flag_types,
356 flag_first_flag = 0,
357 flag_spurious_first = flag_spurious_divbyzero,
358 flag_missing_first = flag_missing_divbyzero
359 } input_flag_type;
360
361 /* List of flags, in the same order as the input_flag_type
362 enumeration. */
363 static const char *const input_flags[num_input_flag_types] =
364 {
365 "ignore-zero-inf-sign",
366 "xfail",
367 "xfail-rounding",
368 "spurious-divbyzero",
369 "spurious-inexact",
370 "spurious-invalid",
371 "spurious-overflow",
372 "spurious-underflow",
373 "spurious-errno",
374 "missing-divbyzero",
375 "missing-inexact",
376 "missing-invalid",
377 "missing-overflow",
378 "missing-underflow",
379 "missing-errno",
380 };
381
382 /* An input flag, possibly conditional. */
383 typedef struct
384 {
385 /* The type of this flag. */
386 input_flag_type type;
387 /* The conditions on this flag, as a string ":cond1:cond2..." or
388 NULL. */
389 const char *cond;
390 } input_flag;
391
392 /* Structure describing a single test from the input file (which may
393 expand into many tests in the output). The choice of function,
394 which implies the numbers and types of arguments and results, is
395 implicit rather than stored in this structure (except as part of
396 the source line). */
397 typedef struct
398 {
399 /* The text of the input line describing the test, including the
400 trailing newline. */
401 const char *line;
402 /* The number of combinations of interpretations of input values for
403 different floating-point formats and rounding modes. */
404 size_t num_input_cases;
405 /* The corresponding lists of inputs. */
406 generic_value **inputs;
407 /* The number of flags for this test. */
408 size_t num_flags;
409 /* The corresponding list of flags. */
410 input_flag *flags;
411 /* The old output for this test. */
412 const char *old_output;
413 } input_test;
414
415 /* Ways to calculate a function. */
416 typedef enum
417 {
418 /* MPFR function with a single argument and result. */
419 mpfr_f_f,
420 /* MPFR function with two arguments and one result. */
421 mpfr_ff_f,
422 /* MPFR function with three arguments and one result. */
423 mpfr_fff_f,
424 /* MPFR function with a single argument and floating-point and
425 integer results. */
426 mpfr_f_f1,
427 /* MPFR function with integer and floating-point arguments and one
428 result. */
429 mpfr_if_f,
430 /* MPFR function with a single argument and two floating-point
431 results. */
432 mpfr_f_11,
433 /* MPC function with a single complex argument and one real
434 result. */
435 mpc_c_f,
436 /* MPC function with a single complex argument and one complex
437 result. */
438 mpc_c_c,
439 /* MPC function with two complex arguments and one complex
440 result. */
441 mpc_cc_c,
442 } func_calc_method;
443
444 /* Description of how to calculate a function. */
445 typedef struct
446 {
447 /* Which method is used to calculate the function. */
448 func_calc_method method;
449 /* The specific function called. */
450 union
451 {
452 int (*mpfr_f_f) (mpfr_t, const mpfr_t, mpfr_rnd_t);
453 int (*mpfr_ff_f) (mpfr_t, const mpfr_t, const mpfr_t, mpfr_rnd_t);
454 int (*mpfr_fff_f) (mpfr_t, const mpfr_t, const mpfr_t, const mpfr_t,
455 mpfr_rnd_t);
456 int (*mpfr_f_f1) (mpfr_t, int *, const mpfr_t, mpfr_rnd_t);
457 int (*mpfr_if_f) (mpfr_t, long, const mpfr_t, mpfr_rnd_t);
458 int (*mpfr_f_11) (mpfr_t, mpfr_t, const mpfr_t, mpfr_rnd_t);
459 int (*mpc_c_f) (mpfr_t, const mpc_t, mpfr_rnd_t);
460 int (*mpc_c_c) (mpc_t, const mpc_t, mpc_rnd_t);
461 int (*mpc_cc_c) (mpc_t, const mpc_t, const mpc_t, mpc_rnd_t);
462 } func;
463 } func_calc_desc;
464
465 /* Structure describing a function handled by this program. */
466 typedef struct
467 {
468 /* The name of the function. */
469 const char *name;
470 /* The number of arguments. */
471 size_t num_args;
472 /* The types of the arguments. */
473 arg_ret_type arg_types[MAX_NARGS];
474 /* The number of return values. */
475 size_t num_ret;
476 /* The types of the return values. */
477 arg_ret_type ret_types[MAX_NRET];
478 /* Whether the function has exactly determined results and
479 exceptions. */
480 bool exact;
481 /* Whether the function is a complex function, so errno setting is
482 optional. */
483 bool complex_fn;
484 /* Whether to treat arguments given as floating-point constants as
485 exact only, rather than rounding them up and down to all
486 formats. */
487 bool exact_args;
488 /* How to calculate this function. */
489 func_calc_desc calc;
490 /* The number of tests allocated for this function. */
491 size_t num_tests_alloc;
492 /* The number of tests for this function. */
493 size_t num_tests;
494 /* The tests themselves. */
495 input_test *tests;
496 } test_function;
497
498 #define ARGS1(T1) 1, { T1 }
499 #define ARGS2(T1, T2) 2, { T1, T2 }
500 #define ARGS3(T1, T2, T3) 3, { T1, T2, T3 }
501 #define ARGS4(T1, T2, T3, T4) 4, { T1, T2, T3, T4 }
502 #define RET1(T1) 1, { T1 }
503 #define RET2(T1, T2) 2, { T1, T2 }
504 #define CALC(TYPE, FN) { TYPE, { .TYPE = FN } }
505 #define FUNC(NAME, ARGS, RET, EXACT, COMPLEX_FN, EXACT_ARGS, CALC) \
506 { \
507 NAME, ARGS, RET, EXACT, COMPLEX_FN, EXACT_ARGS, CALC, 0, 0, NULL \
508 }
509
510 #define FUNC_mpfr_f_f(NAME, MPFR_FUNC, EXACT) \
511 FUNC (NAME, ARGS1 (type_fp), RET1 (type_fp), EXACT, false, false, \
512 CALC (mpfr_f_f, MPFR_FUNC))
513 #define FUNC_mpfr_ff_f(NAME, MPFR_FUNC, EXACT) \
514 FUNC (NAME, ARGS2 (type_fp, type_fp), RET1 (type_fp), EXACT, false, \
515 false, CALC (mpfr_ff_f, MPFR_FUNC))
516 #define FUNC_mpfr_if_f(NAME, MPFR_FUNC, EXACT) \
517 FUNC (NAME, ARGS2 (type_int, type_fp), RET1 (type_fp), EXACT, false, \
518 false, CALC (mpfr_if_f, MPFR_FUNC))
519 #define FUNC_mpc_c_f(NAME, MPFR_FUNC, EXACT) \
520 FUNC (NAME, ARGS2 (type_fp, type_fp), RET1 (type_fp), EXACT, true, \
521 false, CALC (mpc_c_f, MPFR_FUNC))
522 #define FUNC_mpc_c_c(NAME, MPFR_FUNC, EXACT) \
523 FUNC (NAME, ARGS2 (type_fp, type_fp), RET2 (type_fp, type_fp), EXACT, \
524 true, false, CALC (mpc_c_c, MPFR_FUNC))
525
526 /* List of functions handled by this program. */
527 static test_function test_functions[] =
528 {
529 FUNC_mpfr_f_f ("acos", mpfr_acos, false),
530 FUNC_mpfr_f_f ("acosh", mpfr_acosh, false),
531 FUNC_mpfr_ff_f ("add", mpfr_add, true),
532 FUNC_mpfr_f_f ("asin", mpfr_asin, false),
533 FUNC_mpfr_f_f ("asinh", mpfr_asinh, false),
534 FUNC_mpfr_f_f ("atan", mpfr_atan, false),
535 FUNC_mpfr_ff_f ("atan2", mpfr_atan2, false),
536 FUNC_mpfr_f_f ("atanh", mpfr_atanh, false),
537 FUNC_mpc_c_f ("cabs", mpc_abs, false),
538 FUNC_mpc_c_c ("cacos", mpc_acos, false),
539 FUNC_mpc_c_c ("cacosh", mpc_acosh, false),
540 FUNC_mpc_c_f ("carg", mpc_arg, false),
541 FUNC_mpc_c_c ("casin", mpc_asin, false),
542 FUNC_mpc_c_c ("casinh", mpc_asinh, false),
543 FUNC_mpc_c_c ("catan", mpc_atan, false),
544 FUNC_mpc_c_c ("catanh", mpc_atanh, false),
545 FUNC_mpfr_f_f ("cbrt", mpfr_cbrt, false),
546 FUNC_mpc_c_c ("ccos", mpc_cos, false),
547 FUNC_mpc_c_c ("ccosh", mpc_cosh, false),
548 FUNC_mpc_c_c ("cexp", mpc_exp, false),
549 FUNC_mpc_c_c ("clog", mpc_log, false),
550 FUNC_mpc_c_c ("clog10", mpc_log10, false),
551 FUNC_mpfr_f_f ("cos", mpfr_cos, false),
552 FUNC_mpfr_f_f ("cosh", mpfr_cosh, false),
553 FUNC ("cpow", ARGS4 (type_fp, type_fp, type_fp, type_fp),
554 RET2 (type_fp, type_fp), false, true, false,
555 CALC (mpc_cc_c, mpc_pow)),
556 FUNC_mpc_c_c ("csin", mpc_sin, false),
557 FUNC_mpc_c_c ("csinh", mpc_sinh, false),
558 FUNC_mpc_c_c ("csqrt", mpc_sqrt, false),
559 FUNC_mpc_c_c ("ctan", mpc_tan, false),
560 FUNC_mpc_c_c ("ctanh", mpc_tanh, false),
561 FUNC_mpfr_ff_f ("div", mpfr_div, true),
562 FUNC_mpfr_f_f ("erf", mpfr_erf, false),
563 FUNC_mpfr_f_f ("erfc", mpfr_erfc, false),
564 FUNC_mpfr_f_f ("exp", mpfr_exp, false),
565 FUNC_mpfr_f_f ("exp10", mpfr_exp10, false),
566 FUNC_mpfr_f_f ("exp2", mpfr_exp2, false),
567 FUNC_mpfr_f_f ("expm1", mpfr_expm1, false),
568 FUNC ("fma", ARGS3 (type_fp, type_fp, type_fp), RET1 (type_fp),
569 true, false, true, CALC (mpfr_fff_f, mpfr_fma)),
570 FUNC_mpfr_ff_f ("hypot", mpfr_hypot, false),
571 FUNC_mpfr_f_f ("j0", mpfr_j0, false),
572 FUNC_mpfr_f_f ("j1", mpfr_j1, false),
573 FUNC_mpfr_if_f ("jn", mpfr_jn, false),
574 FUNC ("lgamma", ARGS1 (type_fp), RET2 (type_fp, type_int), false, false,
575 false, CALC (mpfr_f_f1, mpfr_lgamma)),
576 FUNC_mpfr_f_f ("log", mpfr_log, false),
577 FUNC_mpfr_f_f ("log10", mpfr_log10, false),
578 FUNC_mpfr_f_f ("log1p", mpfr_log1p, false),
579 FUNC_mpfr_f_f ("log2", mpfr_log2, false),
580 FUNC_mpfr_ff_f ("mul", mpfr_mul, true),
581 FUNC_mpfr_ff_f ("pow", mpfr_pow, false),
582 FUNC_mpfr_f_f ("sin", mpfr_sin, false),
583 FUNC ("sincos", ARGS1 (type_fp), RET2 (type_fp, type_fp), false, false,
584 false, CALC (mpfr_f_11, mpfr_sin_cos)),
585 FUNC_mpfr_f_f ("sinh", mpfr_sinh, false),
586 FUNC_mpfr_ff_f ("sub", mpfr_sub, true),
587 FUNC_mpfr_f_f ("sqrt", mpfr_sqrt, true),
588 FUNC_mpfr_f_f ("tan", mpfr_tan, false),
589 FUNC_mpfr_f_f ("tanh", mpfr_tanh, false),
590 FUNC_mpfr_f_f ("tgamma", mpfr_gamma, false),
591 FUNC_mpfr_f_f ("y0", mpfr_y0, false),
592 FUNC_mpfr_f_f ("y1", mpfr_y1, false),
593 FUNC_mpfr_if_f ("yn", mpfr_yn, false),
594 };
595
596 /* Allocate memory, with error checking. */
597
598 static void *
xmalloc(size_t n)599 xmalloc (size_t n)
600 {
601 void *p = malloc (n);
602 if (p == NULL)
603 error (EXIT_FAILURE, errno, "xmalloc failed");
604 return p;
605 }
606
607 static void *
xrealloc(void * p,size_t n)608 xrealloc (void *p, size_t n)
609 {
610 p = realloc (p, n);
611 if (p == NULL)
612 error (EXIT_FAILURE, errno, "xrealloc failed");
613 return p;
614 }
615
616 static char *
xstrdup(const char * s)617 xstrdup (const char *s)
618 {
619 char *p = strdup (s);
620 if (p == NULL)
621 error (EXIT_FAILURE, errno, "xstrdup failed");
622 return p;
623 }
624
625 /* Assert that the result of an MPFR operation was exact; that is,
626 that the returned ternary value was 0. */
627
628 static void
assert_exact(int i)629 assert_exact (int i)
630 {
631 assert (i == 0);
632 }
633
634 /* Return the generic type of an argument or return value type T. */
635
636 static generic_value_type
generic_arg_ret_type(arg_ret_type t)637 generic_arg_ret_type (arg_ret_type t)
638 {
639 switch (t)
640 {
641 case type_fp:
642 return gtype_fp;
643
644 case type_int:
645 case type_long:
646 case type_long_long:
647 return gtype_int;
648
649 default:
650 abort ();
651 }
652 }
653
654 /* Free a generic_value *V. */
655
656 static void
generic_value_free(generic_value * v)657 generic_value_free (generic_value *v)
658 {
659 switch (v->type)
660 {
661 case gtype_fp:
662 mpfr_clear (v->value.f);
663 break;
664
665 case gtype_int:
666 mpz_clear (v->value.i);
667 break;
668
669 default:
670 abort ();
671 }
672 }
673
674 /* Copy a generic_value *SRC to *DEST. */
675
676 static void
generic_value_copy(generic_value * dest,const generic_value * src)677 generic_value_copy (generic_value *dest, const generic_value *src)
678 {
679 dest->type = src->type;
680 switch (src->type)
681 {
682 case gtype_fp:
683 mpfr_init (dest->value.f);
684 assert_exact (mpfr_set (dest->value.f, src->value.f, MPFR_RNDN));
685 break;
686
687 case gtype_int:
688 mpz_init (dest->value.i);
689 mpz_set (dest->value.i, src->value.i);
690 break;
691
692 default:
693 abort ();
694 }
695 }
696
697 /* Initialize data for floating-point formats. */
698
699 static void
init_fp_formats(void)700 init_fp_formats (void)
701 {
702 int global_max_exp = 0, global_min_subnorm_exp = 0;
703 for (fp_format f = fp_first_format; f < fp_num_formats; f++)
704 {
705 if (fp_formats[f].mant_dig + 2 > internal_precision)
706 internal_precision = fp_formats[f].mant_dig + 2;
707 if (fp_formats[f].max_exp > global_max_exp)
708 global_max_exp = fp_formats[f].max_exp;
709 int min_subnorm_exp = fp_formats[f].min_exp - fp_formats[f].mant_dig;
710 if (min_subnorm_exp < global_min_subnorm_exp)
711 global_min_subnorm_exp = min_subnorm_exp;
712 mpfr_init2 (fp_formats[f].max, fp_formats[f].mant_dig);
713 if (fp_formats[f].max_string != NULL)
714 {
715 char *ep = NULL;
716 assert_exact (mpfr_strtofr (fp_formats[f].max,
717 fp_formats[f].max_string,
718 &ep, 0, MPFR_RNDN));
719 assert (*ep == 0);
720 }
721 else
722 {
723 assert_exact (mpfr_set_ui_2exp (fp_formats[f].max, 1,
724 fp_formats[f].max_exp,
725 MPFR_RNDN));
726 mpfr_nextbelow (fp_formats[f].max);
727 }
728 mpfr_init2 (fp_formats[f].min, fp_formats[f].mant_dig);
729 assert_exact (mpfr_set_ui_2exp (fp_formats[f].min, 1,
730 fp_formats[f].min_exp - 1,
731 MPFR_RNDN));
732 mpfr_init2 (fp_formats[f].min_plus_half, fp_formats[f].mant_dig + 1);
733 assert_exact (mpfr_set (fp_formats[f].min_plus_half,
734 fp_formats[f].min, MPFR_RNDN));
735 mpfr_nextabove (fp_formats[f].min_plus_half);
736 mpfr_init2 (fp_formats[f].subnorm_max, fp_formats[f].mant_dig);
737 assert_exact (mpfr_set (fp_formats[f].subnorm_max, fp_formats[f].min,
738 MPFR_RNDN));
739 mpfr_nextbelow (fp_formats[f].subnorm_max);
740 mpfr_nextbelow (fp_formats[f].subnorm_max);
741 mpfr_init2 (fp_formats[f].subnorm_min, fp_formats[f].mant_dig);
742 assert_exact (mpfr_set_ui_2exp (fp_formats[f].subnorm_min, 1,
743 min_subnorm_exp, MPFR_RNDN));
744 }
745 mpfr_set_default_prec (internal_precision);
746 mpfr_init (global_max);
747 assert_exact (mpfr_set_ui_2exp (global_max, 1, global_max_exp, MPFR_RNDN));
748 mpfr_init (global_min);
749 assert_exact (mpfr_set_ui_2exp (global_min, 1, global_min_subnorm_exp - 1,
750 MPFR_RNDN));
751 }
752
753 /* Fill in mpfr_t values for special strings in input arguments. */
754
755 static size_t
special_fill_max(mpfr_t res0,mpfr_t res1,fp_format format)756 special_fill_max (mpfr_t res0, mpfr_t res1 __attribute__ ((unused)),
757 fp_format format)
758 {
759 mpfr_init2 (res0, fp_formats[format].mant_dig);
760 assert_exact (mpfr_set (res0, fp_formats[format].max, MPFR_RNDN));
761 return 1;
762 }
763
764 static size_t
special_fill_minus_max(mpfr_t res0,mpfr_t res1,fp_format format)765 special_fill_minus_max (mpfr_t res0, mpfr_t res1 __attribute__ ((unused)),
766 fp_format format)
767 {
768 mpfr_init2 (res0, fp_formats[format].mant_dig);
769 assert_exact (mpfr_neg (res0, fp_formats[format].max, MPFR_RNDN));
770 return 1;
771 }
772
773 static size_t
special_fill_min(mpfr_t res0,mpfr_t res1,fp_format format)774 special_fill_min (mpfr_t res0, mpfr_t res1 __attribute__ ((unused)),
775 fp_format format)
776 {
777 mpfr_init2 (res0, fp_formats[format].mant_dig);
778 assert_exact (mpfr_set (res0, fp_formats[format].min, MPFR_RNDN));
779 return 1;
780 }
781
782 static size_t
special_fill_minus_min(mpfr_t res0,mpfr_t res1,fp_format format)783 special_fill_minus_min (mpfr_t res0, mpfr_t res1 __attribute__ ((unused)),
784 fp_format format)
785 {
786 mpfr_init2 (res0, fp_formats[format].mant_dig);
787 assert_exact (mpfr_neg (res0, fp_formats[format].min, MPFR_RNDN));
788 return 1;
789 }
790
791 static size_t
special_fill_min_subnorm(mpfr_t res0,mpfr_t res1,fp_format format)792 special_fill_min_subnorm (mpfr_t res0, mpfr_t res1 __attribute__ ((unused)),
793 fp_format format)
794 {
795 mpfr_init2 (res0, fp_formats[format].mant_dig);
796 assert_exact (mpfr_set (res0, fp_formats[format].subnorm_min, MPFR_RNDN));
797 return 1;
798 }
799
800 static size_t
special_fill_minus_min_subnorm(mpfr_t res0,mpfr_t res1,fp_format format)801 special_fill_minus_min_subnorm (mpfr_t res0,
802 mpfr_t res1 __attribute__ ((unused)),
803 fp_format format)
804 {
805 mpfr_init2 (res0, fp_formats[format].mant_dig);
806 assert_exact (mpfr_neg (res0, fp_formats[format].subnorm_min, MPFR_RNDN));
807 return 1;
808 }
809
810 static size_t
special_fill_min_subnorm_p120(mpfr_t res0,mpfr_t res1,fp_format format)811 special_fill_min_subnorm_p120 (mpfr_t res0,
812 mpfr_t res1 __attribute__ ((unused)),
813 fp_format format)
814 {
815 mpfr_init2 (res0, fp_formats[format].mant_dig);
816 assert_exact (mpfr_mul_2ui (res0, fp_formats[format].subnorm_min,
817 120, MPFR_RNDN));
818 return 1;
819 }
820
821 static size_t
special_fill_pi(mpfr_t res0,mpfr_t res1,fp_format format)822 special_fill_pi (mpfr_t res0, mpfr_t res1, fp_format format)
823 {
824 mpfr_init2 (res0, fp_formats[format].mant_dig);
825 mpfr_const_pi (res0, MPFR_RNDU);
826 mpfr_init2 (res1, fp_formats[format].mant_dig);
827 mpfr_const_pi (res1, MPFR_RNDD);
828 return 2;
829 }
830
831 static size_t
special_fill_minus_pi(mpfr_t res0,mpfr_t res1,fp_format format)832 special_fill_minus_pi (mpfr_t res0, mpfr_t res1, fp_format format)
833 {
834 mpfr_init2 (res0, fp_formats[format].mant_dig);
835 mpfr_const_pi (res0, MPFR_RNDU);
836 assert_exact (mpfr_neg (res0, res0, MPFR_RNDN));
837 mpfr_init2 (res1, fp_formats[format].mant_dig);
838 mpfr_const_pi (res1, MPFR_RNDD);
839 assert_exact (mpfr_neg (res1, res1, MPFR_RNDN));
840 return 2;
841 }
842
843 static size_t
special_fill_pi_2(mpfr_t res0,mpfr_t res1,fp_format format)844 special_fill_pi_2 (mpfr_t res0, mpfr_t res1, fp_format format)
845 {
846 mpfr_init2 (res0, fp_formats[format].mant_dig);
847 mpfr_const_pi (res0, MPFR_RNDU);
848 assert_exact (mpfr_div_ui (res0, res0, 2, MPFR_RNDN));
849 mpfr_init2 (res1, fp_formats[format].mant_dig);
850 mpfr_const_pi (res1, MPFR_RNDD);
851 assert_exact (mpfr_div_ui (res1, res1, 2, MPFR_RNDN));
852 return 2;
853 }
854
855 static size_t
special_fill_minus_pi_2(mpfr_t res0,mpfr_t res1,fp_format format)856 special_fill_minus_pi_2 (mpfr_t res0, mpfr_t res1, fp_format format)
857 {
858 mpfr_init2 (res0, fp_formats[format].mant_dig);
859 mpfr_const_pi (res0, MPFR_RNDU);
860 assert_exact (mpfr_div_ui (res0, res0, 2, MPFR_RNDN));
861 assert_exact (mpfr_neg (res0, res0, MPFR_RNDN));
862 mpfr_init2 (res1, fp_formats[format].mant_dig);
863 mpfr_const_pi (res1, MPFR_RNDD);
864 assert_exact (mpfr_div_ui (res1, res1, 2, MPFR_RNDN));
865 assert_exact (mpfr_neg (res1, res1, MPFR_RNDN));
866 return 2;
867 }
868
869 static size_t
special_fill_pi_4(mpfr_t res0,mpfr_t res1,fp_format format)870 special_fill_pi_4 (mpfr_t res0, mpfr_t res1, fp_format format)
871 {
872 mpfr_init2 (res0, fp_formats[format].mant_dig);
873 assert_exact (mpfr_set_si (res0, 1, MPFR_RNDN));
874 mpfr_atan (res0, res0, MPFR_RNDU);
875 mpfr_init2 (res1, fp_formats[format].mant_dig);
876 assert_exact (mpfr_set_si (res1, 1, MPFR_RNDN));
877 mpfr_atan (res1, res1, MPFR_RNDD);
878 return 2;
879 }
880
881 static size_t
special_fill_pi_6(mpfr_t res0,mpfr_t res1,fp_format format)882 special_fill_pi_6 (mpfr_t res0, mpfr_t res1, fp_format format)
883 {
884 mpfr_init2 (res0, fp_formats[format].mant_dig);
885 assert_exact (mpfr_set_si_2exp (res0, 1, -1, MPFR_RNDN));
886 mpfr_asin (res0, res0, MPFR_RNDU);
887 mpfr_init2 (res1, fp_formats[format].mant_dig);
888 assert_exact (mpfr_set_si_2exp (res1, 1, -1, MPFR_RNDN));
889 mpfr_asin (res1, res1, MPFR_RNDD);
890 return 2;
891 }
892
893 static size_t
special_fill_minus_pi_6(mpfr_t res0,mpfr_t res1,fp_format format)894 special_fill_minus_pi_6 (mpfr_t res0, mpfr_t res1, fp_format format)
895 {
896 mpfr_init2 (res0, fp_formats[format].mant_dig);
897 assert_exact (mpfr_set_si_2exp (res0, -1, -1, MPFR_RNDN));
898 mpfr_asin (res0, res0, MPFR_RNDU);
899 mpfr_init2 (res1, fp_formats[format].mant_dig);
900 assert_exact (mpfr_set_si_2exp (res1, -1, -1, MPFR_RNDN));
901 mpfr_asin (res1, res1, MPFR_RNDD);
902 return 2;
903 }
904
905 static size_t
special_fill_pi_3(mpfr_t res0,mpfr_t res1,fp_format format)906 special_fill_pi_3 (mpfr_t res0, mpfr_t res1, fp_format format)
907 {
908 mpfr_init2 (res0, fp_formats[format].mant_dig);
909 assert_exact (mpfr_set_si_2exp (res0, 1, -1, MPFR_RNDN));
910 mpfr_acos (res0, res0, MPFR_RNDU);
911 mpfr_init2 (res1, fp_formats[format].mant_dig);
912 assert_exact (mpfr_set_si_2exp (res1, 1, -1, MPFR_RNDN));
913 mpfr_acos (res1, res1, MPFR_RNDD);
914 return 2;
915 }
916
917 static size_t
special_fill_2pi_3(mpfr_t res0,mpfr_t res1,fp_format format)918 special_fill_2pi_3 (mpfr_t res0, mpfr_t res1, fp_format format)
919 {
920 mpfr_init2 (res0, fp_formats[format].mant_dig);
921 assert_exact (mpfr_set_si_2exp (res0, -1, -1, MPFR_RNDN));
922 mpfr_acos (res0, res0, MPFR_RNDU);
923 mpfr_init2 (res1, fp_formats[format].mant_dig);
924 assert_exact (mpfr_set_si_2exp (res1, -1, -1, MPFR_RNDN));
925 mpfr_acos (res1, res1, MPFR_RNDD);
926 return 2;
927 }
928
929 static size_t
special_fill_2pi(mpfr_t res0,mpfr_t res1,fp_format format)930 special_fill_2pi (mpfr_t res0, mpfr_t res1, fp_format format)
931 {
932 mpfr_init2 (res0, fp_formats[format].mant_dig);
933 mpfr_const_pi (res0, MPFR_RNDU);
934 assert_exact (mpfr_mul_ui (res0, res0, 2, MPFR_RNDN));
935 mpfr_init2 (res1, fp_formats[format].mant_dig);
936 mpfr_const_pi (res1, MPFR_RNDD);
937 assert_exact (mpfr_mul_ui (res1, res1, 2, MPFR_RNDN));
938 return 2;
939 }
940
941 static size_t
special_fill_e(mpfr_t res0,mpfr_t res1,fp_format format)942 special_fill_e (mpfr_t res0, mpfr_t res1, fp_format format)
943 {
944 mpfr_init2 (res0, fp_formats[format].mant_dig);
945 assert_exact (mpfr_set_si (res0, 1, MPFR_RNDN));
946 mpfr_exp (res0, res0, MPFR_RNDU);
947 mpfr_init2 (res1, fp_formats[format].mant_dig);
948 assert_exact (mpfr_set_si (res1, 1, MPFR_RNDN));
949 mpfr_exp (res1, res1, MPFR_RNDD);
950 return 2;
951 }
952
953 static size_t
special_fill_1_e(mpfr_t res0,mpfr_t res1,fp_format format)954 special_fill_1_e (mpfr_t res0, mpfr_t res1, fp_format format)
955 {
956 mpfr_init2 (res0, fp_formats[format].mant_dig);
957 assert_exact (mpfr_set_si (res0, -1, MPFR_RNDN));
958 mpfr_exp (res0, res0, MPFR_RNDU);
959 mpfr_init2 (res1, fp_formats[format].mant_dig);
960 assert_exact (mpfr_set_si (res1, -1, MPFR_RNDN));
961 mpfr_exp (res1, res1, MPFR_RNDD);
962 return 2;
963 }
964
965 static size_t
special_fill_e_minus_1(mpfr_t res0,mpfr_t res1,fp_format format)966 special_fill_e_minus_1 (mpfr_t res0, mpfr_t res1, fp_format format)
967 {
968 mpfr_init2 (res0, fp_formats[format].mant_dig);
969 assert_exact (mpfr_set_si (res0, 1, MPFR_RNDN));
970 mpfr_expm1 (res0, res0, MPFR_RNDU);
971 mpfr_init2 (res1, fp_formats[format].mant_dig);
972 assert_exact (mpfr_set_si (res1, 1, MPFR_RNDN));
973 mpfr_expm1 (res1, res1, MPFR_RNDD);
974 return 2;
975 }
976
977 /* A special string accepted in input arguments. */
978 typedef struct
979 {
980 /* The string. */
981 const char *str;
982 /* The function that interprets it for a given floating-point
983 format, filling in up to two mpfr_t values and returning the
984 number of values filled. */
985 size_t (*func) (mpfr_t, mpfr_t, fp_format);
986 } special_real_input;
987
988 /* List of special strings accepted in input arguments. */
989
990 static const special_real_input special_real_inputs[] =
991 {
992 { "max", special_fill_max },
993 { "-max", special_fill_minus_max },
994 { "min", special_fill_min },
995 { "-min", special_fill_minus_min },
996 { "min_subnorm", special_fill_min_subnorm },
997 { "-min_subnorm", special_fill_minus_min_subnorm },
998 { "min_subnorm_p120", special_fill_min_subnorm_p120 },
999 { "pi", special_fill_pi },
1000 { "-pi", special_fill_minus_pi },
1001 { "pi/2", special_fill_pi_2 },
1002 { "-pi/2", special_fill_minus_pi_2 },
1003 { "pi/4", special_fill_pi_4 },
1004 { "pi/6", special_fill_pi_6 },
1005 { "-pi/6", special_fill_minus_pi_6 },
1006 { "pi/3", special_fill_pi_3 },
1007 { "2pi/3", special_fill_2pi_3 },
1008 { "2pi", special_fill_2pi },
1009 { "e", special_fill_e },
1010 { "1/e", special_fill_1_e },
1011 { "e-1", special_fill_e_minus_1 },
1012 };
1013
1014 /* Given a real number R computed in round-to-zero mode, set the
1015 lowest bit as a sticky bit if INEXACT, and saturate the exponent
1016 range for very large or small values. */
1017
1018 static void
adjust_real(mpfr_t r,bool inexact)1019 adjust_real (mpfr_t r, bool inexact)
1020 {
1021 if (!inexact)
1022 return;
1023 /* NaNs are exact, as are infinities in round-to-zero mode. */
1024 assert (mpfr_number_p (r));
1025 if (mpfr_cmpabs (r, global_min) < 0)
1026 assert_exact (mpfr_copysign (r, global_min, r, MPFR_RNDN));
1027 else if (mpfr_cmpabs (r, global_max) > 0)
1028 assert_exact (mpfr_copysign (r, global_max, r, MPFR_RNDN));
1029 else
1030 {
1031 mpz_t tmp;
1032 mpz_init (tmp);
1033 mpfr_exp_t e = mpfr_get_z_2exp (tmp, r);
1034 if (mpz_sgn (tmp) < 0)
1035 {
1036 mpz_neg (tmp, tmp);
1037 mpz_setbit (tmp, 0);
1038 mpz_neg (tmp, tmp);
1039 }
1040 else
1041 mpz_setbit (tmp, 0);
1042 assert_exact (mpfr_set_z_2exp (r, tmp, e, MPFR_RNDN));
1043 mpz_clear (tmp);
1044 }
1045 }
1046
1047 /* Given a finite real number R with sticky bit, compute the roundings
1048 to FORMAT in each rounding mode, storing the results in RES, the
1049 before-rounding exceptions in EXC_BEFORE and the after-rounding
1050 exceptions in EXC_AFTER. */
1051
1052 static void
round_real(mpfr_t res[rm_num_modes],unsigned int exc_before[rm_num_modes],unsigned int exc_after[rm_num_modes],mpfr_t r,fp_format format)1053 round_real (mpfr_t res[rm_num_modes],
1054 unsigned int exc_before[rm_num_modes],
1055 unsigned int exc_after[rm_num_modes],
1056 mpfr_t r, fp_format format)
1057 {
1058 assert (mpfr_number_p (r));
1059 for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
1060 {
1061 mpfr_init2 (res[m], fp_formats[format].mant_dig);
1062 exc_before[m] = exc_after[m] = 0;
1063 bool inexact = mpfr_set (res[m], r, rounding_modes[m].mpfr_mode);
1064 if (mpfr_cmpabs (res[m], fp_formats[format].max) > 0)
1065 {
1066 inexact = true;
1067 exc_before[m] |= 1U << exc_overflow;
1068 exc_after[m] |= 1U << exc_overflow;
1069 bool overflow_inf;
1070 switch (m)
1071 {
1072 case rm_tonearest:
1073 overflow_inf = true;
1074 break;
1075 case rm_towardzero:
1076 overflow_inf = false;
1077 break;
1078 case rm_downward:
1079 overflow_inf = mpfr_signbit (res[m]);
1080 break;
1081 case rm_upward:
1082 overflow_inf = !mpfr_signbit (res[m]);
1083 break;
1084 default:
1085 abort ();
1086 }
1087 if (overflow_inf)
1088 mpfr_set_inf (res[m], mpfr_signbit (res[m]) ? -1 : 1);
1089 else
1090 assert_exact (mpfr_copysign (res[m], fp_formats[format].max,
1091 res[m], MPFR_RNDN));
1092 }
1093 if (mpfr_cmpabs (r, fp_formats[format].min) < 0)
1094 {
1095 /* Tiny before rounding; may or may not be tiny after
1096 rounding, and underflow applies only if also inexact
1097 around rounding to a possibly subnormal value. */
1098 bool tiny_after_rounding
1099 = mpfr_cmpabs (res[m], fp_formats[format].min) < 0;
1100 /* To round to a possibly subnormal value, and determine
1101 inexactness as a subnormal in the process, scale up and
1102 round to integer, then scale back down. */
1103 mpfr_t tmp;
1104 mpfr_init (tmp);
1105 assert_exact (mpfr_mul_2si (tmp, r, (fp_formats[format].mant_dig
1106 - fp_formats[format].min_exp),
1107 MPFR_RNDN));
1108 int rint_res = mpfr_rint (tmp, tmp, rounding_modes[m].mpfr_mode);
1109 /* The integer must be representable. */
1110 assert (rint_res == 0 || rint_res == 2 || rint_res == -2);
1111 /* If rounding to full precision was inexact, so must
1112 rounding to subnormal precision be inexact. */
1113 if (inexact)
1114 assert (rint_res != 0);
1115 else
1116 inexact = rint_res != 0;
1117 assert_exact (mpfr_mul_2si (res[m], tmp,
1118 (fp_formats[format].min_exp
1119 - fp_formats[format].mant_dig),
1120 MPFR_RNDN));
1121 mpfr_clear (tmp);
1122 if (inexact)
1123 {
1124 exc_before[m] |= 1U << exc_underflow;
1125 if (tiny_after_rounding)
1126 exc_after[m] |= 1U << exc_underflow;
1127 }
1128 }
1129 if (inexact)
1130 {
1131 exc_before[m] |= 1U << exc_inexact;
1132 exc_after[m] |= 1U << exc_inexact;
1133 }
1134 }
1135 }
1136
1137 /* Handle the input argument at ARG (NUL-terminated), updating the
1138 lists of test inputs in IT accordingly. NUM_PREV_ARGS arguments
1139 are already in those lists. If EXACT_ARGS, interpret a value given
1140 as a floating-point constant exactly (it must be exact for some
1141 supported format) rather than rounding up and down. The argument,
1142 of type GTYPE, comes from file FILENAME, line LINENO. */
1143
1144 static void
handle_input_arg(const char * arg,input_test * it,size_t num_prev_args,generic_value_type gtype,bool exact_args,const char * filename,unsigned int lineno)1145 handle_input_arg (const char *arg, input_test *it, size_t num_prev_args,
1146 generic_value_type gtype, bool exact_args,
1147 const char *filename, unsigned int lineno)
1148 {
1149 size_t num_values = 0;
1150 generic_value values[2 * fp_num_formats];
1151 bool check_empty_list = false;
1152 switch (gtype)
1153 {
1154 case gtype_fp:
1155 for (fp_format f = fp_first_format; f < fp_num_formats; f++)
1156 {
1157 mpfr_t extra_values[2];
1158 size_t num_extra_values = 0;
1159 for (size_t i = 0; i < ARRAY_SIZE (special_real_inputs); i++)
1160 {
1161 if (strcmp (arg, special_real_inputs[i].str) == 0)
1162 {
1163 num_extra_values
1164 = special_real_inputs[i].func (extra_values[0],
1165 extra_values[1], f);
1166 assert (num_extra_values > 0
1167 && num_extra_values <= ARRAY_SIZE (extra_values));
1168 break;
1169 }
1170 }
1171 if (num_extra_values == 0)
1172 {
1173 mpfr_t tmp;
1174 char *ep;
1175 if (exact_args)
1176 check_empty_list = true;
1177 mpfr_init (tmp);
1178 bool inexact = mpfr_strtofr (tmp, arg, &ep, 0, MPFR_RNDZ);
1179 if (*ep != 0 || !mpfr_number_p (tmp))
1180 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1181 "bad floating-point argument: '%s'", arg);
1182 adjust_real (tmp, inexact);
1183 mpfr_t rounded[rm_num_modes];
1184 unsigned int exc_before[rm_num_modes];
1185 unsigned int exc_after[rm_num_modes];
1186 round_real (rounded, exc_before, exc_after, tmp, f);
1187 mpfr_clear (tmp);
1188 if (mpfr_number_p (rounded[rm_upward])
1189 && (!exact_args || mpfr_equal_p (rounded[rm_upward],
1190 rounded[rm_downward])))
1191 {
1192 mpfr_init2 (extra_values[num_extra_values],
1193 fp_formats[f].mant_dig);
1194 assert_exact (mpfr_set (extra_values[num_extra_values],
1195 rounded[rm_upward], MPFR_RNDN));
1196 num_extra_values++;
1197 }
1198 if (mpfr_number_p (rounded[rm_downward]) && !exact_args)
1199 {
1200 mpfr_init2 (extra_values[num_extra_values],
1201 fp_formats[f].mant_dig);
1202 assert_exact (mpfr_set (extra_values[num_extra_values],
1203 rounded[rm_downward], MPFR_RNDN));
1204 num_extra_values++;
1205 }
1206 for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
1207 mpfr_clear (rounded[m]);
1208 }
1209 for (size_t i = 0; i < num_extra_values; i++)
1210 {
1211 bool found = false;
1212 for (size_t j = 0; j < num_values; j++)
1213 {
1214 if (mpfr_equal_p (values[j].value.f, extra_values[i])
1215 && ((mpfr_signbit (values[j].value.f) != 0)
1216 == (mpfr_signbit (extra_values[i]) != 0)))
1217 {
1218 found = true;
1219 break;
1220 }
1221 }
1222 if (!found)
1223 {
1224 assert (num_values < ARRAY_SIZE (values));
1225 values[num_values].type = gtype_fp;
1226 mpfr_init2 (values[num_values].value.f,
1227 fp_formats[f].mant_dig);
1228 assert_exact (mpfr_set (values[num_values].value.f,
1229 extra_values[i], MPFR_RNDN));
1230 num_values++;
1231 }
1232 mpfr_clear (extra_values[i]);
1233 }
1234 }
1235 break;
1236
1237 case gtype_int:
1238 num_values = 1;
1239 values[0].type = gtype_int;
1240 int ret = mpz_init_set_str (values[0].value.i, arg, 0);
1241 if (ret != 0)
1242 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1243 "bad integer argument: '%s'", arg);
1244 break;
1245
1246 default:
1247 abort ();
1248 }
1249 if (check_empty_list && num_values == 0)
1250 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1251 "floating-point argument not exact for any format: '%s'",
1252 arg);
1253 assert (num_values > 0 && num_values <= ARRAY_SIZE (values));
1254 if (it->num_input_cases >= SIZE_MAX / num_values)
1255 error_at_line (EXIT_FAILURE, 0, filename, lineno, "too many input cases");
1256 generic_value **old_inputs = it->inputs;
1257 size_t new_num_input_cases = it->num_input_cases * num_values;
1258 generic_value **new_inputs = xmalloc (new_num_input_cases
1259 * sizeof (new_inputs[0]));
1260 for (size_t i = 0; i < it->num_input_cases; i++)
1261 {
1262 for (size_t j = 0; j < num_values; j++)
1263 {
1264 size_t idx = i * num_values + j;
1265 new_inputs[idx] = xmalloc ((num_prev_args + 1)
1266 * sizeof (new_inputs[idx][0]));
1267 for (size_t k = 0; k < num_prev_args; k++)
1268 generic_value_copy (&new_inputs[idx][k], &old_inputs[i][k]);
1269 generic_value_copy (&new_inputs[idx][num_prev_args], &values[j]);
1270 }
1271 for (size_t j = 0; j < num_prev_args; j++)
1272 generic_value_free (&old_inputs[i][j]);
1273 free (old_inputs[i]);
1274 }
1275 free (old_inputs);
1276 for (size_t i = 0; i < num_values; i++)
1277 generic_value_free (&values[i]);
1278 it->inputs = new_inputs;
1279 it->num_input_cases = new_num_input_cases;
1280 }
1281
1282 /* Handle the input flag ARG (NUL-terminated), storing it in *FLAG.
1283 The flag comes from file FILENAME, line LINENO. */
1284
1285 static void
handle_input_flag(char * arg,input_flag * flag,const char * filename,unsigned int lineno)1286 handle_input_flag (char *arg, input_flag *flag,
1287 const char *filename, unsigned int lineno)
1288 {
1289 char *ep = strchr (arg, ':');
1290 if (ep == NULL)
1291 {
1292 ep = strchr (arg, 0);
1293 assert (ep != NULL);
1294 }
1295 char c = *ep;
1296 *ep = 0;
1297 bool found = false;
1298 for (input_flag_type i = flag_first_flag; i < num_input_flag_types; i++)
1299 {
1300 if (strcmp (arg, input_flags[i]) == 0)
1301 {
1302 found = true;
1303 flag->type = i;
1304 break;
1305 }
1306 }
1307 if (!found)
1308 error_at_line (EXIT_FAILURE, 0, filename, lineno, "unknown flag: '%s'",
1309 arg);
1310 *ep = c;
1311 if (c == 0)
1312 flag->cond = NULL;
1313 else
1314 flag->cond = xstrdup (ep);
1315 }
1316
1317 /* Add the test LINE (file FILENAME, line LINENO) to the test
1318 data. */
1319
1320 static void
add_test(char * line,const char * filename,unsigned int lineno)1321 add_test (char *line, const char *filename, unsigned int lineno)
1322 {
1323 size_t num_tokens = 1;
1324 char *p = line;
1325 while ((p = strchr (p, ' ')) != NULL)
1326 {
1327 num_tokens++;
1328 p++;
1329 }
1330 if (num_tokens < 2)
1331 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1332 "line too short: '%s'", line);
1333 p = strchr (line, ' ');
1334 size_t func_name_len = p - line;
1335 for (size_t i = 0; i < ARRAY_SIZE (test_functions); i++)
1336 {
1337 if (func_name_len == strlen (test_functions[i].name)
1338 && strncmp (line, test_functions[i].name, func_name_len) == 0)
1339 {
1340 test_function *tf = &test_functions[i];
1341 if (num_tokens < 1 + tf->num_args)
1342 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1343 "line too short: '%s'", line);
1344 if (tf->num_tests == tf->num_tests_alloc)
1345 {
1346 tf->num_tests_alloc = 2 * tf->num_tests_alloc + 16;
1347 tf->tests
1348 = xrealloc (tf->tests,
1349 tf->num_tests_alloc * sizeof (tf->tests[0]));
1350 }
1351 input_test *it = &tf->tests[tf->num_tests];
1352 it->line = line;
1353 it->num_input_cases = 1;
1354 it->inputs = xmalloc (sizeof (it->inputs[0]));
1355 it->inputs[0] = NULL;
1356 it->old_output = NULL;
1357 p++;
1358 for (size_t j = 0; j < tf->num_args; j++)
1359 {
1360 char *ep = strchr (p, ' ');
1361 if (ep == NULL)
1362 {
1363 ep = strchr (p, '\n');
1364 assert (ep != NULL);
1365 }
1366 if (ep == p)
1367 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1368 "empty token in line: '%s'", line);
1369 for (char *t = p; t < ep; t++)
1370 if (isspace ((unsigned char) *t))
1371 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1372 "whitespace in token in line: '%s'", line);
1373 char c = *ep;
1374 *ep = 0;
1375 handle_input_arg (p, it, j,
1376 generic_arg_ret_type (tf->arg_types[j]),
1377 tf->exact_args, filename, lineno);
1378 *ep = c;
1379 p = ep + 1;
1380 }
1381 it->num_flags = num_tokens - 1 - tf->num_args;
1382 it->flags = xmalloc (it->num_flags * sizeof (it->flags[0]));
1383 for (size_t j = 0; j < it->num_flags; j++)
1384 {
1385 char *ep = strchr (p, ' ');
1386 if (ep == NULL)
1387 {
1388 ep = strchr (p, '\n');
1389 assert (ep != NULL);
1390 }
1391 if (ep == p)
1392 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1393 "empty token in line: '%s'", line);
1394 for (char *t = p; t < ep; t++)
1395 if (isspace ((unsigned char) *t))
1396 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1397 "whitespace in token in line: '%s'", line);
1398 char c = *ep;
1399 *ep = 0;
1400 handle_input_flag (p, &it->flags[j], filename, lineno);
1401 *ep = c;
1402 p = ep + 1;
1403 }
1404 assert (*p == 0);
1405 tf->num_tests++;
1406 return;
1407 }
1408 }
1409 error_at_line (EXIT_FAILURE, 0, filename, lineno,
1410 "unknown function in line: '%s'", line);
1411 }
1412
1413 /* Read in the test input data from FILENAME. */
1414
1415 static void
read_input(const char * filename)1416 read_input (const char *filename)
1417 {
1418 FILE *fp = fopen (filename, "r");
1419 if (fp == NULL)
1420 error (EXIT_FAILURE, errno, "open '%s'", filename);
1421 unsigned int lineno = 0;
1422 for (;;)
1423 {
1424 size_t size = 0;
1425 char *line = NULL;
1426 ssize_t ret = getline (&line, &size, fp);
1427 if (ret == -1)
1428 break;
1429 lineno++;
1430 if (line[0] == '#' || line[0] == '\n')
1431 continue;
1432 add_test (line, filename, lineno);
1433 }
1434 if (ferror (fp))
1435 error (EXIT_FAILURE, errno, "read from '%s'", filename);
1436 if (fclose (fp) != 0)
1437 error (EXIT_FAILURE, errno, "close '%s'", filename);
1438 }
1439
1440 /* Calculate the generic results (round-to-zero with sticky bit) for
1441 the function described by CALC, with inputs INPUTS, if MODE is
1442 rm_towardzero; for other modes, calculate results in that mode,
1443 which must be exact zero results. */
1444
1445 static void
calc_generic_results(generic_value * outputs,generic_value * inputs,const func_calc_desc * calc,rounding_mode mode)1446 calc_generic_results (generic_value *outputs, generic_value *inputs,
1447 const func_calc_desc *calc, rounding_mode mode)
1448 {
1449 bool inexact;
1450 int mpc_ternary;
1451 mpc_t ci1, ci2, co;
1452 mpfr_rnd_t mode_mpfr = rounding_modes[mode].mpfr_mode;
1453 mpc_rnd_t mode_mpc = rounding_modes[mode].mpc_mode;
1454
1455 switch (calc->method)
1456 {
1457 case mpfr_f_f:
1458 assert (inputs[0].type == gtype_fp);
1459 outputs[0].type = gtype_fp;
1460 mpfr_init (outputs[0].value.f);
1461 inexact = calc->func.mpfr_f_f (outputs[0].value.f, inputs[0].value.f,
1462 mode_mpfr);
1463 if (mode != rm_towardzero)
1464 assert (!inexact && mpfr_zero_p (outputs[0].value.f));
1465 adjust_real (outputs[0].value.f, inexact);
1466 break;
1467
1468 case mpfr_ff_f:
1469 assert (inputs[0].type == gtype_fp);
1470 assert (inputs[1].type == gtype_fp);
1471 outputs[0].type = gtype_fp;
1472 mpfr_init (outputs[0].value.f);
1473 inexact = calc->func.mpfr_ff_f (outputs[0].value.f, inputs[0].value.f,
1474 inputs[1].value.f, mode_mpfr);
1475 if (mode != rm_towardzero)
1476 assert (!inexact && mpfr_zero_p (outputs[0].value.f));
1477 adjust_real (outputs[0].value.f, inexact);
1478 break;
1479
1480 case mpfr_fff_f:
1481 assert (inputs[0].type == gtype_fp);
1482 assert (inputs[1].type == gtype_fp);
1483 assert (inputs[2].type == gtype_fp);
1484 outputs[0].type = gtype_fp;
1485 mpfr_init (outputs[0].value.f);
1486 inexact = calc->func.mpfr_fff_f (outputs[0].value.f, inputs[0].value.f,
1487 inputs[1].value.f, inputs[2].value.f,
1488 mode_mpfr);
1489 if (mode != rm_towardzero)
1490 assert (!inexact && mpfr_zero_p (outputs[0].value.f));
1491 adjust_real (outputs[0].value.f, inexact);
1492 break;
1493
1494 case mpfr_f_f1:
1495 assert (inputs[0].type == gtype_fp);
1496 outputs[0].type = gtype_fp;
1497 outputs[1].type = gtype_int;
1498 mpfr_init (outputs[0].value.f);
1499 int i = 0;
1500 inexact = calc->func.mpfr_f_f1 (outputs[0].value.f, &i,
1501 inputs[0].value.f, mode_mpfr);
1502 if (mode != rm_towardzero)
1503 assert (!inexact && mpfr_zero_p (outputs[0].value.f));
1504 adjust_real (outputs[0].value.f, inexact);
1505 mpz_init_set_si (outputs[1].value.i, i);
1506 break;
1507
1508 case mpfr_if_f:
1509 assert (inputs[0].type == gtype_int);
1510 assert (inputs[1].type == gtype_fp);
1511 outputs[0].type = gtype_fp;
1512 mpfr_init (outputs[0].value.f);
1513 assert (mpz_fits_slong_p (inputs[0].value.i));
1514 long l = mpz_get_si (inputs[0].value.i);
1515 inexact = calc->func.mpfr_if_f (outputs[0].value.f, l,
1516 inputs[1].value.f, mode_mpfr);
1517 if (mode != rm_towardzero)
1518 assert (!inexact && mpfr_zero_p (outputs[0].value.f));
1519 adjust_real (outputs[0].value.f, inexact);
1520 break;
1521
1522 case mpfr_f_11:
1523 assert (inputs[0].type == gtype_fp);
1524 outputs[0].type = gtype_fp;
1525 mpfr_init (outputs[0].value.f);
1526 outputs[1].type = gtype_fp;
1527 mpfr_init (outputs[1].value.f);
1528 int comb_ternary = calc->func.mpfr_f_11 (outputs[0].value.f,
1529 outputs[1].value.f,
1530 inputs[0].value.f,
1531 mode_mpfr);
1532 if (mode != rm_towardzero)
1533 assert (((comb_ternary & 0x3) == 0
1534 && mpfr_zero_p (outputs[0].value.f))
1535 || ((comb_ternary & 0xc) == 0
1536 && mpfr_zero_p (outputs[1].value.f)));
1537 adjust_real (outputs[0].value.f, (comb_ternary & 0x3) != 0);
1538 adjust_real (outputs[1].value.f, (comb_ternary & 0xc) != 0);
1539 break;
1540
1541 case mpc_c_f:
1542 assert (inputs[0].type == gtype_fp);
1543 assert (inputs[1].type == gtype_fp);
1544 outputs[0].type = gtype_fp;
1545 mpfr_init (outputs[0].value.f);
1546 mpc_init2 (ci1, internal_precision);
1547 assert_exact (mpc_set_fr_fr (ci1, inputs[0].value.f, inputs[1].value.f,
1548 MPC_RNDNN));
1549 inexact = calc->func.mpc_c_f (outputs[0].value.f, ci1, mode_mpfr);
1550 if (mode != rm_towardzero)
1551 assert (!inexact && mpfr_zero_p (outputs[0].value.f));
1552 adjust_real (outputs[0].value.f, inexact);
1553 mpc_clear (ci1);
1554 break;
1555
1556 case mpc_c_c:
1557 assert (inputs[0].type == gtype_fp);
1558 assert (inputs[1].type == gtype_fp);
1559 outputs[0].type = gtype_fp;
1560 mpfr_init (outputs[0].value.f);
1561 outputs[1].type = gtype_fp;
1562 mpfr_init (outputs[1].value.f);
1563 mpc_init2 (ci1, internal_precision);
1564 mpc_init2 (co, internal_precision);
1565 assert_exact (mpc_set_fr_fr (ci1, inputs[0].value.f, inputs[1].value.f,
1566 MPC_RNDNN));
1567 mpc_ternary = calc->func.mpc_c_c (co, ci1, mode_mpc);
1568 if (mode != rm_towardzero)
1569 assert ((!MPC_INEX_RE (mpc_ternary)
1570 && mpfr_zero_p (mpc_realref (co)))
1571 || (!MPC_INEX_IM (mpc_ternary)
1572 && mpfr_zero_p (mpc_imagref (co))));
1573 assert_exact (mpfr_set (outputs[0].value.f, mpc_realref (co),
1574 MPFR_RNDN));
1575 assert_exact (mpfr_set (outputs[1].value.f, mpc_imagref (co),
1576 MPFR_RNDN));
1577 adjust_real (outputs[0].value.f, MPC_INEX_RE (mpc_ternary));
1578 adjust_real (outputs[1].value.f, MPC_INEX_IM (mpc_ternary));
1579 mpc_clear (ci1);
1580 mpc_clear (co);
1581 break;
1582
1583 case mpc_cc_c:
1584 assert (inputs[0].type == gtype_fp);
1585 assert (inputs[1].type == gtype_fp);
1586 assert (inputs[2].type == gtype_fp);
1587 assert (inputs[3].type == gtype_fp);
1588 outputs[0].type = gtype_fp;
1589 mpfr_init (outputs[0].value.f);
1590 outputs[1].type = gtype_fp;
1591 mpfr_init (outputs[1].value.f);
1592 mpc_init2 (ci1, internal_precision);
1593 mpc_init2 (ci2, internal_precision);
1594 mpc_init2 (co, internal_precision);
1595 assert_exact (mpc_set_fr_fr (ci1, inputs[0].value.f, inputs[1].value.f,
1596 MPC_RNDNN));
1597 assert_exact (mpc_set_fr_fr (ci2, inputs[2].value.f, inputs[3].value.f,
1598 MPC_RNDNN));
1599 mpc_ternary = calc->func.mpc_cc_c (co, ci1, ci2, mode_mpc);
1600 if (mode != rm_towardzero)
1601 assert ((!MPC_INEX_RE (mpc_ternary)
1602 && mpfr_zero_p (mpc_realref (co)))
1603 || (!MPC_INEX_IM (mpc_ternary)
1604 && mpfr_zero_p (mpc_imagref (co))));
1605 assert_exact (mpfr_set (outputs[0].value.f, mpc_realref (co),
1606 MPFR_RNDN));
1607 assert_exact (mpfr_set (outputs[1].value.f, mpc_imagref (co),
1608 MPFR_RNDN));
1609 adjust_real (outputs[0].value.f, MPC_INEX_RE (mpc_ternary));
1610 adjust_real (outputs[1].value.f, MPC_INEX_IM (mpc_ternary));
1611 mpc_clear (ci1);
1612 mpc_clear (ci2);
1613 mpc_clear (co);
1614 break;
1615
1616 default:
1617 abort ();
1618 }
1619 }
1620
1621 /* Return the number of bits for integer type TYPE, where "long" has
1622 LONG_BITS bits (32 or 64). */
1623
1624 static int
int_type_bits(arg_ret_type type,int long_bits)1625 int_type_bits (arg_ret_type type, int long_bits)
1626 {
1627 assert (long_bits == 32 || long_bits == 64);
1628 switch (type)
1629 {
1630 case type_int:
1631 return 32;
1632 break;
1633
1634 case type_long:
1635 return long_bits;
1636 break;
1637
1638 case type_long_long:
1639 return 64;
1640 break;
1641
1642 default:
1643 abort ();
1644 }
1645 }
1646
1647 /* Check whether an integer Z fits a given type TYPE, where "long" has
1648 LONG_BITS bits (32 or 64). */
1649
1650 static bool
int_fits_type(mpz_t z,arg_ret_type type,int long_bits)1651 int_fits_type (mpz_t z, arg_ret_type type, int long_bits)
1652 {
1653 int bits = int_type_bits (type, long_bits);
1654 bool ret = true;
1655 mpz_t t;
1656 mpz_init (t);
1657 mpz_ui_pow_ui (t, 2, bits - 1);
1658 if (mpz_cmp (z, t) >= 0)
1659 ret = false;
1660 mpz_neg (t, t);
1661 if (mpz_cmp (z, t) < 0)
1662 ret = false;
1663 mpz_clear (t);
1664 return ret;
1665 }
1666
1667 /* Print a generic value V to FP (name FILENAME), preceded by a space,
1668 for type TYPE, LONG_BITS bits per long, printing " IGNORE" instead
1669 if IGNORE. */
1670
1671 static void
output_generic_value(FILE * fp,const char * filename,const generic_value * v,bool ignore,arg_ret_type type,int long_bits)1672 output_generic_value (FILE *fp, const char *filename, const generic_value *v,
1673 bool ignore, arg_ret_type type, int long_bits)
1674 {
1675 if (ignore)
1676 {
1677 if (fputs (" IGNORE", fp) < 0)
1678 error (EXIT_FAILURE, errno, "write to '%s'", filename);
1679 return;
1680 }
1681 assert (v->type == generic_arg_ret_type (type));
1682 const char *suffix;
1683 switch (type)
1684 {
1685 case type_fp:
1686 suffix = "";
1687 break;
1688
1689 case type_int:
1690 suffix = "";
1691 break;
1692
1693 case type_long:
1694 suffix = "L";
1695 break;
1696
1697 case type_long_long:
1698 suffix = "LL";
1699 break;
1700
1701 default:
1702 abort ();
1703 }
1704 switch (v->type)
1705 {
1706 case gtype_fp:
1707 if (mpfr_inf_p (v->value.f))
1708 {
1709 if (fputs ((mpfr_signbit (v->value.f)
1710 ? " minus_infty" : " plus_infty"), fp) < 0)
1711 error (EXIT_FAILURE, errno, "write to '%s'", filename);
1712 }
1713 else
1714 {
1715 assert (mpfr_number_p (v->value.f));
1716 if (mpfr_fprintf (fp, " %Ra%s", v->value.f, suffix) < 0)
1717 error (EXIT_FAILURE, errno, "mpfr_fprintf to '%s'", filename);
1718 }
1719 break;
1720
1721 case gtype_int: ;
1722 int bits = int_type_bits (type, long_bits);
1723 mpz_t tmp;
1724 mpz_init (tmp);
1725 mpz_ui_pow_ui (tmp, 2, bits - 1);
1726 mpz_neg (tmp, tmp);
1727 if (mpz_cmp (v->value.i, tmp) == 0)
1728 {
1729 mpz_add_ui (tmp, tmp, 1);
1730 if (mpfr_fprintf (fp, " (%Zd%s-1)", tmp, suffix) < 0)
1731 error (EXIT_FAILURE, errno, "mpfr_fprintf to '%s'", filename);
1732 }
1733 else
1734 {
1735 if (mpfr_fprintf (fp, " %Zd%s", v->value.i, suffix) < 0)
1736 error (EXIT_FAILURE, errno, "mpfr_fprintf to '%s'", filename);
1737 }
1738 mpz_clear (tmp);
1739 break;
1740
1741 default:
1742 abort ();
1743 }
1744 }
1745
1746 /* Generate test output to FP (name FILENAME) for test function TF
1747 (rounding results to a narrower type if NARROW), input test IT,
1748 choice of input values INPUTS. */
1749
1750 static void
output_for_one_input_case(FILE * fp,const char * filename,test_function * tf,bool narrow,input_test * it,generic_value * inputs)1751 output_for_one_input_case (FILE *fp, const char *filename, test_function *tf,
1752 bool narrow, input_test *it, generic_value *inputs)
1753 {
1754 bool long_bits_matters = false;
1755 bool fits_long32 = true;
1756 for (size_t i = 0; i < tf->num_args; i++)
1757 {
1758 generic_value_type gtype = generic_arg_ret_type (tf->arg_types[i]);
1759 assert (inputs[i].type == gtype);
1760 if (gtype == gtype_int)
1761 {
1762 bool fits_64 = int_fits_type (inputs[i].value.i, tf->arg_types[i],
1763 64);
1764 if (!fits_64)
1765 return;
1766 if (tf->arg_types[i] == type_long
1767 && !int_fits_type (inputs[i].value.i, tf->arg_types[i], 32))
1768 {
1769 long_bits_matters = true;
1770 fits_long32 = false;
1771 }
1772 }
1773 }
1774 generic_value generic_outputs[MAX_NRET];
1775 calc_generic_results (generic_outputs, inputs, &tf->calc, rm_towardzero);
1776 bool ignore_output_long32[MAX_NRET] = { false };
1777 bool ignore_output_long64[MAX_NRET] = { false };
1778 for (size_t i = 0; i < tf->num_ret; i++)
1779 {
1780 assert (generic_outputs[i].type
1781 == generic_arg_ret_type (tf->ret_types[i]));
1782 switch (generic_outputs[i].type)
1783 {
1784 case gtype_fp:
1785 if (!mpfr_number_p (generic_outputs[i].value.f))
1786 goto out; /* Result is NaN or exact infinity. */
1787 break;
1788
1789 case gtype_int:
1790 ignore_output_long32[i] = !int_fits_type (generic_outputs[i].value.i,
1791 tf->ret_types[i], 32);
1792 ignore_output_long64[i] = !int_fits_type (generic_outputs[i].value.i,
1793 tf->ret_types[i], 64);
1794 if (ignore_output_long32[i] != ignore_output_long64[i])
1795 long_bits_matters = true;
1796 break;
1797
1798 default:
1799 abort ();
1800 }
1801 }
1802 /* Iterate over relevant sizes of long and floating-point formats. */
1803 for (int long_bits = 32; long_bits <= 64; long_bits += 32)
1804 {
1805 if (long_bits == 32 && !fits_long32)
1806 continue;
1807 if (long_bits == 64 && !long_bits_matters)
1808 continue;
1809 const char *long_cond;
1810 if (long_bits_matters)
1811 long_cond = (long_bits == 32 ? ":long32" : ":long64");
1812 else
1813 long_cond = "";
1814 bool *ignore_output = (long_bits == 32
1815 ? ignore_output_long32
1816 : ignore_output_long64);
1817 for (fp_format f = fp_first_format; f < fp_num_formats; f++)
1818 {
1819 bool fits = true;
1820 mpfr_t res[rm_num_modes];
1821 unsigned int exc_before[rm_num_modes];
1822 unsigned int exc_after[rm_num_modes];
1823 bool have_fp_arg = false;
1824 int max_exp = 0;
1825 int num_ones = 0;
1826 int min_exp = 0;
1827 int max_prec = 0;
1828 for (size_t i = 0; i < tf->num_args; i++)
1829 {
1830 if (inputs[i].type == gtype_fp)
1831 {
1832 if (narrow)
1833 {
1834 if (mpfr_zero_p (inputs[i].value.f))
1835 continue;
1836 assert (mpfr_regular_p (inputs[i].value.f));
1837 int this_exp, this_num_ones, this_min_exp, this_prec;
1838 mpz_t tmp;
1839 mpz_init (tmp);
1840 mpfr_exp_t e = mpfr_get_z_2exp (tmp, inputs[i].value.f);
1841 if (mpz_sgn (tmp) < 0)
1842 mpz_neg (tmp, tmp);
1843 size_t bits = mpz_sizeinbase (tmp, 2);
1844 mp_bitcnt_t tz = mpz_scan1 (tmp, 0);
1845 this_min_exp = e + tz;
1846 this_prec = bits - tz;
1847 assert (this_prec > 0);
1848 this_exp = this_min_exp + this_prec - 1;
1849 assert (this_exp
1850 == mpfr_get_exp (inputs[i].value.f) - 1);
1851 this_num_ones = 1;
1852 while ((size_t) this_num_ones < bits
1853 && mpz_tstbit (tmp, bits - 1 - this_num_ones))
1854 this_num_ones++;
1855 mpz_clear (tmp);
1856 if (have_fp_arg)
1857 {
1858 if (this_exp > max_exp
1859 || (this_exp == max_exp
1860 && this_num_ones > num_ones))
1861 {
1862 max_exp = this_exp;
1863 num_ones = this_num_ones;
1864 }
1865 if (this_min_exp < min_exp)
1866 min_exp = this_min_exp;
1867 if (this_prec > max_prec)
1868 max_prec = this_prec;
1869 }
1870 else
1871 {
1872 max_exp = this_exp;
1873 num_ones = this_num_ones;
1874 min_exp = this_min_exp;
1875 max_prec = this_prec;
1876 }
1877 have_fp_arg = true;
1878 }
1879 else
1880 {
1881 round_real (res, exc_before, exc_after,
1882 inputs[i].value.f, f);
1883 if (!mpfr_equal_p (res[rm_tonearest], inputs[i].value.f))
1884 fits = false;
1885 for (rounding_mode m = rm_first_mode;
1886 m < rm_num_modes;
1887 m++)
1888 mpfr_clear (res[m]);
1889 if (!fits)
1890 break;
1891 }
1892 }
1893 }
1894 if (!fits)
1895 continue;
1896 /* The inputs fit this type if required to do so, so compute
1897 the ideal outputs and exceptions. */
1898 mpfr_t all_res[MAX_NRET][rm_num_modes];
1899 unsigned int all_exc_before[MAX_NRET][rm_num_modes];
1900 unsigned int all_exc_after[MAX_NRET][rm_num_modes];
1901 unsigned int merged_exc_before[rm_num_modes] = { 0 };
1902 unsigned int merged_exc_after[rm_num_modes] = { 0 };
1903 /* For functions not exactly determined, track whether
1904 underflow is required (some result is inexact, and
1905 magnitude does not exceed the greatest magnitude
1906 subnormal), and permitted (not an exact zero, and
1907 magnitude does not exceed the least magnitude
1908 normal). */
1909 bool must_underflow = false;
1910 bool may_underflow = false;
1911 for (size_t i = 0; i < tf->num_ret; i++)
1912 {
1913 switch (generic_outputs[i].type)
1914 {
1915 case gtype_fp:
1916 round_real (all_res[i], all_exc_before[i], all_exc_after[i],
1917 generic_outputs[i].value.f, f);
1918 for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
1919 {
1920 merged_exc_before[m] |= all_exc_before[i][m];
1921 merged_exc_after[m] |= all_exc_after[i][m];
1922 if (!tf->exact)
1923 {
1924 must_underflow
1925 |= ((all_exc_before[i][m]
1926 & (1U << exc_inexact)) != 0
1927 && (mpfr_cmpabs (generic_outputs[i].value.f,
1928 fp_formats[f].subnorm_max)
1929 <= 0));
1930 may_underflow
1931 |= (!mpfr_zero_p (generic_outputs[i].value.f)
1932 && (mpfr_cmpabs (generic_outputs[i].value.f,
1933 fp_formats[f].min_plus_half)
1934 <= 0));
1935 }
1936 /* If the result is an exact zero, the sign may
1937 depend on the rounding mode, so recompute it
1938 directly in that mode. */
1939 if (mpfr_zero_p (all_res[i][m])
1940 && (all_exc_before[i][m] & (1U << exc_inexact)) == 0)
1941 {
1942 generic_value outputs_rm[MAX_NRET];
1943 calc_generic_results (outputs_rm, inputs,
1944 &tf->calc, m);
1945 assert_exact (mpfr_set (all_res[i][m],
1946 outputs_rm[i].value.f,
1947 MPFR_RNDN));
1948 for (size_t j = 0; j < tf->num_ret; j++)
1949 generic_value_free (&outputs_rm[j]);
1950 }
1951 }
1952 break;
1953
1954 case gtype_int:
1955 if (ignore_output[i])
1956 for (rounding_mode m = rm_first_mode;
1957 m < rm_num_modes;
1958 m++)
1959 {
1960 merged_exc_before[m] |= 1U << exc_invalid;
1961 merged_exc_after[m] |= 1U << exc_invalid;
1962 }
1963 break;
1964
1965 default:
1966 abort ();
1967 }
1968 }
1969 assert (may_underflow || !must_underflow);
1970 for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
1971 {
1972 bool before_after_matters
1973 = tf->exact && merged_exc_before[m] != merged_exc_after[m];
1974 if (before_after_matters)
1975 {
1976 assert ((merged_exc_before[m] ^ merged_exc_after[m])
1977 == (1U << exc_underflow));
1978 assert ((merged_exc_before[m] & (1U << exc_underflow)) != 0);
1979 }
1980 unsigned int merged_exc = merged_exc_before[m];
1981 if (narrow)
1982 {
1983 if (fprintf (fp, "= %s %s %s%s:arg_fmt(%d,%d,%d,%d)",
1984 tf->name, rounding_modes[m].name,
1985 fp_formats[f].name, long_cond, max_exp,
1986 num_ones, min_exp, max_prec) < 0)
1987 error (EXIT_FAILURE, errno, "write to '%s'", filename);
1988 }
1989 else
1990 {
1991 if (fprintf (fp, "= %s %s %s%s", tf->name,
1992 rounding_modes[m].name, fp_formats[f].name,
1993 long_cond) < 0)
1994 error (EXIT_FAILURE, errno, "write to '%s'", filename);
1995 }
1996 /* Print inputs. */
1997 for (size_t i = 0; i < tf->num_args; i++)
1998 output_generic_value (fp, filename, &inputs[i], false,
1999 tf->arg_types[i], long_bits);
2000 if (fputs (" :", fp) < 0)
2001 error (EXIT_FAILURE, errno, "write to '%s'", filename);
2002 /* Print outputs. */
2003 bool must_erange = false;
2004 bool some_underflow_zero = false;
2005 for (size_t i = 0; i < tf->num_ret; i++)
2006 {
2007 generic_value g;
2008 g.type = generic_outputs[i].type;
2009 switch (g.type)
2010 {
2011 case gtype_fp:
2012 if (mpfr_inf_p (all_res[i][m])
2013 && (all_exc_before[i][m]
2014 & (1U << exc_overflow)) != 0)
2015 must_erange = true;
2016 if (mpfr_zero_p (all_res[i][m])
2017 && (tf->exact
2018 || mpfr_zero_p (all_res[i][rm_tonearest]))
2019 && (all_exc_before[i][m]
2020 & (1U << exc_underflow)) != 0)
2021 must_erange = true;
2022 if (mpfr_zero_p (all_res[i][rm_towardzero])
2023 && (all_exc_before[i][m]
2024 & (1U << exc_underflow)) != 0)
2025 some_underflow_zero = true;
2026 mpfr_init2 (g.value.f, fp_formats[f].mant_dig);
2027 assert_exact (mpfr_set (g.value.f, all_res[i][m],
2028 MPFR_RNDN));
2029 break;
2030
2031 case gtype_int:
2032 mpz_init (g.value.i);
2033 mpz_set (g.value.i, generic_outputs[i].value.i);
2034 break;
2035
2036 default:
2037 abort ();
2038 }
2039 output_generic_value (fp, filename, &g, ignore_output[i],
2040 tf->ret_types[i], long_bits);
2041 generic_value_free (&g);
2042 }
2043 if (fputs (" :", fp) < 0)
2044 error (EXIT_FAILURE, errno, "write to '%s'", filename);
2045 /* Print miscellaneous flags (passed through from
2046 input). */
2047 for (size_t i = 0; i < it->num_flags; i++)
2048 switch (it->flags[i].type)
2049 {
2050 case flag_ignore_zero_inf_sign:
2051 case flag_xfail:
2052 if (fprintf (fp, " %s%s",
2053 input_flags[it->flags[i].type],
2054 (it->flags[i].cond
2055 ? it->flags[i].cond
2056 : "")) < 0)
2057 error (EXIT_FAILURE, errno, "write to '%s'",
2058 filename);
2059 break;
2060 case flag_xfail_rounding:
2061 if (m != rm_tonearest)
2062 if (fprintf (fp, " xfail%s",
2063 (it->flags[i].cond
2064 ? it->flags[i].cond
2065 : "")) < 0)
2066 error (EXIT_FAILURE, errno, "write to '%s'",
2067 filename);
2068 break;
2069 default:
2070 break;
2071 }
2072 /* For the ibm128 format, expect incorrect overflowing
2073 results in rounding modes other than to nearest;
2074 likewise incorrect results where the result may
2075 underflow to 0. */
2076 if (f == fp_ldbl_128ibm
2077 && m != rm_tonearest
2078 && (some_underflow_zero
2079 || (merged_exc_before[m] & (1U << exc_overflow)) != 0))
2080 if (fputs (" xfail:ibm128-libgcc", fp) < 0)
2081 error (EXIT_FAILURE, errno, "write to '%s'", filename);
2082 /* Print exception flags and compute errno
2083 expectations where not already computed. */
2084 bool may_edom = false;
2085 bool must_edom = false;
2086 bool may_erange = must_erange || may_underflow;
2087 for (fp_exception e = exc_first_exception;
2088 e < exc_num_exceptions;
2089 e++)
2090 {
2091 bool expect_e = (merged_exc & (1U << e)) != 0;
2092 bool e_optional = false;
2093 switch (e)
2094 {
2095 case exc_divbyzero:
2096 if (expect_e)
2097 may_erange = must_erange = true;
2098 break;
2099
2100 case exc_inexact:
2101 if (!tf->exact)
2102 e_optional = true;
2103 break;
2104
2105 case exc_invalid:
2106 if (expect_e)
2107 may_edom = must_edom = true;
2108 break;
2109
2110 case exc_overflow:
2111 if (expect_e)
2112 may_erange = true;
2113 break;
2114
2115 case exc_underflow:
2116 if (expect_e)
2117 may_erange = true;
2118 if (must_underflow)
2119 assert (expect_e);
2120 if (may_underflow && !must_underflow)
2121 e_optional = true;
2122 break;
2123
2124 default:
2125 abort ();
2126 }
2127 if (e_optional)
2128 {
2129 assert (!before_after_matters);
2130 if (fprintf (fp, " %s-ok", exceptions[e]) < 0)
2131 error (EXIT_FAILURE, errno, "write to '%s'",
2132 filename);
2133 }
2134 else
2135 {
2136 if (expect_e)
2137 if (fprintf (fp, " %s", exceptions[e]) < 0)
2138 error (EXIT_FAILURE, errno, "write to '%s'",
2139 filename);
2140 if (before_after_matters && e == exc_underflow)
2141 if (fputs (":before-rounding", fp) < 0)
2142 error (EXIT_FAILURE, errno, "write to '%s'",
2143 filename);
2144 for (int after = 0; after <= 1; after++)
2145 {
2146 bool expect_e_here = expect_e;
2147 if (after == 1 && (!before_after_matters
2148 || e != exc_underflow))
2149 continue;
2150 const char *after_cond;
2151 if (before_after_matters && e == exc_underflow)
2152 {
2153 after_cond = (after
2154 ? ":after-rounding"
2155 : ":before-rounding");
2156 expect_e_here = !after;
2157 }
2158 else
2159 after_cond = "";
2160 input_flag_type okflag;
2161 okflag = (expect_e_here
2162 ? flag_missing_first
2163 : flag_spurious_first) + e;
2164 for (size_t i = 0; i < it->num_flags; i++)
2165 if (it->flags[i].type == okflag)
2166 if (fprintf (fp, " %s-ok%s%s",
2167 exceptions[e],
2168 (it->flags[i].cond
2169 ? it->flags[i].cond
2170 : ""), after_cond) < 0)
2171 error (EXIT_FAILURE, errno, "write to '%s'",
2172 filename);
2173 }
2174 }
2175 }
2176 /* Print errno expectations. */
2177 if (tf->complex_fn)
2178 {
2179 must_edom = false;
2180 must_erange = false;
2181 }
2182 if (may_edom && !must_edom)
2183 {
2184 if (fputs (" errno-edom-ok", fp) < 0)
2185 error (EXIT_FAILURE, errno, "write to '%s'",
2186 filename);
2187 }
2188 else
2189 {
2190 if (must_edom)
2191 if (fputs (" errno-edom", fp) < 0)
2192 error (EXIT_FAILURE, errno, "write to '%s'",
2193 filename);
2194 input_flag_type okflag = (must_edom
2195 ? flag_missing_errno
2196 : flag_spurious_errno);
2197 for (size_t i = 0; i < it->num_flags; i++)
2198 if (it->flags[i].type == okflag)
2199 if (fprintf (fp, " errno-edom-ok%s",
2200 (it->flags[i].cond
2201 ? it->flags[i].cond
2202 : "")) < 0)
2203 error (EXIT_FAILURE, errno, "write to '%s'",
2204 filename);
2205 }
2206 if (before_after_matters)
2207 assert (may_erange && !must_erange);
2208 if (may_erange && !must_erange)
2209 {
2210 if (fprintf (fp, " errno-erange-ok%s",
2211 (before_after_matters
2212 ? ":before-rounding"
2213 : "")) < 0)
2214 error (EXIT_FAILURE, errno, "write to '%s'",
2215 filename);
2216 }
2217 if (before_after_matters || !(may_erange && !must_erange))
2218 {
2219 if (must_erange)
2220 if (fputs (" errno-erange", fp) < 0)
2221 error (EXIT_FAILURE, errno, "write to '%s'",
2222 filename);
2223 input_flag_type okflag = (must_erange
2224 ? flag_missing_errno
2225 : flag_spurious_errno);
2226 for (size_t i = 0; i < it->num_flags; i++)
2227 if (it->flags[i].type == okflag)
2228 if (fprintf (fp, " errno-erange-ok%s%s",
2229 (it->flags[i].cond
2230 ? it->flags[i].cond
2231 : ""),
2232 (before_after_matters
2233 ? ":after-rounding"
2234 : "")) < 0)
2235 error (EXIT_FAILURE, errno, "write to '%s'",
2236 filename);
2237 }
2238 if (putc ('\n', fp) < 0)
2239 error (EXIT_FAILURE, errno, "write to '%s'", filename);
2240 }
2241 for (size_t i = 0; i < tf->num_ret; i++)
2242 {
2243 if (generic_outputs[i].type == gtype_fp)
2244 for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
2245 mpfr_clear (all_res[i][m]);
2246 }
2247 }
2248 }
2249 out:
2250 for (size_t i = 0; i < tf->num_ret; i++)
2251 generic_value_free (&generic_outputs[i]);
2252 }
2253
2254 /* Generate test output data for FUNCTION to FILENAME. The function
2255 is interpreted as rounding its results to a narrower type if
2256 NARROW. */
2257
2258 static void
generate_output(const char * function,bool narrow,const char * filename)2259 generate_output (const char *function, bool narrow, const char *filename)
2260 {
2261 FILE *fp = fopen (filename, "w");
2262 if (fp == NULL)
2263 error (EXIT_FAILURE, errno, "open '%s'", filename);
2264 for (size_t i = 0; i < ARRAY_SIZE (test_functions); i++)
2265 {
2266 test_function *tf = &test_functions[i];
2267 if (strcmp (tf->name, function) != 0)
2268 continue;
2269 for (size_t j = 0; j < tf->num_tests; j++)
2270 {
2271 input_test *it = &tf->tests[j];
2272 if (fputs (it->line, fp) < 0)
2273 error (EXIT_FAILURE, errno, "write to '%s'", filename);
2274 for (size_t k = 0; k < it->num_input_cases; k++)
2275 output_for_one_input_case (fp, filename, tf, narrow,
2276 it, it->inputs[k]);
2277 }
2278 }
2279 if (fclose (fp) != 0)
2280 error (EXIT_FAILURE, errno, "close '%s'", filename);
2281 }
2282
2283 int
main(int argc,char ** argv)2284 main (int argc, char **argv)
2285 {
2286 if (argc != 4
2287 && !(argc == 5 && strcmp (argv[1], "--narrow") == 0))
2288 error (EXIT_FAILURE, 0,
2289 "usage: gen-auto-libm-tests [--narrow] <input> <func> <output>");
2290 bool narrow;
2291 const char *input_filename = argv[1];
2292 const char *function = argv[2];
2293 const char *output_filename = argv[3];
2294 if (argc == 4)
2295 {
2296 narrow = false;
2297 input_filename = argv[1];
2298 function = argv[2];
2299 output_filename = argv[3];
2300 }
2301 else
2302 {
2303 narrow = true;
2304 input_filename = argv[2];
2305 function = argv[3];
2306 output_filename = argv[4];
2307 }
2308 init_fp_formats ();
2309 read_input (input_filename);
2310 generate_output (function, narrow, output_filename);
2311 exit (EXIT_SUCCESS);
2312 }
2313