1 /*
2 * Copyright (C) 2017 Denys Vlasenko
3 *
4 * Licensed under GPLv2, see file LICENSE in this source tree.
5 */
6 //config:config TLS
7 //config: bool #No description makes it a hidden option
8 //config: default n
9 //Note:
10 //Config.src also defines FEATURE_TLS_SHA1 option
11
12 //kbuild:lib-$(CONFIG_TLS) += tls.o
13 //kbuild:lib-$(CONFIG_TLS) += tls_pstm.o
14 //kbuild:lib-$(CONFIG_TLS) += tls_pstm_montgomery_reduce.o
15 //kbuild:lib-$(CONFIG_TLS) += tls_pstm_mul_comba.o
16 //kbuild:lib-$(CONFIG_TLS) += tls_pstm_sqr_comba.o
17 //kbuild:lib-$(CONFIG_TLS) += tls_aes.o
18 //kbuild:lib-$(CONFIG_TLS) += tls_aesgcm.o
19 //kbuild:lib-$(CONFIG_TLS) += tls_rsa.o
20 //kbuild:lib-$(CONFIG_TLS) += tls_fe.o
21 //kbuild:lib-$(CONFIG_TLS) += tls_sp_c32.o
22
23 #include "tls.h"
24
25 // Usually enabled. You can disable some of them to force only
26 // specific ciphers to be advertized to server.
27 // (this would not exclude code to handle disabled ciphers, no code size win)
28 #define ALLOW_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 1
29 #define ALLOW_ECDHE_RSA_WITH_AES_128_CBC_SHA256 1
30 #define ALLOW_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 1
31 #define ALLOW_ECDHE_RSA_WITH_AES_128_GCM_SHA256 1
32 #define ALLOW_RSA_WITH_AES_128_CBC_SHA256 1
33 #define ALLOW_RSA_WITH_AES_256_CBC_SHA256 1
34 #define ALLOW_RSA_WITH_AES_128_GCM_SHA256 1
35 #define ALLOW_CURVE_P256 1
36 #define ALLOW_CURVE_X25519 1
37
38 // For testing (does everything except encrypting).
39 // works against "openssl s_server -cipher NULL"
40 // and against wolfssl-3.9.10-stable/examples/server/server.c:
41 #define ALLOW_RSA_NULL_SHA256 0
42
43 #define TLS_DEBUG 0
44 #define TLS_DEBUG_HASH 0
45 #define TLS_DEBUG_DER 0
46 #define TLS_DEBUG_FIXED_SECRETS 0
47 #if 0
48 # define dump_raw_out(...) dump_hex(__VA_ARGS__)
49 #else
50 # define dump_raw_out(...) ((void)0)
51 #endif
52 #if 0
53 # define dump_raw_in(...) dump_hex(__VA_ARGS__)
54 #else
55 # define dump_raw_in(...) ((void)0)
56 #endif
57
58 #if TLS_DEBUG
59 # define dbg(...) fprintf(stderr, __VA_ARGS__)
60 #else
61 # define dbg(...) ((void)0)
62 #endif
63
64 #if TLS_DEBUG_DER
65 # define dbg_der(...) fprintf(stderr, __VA_ARGS__)
66 #else
67 # define dbg_der(...) ((void)0)
68 #endif
69
70
71 //TLS 1.2
72 #define TLS_MAJ 3
73 #define TLS_MIN 3
74
75 #define RECORD_TYPE_CHANGE_CIPHER_SPEC 20 /* 0x14 */
76 #define RECORD_TYPE_ALERT 21 /* 0x15 */
77 #define RECORD_TYPE_HANDSHAKE 22 /* 0x16 */
78 #define RECORD_TYPE_APPLICATION_DATA 23 /* 0x17 */
79
80 #define HANDSHAKE_HELLO_REQUEST 0 /* 0x00 */
81 #define HANDSHAKE_CLIENT_HELLO 1 /* 0x01 */
82 #define HANDSHAKE_SERVER_HELLO 2 /* 0x02 */
83 #define HANDSHAKE_HELLO_VERIFY_REQUEST 3 /* 0x03 */
84 #define HANDSHAKE_NEW_SESSION_TICKET 4 /* 0x04 */
85 #define HANDSHAKE_CERTIFICATE 11 /* 0x0b */
86 #define HANDSHAKE_SERVER_KEY_EXCHANGE 12 /* 0x0c */
87 #define HANDSHAKE_CERTIFICATE_REQUEST 13 /* 0x0d */
88 #define HANDSHAKE_SERVER_HELLO_DONE 14 /* 0x0e */
89 #define HANDSHAKE_CERTIFICATE_VERIFY 15 /* 0x0f */
90 #define HANDSHAKE_CLIENT_KEY_EXCHANGE 16 /* 0x10 */
91 #define HANDSHAKE_FINISHED 20 /* 0x14 */
92
93 #define TLS_EMPTY_RENEGOTIATION_INFO_SCSV 0x00FF /* not a real cipher id... */
94
95 #define SSL_NULL_WITH_NULL_NULL 0x0000
96 #define SSL_RSA_WITH_NULL_MD5 0x0001
97 #define SSL_RSA_WITH_NULL_SHA 0x0002
98 #define SSL_RSA_WITH_RC4_128_MD5 0x0004
99 #define SSL_RSA_WITH_RC4_128_SHA 0x0005
100 #define TLS_RSA_WITH_IDEA_CBC_SHA 0x0007 /* 7 */
101 #define SSL_RSA_WITH_3DES_EDE_CBC_SHA 0x000A /* 10 */
102
103 #define SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA 0x0016 /* 22 */
104 #define SSL_DH_anon_WITH_RC4_128_MD5 0x0018 /* 24 */
105 #define SSL_DH_anon_WITH_3DES_EDE_CBC_SHA 0x001B /* 27 */
106 #define TLS_RSA_WITH_AES_128_CBC_SHA 0x002F /*SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1 */
107 #define TLS_DHE_RSA_WITH_AES_128_CBC_SHA 0x0033 /* 51 */
108 #define TLS_DH_anon_WITH_AES_128_CBC_SHA 0x0034 /* 52 */
109 #define TLS_RSA_WITH_AES_256_CBC_SHA 0x0035 /* 53 */
110 #define TLS_DHE_RSA_WITH_AES_256_CBC_SHA 0x0039 /* 57 */
111 #define TLS_DH_anon_WITH_AES_256_CBC_SHA 0x003A /* 58 */
112 #define TLS_RSA_WITH_NULL_SHA256 0x003B /* 59 */
113 #define TLS_RSA_WITH_AES_128_CBC_SHA256 0x003C /* 60 */
114 #define TLS_RSA_WITH_AES_256_CBC_SHA256 0x003D /* 61 */
115 #define TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 0x0067 /* 103 */
116 #define TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 0x006B /* 107 */
117 #define TLS_PSK_WITH_AES_128_CBC_SHA 0x008C /* 140 */
118 #define TLS_PSK_WITH_AES_256_CBC_SHA 0x008D /* 141 */
119 #define TLS_DHE_PSK_WITH_AES_128_CBC_SHA 0x0090 /* 144 */
120 #define TLS_DHE_PSK_WITH_AES_256_CBC_SHA 0x0091 /* 145 */
121 #define TLS_RSA_WITH_SEED_CBC_SHA 0x0096 /* 150 */
122 #define TLS_RSA_WITH_AES_128_GCM_SHA256 0x009C /*TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(128) Mac=AEAD */
123 #define TLS_RSA_WITH_AES_256_GCM_SHA384 0x009D /*TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(256) Mac=AEAD */
124 #define TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 0x009E /*TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(128) Mac=AEAD */
125 #define TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 0x009F /*TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(256) Mac=AEAD */
126 #define TLS_DH_anon_WITH_AES_128_GCM_SHA256 0x00A6 /* RFC 5288 */
127 #define TLS_DH_anon_WITH_AES_256_GCM_SHA384 0x00A7 /* RFC 5288 */
128 #define TLS_PSK_WITH_AES_128_CBC_SHA256 0x00AE /* 174 */
129 #define TLS_PSK_WITH_AES_256_CBC_SHA384 0x00AF /* 175 */
130 #define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA 0xC004 /* 49156 */
131 #define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA 0xC005 /* 49157 */
132 #define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0xC009 /*TLSv1 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA1 */
133 #define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0xC00A /*TLSv1 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1 */
134 #define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA 0xC00E /* 49166 */
135 #define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA 0xC00F /* 49167 */
136 #define TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA 0xC012 /* 49170 */
137 #define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0xC013 /*TLSv1 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA1 */
138 #define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0xC014 /*TLSv1 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1 */
139 #define TLS_ECDH_anon_WITH_AES_128_CBC_SHA 0xC018 /* RFC 4492 */
140 #define TLS_ECDH_anon_WITH_AES_256_CBC_SHA 0xC019 /* RFC 4492 */
141 #define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0xC023 /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA256 */
142 #define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 0xC024 /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384 */
143 #define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 0xC025 /* 49189 */
144 #define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 0xC026 /* 49190 */
145 #define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0xC027 /*TLSv1.2 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA256 */
146 #define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 0xC028 /*TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384 */
147 #define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 0xC029 /* 49193 */
148 #define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 0xC02A /* 49194 */
149 /* RFC 5288 "AES Galois Counter Mode (GCM) Cipher Suites for TLS" */
150 #define TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0xC02B /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(128) Mac=AEAD */
151 #define TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0xC02C /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD */
152 #define TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 0xC02D /* 49197 */
153 #define TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 0xC02E /* 49198 */
154 #define TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 0xC02F /*TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(128) Mac=AEAD */
155 #define TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0xC030 /*TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD */
156 #define TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 0xC031 /* 49201 */
157 #define TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 0xC032 /* 49202 */
158 #define TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA 0xC035
159 #define TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA 0xC036
160 #define TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 0xC037
161 #define TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 0xC038
162
163 /* From http://wiki.mozilla.org/Security/Server_Side_TLS */
164 /* and 'openssl ciphers -V -stdname' */
165 #define TLS_RSA_WITH_AES_128_CCM 0xC09C /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM(128) Mac=AEAD */
166 #define TLS_RSA_WITH_AES_256_CCM 0xC09D /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM(256) Mac=AEAD */
167 #define TLS_DHE_RSA_WITH_AES_128_CCM 0xC09E /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM(128) Mac=AEAD */
168 #define TLS_DHE_RSA_WITH_AES_256_CCM 0xC09F /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM(256) Mac=AEAD */
169 #define TLS_RSA_WITH_AES_128_CCM_8 0xC0A0 /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM8(128) Mac=AEAD */
170 #define TLS_RSA_WITH_AES_256_CCM_8 0xC0A1 /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM8(256) Mac=AEAD */
171 #define TLS_DHE_RSA_WITH_AES_128_CCM_8 0xC0A2 /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM8(128) Mac=AEAD */
172 #define TLS_DHE_RSA_WITH_AES_256_CCM_8 0xC0A3 /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM8(256) Mac=AEAD */
173 #define TLS_ECDHE_ECDSA_WITH_AES_128_CCM 0xC0AC /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM(128) Mac=AEAD */
174 #define TLS_ECDHE_ECDSA_WITH_AES_256_CCM 0xC0AD /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM(256) Mac=AEAD */
175 #define TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 0xC0AE /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM8(128) Mac=AEAD */
176 #define TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8 0xC0AF /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM8(256) Mac=AEAD */
177 #define TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0xCCA8 /*TLSv1.2 Kx=ECDH Au=RSA Enc=CHACHA20/POLY1305(256) Mac=AEAD */
178 #define TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 0xCCA9 /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=CHACHA20/POLY1305(256) Mac=AEAD */
179 #define TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0xCCAA /*TLSv1.2 Kx=DH Au=RSA Enc=CHACHA20/POLY1305(256) Mac=AEAD */
180
181 #define TLS_AES_128_GCM_SHA256 0x1301 /*TLSv1.3 Kx=any Au=any Enc=AESGCM(128) Mac=AEAD */
182 #define TLS_AES_256_GCM_SHA384 0x1302 /*TLSv1.3 Kx=any Au=any Enc=AESGCM(256) Mac=AEAD */
183 #define TLS_CHACHA20_POLY1305_SHA256 0x1303 /*TLSv1.3 Kx=any Au=any Enc=CHACHA20/POLY1305(256) Mac=AEAD */
184 #define TLS_AES_128_CCM_SHA256 0x1304 /*TLSv1.3 Kx=any Au=any Enc=AESCCM(128) Mac=AEAD */
185
186 /* Might go to libbb.h */
187 #define TLS_MAX_CRYPTBLOCK_SIZE 16
188 #define TLS_MAX_OUTBUF (1 << 14)
189
190 enum {
191 SHA_INSIZE = 64,
192
193 AES128_KEYSIZE = 16,
194 AES256_KEYSIZE = 32,
195
196 RSA_PREMASTER_SIZE = 48,
197
198 RECHDR_LEN = 5,
199
200 /* 8 = 3+5. 3 extra bytes result in record data being 32-bit aligned */
201 OUTBUF_PFX = 8 + AES_BLOCK_SIZE, /* header + IV */
202 OUTBUF_SFX = TLS_MAX_MAC_SIZE + TLS_MAX_CRYPTBLOCK_SIZE, /* MAC + padding */
203
204 // RFC 5246:
205 // | 6.2.1. Fragmentation
206 // | The record layer fragments information blocks into TLSPlaintext
207 // | records carrying data in chunks of 2^14 bytes or less. Client
208 // | message boundaries are not preserved in the record layer (i.e.,
209 // | multiple client messages of the same ContentType MAY be coalesced
210 // | into a single TLSPlaintext record, or a single message MAY be
211 // | fragmented across several records)
212 // |...
213 // | length
214 // | The length (in bytes) of the following TLSPlaintext.fragment.
215 // | The length MUST NOT exceed 2^14.
216 // |...
217 // | 6.2.2. Record Compression and Decompression
218 // |...
219 // | Compression must be lossless and may not increase the content length
220 // | by more than 1024 bytes. If the decompression function encounters a
221 // | TLSCompressed.fragment that would decompress to a length in excess of
222 // | 2^14 bytes, it MUST report a fatal decompression failure error.
223 // |...
224 // | length
225 // | The length (in bytes) of the following TLSCompressed.fragment.
226 // | The length MUST NOT exceed 2^14 + 1024.
227 // |...
228 // | 6.2.3. Record Payload Protection
229 // | The encryption and MAC functions translate a TLSCompressed
230 // | structure into a TLSCiphertext. The decryption functions reverse
231 // | the process. The MAC of the record also includes a sequence
232 // | number so that missing, extra, or repeated messages are
233 // | detectable.
234 // |...
235 // | length
236 // | The length (in bytes) of the following TLSCiphertext.fragment.
237 // | The length MUST NOT exceed 2^14 + 2048.
238 MAX_INBUF = RECHDR_LEN + (1 << 14) + 2048,
239
240 /* Bits for tls->flags */
241 NEED_EC_KEY = 1 << 0,
242 GOT_CERT_RSA_KEY_ALG = 1 << 1,
243 GOT_CERT_ECDSA_KEY_ALG = 1 << 2, // so far unused
244 GOT_EC_KEY = 1 << 3,
245 GOT_EC_CURVE_X25519 = 1 << 4, // else P256
246 ENCRYPTION_AESGCM = 1 << 5, // else AES-SHA (or NULL-SHA if ALLOW_RSA_NULL_SHA256=1)
247 ENCRYPT_ON_WRITE = 1 << 6,
248 };
249
250 struct record_hdr {
251 uint8_t type;
252 uint8_t proto_maj, proto_min;
253 uint8_t len16_hi, len16_lo;
254 };
255
256 struct tls_handshake_data {
257 /* In bbox, md5/sha1/sha256 ctx's are the same structure */
258 md5sha_ctx_t handshake_hash_ctx;
259
260 uint8_t client_and_server_rand32[2 * 32];
261 uint8_t master_secret[48];
262
263 //TODO: store just the DER key here, parse/use/delete it when sending client key
264 //this way it will stay key type agnostic here.
265 psRsaKey_t server_rsa_pub_key;
266
267 /* peer's elliptic curve key data */
268 /* for x25519, it contains one point in first 32 bytes */
269 /* for P256, it contains x,y point pair, each 32 bytes long */
270 uint8_t ecc_pub_key32[2 * 32];
271
272 /* HANDSHAKE HASH: */
273 //unsigned saved_client_hello_size;
274 //uint8_t saved_client_hello[1];
275 };
276
277
get24be(const uint8_t * p)278 static unsigned get24be(const uint8_t *p)
279 {
280 return 0x100*(0x100*p[0] + p[1]) + p[2];
281 }
282
283 #if TLS_DEBUG
284 /* Nondestructively see the current hash value */
285 # if TLS_DEBUG_HASH
sha_peek(md5sha_ctx_t * ctx,void * buffer)286 static unsigned sha_peek(md5sha_ctx_t *ctx, void *buffer)
287 {
288 md5sha_ctx_t ctx_copy = *ctx; /* struct copy */
289 return sha_end(&ctx_copy, buffer);
290 }
291 # endif
292
dump_hex(const char * fmt,const void * vp,int len)293 static void dump_hex(const char *fmt, const void *vp, int len)
294 {
295 char hexbuf[32 * 1024 + 4];
296 const uint8_t *p = vp;
297
298 bin2hex(hexbuf, (void*)p, len)[0] = '\0';
299 dbg(fmt, hexbuf);
300 }
301
dump_tls_record(const void * vp,int len)302 static void dump_tls_record(const void *vp, int len)
303 {
304 const uint8_t *p = vp;
305
306 while (len > 0) {
307 unsigned xhdr_len;
308 if (len < RECHDR_LEN) {
309 dump_hex("< |%s|\n", p, len);
310 return;
311 }
312 xhdr_len = 0x100*p[3] + p[4];
313 dbg("< hdr_type:%u ver:%u.%u len:%u", p[0], p[1], p[2], xhdr_len);
314 p += RECHDR_LEN;
315 len -= RECHDR_LEN;
316 if (len >= 4 && p[-RECHDR_LEN] == RECORD_TYPE_HANDSHAKE) {
317 unsigned len24 = get24be(p + 1);
318 dbg(" type:%u len24:%u", p[0], len24);
319 }
320 if (xhdr_len > len)
321 xhdr_len = len;
322 dump_hex(" |%s|\n", p, xhdr_len);
323 p += xhdr_len;
324 len -= xhdr_len;
325 }
326 }
327 #else
328 # define dump_hex(...) ((void)0)
329 # define dump_tls_record(...) ((void)0)
330 #endif
331
tls_get_random(void * buf,unsigned len)332 void FAST_FUNC tls_get_random(void *buf, unsigned len)
333 {
334 if (len != open_read_close("/dev/urandom", buf, len))
335 xfunc_die();
336 }
337
xorbuf3(void * dst,const void * src1,const void * src2,unsigned count)338 static void xorbuf3(void *dst, const void *src1, const void *src2, unsigned count)
339 {
340 uint8_t *d = dst;
341 const uint8_t *s1 = src1;
342 const uint8_t* s2 = src2;
343 while (count--)
344 *d++ = *s1++ ^ *s2++;
345 }
346
xorbuf(void * dst,const void * src,unsigned count)347 void FAST_FUNC xorbuf(void *dst, const void *src, unsigned count)
348 {
349 xorbuf3(dst, dst, src, count);
350 }
351
xorbuf_aligned_AES_BLOCK_SIZE(void * dst,const void * src)352 void FAST_FUNC xorbuf_aligned_AES_BLOCK_SIZE(void *dst, const void *src)
353 {
354 unsigned long *d = dst;
355 const unsigned long *s = src;
356 d[0] ^= s[0];
357 #if ULONG_MAX <= 0xffffffffffffffff
358 d[1] ^= s[1];
359 #if ULONG_MAX == 0xffffffff
360 d[2] ^= s[2];
361 d[3] ^= s[3];
362 #endif
363 #endif
364 }
365
366 #if !TLS_DEBUG_HASH
367 # define hash_handshake(tls, fmt, buffer, len) \
368 hash_handshake(tls, buffer, len)
369 #endif
hash_handshake(tls_state_t * tls,const char * fmt,const void * buffer,unsigned len)370 static void hash_handshake(tls_state_t *tls, const char *fmt, const void *buffer, unsigned len)
371 {
372 md5sha_hash(&tls->hsd->handshake_hash_ctx, buffer, len);
373 #if TLS_DEBUG_HASH
374 {
375 uint8_t h[TLS_MAX_MAC_SIZE];
376 dump_hex(fmt, buffer, len);
377 dbg(" (%u bytes) ", (int)len);
378 len = sha_peek(&tls->hsd->handshake_hash_ctx, h);
379 if (ENABLE_FEATURE_TLS_SHA1 && len == SHA1_OUTSIZE)
380 dump_hex("sha1:%s\n", h, len);
381 else
382 if (len == SHA256_OUTSIZE)
383 dump_hex("sha256:%s\n", h, len);
384 else
385 dump_hex("sha???:%s\n", h, len);
386 }
387 #endif
388 }
389
390 #if !ENABLE_FEATURE_TLS_SHA1
391 # define TLS_MAC_SIZE(tls) SHA256_OUTSIZE
392 #else
393 # define TLS_MAC_SIZE(tls) (tls)->MAC_size
394 #endif
395
396 // RFC 2104:
397 // HMAC(key, text) based on a hash H (say, sha256) is:
398 // ipad = [0x36 x INSIZE]
399 // opad = [0x5c x INSIZE]
400 // HMAC(key, text) = H((key XOR opad) + H((key XOR ipad) + text))
401 //
402 // H(key XOR opad) and H(key XOR ipad) can be precomputed
403 // if we often need HMAC hmac with the same key.
404 //
405 // text is often given in disjoint pieces.
406 typedef struct hmac_precomputed {
407 md5sha_ctx_t hashed_key_xor_ipad;
408 md5sha_ctx_t hashed_key_xor_opad;
409 } hmac_precomputed_t;
410
411 typedef void md5sha_begin_func(md5sha_ctx_t *ctx) FAST_FUNC;
412 #if !ENABLE_FEATURE_TLS_SHA1
413 #define hmac_begin(pre,key,key_size,begin) \
414 hmac_begin(pre,key,key_size)
415 #define begin sha256_begin
416 #endif
hmac_begin(hmac_precomputed_t * pre,uint8_t * key,unsigned key_size,md5sha_begin_func * begin)417 static void hmac_begin(hmac_precomputed_t *pre, uint8_t *key, unsigned key_size, md5sha_begin_func *begin)
418 {
419 uint8_t key_xor_ipad[SHA_INSIZE];
420 uint8_t key_xor_opad[SHA_INSIZE];
421 // uint8_t tempkey[SHA1_OUTSIZE < SHA256_OUTSIZE ? SHA256_OUTSIZE : SHA1_OUTSIZE];
422 unsigned i;
423
424 // "The authentication key can be of any length up to INSIZE, the
425 // block length of the hash function. Applications that use keys longer
426 // than INSIZE bytes will first hash the key using H and then use the
427 // resultant OUTSIZE byte string as the actual key to HMAC."
428 if (key_size > SHA_INSIZE) {
429 bb_simple_error_msg_and_die("HMAC key>64"); //does not happen (yet?)
430 // md5sha_ctx_t ctx;
431 // begin(&ctx);
432 // md5sha_hash(&ctx, key, key_size);
433 // key_size = sha_end(&ctx, tempkey);
434 // //key = tempkey; - right? RIGHT? why does it work without this?
435 // // because SHA_INSIZE is 64, but hmac() is always called with
436 // // key_size = tls->MAC_size = SHA1/256_OUTSIZE (20 or 32),
437 // // and prf_hmac_sha256() -> hmac_sha256() key sizes are:
438 // // - RSA_PREMASTER_SIZE is 48
439 // // - CURVE25519_KEYSIZE is 32
440 // // - master_secret[] is 48
441 }
442
443 for (i = 0; i < key_size; i++) {
444 key_xor_ipad[i] = key[i] ^ 0x36;
445 key_xor_opad[i] = key[i] ^ 0x5c;
446 }
447 for (; i < SHA_INSIZE; i++) {
448 key_xor_ipad[i] = 0x36;
449 key_xor_opad[i] = 0x5c;
450 }
451
452 begin(&pre->hashed_key_xor_ipad);
453 begin(&pre->hashed_key_xor_opad);
454 md5sha_hash(&pre->hashed_key_xor_ipad, key_xor_ipad, SHA_INSIZE);
455 md5sha_hash(&pre->hashed_key_xor_opad, key_xor_opad, SHA_INSIZE);
456 }
457 #undef begin
458
hmac_sha_precomputed_v(hmac_precomputed_t * pre,uint8_t * out,va_list va)459 static unsigned hmac_sha_precomputed_v(
460 hmac_precomputed_t *pre,
461 uint8_t *out,
462 va_list va)
463 {
464 uint8_t *text;
465 unsigned len;
466
467 /* pre->hashed_key_xor_ipad contains unclosed "H((key XOR ipad) +" state */
468 /* pre->hashed_key_xor_opad contains unclosed "H((key XOR opad) +" state */
469
470 /* calculate out = H((key XOR ipad) + text) */
471 while ((text = va_arg(va, uint8_t*)) != NULL) {
472 unsigned text_size = va_arg(va, unsigned);
473 md5sha_hash(&pre->hashed_key_xor_ipad, text, text_size);
474 }
475 len = sha_end(&pre->hashed_key_xor_ipad, out);
476
477 /* out = H((key XOR opad) + out) */
478 md5sha_hash(&pre->hashed_key_xor_opad, out, len);
479 return sha_end(&pre->hashed_key_xor_opad, out);
480 }
481
hmac_sha_precomputed(hmac_precomputed_t * pre_init,uint8_t * out,...)482 static unsigned hmac_sha_precomputed(hmac_precomputed_t *pre_init, uint8_t *out, ...)
483 {
484 hmac_precomputed_t pre;
485 va_list va;
486 unsigned len;
487
488 va_start(va, out);
489 pre = *pre_init; /* struct copy */
490 len = hmac_sha_precomputed_v(&pre, out, va);
491 va_end(va);
492 return len;
493 }
494
495 #if !ENABLE_FEATURE_TLS_SHA1
496 #define hmac(tls,out,key,key_size,...) \
497 hmac(out,key,key_size, __VA_ARGS__)
498 #endif
hmac(tls_state_t * tls,uint8_t * out,uint8_t * key,unsigned key_size,...)499 static unsigned hmac(tls_state_t *tls, uint8_t *out, uint8_t *key, unsigned key_size, ...)
500 {
501 hmac_precomputed_t pre;
502 va_list va;
503 unsigned len;
504
505 va_start(va, key_size);
506
507 hmac_begin(&pre, key, key_size,
508 (ENABLE_FEATURE_TLS_SHA1 && tls->MAC_size == SHA1_OUTSIZE)
509 ? sha1_begin
510 : sha256_begin
511 );
512 len = hmac_sha_precomputed_v(&pre, out, va);
513
514 va_end(va);
515 return len;
516 }
517
518 // RFC 5246:
519 // 5. HMAC and the Pseudorandom Function
520 //...
521 // In this section, we define one PRF, based on HMAC. This PRF with the
522 // SHA-256 hash function is used for all cipher suites defined in this
523 // document and in TLS documents published prior to this document when
524 // TLS 1.2 is negotiated.
525 // ^^^^^^^^^^^^^ IMPORTANT!
526 // PRF uses sha256 regardless of cipher for all ciphers
527 // defined by RFC 5246. It's not sha1 for AES_128_CBC_SHA!
528 // However, for _SHA384 ciphers, it's sha384. See RFC 5288,5289.
529 //...
530 // P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
531 // HMAC_hash(secret, A(2) + seed) +
532 // HMAC_hash(secret, A(3) + seed) + ...
533 // where + indicates concatenation.
534 // A() is defined as:
535 // A(0) = seed
536 // A(1) = HMAC_hash(secret, A(0)) = HMAC_hash(secret, seed)
537 // A(i) = HMAC_hash(secret, A(i-1))
538 // P_hash can be iterated as many times as necessary to produce the
539 // required quantity of data. For example, if P_SHA256 is being used to
540 // create 80 bytes of data, it will have to be iterated three times
541 // (through A(3)), creating 96 bytes of output data; the last 16 bytes
542 // of the final iteration will then be discarded, leaving 80 bytes of
543 // output data.
544 //
545 // TLS's PRF is created by applying P_hash to the secret as:
546 //
547 // PRF(secret, label, seed) = P_<hash>(secret, label + seed)
548 //
549 // The label is an ASCII string.
550 //
551 // RFC 5288:
552 // For cipher suites ending with _SHA256, the PRF is the TLS PRF
553 // with SHA-256 as the hash function.
554 // For cipher suites ending with _SHA384, the PRF is the TLS PRF
555 // with SHA-384 as the hash function.
prf_hmac_sha256(uint8_t * outbuf,unsigned outbuf_size,uint8_t * secret,unsigned secret_size,const char * label,uint8_t * seed,unsigned seed_size)556 static void prf_hmac_sha256(/*tls_state_t *tls,*/
557 uint8_t *outbuf, unsigned outbuf_size,
558 uint8_t *secret, unsigned secret_size,
559 const char *label,
560 uint8_t *seed, unsigned seed_size)
561 {
562 hmac_precomputed_t pre;
563 uint8_t a[TLS_MAX_MAC_SIZE];
564 uint8_t *out_p = outbuf;
565 unsigned label_size = strlen(label);
566 unsigned MAC_size = SHA256_OUTSIZE;
567
568 /* In P_hash() calculation, "seed" is "label + seed": */
569 #define SEED label, label_size, seed, seed_size
570 #define A a, MAC_size
571
572 hmac_begin(&pre, secret, secret_size, sha256_begin);
573
574 /* A(1) = HMAC_hash(secret, seed) */
575 hmac_sha_precomputed(&pre, a, SEED, NULL);
576
577 for (;;) {
578 /* HMAC_hash(secret, A(1) + seed) */
579 if (outbuf_size <= MAC_size) {
580 /* Last, possibly incomplete, block */
581 /* (use a[] as temp buffer) */
582 hmac_sha_precomputed(&pre, a, A, SEED, NULL);
583 memcpy(out_p, a, outbuf_size);
584 return;
585 }
586 /* Not last block. Store directly to result buffer */
587 hmac_sha_precomputed(&pre, out_p, A, SEED, NULL);
588 out_p += MAC_size;
589 outbuf_size -= MAC_size;
590 /* A(2) = HMAC_hash(secret, A(1)) */
591 hmac_sha_precomputed(&pre, a, A, NULL);
592 }
593 #undef A
594 #undef SECRET
595 #undef SEED
596 }
597
bad_record_die(tls_state_t * tls,const char * expected,int len)598 static void bad_record_die(tls_state_t *tls, const char *expected, int len)
599 {
600 bb_error_msg("got bad TLS record (len:%d) while expecting %s", len, expected);
601 if (len > 0) {
602 uint8_t *p = tls->inbuf;
603 if (len > 99)
604 len = 99; /* don't flood, a few lines should be enough */
605 do {
606 fprintf(stderr, " %02x", *p++);
607 len--;
608 } while (len != 0);
609 fputc('\n', stderr);
610 }
611 xfunc_die();
612 }
613
tls_error_die(tls_state_t * tls,int line)614 static void tls_error_die(tls_state_t *tls, int line)
615 {
616 dump_tls_record(tls->inbuf, tls->ofs_to_buffered + tls->buffered_size);
617 bb_error_msg_and_die("tls error at line %d cipher:%04x", line, tls->cipher_id);
618 }
619 #define tls_error_die(tls) tls_error_die(tls, __LINE__)
620
621 #if 0 //UNUSED
622 static void tls_free_inbuf(tls_state_t *tls)
623 {
624 if (tls->buffered_size == 0) {
625 free(tls->inbuf);
626 tls->inbuf_size = 0;
627 tls->inbuf = NULL;
628 }
629 }
630 #endif
631
tls_free_outbuf(tls_state_t * tls)632 static void tls_free_outbuf(tls_state_t *tls)
633 {
634 free(tls->outbuf);
635 tls->outbuf_size = 0;
636 tls->outbuf = NULL;
637 }
638
tls_get_outbuf(tls_state_t * tls,int len)639 static void *tls_get_outbuf(tls_state_t *tls, int len)
640 {
641 if (len > TLS_MAX_OUTBUF)
642 xfunc_die();
643 len += OUTBUF_PFX + OUTBUF_SFX;
644 if (tls->outbuf_size < len) {
645 tls->outbuf_size = len;
646 tls->outbuf = xrealloc(tls->outbuf, len);
647 }
648 return tls->outbuf + OUTBUF_PFX;
649 }
650
tls_get_zeroed_outbuf(tls_state_t * tls,int len)651 static void *tls_get_zeroed_outbuf(tls_state_t *tls, int len)
652 {
653 void *record = tls_get_outbuf(tls, len);
654 memset(record, 0, len);
655 return record;
656 }
657
xwrite_encrypted_and_hmac_signed(tls_state_t * tls,unsigned size,unsigned type)658 static void xwrite_encrypted_and_hmac_signed(tls_state_t *tls, unsigned size, unsigned type)
659 {
660 uint8_t *buf = tls->outbuf + OUTBUF_PFX;
661 struct record_hdr *xhdr;
662 uint8_t padding_length;
663
664 xhdr = (void*)(buf - RECHDR_LEN);
665 if (!ALLOW_RSA_NULL_SHA256 /* if "no encryption" can't be selected */
666 || tls->cipher_id != TLS_RSA_WITH_NULL_SHA256 /* or if it wasn't selected */
667 ) {
668 xhdr = (void*)(buf - RECHDR_LEN - AES_BLOCK_SIZE); /* place for IV */
669 }
670
671 xhdr->type = type;
672 xhdr->proto_maj = TLS_MAJ;
673 xhdr->proto_min = TLS_MIN;
674 /* fake unencrypted record len for MAC calculation */
675 xhdr->len16_hi = size >> 8;
676 xhdr->len16_lo = size & 0xff;
677
678 /* Calculate MAC signature */
679 hmac(tls, buf + size, /* result */
680 tls->client_write_MAC_key, TLS_MAC_SIZE(tls),
681 &tls->write_seq64_be, sizeof(tls->write_seq64_be),
682 xhdr, RECHDR_LEN,
683 buf, size,
684 NULL
685 );
686 tls->write_seq64_be = SWAP_BE64(1 + SWAP_BE64(tls->write_seq64_be));
687
688 size += TLS_MAC_SIZE(tls);
689
690 // RFC 5246:
691 // 6.2.3.1. Null or Standard Stream Cipher
692 //
693 // Stream ciphers (including BulkCipherAlgorithm.null; see Appendix A.6)
694 // convert TLSCompressed.fragment structures to and from stream
695 // TLSCiphertext.fragment structures.
696 //
697 // stream-ciphered struct {
698 // opaque content[TLSCompressed.length];
699 // opaque MAC[SecurityParameters.mac_length];
700 // } GenericStreamCipher;
701 //
702 // The MAC is generated as:
703 // MAC(MAC_write_key, seq_num +
704 // TLSCompressed.type +
705 // TLSCompressed.version +
706 // TLSCompressed.length +
707 // TLSCompressed.fragment);
708 // where "+" denotes concatenation.
709 // seq_num
710 // The sequence number for this record.
711 // MAC
712 // The MAC algorithm specified by SecurityParameters.mac_algorithm.
713 //
714 // Note that the MAC is computed before encryption. The stream cipher
715 // encrypts the entire block, including the MAC.
716 //...
717 // Appendix C. Cipher Suite Definitions
718 //...
719 // MAC Algorithm mac_length mac_key_length
720 // -------- ----------- ---------- --------------
721 // SHA HMAC-SHA1 20 20
722 // SHA256 HMAC-SHA256 32 32
723 if (ALLOW_RSA_NULL_SHA256
724 && tls->cipher_id == TLS_RSA_WITH_NULL_SHA256
725 ) {
726 /* No encryption, only signing */
727 xhdr->len16_hi = size >> 8;
728 xhdr->len16_lo = size & 0xff;
729 dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size);
730 xwrite(tls->ofd, xhdr, RECHDR_LEN + size);
731 dbg("wrote %u bytes (NULL crypt, SHA256 hash)\n", size);
732 return;
733 }
734
735 // 6.2.3.2. CBC Block Cipher
736 // For block ciphers (such as 3DES or AES), the encryption and MAC
737 // functions convert TLSCompressed.fragment structures to and from block
738 // TLSCiphertext.fragment structures.
739 // struct {
740 // opaque IV[SecurityParameters.record_iv_length];
741 // block-ciphered struct {
742 // opaque content[TLSCompressed.length];
743 // opaque MAC[SecurityParameters.mac_length];
744 // uint8 padding[GenericBlockCipher.padding_length];
745 // uint8 padding_length;
746 // };
747 // } GenericBlockCipher;
748 //...
749 // IV
750 // The Initialization Vector (IV) SHOULD be chosen at random, and
751 // MUST be unpredictable. Note that in versions of TLS prior to 1.1,
752 // there was no IV field (...). For block ciphers, the IV length is
753 // of length SecurityParameters.record_iv_length, which is equal to the
754 // SecurityParameters.block_size.
755 // padding
756 // Padding that is added to force the length of the plaintext to be
757 // an integral multiple of the block cipher's block length.
758 // padding_length
759 // The padding length MUST be such that the total size of the
760 // GenericBlockCipher structure is a multiple of the cipher's block
761 // length. Legal values range from zero to 255, inclusive.
762 //...
763 // Appendix C. Cipher Suite Definitions
764 //...
765 // Key IV Block
766 // Cipher Type Material Size Size
767 // ------------ ------ -------- ---- -----
768 // AES_128_CBC Block 16 16 16
769 // AES_256_CBC Block 32 16 16
770
771 tls_get_random(buf - AES_BLOCK_SIZE, AES_BLOCK_SIZE); /* IV */
772 dbg("before crypt: 5 hdr + %u data + %u hash bytes\n",
773 size - TLS_MAC_SIZE(tls), TLS_MAC_SIZE(tls));
774
775 /* Fill IV and padding in outbuf */
776 // RFC is talking nonsense:
777 // "Padding that is added to force the length of the plaintext to be
778 // an integral multiple of the block cipher's block length."
779 // WRONG. _padding+padding_length_, not just _padding_,
780 // pads the data.
781 // IOW: padding_length is the last byte of padding[] array,
782 // contrary to what RFC depicts.
783 //
784 // What actually happens is that there is always padding.
785 // If you need one byte to reach BLOCKSIZE, this byte is 0x00.
786 // If you need two bytes, they are both 0x01.
787 // If you need three, they are 0x02,0x02,0x02. And so on.
788 // If you need no bytes to reach BLOCKSIZE, you have to pad a full
789 // BLOCKSIZE with bytes of value (BLOCKSIZE-1).
790 // It's ok to have more than minimum padding, but we do minimum.
791 padding_length = (~size) & (AES_BLOCK_SIZE - 1);
792 do {
793 buf[size++] = padding_length; /* padding */
794 } while ((size & (AES_BLOCK_SIZE - 1)) != 0);
795
796 /* Encrypt content+MAC+padding in place */
797 aes_cbc_encrypt(
798 &tls->aes_encrypt, /* selects 128/256 */
799 buf - AES_BLOCK_SIZE, /* IV */
800 buf, size, /* plaintext */
801 buf /* ciphertext */
802 );
803
804 /* Write out */
805 dbg("writing 5 + %u IV + %u encrypted bytes, padding_length:0x%02x\n",
806 AES_BLOCK_SIZE, size, padding_length);
807 size += AES_BLOCK_SIZE; /* + IV */
808 xhdr->len16_hi = size >> 8;
809 xhdr->len16_lo = size & 0xff;
810 dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size);
811 xwrite(tls->ofd, xhdr, RECHDR_LEN + size);
812 dbg("wrote %u bytes\n", (int)RECHDR_LEN + size);
813 }
814
815 /* Example how GCM encryption combines nonce, aad, input and generates
816 * "header | exp_nonce | encrypted output | tag":
817 * nonce:0d 6a 26 31 00 00 00 00 00 00 00 01 (implicit 4 bytes (derived from master secret), then explicit 8 bytes)
818 * aad: 00 00 00 00 00 00 00 01 17 03 03 00 1c
819 * in: 47 45 54 20 2f 69 6e 64 65 78 2e 68 74 6d 6c 20 48 54 54 50 2f 31 2e 30 0d 0a 0d 0a "GET /index.html HTTP/1.0\r\n\r\n" (0x1c bytes)
820 * out: f7 8a b2 8f 78 0e f6 d5 76 17 2e b5 6d 46 59 56 8b 46 9f 0b d9 2c 35 28 13 66 19 be
821 * tag: c2 86 ce 4a 50 4a d0 aa 50 b3 76 5c 49 2a 3f 33
822 * sent: 17 03 03 00 34|00 00 00 00 00 00 00 01|f7 8a b2 8f 78 0e f6 d5 76 17 2e b5 6d 46 59 56 8b 46 9f 0b d9 2c 35 28 13 66 19 be|c2 86 ce 4a 50 4a d0 aa 50 b3 76 5c 49 2a 3f 33
823 * .............................................^^ buf points here
824 */
xwrite_encrypted_aesgcm(tls_state_t * tls,unsigned size,unsigned type)825 static void xwrite_encrypted_aesgcm(tls_state_t *tls, unsigned size, unsigned type)
826 {
827 #define COUNTER(v) (*(uint32_t*)(v + 12))
828
829 uint8_t aad[13 + 3] ALIGNED_long; /* +3 creates [16] buffer, simplifying GHASH() */
830 uint8_t nonce[12 + 4] ALIGNED_long; /* +4 creates space for AES block counter */
831 uint8_t scratch[AES_BLOCK_SIZE] ALIGNED_long; //[16]
832 uint8_t authtag[AES_BLOCK_SIZE] ALIGNED_long; //[16]
833 uint8_t *buf;
834 struct record_hdr *xhdr;
835 unsigned remaining;
836 unsigned cnt;
837 uint64_t t64;
838
839 buf = tls->outbuf + OUTBUF_PFX; /* see above for the byte it points to */
840 dump_hex("xwrite_encrypted_aesgcm plaintext:%s\n", buf, size);
841
842 xhdr = (void*)(buf - 8 - RECHDR_LEN);
843 xhdr->type = type; /* do it here so that "type" param no longer used */
844
845 aad[8] = type;
846 aad[9] = TLS_MAJ;
847 aad[10] = TLS_MIN;
848 aad[11] = size >> 8;
849 /* set aad[12], and clear aad[13..15] */
850 COUNTER(aad) = SWAP_LE32(size & 0xff);
851
852 memcpy(nonce, tls->client_write_IV, 4);
853 t64 = tls->write_seq64_be;
854 move_to_unaligned64(nonce + 4, t64);
855 move_to_unaligned64(aad, t64);
856 move_to_unaligned64(buf - 8, t64);
857 /* seq64 is not used later in this func, can increment here */
858 tls->write_seq64_be = SWAP_BE64(1 + SWAP_BE64(t64));
859
860 cnt = 1;
861 remaining = size;
862 while (remaining != 0) {
863 unsigned n;
864
865 cnt++;
866 COUNTER(nonce) = htonl(cnt); /* yes, first cnt here is 2 (!) */
867 aes_encrypt_one_block(&tls->aes_encrypt, nonce, scratch);
868 n = remaining > AES_BLOCK_SIZE ? AES_BLOCK_SIZE : remaining;
869 xorbuf(buf, scratch, n);
870 buf += n;
871 remaining -= n;
872 }
873
874 aesgcm_GHASH(tls->H, aad, /*sizeof(aad),*/ tls->outbuf + OUTBUF_PFX, size, authtag /*, sizeof(authtag)*/);
875 COUNTER(nonce) = htonl(1);
876 aes_encrypt_one_block(&tls->aes_encrypt, nonce, scratch);
877 xorbuf_aligned_AES_BLOCK_SIZE(authtag, scratch);
878
879 memcpy(buf, authtag, sizeof(authtag));
880
881 /* Write out */
882 xhdr = (void*)(tls->outbuf + OUTBUF_PFX - 8 - RECHDR_LEN);
883 size += 8 + sizeof(authtag);
884 /*xhdr->type = type; - already is */
885 xhdr->proto_maj = TLS_MAJ;
886 xhdr->proto_min = TLS_MIN;
887 xhdr->len16_hi = size >> 8;
888 xhdr->len16_lo = size & 0xff;
889 size += RECHDR_LEN;
890 dump_raw_out(">> %s\n", xhdr, size);
891 xwrite(tls->ofd, xhdr, size);
892 dbg("wrote %u bytes\n", size);
893 #undef COUNTER
894 }
895
xwrite_encrypted(tls_state_t * tls,unsigned size,unsigned type)896 static void xwrite_encrypted(tls_state_t *tls, unsigned size, unsigned type)
897 {
898 if (!(tls->flags & ENCRYPTION_AESGCM)) {
899 xwrite_encrypted_and_hmac_signed(tls, size, type);
900 return;
901 }
902 xwrite_encrypted_aesgcm(tls, size, type);
903 }
904
xwrite_handshake_record(tls_state_t * tls,unsigned size)905 static void xwrite_handshake_record(tls_state_t *tls, unsigned size)
906 {
907 uint8_t *buf = tls->outbuf + OUTBUF_PFX;
908 struct record_hdr *xhdr = (void*)(buf - RECHDR_LEN);
909
910 xhdr->type = RECORD_TYPE_HANDSHAKE;
911 xhdr->proto_maj = TLS_MAJ;
912 xhdr->proto_min = TLS_MIN;
913 xhdr->len16_hi = size >> 8;
914 xhdr->len16_lo = size & 0xff;
915 dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size);
916 xwrite(tls->ofd, xhdr, RECHDR_LEN + size);
917 dbg("wrote %u bytes\n", (int)RECHDR_LEN + size);
918 }
919
xwrite_and_update_handshake_hash(tls_state_t * tls,unsigned size)920 static void xwrite_and_update_handshake_hash(tls_state_t *tls, unsigned size)
921 {
922 if (!(tls->flags & ENCRYPT_ON_WRITE)) {
923 uint8_t *buf;
924
925 xwrite_handshake_record(tls, size);
926 /* Handshake hash does not include record headers */
927 buf = tls->outbuf + OUTBUF_PFX;
928 hash_handshake(tls, ">> hash:%s", buf, size);
929 return;
930 }
931 xwrite_encrypted(tls, size, RECORD_TYPE_HANDSHAKE);
932 }
933
tls_has_buffered_record(tls_state_t * tls)934 static int tls_has_buffered_record(tls_state_t *tls)
935 {
936 int buffered = tls->buffered_size;
937 struct record_hdr *xhdr;
938 int rec_size;
939
940 if (buffered < RECHDR_LEN)
941 return 0;
942 xhdr = (void*)(tls->inbuf + tls->ofs_to_buffered);
943 rec_size = RECHDR_LEN + (0x100 * xhdr->len16_hi + xhdr->len16_lo);
944 if (buffered < rec_size)
945 return 0;
946 return rec_size;
947 }
948
alert_text(int code)949 static const char *alert_text(int code)
950 {
951 switch (code) {
952 case 20: return "bad MAC";
953 case 50: return "decode error";
954 case 51: return "decrypt error";
955 case 40: return "handshake failure";
956 case 112: return "unrecognized name";
957 }
958 return itoa(code);
959 }
960
tls_aesgcm_decrypt(tls_state_t * tls,uint8_t * buf,int size)961 static void tls_aesgcm_decrypt(tls_state_t *tls, uint8_t *buf, int size)
962 {
963 #define COUNTER(v) (*(uint32_t*)(v + 12))
964
965 //uint8_t aad[13 + 3] ALIGNED_long; /* +3 creates [16] buffer, simplifying GHASH() */
966 uint8_t nonce[12 + 4] ALIGNED_long; /* +4 creates space for AES block counter */
967 uint8_t scratch[AES_BLOCK_SIZE] ALIGNED_long; //[16]
968 //uint8_t authtag[AES_BLOCK_SIZE] ALIGNED_long; //[16]
969 unsigned remaining;
970 unsigned cnt;
971
972 //memcpy(aad, buf, 8);
973 //aad[8] = type;
974 //aad[9] = TLS_MAJ;
975 //aad[10] = TLS_MIN;
976 //aad[11] = size >> 8;
977 ///* set aad[12], and clear aad[13..15] */
978 //COUNTER(aad) = SWAP_LE32(size & 0xff);
979
980 memcpy(nonce, tls->server_write_IV, 4);
981 memcpy(nonce + 4, buf, 8);
982
983 cnt = 1;
984 remaining = size;
985 while (remaining != 0) {
986 unsigned n;
987
988 cnt++;
989 COUNTER(nonce) = htonl(cnt); /* yes, first cnt here is 2 (!) */
990 aes_encrypt_one_block(&tls->aes_decrypt, nonce, scratch);
991 n = remaining > AES_BLOCK_SIZE ? AES_BLOCK_SIZE : remaining;
992 xorbuf3(buf, scratch, buf + 8, n);
993 buf += n;
994 remaining -= n;
995 }
996
997 //aesgcm_GHASH(tls->H, aad, tls->inbuf + RECHDR_LEN, size, authtag);
998 //COUNTER(nonce) = htonl(1);
999 //aes_encrypt_one_block(&tls->aes_encrypt, nonce, scratch);
1000 //xorbuf_aligned_AES_BLOCK_SIZE(authtag, scratch);
1001
1002 //memcmp(buf, authtag, sizeof(authtag)) || DIE("HASH DOES NOT MATCH!");
1003 #undef COUNTER
1004 }
1005
tls_xread_record(tls_state_t * tls,const char * expected)1006 static int tls_xread_record(tls_state_t *tls, const char *expected)
1007 {
1008 struct record_hdr *xhdr;
1009 int sz;
1010 int total;
1011 int target;
1012
1013 again:
1014 dbg("ofs_to_buffered:%u buffered_size:%u\n", tls->ofs_to_buffered, tls->buffered_size);
1015 total = tls->buffered_size;
1016 if (total != 0) {
1017 memmove(tls->inbuf, tls->inbuf + tls->ofs_to_buffered, total);
1018 //dbg("<< remaining at %d [%d] ", tls->ofs_to_buffered, total);
1019 //dump_raw_in("<< %s\n", tls->inbuf, total);
1020 }
1021 errno = 0;
1022 target = MAX_INBUF;
1023 for (;;) {
1024 int rem;
1025
1026 if (total >= RECHDR_LEN && target == MAX_INBUF) {
1027 xhdr = (void*)tls->inbuf;
1028 target = RECHDR_LEN + (0x100 * xhdr->len16_hi + xhdr->len16_lo);
1029
1030 if (target > MAX_INBUF /* malformed input (too long) */
1031 || xhdr->proto_maj != TLS_MAJ
1032 || xhdr->proto_min != TLS_MIN
1033 ) {
1034 sz = total < target ? total : target;
1035 bad_record_die(tls, expected, sz);
1036 }
1037 dbg("xhdr type:%d ver:%d.%d len:%d\n",
1038 xhdr->type, xhdr->proto_maj, xhdr->proto_min,
1039 0x100 * xhdr->len16_hi + xhdr->len16_lo
1040 );
1041 }
1042 /* if total >= target, we have a full packet (and possibly more)... */
1043 if (total - target >= 0)
1044 break;
1045 /* input buffer is grown only as needed */
1046 rem = tls->inbuf_size - total;
1047 if (rem == 0) {
1048 tls->inbuf_size += MAX_INBUF / 8;
1049 if (tls->inbuf_size > MAX_INBUF)
1050 tls->inbuf_size = MAX_INBUF;
1051 dbg("inbuf_size:%d\n", tls->inbuf_size);
1052 rem = tls->inbuf_size - total;
1053 tls->inbuf = xrealloc(tls->inbuf, tls->inbuf_size);
1054 }
1055 sz = safe_read(tls->ifd, tls->inbuf + total, rem);
1056 if (sz <= 0) {
1057 if (sz == 0 && total == 0) {
1058 /* "Abrupt" EOF, no TLS shutdown (seen from kernel.org) */
1059 dbg("EOF (without TLS shutdown) from peer\n");
1060 tls->buffered_size = 0;
1061 goto end;
1062 }
1063 bb_perror_msg_and_die("short read, have only %d", total);
1064 }
1065 dump_raw_in("<< %s\n", tls->inbuf + total, sz);
1066 total += sz;
1067 }
1068 tls->buffered_size = total - target;
1069 tls->ofs_to_buffered = target;
1070 //dbg("<< stashing at %d [%d] ", tls->ofs_to_buffered, tls->buffered_size);
1071 //dump_hex("<< %s\n", tls->inbuf + tls->ofs_to_buffered, tls->buffered_size);
1072
1073 sz = target - RECHDR_LEN;
1074
1075 /* Needs to be decrypted? */
1076 if (tls->min_encrypted_len_on_read != 0) {
1077 if (sz < (int)tls->min_encrypted_len_on_read)
1078 bb_error_msg_and_die("bad encrypted len:%u", sz);
1079
1080 if (tls->flags & ENCRYPTION_AESGCM) {
1081 /* AESGCM */
1082 uint8_t *p = tls->inbuf + RECHDR_LEN;
1083
1084 sz -= 8 + AES_BLOCK_SIZE; /* we will overwrite nonce, drop hash */
1085 tls_aesgcm_decrypt(tls, p, sz);
1086 dbg("encrypted size:%u\n", sz);
1087 } else
1088 if (tls->min_encrypted_len_on_read > TLS_MAC_SIZE(tls)) {
1089 /* AES+SHA */
1090 uint8_t *p = tls->inbuf + RECHDR_LEN;
1091 int padding_len;
1092
1093 if (sz & (AES_BLOCK_SIZE-1))
1094 bb_error_msg_and_die("bad encrypted len:%u", sz);
1095
1096 /* Decrypt content+MAC+padding, moving it over IV in the process */
1097 sz -= AES_BLOCK_SIZE; /* we will overwrite IV now */
1098 aes_cbc_decrypt(
1099 &tls->aes_decrypt, /* selects 128/256 */
1100 p, /* IV */
1101 p + AES_BLOCK_SIZE, sz, /* ciphertext */
1102 p /* plaintext */
1103 );
1104 padding_len = p[sz - 1];
1105 dbg("encrypted size:%u type:0x%02x padding_length:0x%02x\n", sz, p[0], padding_len);
1106 padding_len++;
1107 sz -= TLS_MAC_SIZE(tls) + padding_len; /* drop MAC and padding */
1108 } else {
1109 /* if nonzero, then it's TLS_RSA_WITH_NULL_SHA256: drop MAC */
1110 /* else: no encryption yet on input, subtract zero = NOP */
1111 sz -= tls->min_encrypted_len_on_read;
1112 }
1113 }
1114 if (sz < 0)
1115 bb_simple_error_msg_and_die("encrypted data too short");
1116
1117 //dump_hex("<< %s\n", tls->inbuf, RECHDR_LEN + sz);
1118
1119 xhdr = (void*)tls->inbuf;
1120 if (xhdr->type == RECORD_TYPE_ALERT && sz >= 2) {
1121 uint8_t *p = tls->inbuf + RECHDR_LEN;
1122 dbg("ALERT size:%d level:%d description:%d\n", sz, p[0], p[1]);
1123 if (p[0] == 2) { /* fatal */
1124 bb_error_msg_and_die("TLS %s from peer (alert code %d): %s",
1125 "error",
1126 p[1], alert_text(p[1])
1127 );
1128 }
1129 if (p[0] == 1) { /* warning */
1130 if (p[1] == 0) { /* "close_notify" warning: it's EOF */
1131 dbg("EOF (TLS encoded) from peer\n");
1132 sz = 0;
1133 goto end;
1134 }
1135 //This possibly needs to be cached and shown only if
1136 //a fatal alert follows
1137 // bb_error_msg("TLS %s from peer (alert code %d): %s",
1138 // "warning",
1139 // p[1], alert_text(p[1])
1140 // );
1141 /* discard it, get next record */
1142 goto again;
1143 }
1144 /* p[0] not 1 or 2: not defined in protocol */
1145 sz = 0;
1146 goto end;
1147 }
1148
1149 /* RFC 5246 is not saying it explicitly, but sha256 hash
1150 * in our FINISHED record must include data of incoming packets too!
1151 */
1152 if (tls->inbuf[0] == RECORD_TYPE_HANDSHAKE
1153 /* HANDSHAKE HASH: */
1154 // && do_we_know_which_hash_to_use /* server_hello() might not know it in the future! */
1155 ) {
1156 hash_handshake(tls, "<< hash:%s", tls->inbuf + RECHDR_LEN, sz);
1157 }
1158 end:
1159 dbg("got block len:%u\n", sz);
1160 return sz;
1161 }
1162
binary_to_pstm(pstm_int * pstm_n,uint8_t * bin_ptr,unsigned len)1163 static void binary_to_pstm(pstm_int *pstm_n, uint8_t *bin_ptr, unsigned len)
1164 {
1165 pstm_init_for_read_unsigned_bin(/*pool:*/ NULL, pstm_n, len);
1166 pstm_read_unsigned_bin(pstm_n, bin_ptr, len);
1167 //return bin_ptr + len;
1168 }
1169
1170 /*
1171 * DER parsing routines
1172 */
get_der_len(uint8_t ** bodyp,uint8_t * der,uint8_t * end)1173 static unsigned get_der_len(uint8_t **bodyp, uint8_t *der, uint8_t *end)
1174 {
1175 unsigned len, len1;
1176
1177 if (end - der < 2)
1178 xfunc_die();
1179 // if ((der[0] & 0x1f) == 0x1f) /* not single-byte item code? */
1180 // xfunc_die();
1181
1182 len = der[1]; /* maybe it's short len */
1183 if (len >= 0x80) {
1184 /* no, it's long */
1185
1186 if (len == 0x80 || end - der < (int)(len - 0x7e)) {
1187 /* 0x80 is "0 bytes of len", invalid DER: must use short len if can */
1188 /* need 3 or 4 bytes for 81, 82 */
1189 xfunc_die();
1190 }
1191
1192 len1 = der[2]; /* if (len == 0x81) it's "ii 81 xx", fetch xx */
1193 if (len > 0x82) {
1194 /* >0x82 is "3+ bytes of len", should not happen realistically */
1195 xfunc_die();
1196 }
1197 if (len == 0x82) { /* it's "ii 82 xx yy" */
1198 len1 = 0x100*len1 + der[3];
1199 der += 1; /* skip [yy] */
1200 }
1201 der += 1; /* skip [xx] */
1202 len = len1;
1203 // if (len < 0x80)
1204 // xfunc_die(); /* invalid DER: must use short len if can */
1205 }
1206 der += 2; /* skip [code]+[1byte] */
1207
1208 if (end - der < (int)len)
1209 xfunc_die();
1210 *bodyp = der;
1211
1212 return len;
1213 }
1214
enter_der_item(uint8_t * der,uint8_t ** endp)1215 static uint8_t *enter_der_item(uint8_t *der, uint8_t **endp)
1216 {
1217 uint8_t *new_der;
1218 unsigned len = get_der_len(&new_der, der, *endp);
1219 dbg_der("entered der @%p:0x%02x len:%u inner_byte @%p:0x%02x\n", der, der[0], len, new_der, new_der[0]);
1220 /* Move "end" position to cover only this item */
1221 *endp = new_der + len;
1222 return new_der;
1223 }
1224
skip_der_item(uint8_t * der,uint8_t * end)1225 static uint8_t *skip_der_item(uint8_t *der, uint8_t *end)
1226 {
1227 uint8_t *new_der;
1228 unsigned len = get_der_len(&new_der, der, end);
1229 /* Skip body */
1230 new_der += len;
1231 dbg_der("skipped der 0x%02x, next byte 0x%02x\n", der[0], new_der[0]);
1232 return new_der;
1233 }
1234
der_binary_to_pstm(pstm_int * pstm_n,uint8_t * der,uint8_t * end)1235 static void der_binary_to_pstm(pstm_int *pstm_n, uint8_t *der, uint8_t *end)
1236 {
1237 uint8_t *bin_ptr;
1238 unsigned len = get_der_len(&bin_ptr, der, end);
1239
1240 dbg_der("binary bytes:%u, first:0x%02x\n", len, bin_ptr[0]);
1241 binary_to_pstm(pstm_n, bin_ptr, len);
1242 }
1243
find_key_in_der_cert(tls_state_t * tls,uint8_t * der,int len)1244 static void find_key_in_der_cert(tls_state_t *tls, uint8_t *der, int len)
1245 {
1246 /* Certificate is a DER-encoded data structure. Each DER element has a length,
1247 * which makes it easy to skip over large compound elements of any complexity
1248 * without parsing them. Example: partial decode of kernel.org certificate:
1249 * SEQ 0x05ac/1452 bytes (Certificate): 308205ac
1250 * SEQ 0x0494/1172 bytes (tbsCertificate): 30820494
1251 * [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0] 3 bytes: a003
1252 * INTEGER (version): 0201 02
1253 * INTEGER 0x11 bytes (serialNumber): 0211 00 9f85bf664b0cddafca508679501b2be4
1254 * //^^^^^^note: matrixSSL also allows [ASN_CONTEXT_SPECIFIC | ASN_PRIMITIVE | 2] = 0x82 type
1255 * SEQ 0x0d bytes (signatureAlgo): 300d
1256 * OID 9 bytes: 0609 2a864886f70d01010b (OID_SHA256_RSA_SIG 42.134.72.134.247.13.1.1.11)
1257 * NULL: 0500
1258 * SEQ 0x5f bytes (issuer): 305f
1259 * SET 11 bytes: 310b
1260 * SEQ 9 bytes: 3009
1261 * OID 3 bytes: 0603 550406
1262 * Printable string "FR": 1302 4652
1263 * SET 14 bytes: 310e
1264 * SEQ 12 bytes: 300c
1265 * OID 3 bytes: 0603 550408
1266 * Printable string "Paris": 1305 5061726973
1267 * SET 14 bytes: 310e
1268 * SEQ 12 bytes: 300c
1269 * OID 3 bytes: 0603 550407
1270 * Printable string "Paris": 1305 5061726973
1271 * SET 14 bytes: 310e
1272 * SEQ 12 bytes: 300c
1273 * OID 3 bytes: 0603 55040a
1274 * Printable string "Gandi": 1305 47616e6469
1275 * SET 32 bytes: 3120
1276 * SEQ 30 bytes: 301e
1277 * OID 3 bytes: 0603 550403
1278 * Printable string "Gandi Standard SSL CA 2": 1317 47616e6469205374616e646172642053534c2043412032
1279 * SEQ 30 bytes (validity): 301e
1280 * TIME "161011000000Z": 170d 3136313031313030303030305a
1281 * TIME "191011235959Z": 170d 3139313031313233353935395a
1282 * SEQ 0x5b/91 bytes (subject): 305b //I did not decode this
1283 * 3121301f060355040b1318446f6d61696e20436f
1284 * 6e74726f6c2056616c6964617465643121301f06
1285 * 0355040b1318506f73697469766553534c204d75
1286 * 6c74692d446f6d61696e31133011060355040313
1287 * 0a6b65726e656c2e6f7267
1288 * SEQ 0x01a2/418 bytes (subjectPublicKeyInfo): 308201a2
1289 * SEQ 13 bytes (algorithm): 300d
1290 * OID 9 bytes: 0609 2a864886f70d010101 (OID_RSA_KEY_ALG 42.134.72.134.247.13.1.1.1)
1291 * NULL: 0500
1292 * BITSTRING 0x018f/399 bytes (publicKey): 0382018f
1293 * ????: 00
1294 * //after the zero byte, it appears key itself uses DER encoding:
1295 * SEQ 0x018a/394 bytes: 3082018a
1296 * INTEGER 0x0181/385 bytes (modulus): 02820181
1297 * 00b1ab2fc727a3bef76780c9349bf3
1298 * ...24 more blocks of 15 bytes each...
1299 * 90e895291c6bc8693b65
1300 * INTEGER 3 bytes (exponent): 0203 010001
1301 * [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0x3] 0x01e5 bytes (X509v3 extensions): a38201e5
1302 * SEQ 0x01e1 bytes: 308201e1
1303 * ...
1304 * Certificate is a sequence of three elements:
1305 * tbsCertificate (SEQ)
1306 * signatureAlgorithm (AlgorithmIdentifier)
1307 * signatureValue (BIT STRING)
1308 *
1309 * In turn, tbsCertificate is a sequence of:
1310 * version
1311 * serialNumber
1312 * signatureAlgo (AlgorithmIdentifier)
1313 * issuer (Name, has complex structure)
1314 * validity (Validity, SEQ of two Times)
1315 * subject (Name)
1316 * subjectPublicKeyInfo (SEQ)
1317 * ...
1318 *
1319 * subjectPublicKeyInfo is a sequence of:
1320 * algorithm (AlgorithmIdentifier)
1321 * publicKey (BIT STRING)
1322 *
1323 * We need Certificate.tbsCertificate.subjectPublicKeyInfo.publicKey
1324 *
1325 * Example of an ECDSA key:
1326 * SEQ 0x59 bytes (subjectPublicKeyInfo): 3059
1327 * SEQ 0x13 bytes (algorithm): 3013
1328 * OID 7 bytes: 0607 2a8648ce3d0201 (OID_ECDSA_KEY_ALG 42.134.72.206.61.2.1)
1329 * OID 8 bytes: 0608 2a8648ce3d030107 (OID_EC_prime256v1 42.134.72.206.61.3.1.7)
1330 * BITSTRING 0x42 bytes (publicKey): 0342
1331 * 0004 53af f65e 50cc 7959 7e29 0171 c75c
1332 * 7335 e07d f45b 9750 b797 3a38 aebb 2ac6
1333 * 8329 2748 e77e 41cb d482 2ce6 05ec a058
1334 * f3ab d561 2f4c d845 9ad3 7252 e3de bd3b
1335 * 9012
1336 */
1337 uint8_t *end = der + len;
1338
1339 /* enter "Certificate" item: [der, end) will be only Cert */
1340 der = enter_der_item(der, &end);
1341
1342 /* enter "tbsCertificate" item: [der, end) will be only tbsCert */
1343 der = enter_der_item(der, &end);
1344
1345 /*
1346 * Skip version field only if it is present. For a v1 certificate, the
1347 * version field won't be present since v1 is the default value for the
1348 * version field and fields with default values should be omitted (see
1349 * RFC 5280 sections 4.1 and 4.1.2.1). If the version field is present
1350 * it will have a tag class of 2 (context-specific), bit 6 as 1
1351 * (constructed), and a tag number of 0 (see ITU-T X.690 sections 8.1.2
1352 * and 8.14).
1353 */
1354 /* bits 7-6: 10 */
1355 /* bit 5: 1 */
1356 /* bits 4-0: 00000 */
1357 if (der[0] == 0xa0)
1358 der = skip_der_item(der, end); /* version */
1359
1360 /* skip up to subjectPublicKeyInfo */
1361 der = skip_der_item(der, end); /* serialNumber */
1362 der = skip_der_item(der, end); /* signatureAlgo */
1363 der = skip_der_item(der, end); /* issuer */
1364 der = skip_der_item(der, end); /* validity */
1365 der = skip_der_item(der, end); /* subject */
1366
1367 /* enter subjectPublicKeyInfo */
1368 der = enter_der_item(der, &end);
1369 { /* check subjectPublicKeyInfo.algorithm */
1370 static const uint8_t OID_RSA_KEY_ALG[] ALIGN1 = {
1371 0x30,0x0d, // SEQ 13 bytes
1372 0x06,0x09, 0x2a,0x86,0x48,0x86,0xf7,0x0d,0x01,0x01,0x01, //OID_RSA_KEY_ALG 42.134.72.134.247.13.1.1.1
1373 //0x05,0x00, // NULL
1374 };
1375 static const uint8_t OID_ECDSA_KEY_ALG[] ALIGN1 = {
1376 0x30,0x13, // SEQ 0x13 bytes
1377 0x06,0x07, 0x2a,0x86,0x48,0xce,0x3d,0x02,0x01, //OID_ECDSA_KEY_ALG 42.134.72.206.61.2.1
1378 //allow any curve code for now...
1379 // 0x06,0x08, 0x2a,0x86,0x48,0xce,0x3d,0x03,0x01,0x07, //OID_EC_prime256v1 42.134.72.206.61.3.1.7
1380 //RFC 3279:
1381 //42.134.72.206.61.3 is ellipticCurve
1382 //42.134.72.206.61.3.0 is c-TwoCurve
1383 //42.134.72.206.61.3.1 is primeCurve
1384 //42.134.72.206.61.3.1.7 is curve_secp256r1
1385 };
1386 if (memcmp(der, OID_RSA_KEY_ALG, sizeof(OID_RSA_KEY_ALG)) == 0) {
1387 dbg("RSA key\n");
1388 tls->flags |= GOT_CERT_RSA_KEY_ALG;
1389 } else
1390 if (memcmp(der, OID_ECDSA_KEY_ALG, sizeof(OID_ECDSA_KEY_ALG)) == 0) {
1391 dbg("ECDSA key\n");
1392 //UNUSED: tls->flags |= GOT_CERT_ECDSA_KEY_ALG;
1393 } else
1394 bb_simple_error_msg_and_die("not RSA or ECDSA cert");
1395 }
1396
1397 if (tls->flags & GOT_CERT_RSA_KEY_ALG) {
1398 /* parse RSA key: */
1399 //based on getAsnRsaPubKey(), pkcs1ParsePrivBin() is also of note
1400 /* skip subjectPublicKeyInfo.algorithm */
1401 der = skip_der_item(der, end);
1402 /* enter subjectPublicKeyInfo.publicKey */
1403 //die_if_not_this_der_type(der, end, 0x03); /* must be BITSTRING */
1404 der = enter_der_item(der, &end);
1405
1406 dbg("key bytes:%u, first:0x%02x\n", (int)(end - der), der[0]);
1407 if (end - der < 14)
1408 xfunc_die();
1409 /* example format:
1410 * ignore bits: 00
1411 * SEQ 0x018a/394 bytes: 3082018a
1412 * INTEGER 0x0181/385 bytes (modulus): 02820181 XX...XXX
1413 * INTEGER 3 bytes (exponent): 0203 010001
1414 */
1415 if (*der != 0) /* "ignore bits", should be 0 */
1416 xfunc_die();
1417 der++;
1418 der = enter_der_item(der, &end); /* enter SEQ */
1419 /* memset(tls->hsd->server_rsa_pub_key, 0, sizeof(tls->hsd->server_rsa_pub_key)); - already is */
1420 der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.N, der, end); /* modulus */
1421 der = skip_der_item(der, end);
1422 der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.e, der, end); /* exponent */
1423 tls->hsd->server_rsa_pub_key.size = pstm_unsigned_bin_size(&tls->hsd->server_rsa_pub_key.N);
1424 dbg("server_rsa_pub_key.size:%d\n", tls->hsd->server_rsa_pub_key.size);
1425 }
1426 /* else: ECDSA key. It is not used for generating encryption keys,
1427 * it is used only to sign the EC public key (which comes in ServerKey message).
1428 * Since we do not verify cert validity, verifying signature on EC public key
1429 * wouldn't add any security. Thus, we do nothing here.
1430 */
1431 }
1432
1433 /*
1434 * TLS Handshake routines
1435 */
tls_xread_handshake_block(tls_state_t * tls,int min_len)1436 static int tls_xread_handshake_block(tls_state_t *tls, int min_len)
1437 {
1438 struct record_hdr *xhdr;
1439 int len = tls_xread_record(tls, "handshake record");
1440
1441 xhdr = (void*)tls->inbuf;
1442 if (len < min_len
1443 || xhdr->type != RECORD_TYPE_HANDSHAKE
1444 ) {
1445 bad_record_die(tls, "handshake record", len);
1446 }
1447 dbg("got HANDSHAKE\n");
1448 return len;
1449 }
1450
fill_handshake_record_hdr(void * buf,unsigned type,unsigned len)1451 static ALWAYS_INLINE void fill_handshake_record_hdr(void *buf, unsigned type, unsigned len)
1452 {
1453 struct handshake_hdr {
1454 uint8_t type;
1455 uint8_t len24_hi, len24_mid, len24_lo;
1456 } *h = buf;
1457
1458 len -= 4;
1459 h->type = type;
1460 h->len24_hi = len >> 16;
1461 h->len24_mid = len >> 8;
1462 h->len24_lo = len & 0xff;
1463 }
1464
send_client_hello_and_alloc_hsd(tls_state_t * tls,const char * sni)1465 static void send_client_hello_and_alloc_hsd(tls_state_t *tls, const char *sni)
1466 {
1467 #define NUM_CIPHERS (0 \
1468 + 4 * ENABLE_FEATURE_TLS_SHA1 \
1469 + ALLOW_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 \
1470 + ALLOW_ECDHE_RSA_WITH_AES_128_CBC_SHA256 \
1471 + ALLOW_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 \
1472 + ALLOW_ECDHE_RSA_WITH_AES_128_GCM_SHA256 \
1473 + 2 * ENABLE_FEATURE_TLS_SHA1 \
1474 + ALLOW_RSA_WITH_AES_128_CBC_SHA256 \
1475 + ALLOW_RSA_WITH_AES_256_CBC_SHA256 \
1476 + ALLOW_RSA_WITH_AES_128_GCM_SHA256 \
1477 + ALLOW_RSA_NULL_SHA256 \
1478 )
1479 static const uint8_t ciphers[] = {
1480 0x00,2 * (1 + NUM_CIPHERS), //len16_be
1481 0x00,0xFF, //not a cipher - TLS_EMPTY_RENEGOTIATION_INFO_SCSV
1482 /* ^^^^^^ RFC 5746 Renegotiation Indication Extension - some servers will refuse to work with us otherwise */
1483 #if ENABLE_FEATURE_TLS_SHA1
1484 0xC0,0x09, // 1 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA - ok: wget https://is.gd/
1485 0xC0,0x0A, // 2 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA - ok: wget https://is.gd/
1486 0xC0,0x13, // 3 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-SHA
1487 0xC0,0x14, // 4 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA - ok: openssl s_server ... -cipher ECDHE-RSA-AES256-SHA (might fail with older openssl)
1488 // 0xC0,0x18, // TLS_ECDH_anon_WITH_AES_128_CBC_SHA
1489 // 0xC0,0x19, // TLS_ECDH_anon_WITH_AES_256_CBC_SHA
1490 #endif
1491 #if ALLOW_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
1492 0xC0,0x23, // 5 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 - ok: wget https://is.gd/
1493 #endif
1494 // 0xC0,0x24, // TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
1495 #if ALLOW_ECDHE_RSA_WITH_AES_128_CBC_SHA256
1496 0xC0,0x27, // 6 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-SHA256
1497 #endif
1498 // 0xC0,0x28, // TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
1499 #if ALLOW_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
1500 0xC0,0x2B, // 7 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 - ok: wget https://is.gd/
1501 #endif
1502 // 0xC0,0x2C, // TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 - wget https://is.gd/: "TLS error from peer (alert code 20): bad MAC"
1503 //TODO: GCM_SHA384 ciphers can be supported, only need sha384-based PRF?
1504 #if ALLOW_ECDHE_RSA_WITH_AES_128_GCM_SHA256
1505 0xC0,0x2F, // 8 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-GCM-SHA256
1506 #endif
1507 // 0xC0,0x30, // TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 - openssl s_server ... -cipher ECDHE-RSA-AES256-GCM-SHA384: "decryption failed or bad record mac"
1508 //possibly these too:
1509 #if ENABLE_FEATURE_TLS_SHA1
1510 // 0xC0,0x35, // TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA
1511 // 0xC0,0x36, // TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA
1512 #endif
1513 // 0xC0,0x37, // TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256
1514 // 0xC0,0x38, // TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
1515 #if ENABLE_FEATURE_TLS_SHA1
1516 0x00,0x2F, // 9 TLS_RSA_WITH_AES_128_CBC_SHA - ok: openssl s_server ... -cipher AES128-SHA
1517 0x00,0x35, //10 TLS_RSA_WITH_AES_256_CBC_SHA - ok: openssl s_server ... -cipher AES256-SHA
1518 #endif
1519 #if ALLOW_RSA_WITH_AES_128_CBC_SHA256
1520 0x00,0x3C, //11 TLS_RSA_WITH_AES_128_CBC_SHA256 - ok: openssl s_server ... -cipher AES128-SHA256
1521 #endif
1522 #if ALLOW_RSA_WITH_AES_256_CBC_SHA256
1523 0x00,0x3D, //12 TLS_RSA_WITH_AES_256_CBC_SHA256 - ok: openssl s_server ... -cipher AES256-SHA256
1524 #endif
1525 #if ALLOW_RSA_WITH_AES_128_GCM_SHA256
1526 0x00,0x9C, //13 TLS_RSA_WITH_AES_128_GCM_SHA256 - ok: openssl s_server ... -cipher AES128-GCM-SHA256
1527 #endif
1528 // 0x00,0x9D, // TLS_RSA_WITH_AES_256_GCM_SHA384 - openssl s_server ... -cipher AES256-GCM-SHA384: "decryption failed or bad record mac"
1529 #if ALLOW_RSA_NULL_SHA256
1530 0x00,0x3B, // TLS_RSA_WITH_NULL_SHA256
1531 #endif
1532 0x01,0x00, //not a cipher - comprtypes_len, comprtype
1533 };
1534 static const uint8_t supported_groups[] = {
1535 0x00,0x0a, //extension_type: "supported_groups"
1536 0x00,2 * (1 + ALLOW_CURVE_P256 + ALLOW_CURVE_X25519), //ext len
1537 0x00,2 * (0 + ALLOW_CURVE_P256 + ALLOW_CURVE_X25519), //list len
1538 #if ALLOW_CURVE_P256
1539 0x00,0x17, //curve_secp256r1 (aka P256, aka prime256v1)
1540 #endif
1541 //0x00,0x18, //curve_secp384r1
1542 //0x00,0x19, //curve_secp521r1
1543 #if ALLOW_CURVE_X25519
1544 0x00,0x1d, //curve_x25519 (RFC 7748)
1545 #endif
1546 //0x00,0x1e, //curve_x448 (RFC 7748)
1547 };
1548 //static const uint8_t signature_algorithms[] = {
1549 // 000d
1550 // 0020
1551 // 001e
1552 // 0601 0602 0603 0501 0502 0503 0401 0402 0403 0301 0302 0303 0201 0202 0203
1553 //};
1554
1555 struct client_hello {
1556 uint8_t type;
1557 uint8_t len24_hi, len24_mid, len24_lo;
1558 uint8_t proto_maj, proto_min;
1559 uint8_t rand32[32];
1560 uint8_t session_id_len;
1561 /* uint8_t session_id[]; */
1562 uint8_t cipherid_len16_hi, cipherid_len16_lo;
1563 uint8_t cipherid[2 * (1 + NUM_CIPHERS)]; /* actually variable */
1564 uint8_t comprtypes_len;
1565 uint8_t comprtypes[1]; /* actually variable */
1566 /* Extensions (SNI shown):
1567 * hi,lo // len of all extensions
1568 * 00,00 // extension_type: "Server Name"
1569 * 00,0e // list len (there can be more than one SNI)
1570 * 00,0c // len of 1st Server Name Indication
1571 * 00 // name type: host_name
1572 * 00,09 // name len
1573 * "localhost" // name
1574 */
1575 // GNU Wget 1.18 to cdn.kernel.org sends these extensions:
1576 // 0055
1577 // 0005 0005 0100000000 - status_request
1578 // 0000 0013 0011 00 000e 63646e 2e 6b65726e656c 2e 6f7267 - server_name
1579 // ff01 0001 00 - renegotiation_info
1580 // 0023 0000 - session_ticket
1581 // 000a 0008 0006001700180019 - supported_groups
1582 // 000b 0002 0100 - ec_point_formats
1583 // 000d 0016 0014 0401 0403 0501 0503 0601 0603 0301 0303 0201 0203 - signature_algorithms
1584 // wolfssl library sends this option, RFC 7627 (closes a security weakness, some servers may require it. TODO?):
1585 // 0017 0000 - extended master secret
1586 };
1587 struct client_hello *record;
1588 uint8_t *ptr;
1589 int len;
1590 int ext_len;
1591 int sni_len = sni ? strnlen(sni, 127 - 5) : 0;
1592
1593 ext_len = 0;
1594 /* is.gd responds with "handshake failure" to our hello if there's no supported_groups element */
1595 ext_len += sizeof(supported_groups);
1596 if (sni_len)
1597 ext_len += 9 + sni_len;
1598
1599 /* +2 is for "len of all extensions" 2-byte field */
1600 len = sizeof(*record) + 2 + ext_len;
1601 record = tls_get_zeroed_outbuf(tls, len);
1602
1603 fill_handshake_record_hdr(record, HANDSHAKE_CLIENT_HELLO, len);
1604 record->proto_maj = TLS_MAJ; /* the "requested" version of the protocol, */
1605 record->proto_min = TLS_MIN; /* can be higher than one in record headers */
1606 tls_get_random(record->rand32, sizeof(record->rand32));
1607 if (TLS_DEBUG_FIXED_SECRETS)
1608 memset(record->rand32, 0x11, sizeof(record->rand32));
1609 /* record->session_id_len = 0; - already is */
1610
1611 BUILD_BUG_ON(sizeof(ciphers) != 2 * (1 + 1 + NUM_CIPHERS + 1));
1612 memcpy(&record->cipherid_len16_hi, ciphers, sizeof(ciphers));
1613
1614 ptr = (void*)(record + 1);
1615 *ptr++ = ext_len >> 8;
1616 *ptr++ = ext_len;
1617 if (sni_len) {
1618 //ptr[0] = 0; //
1619 //ptr[1] = 0; //extension_type
1620 //ptr[2] = 0; //
1621 ptr[3] = sni_len + 5; //list len
1622 //ptr[4] = 0; //
1623 ptr[5] = sni_len + 3; //len of 1st SNI
1624 //ptr[6] = 0; //name type
1625 //ptr[7] = 0; //
1626 ptr[8] = sni_len; //name len
1627 ptr = mempcpy(&ptr[9], sni, sni_len);
1628 }
1629 memcpy(ptr, supported_groups, sizeof(supported_groups));
1630
1631 tls->hsd = xzalloc(sizeof(*tls->hsd));
1632 /* HANDSHAKE HASH: ^^^ + len if need to save saved_client_hello */
1633 memcpy(tls->hsd->client_and_server_rand32, record->rand32, sizeof(record->rand32));
1634 /* HANDSHAKE HASH:
1635 tls->hsd->saved_client_hello_size = len;
1636 memcpy(tls->hsd->saved_client_hello, record, len);
1637 */
1638 dbg(">> CLIENT_HELLO\n");
1639 /* Can hash immediately only if we know which MAC hash to use.
1640 * So far we do know: it's sha256:
1641 */
1642 sha256_begin(&tls->hsd->handshake_hash_ctx);
1643 xwrite_and_update_handshake_hash(tls, len);
1644 /* if this would become infeasible: save tls->hsd->saved_client_hello,
1645 * use "xwrite_handshake_record(tls, len)" here,
1646 * and hash saved_client_hello later.
1647 */
1648 }
1649
get_server_hello(tls_state_t * tls)1650 static void get_server_hello(tls_state_t *tls)
1651 {
1652 struct server_hello {
1653 struct record_hdr xhdr;
1654 uint8_t type;
1655 uint8_t len24_hi, len24_mid, len24_lo;
1656 uint8_t proto_maj, proto_min;
1657 uint8_t rand32[32]; /* first 4 bytes are unix time in BE format */
1658 uint8_t session_id_len;
1659 uint8_t session_id[32];
1660 uint8_t cipherid_hi, cipherid_lo;
1661 uint8_t comprtype;
1662 /* extensions may follow, but only those which client offered in its Hello */
1663 };
1664
1665 struct server_hello *hp;
1666 uint8_t *cipherid;
1667 uint8_t cipherid1;
1668 int len, len24;
1669
1670 len = tls_xread_handshake_block(tls, 74 - 32);
1671
1672 hp = (void*)tls->inbuf;
1673 // 74 bytes:
1674 // 02 000046 03|03 58|78|cf|c1 50|a5|49|ee|7e|29|48|71|fe|97|fa|e8|2d|19|87|72|90|84|9d|37|a3|f0|cb|6f|5f|e3|3c|2f |20 |d8|1a|78|96|52|d6|91|01|24|b3|d6|5b|b7|d0|6c|b3|e1|78|4e|3c|95|de|74|a0|ba|eb|a7|3a|ff|bd|a2|bf |00|9c |00|
1675 //SvHl len=70 maj.min unixtime^^^ 28randbytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^ slen sid32bytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ cipSel comprSel
1676 if (hp->type != HANDSHAKE_SERVER_HELLO
1677 || hp->len24_hi != 0
1678 || hp->len24_mid != 0
1679 /* hp->len24_lo checked later */
1680 || hp->proto_maj != TLS_MAJ
1681 || hp->proto_min != TLS_MIN
1682 ) {
1683 bad_record_die(tls, "'server hello'", len);
1684 }
1685
1686 cipherid = &hp->cipherid_hi;
1687 len24 = hp->len24_lo;
1688 if (hp->session_id_len != 32) {
1689 if (hp->session_id_len != 0)
1690 bad_record_die(tls, "'server hello'", len);
1691
1692 // session_id_len == 0: no session id
1693 // "The server
1694 // may return an empty session_id to indicate that the session will
1695 // not be cached and therefore cannot be resumed."
1696 cipherid -= 32;
1697 len24 += 32; /* what len would be if session id would be present */
1698 }
1699
1700 if (len24 < 70)
1701 bad_record_die(tls, "'server hello'", len);
1702 dbg("<< SERVER_HELLO\n");
1703
1704 memcpy(tls->hsd->client_and_server_rand32 + 32, hp->rand32, sizeof(hp->rand32));
1705
1706 /* Set up encryption params based on selected cipher */
1707 #if 0
1708 0xC0,0x09, // 1 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA - ok: wget https://is.gd/
1709 0xC0,0x0A, // 2 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA - ok: wget https://is.gd/
1710 0xC0,0x13, // 3 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-SHA
1711 0xC0,0x14, // 4 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA - ok: openssl s_server ... -cipher ECDHE-RSA-AES256-SHA (might fail with older openssl)
1712 // 0xC0,0x18, // TLS_ECDH_anon_WITH_AES_128_CBC_SHA
1713 // 0xC0,0x19, // TLS_ECDH_anon_WITH_AES_256_CBC_SHA
1714 0xC0,0x23, // 5 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 - ok: wget https://is.gd/
1715 // 0xC0,0x24, // TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
1716 0xC0,0x27, // 6 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-SHA256
1717 // 0xC0,0x28, // TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
1718 0xC0,0x2B, // 7 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 - ok: wget https://is.gd/
1719 // 0xC0,0x2C, // TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 - wget https://is.gd/: "TLS error from peer (alert code 20): bad MAC"
1720 0xC0,0x2F, // 8 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-GCM-SHA256
1721 // 0xC0,0x30, // TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 - openssl s_server ... -cipher ECDHE-RSA-AES256-GCM-SHA384: "decryption failed or bad record mac"
1722 //possibly these too:
1723 // 0xC0,0x35, // TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA
1724 // 0xC0,0x36, // TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA
1725 // 0xC0,0x37, // TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256
1726 // 0xC0,0x38, // TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
1727 0x00,0x2F, // 9 TLS_RSA_WITH_AES_128_CBC_SHA - ok: openssl s_server ... -cipher AES128-SHA
1728 0x00,0x35, //10 TLS_RSA_WITH_AES_256_CBC_SHA - ok: openssl s_server ... -cipher AES256-SHA
1729 0x00,0x3C, //11 TLS_RSA_WITH_AES_128_CBC_SHA256 - ok: openssl s_server ... -cipher AES128-SHA256
1730 0x00,0x3D, //12 TLS_RSA_WITH_AES_256_CBC_SHA256 - ok: openssl s_server ... -cipher AES256-SHA256
1731 0x00,0x9C, //13 TLS_RSA_WITH_AES_128_GCM_SHA256 - ok: openssl s_server ... -cipher AES128-GCM-SHA256
1732 // 0x00,0x9D, // TLS_RSA_WITH_AES_256_GCM_SHA384 - openssl s_server ... -cipher AES256-GCM-SHA384: "decryption failed or bad record mac"
1733 0x00,0x3B, // TLS_RSA_WITH_NULL_SHA256
1734 #endif
1735 cipherid1 = cipherid[1];
1736 tls->cipher_id = 0x100 * cipherid[0] + cipherid1;
1737 tls->key_size = AES256_KEYSIZE;
1738 tls->MAC_size = SHA256_OUTSIZE;
1739 /*tls->IV_size = 0; - already is */
1740 if (cipherid[0] == 0xC0) {
1741 /* All C0xx are ECDHE */
1742 tls->flags |= NEED_EC_KEY;
1743 if (cipherid1 & 1) {
1744 /* Odd numbered C0xx use AES128 (even ones use AES256) */
1745 tls->key_size = AES128_KEYSIZE;
1746 }
1747 if (ENABLE_FEATURE_TLS_SHA1 && cipherid1 <= 0x19) {
1748 tls->MAC_size = SHA1_OUTSIZE;
1749 } else
1750 if (cipherid1 >= 0x2B && cipherid1 <= 0x30) {
1751 /* C02B,2C,2F,30 are AES-GCM */
1752 tls->flags |= ENCRYPTION_AESGCM;
1753 tls->MAC_size = 0;
1754 tls->IV_size = 4;
1755 }
1756 } else {
1757 /* All 00xx are RSA */
1758 if ((ENABLE_FEATURE_TLS_SHA1 && cipherid1 == 0x2F)
1759 || cipherid1 == 0x3C
1760 || cipherid1 == 0x9C
1761 ) {
1762 tls->key_size = AES128_KEYSIZE;
1763 }
1764 if (ENABLE_FEATURE_TLS_SHA1 && cipherid1 <= 0x35) {
1765 tls->MAC_size = SHA1_OUTSIZE;
1766 } else
1767 if (cipherid1 == 0x9C /*|| cipherid1 == 0x9D*/) {
1768 /* 009C,9D are AES-GCM */
1769 tls->flags |= ENCRYPTION_AESGCM;
1770 tls->MAC_size = 0;
1771 tls->IV_size = 4;
1772 }
1773 }
1774 dbg("server chose cipher %04x\n", tls->cipher_id);
1775 dbg("key_size:%u MAC_size:%u IV_size:%u\n", tls->key_size, tls->MAC_size, tls->IV_size);
1776
1777 /* Handshake hash eventually destined to FINISHED record
1778 * is sha256 regardless of cipher
1779 * (at least for all ciphers defined by RFC5246).
1780 * It's not sha1 for AES_128_CBC_SHA - only MAC is sha1, not this hash.
1781 */
1782 /* HANDSHAKE HASH:
1783 sha256_begin(&tls->hsd->handshake_hash_ctx);
1784 hash_handshake(tls, ">> client hello hash:%s",
1785 tls->hsd->saved_client_hello, tls->hsd->saved_client_hello_size
1786 );
1787 hash_handshake(tls, "<< server hello hash:%s",
1788 tls->inbuf + RECHDR_LEN, len
1789 );
1790 */
1791 }
1792
get_server_cert(tls_state_t * tls)1793 static void get_server_cert(tls_state_t *tls)
1794 {
1795 struct record_hdr *xhdr;
1796 uint8_t *certbuf;
1797 int len, len1;
1798
1799 len = tls_xread_handshake_block(tls, 10);
1800
1801 xhdr = (void*)tls->inbuf;
1802 certbuf = (void*)(xhdr + 1);
1803 if (certbuf[0] != HANDSHAKE_CERTIFICATE)
1804 bad_record_die(tls, "certificate", len);
1805 dbg("<< CERTIFICATE\n");
1806 // 4392 bytes:
1807 // 0b 00|11|24 00|11|21 00|05|b0 30|82|05|ac|30|82|04|94|a0|03|02|01|02|02|11|00|9f|85|bf|66|4b|0c|dd|af|ca|50|86|79|50|1b|2b|e4|30|0d...
1808 //Cert len=4388 ChainLen CertLen^ DER encoded X509 starts here. openssl x509 -in FILE -inform DER -noout -text
1809 len1 = get24be(certbuf + 1);
1810 if (len1 > len - 4) tls_error_die(tls);
1811 len = len1;
1812 len1 = get24be(certbuf + 4);
1813 if (len1 > len - 3) tls_error_die(tls);
1814 len = len1;
1815 len1 = get24be(certbuf + 7);
1816 if (len1 > len - 3) tls_error_die(tls);
1817 len = len1;
1818
1819 if (len)
1820 find_key_in_der_cert(tls, certbuf + 10, len);
1821 }
1822
1823 /* On input, len is known to be >= 4.
1824 * The record is known to be SERVER_KEY_EXCHANGE.
1825 */
process_server_key(tls_state_t * tls,int len)1826 static void process_server_key(tls_state_t *tls, int len)
1827 {
1828 struct record_hdr *xhdr;
1829 uint8_t *keybuf;
1830 int len1;
1831 uint32_t t32;
1832
1833 xhdr = (void*)tls->inbuf;
1834 keybuf = (void*)(xhdr + 1);
1835 //seen from is.gd: it selects curve_x25519:
1836 // 0c 00006e //SERVER_KEY_EXCHANGE, len
1837 // 03 //curve_type: named curve
1838 // 001d //curve_x25519
1839 //server-chosen EC point, and then signed_params
1840 // (RFC 8422: "A hash of the params, with the signature
1841 // appropriate to that hash applied. The private key corresponding
1842 // to the certified public key in the server's Certificate message is
1843 // used for signing.")
1844 //follow. Format unclear/guessed:
1845 // 20 //eccPubKeyLen
1846 // 25511923d73b70dd2f60e66ba2f3fda31a9c25170963c7a3a972e481dbb2835d //eccPubKey (32bytes)
1847 // 0203 //hashSigAlg: 2:SHA1 (4:SHA256 5:SHA384 6:SHA512), 3:ECDSA (1:RSA)
1848 // 0046 //len (16bit)
1849 // 30 44 //SEQ, len
1850 // 02 20 //INTEGER, len
1851 // 2e18e7c2a9badd0a70cd3059a6ab114539b9f5163568911147386cd77ed7c412 //32bytes
1852 //this item ^^^^^ is sometimes 33 bytes (with all container sizes also +1)
1853 // 02 20 //INTEGER, len
1854 // 64523d6216cb94c43c9b20e377d8c52c55be6703fd6730a155930c705eaf3af6 //32bytes
1855 //same about this item ^^^^^
1856
1857 //seen from ftp.openbsd.org
1858 //(which only accepts ECDHE-RSA-AESnnn-GCM-SHAnnn and ECDHE-RSA-CHACHA20-POLY1305 ciphers):
1859 // 0c 000228 //SERVER_KEY_EXCHANGE, len
1860 // 03 //curve_type: named curve
1861 // 001d //curve_x25519
1862 // 20 //eccPubKeyLen
1863 // eef7a15c43b71a4c7eaa48a39369399cc4332e569ec90a83274cc92596705c1a //eccPubKey
1864 // 0401 //hashSigAlg: 4:SHA256, 1:RSA
1865 // 0200 //len
1866 // //0x200 bytes follow
1867
1868 /* Get and verify length */
1869 len1 = get24be(keybuf + 1);
1870 if (len1 > len - 4) tls_error_die(tls);
1871 len = len1;
1872 if (len < (1+2+1+32)) tls_error_die(tls);
1873 keybuf += 4;
1874
1875 #if BB_BIG_ENDIAN
1876 # define _0x03001741 0x03001741
1877 # define _0x03001d20 0x03001d20
1878 #else
1879 # define _0x03001741 0x41170003
1880 # define _0x03001d20 0x201d0003
1881 #endif
1882 move_from_unaligned32(t32, keybuf);
1883 keybuf += 4;
1884 switch (t32) {
1885 case _0x03001d20: //curve_x25519
1886 dbg("got x25519 eccPubKey\n");
1887 tls->flags |= GOT_EC_CURVE_X25519;
1888 memcpy(tls->hsd->ecc_pub_key32, keybuf, 32);
1889 break;
1890 case _0x03001741: //curve_secp256r1 (aka P256)
1891 dbg("got P256 eccPubKey\n");
1892 /* P256 point can be transmitted odd- or even-compressed
1893 * (first byte is 3 or 2) or uncompressed (4).
1894 */
1895 if (*keybuf++ != 4)
1896 bb_simple_error_msg_and_die("compressed EC points not supported");
1897 memcpy(tls->hsd->ecc_pub_key32, keybuf, 2 * 32);
1898 break;
1899 default:
1900 bb_error_msg_and_die("elliptic curve is not x25519 or P256: 0x%08x", t32);
1901 }
1902
1903 tls->flags |= GOT_EC_KEY;
1904 }
1905
send_empty_client_cert(tls_state_t * tls)1906 static void send_empty_client_cert(tls_state_t *tls)
1907 {
1908 struct client_empty_cert {
1909 uint8_t type;
1910 uint8_t len24_hi, len24_mid, len24_lo;
1911 uint8_t cert_chain_len24_hi, cert_chain_len24_mid, cert_chain_len24_lo;
1912 };
1913 struct client_empty_cert *record;
1914
1915 record = tls_get_zeroed_outbuf(tls, sizeof(*record));
1916 //fill_handshake_record_hdr(record, HANDSHAKE_CERTIFICATE, sizeof(*record));
1917 //record->cert_chain_len24_hi = 0;
1918 //record->cert_chain_len24_mid = 0;
1919 //record->cert_chain_len24_lo = 0;
1920 // same as above:
1921 record->type = HANDSHAKE_CERTIFICATE;
1922 record->len24_lo = 3;
1923
1924 dbg(">> CERTIFICATE\n");
1925 xwrite_and_update_handshake_hash(tls, sizeof(*record));
1926 }
1927
send_client_key_exchange(tls_state_t * tls)1928 static void send_client_key_exchange(tls_state_t *tls)
1929 {
1930 struct client_key_exchange {
1931 uint8_t type;
1932 uint8_t len24_hi, len24_mid, len24_lo;
1933 uint8_t key[2 + 4 * 1024]; // size??
1934 };
1935 //FIXME: better size estimate
1936 struct client_key_exchange *record = tls_get_zeroed_outbuf(tls, sizeof(*record));
1937 uint8_t premaster[RSA_PREMASTER_SIZE > EC_CURVE_KEYSIZE ? RSA_PREMASTER_SIZE : EC_CURVE_KEYSIZE];
1938 int premaster_size;
1939 int len;
1940
1941 if (!(tls->flags & NEED_EC_KEY)) {
1942 /* RSA */
1943 if (!(tls->flags & GOT_CERT_RSA_KEY_ALG))
1944 bb_simple_error_msg_and_die("server cert is not RSA");
1945
1946 tls_get_random(premaster, RSA_PREMASTER_SIZE);
1947 if (TLS_DEBUG_FIXED_SECRETS)
1948 memset(premaster, 0x44, RSA_PREMASTER_SIZE);
1949 // RFC 5246
1950 // "Note: The version number in the PreMasterSecret is the version
1951 // offered by the client in the ClientHello.client_version, not the
1952 // version negotiated for the connection."
1953 premaster[0] = TLS_MAJ;
1954 premaster[1] = TLS_MIN;
1955 dump_hex("premaster:%s\n", premaster, sizeof(premaster));
1956 len = psRsaEncryptPub(/*pool:*/ NULL,
1957 /* psRsaKey_t* */ &tls->hsd->server_rsa_pub_key,
1958 premaster, /*inlen:*/ RSA_PREMASTER_SIZE,
1959 record->key + 2, sizeof(record->key) - 2,
1960 data_param_ignored
1961 );
1962 /* keylen16 exists for RSA (in TLS, not in SSL), but not for some other key types */
1963 record->key[0] = len >> 8;
1964 record->key[1] = len & 0xff;
1965 len += 2;
1966 premaster_size = RSA_PREMASTER_SIZE;
1967 } else {
1968 /* ECDHE */
1969 if (!(tls->flags & GOT_EC_KEY))
1970 bb_simple_error_msg_and_die("server did not provide EC key");
1971
1972 if (tls->flags & GOT_EC_CURVE_X25519) {
1973 /* ECDHE, curve x25519 */
1974 dbg("computing x25519_premaster\n");
1975 curve_x25519_compute_pubkey_and_premaster(
1976 record->key + 1, premaster,
1977 /*point:*/ tls->hsd->ecc_pub_key32
1978 );
1979 len = CURVE25519_KEYSIZE;
1980 //record->key[0] = len;
1981 //len++;
1982 //premaster_size = CURVE25519_KEYSIZE;
1983 } else {
1984 /* ECDHE, curve P256 */
1985 dbg("computing P256_premaster\n");
1986 curve_P256_compute_pubkey_and_premaster(
1987 record->key + 2, premaster,
1988 /*point:*/ tls->hsd->ecc_pub_key32
1989 );
1990 record->key[1] = 4; /* "uncompressed point" */
1991 len = 1 + P256_KEYSIZE * 2;
1992 }
1993 record->key[0] = len;
1994 len++;
1995 premaster_size = P256_KEYSIZE; // = CURVE25519_KEYSIZE = 32
1996 }
1997
1998 record->type = HANDSHAKE_CLIENT_KEY_EXCHANGE;
1999 /* record->len24_hi = 0; - already is */
2000 record->len24_mid = len >> 8;
2001 record->len24_lo = len & 0xff;
2002 len += 4;
2003
2004 dbg(">> CLIENT_KEY_EXCHANGE\n");
2005 xwrite_and_update_handshake_hash(tls, len);
2006
2007 // RFC 5246
2008 // For all key exchange methods, the same algorithm is used to convert
2009 // the pre_master_secret into the master_secret. The pre_master_secret
2010 // should be deleted from memory once the master_secret has been
2011 // computed.
2012 // master_secret = PRF(pre_master_secret, "master secret",
2013 // ClientHello.random + ServerHello.random)
2014 // [0..47];
2015 // The master secret is always exactly 48 bytes in length. The length
2016 // of the premaster secret will vary depending on key exchange method.
2017 prf_hmac_sha256(/*tls,*/
2018 tls->hsd->master_secret, sizeof(tls->hsd->master_secret),
2019 premaster, premaster_size,
2020 "master secret",
2021 tls->hsd->client_and_server_rand32, sizeof(tls->hsd->client_and_server_rand32)
2022 );
2023 dump_hex("master secret:%s\n", tls->hsd->master_secret, sizeof(tls->hsd->master_secret));
2024
2025 // RFC 5246
2026 // 6.3. Key Calculation
2027 //
2028 // The Record Protocol requires an algorithm to generate keys required
2029 // by the current connection state (see Appendix A.6) from the security
2030 // parameters provided by the handshake protocol.
2031 //
2032 // The master secret is expanded into a sequence of secure bytes, which
2033 // is then split to a client write MAC key, a server write MAC key, a
2034 // client write encryption key, and a server write encryption key. Each
2035 // of these is generated from the byte sequence in that order. Unused
2036 // values are empty. Some AEAD ciphers may additionally require a
2037 // client write IV and a server write IV (see Section 6.2.3.3).
2038 //
2039 // When keys and MAC keys are generated, the master secret is used as an
2040 // entropy source.
2041 //
2042 // To generate the key material, compute
2043 //
2044 // key_block = PRF(SecurityParameters.master_secret,
2045 // "key expansion",
2046 // SecurityParameters.server_random +
2047 // SecurityParameters.client_random);
2048 //
2049 // until enough output has been generated. Then, the key_block is
2050 // partitioned as follows:
2051 //
2052 // client_write_MAC_key[SecurityParameters.mac_key_length]
2053 // server_write_MAC_key[SecurityParameters.mac_key_length]
2054 // client_write_key[SecurityParameters.enc_key_length]
2055 // server_write_key[SecurityParameters.enc_key_length]
2056 // client_write_IV[SecurityParameters.fixed_iv_length]
2057 // server_write_IV[SecurityParameters.fixed_iv_length]
2058 {
2059 uint8_t tmp64[64];
2060
2061 /* make "server_rand32 + client_rand32" */
2062 memcpy(&tmp64[0] , &tls->hsd->client_and_server_rand32[32], 32);
2063 memcpy(&tmp64[32], &tls->hsd->client_and_server_rand32[0] , 32);
2064
2065 prf_hmac_sha256(/*tls,*/
2066 tls->client_write_MAC_key, 2 * (tls->MAC_size + tls->key_size + tls->IV_size),
2067 // also fills:
2068 // server_write_MAC_key[]
2069 // client_write_key[]
2070 // server_write_key[]
2071 // client_write_IV[]
2072 // server_write_IV[]
2073 tls->hsd->master_secret, sizeof(tls->hsd->master_secret),
2074 "key expansion",
2075 tmp64, 64
2076 );
2077 tls->client_write_key = tls->client_write_MAC_key + (2 * tls->MAC_size);
2078 tls->server_write_key = tls->client_write_key + tls->key_size;
2079 tls->client_write_IV = tls->server_write_key + tls->key_size;
2080 tls->server_write_IV = tls->client_write_IV + tls->IV_size;
2081 dump_hex("client_write_MAC_key:%s\n",
2082 tls->client_write_MAC_key, tls->MAC_size
2083 );
2084 dump_hex("client_write_key:%s\n",
2085 tls->client_write_key, tls->key_size
2086 );
2087 dump_hex("client_write_IV:%s\n",
2088 tls->client_write_IV, tls->IV_size
2089 );
2090
2091 aes_setkey(&tls->aes_decrypt, tls->server_write_key, tls->key_size);
2092 aes_setkey(&tls->aes_encrypt, tls->client_write_key, tls->key_size);
2093 {
2094 uint8_t iv[AES_BLOCK_SIZE];
2095 memset(iv, 0, AES_BLOCK_SIZE);
2096 aes_encrypt_one_block(&tls->aes_encrypt, iv, tls->H);
2097 }
2098 }
2099 }
2100
2101 static const uint8_t rec_CHANGE_CIPHER_SPEC[] ALIGN1 = {
2102 RECORD_TYPE_CHANGE_CIPHER_SPEC, TLS_MAJ, TLS_MIN, 00, 01,
2103 01
2104 };
2105
send_change_cipher_spec(tls_state_t * tls)2106 static void send_change_cipher_spec(tls_state_t *tls)
2107 {
2108 dbg(">> CHANGE_CIPHER_SPEC\n");
2109 xwrite(tls->ofd, rec_CHANGE_CIPHER_SPEC, sizeof(rec_CHANGE_CIPHER_SPEC));
2110 }
2111
2112 // 7.4.9. Finished
2113 // A Finished message is always sent immediately after a change
2114 // cipher spec message to verify that the key exchange and
2115 // authentication processes were successful. It is essential that a
2116 // change cipher spec message be received between the other handshake
2117 // messages and the Finished message.
2118 //...
2119 // The Finished message is the first one protected with the just
2120 // negotiated algorithms, keys, and secrets. Recipients of Finished
2121 // messages MUST verify that the contents are correct. Once a side
2122 // has sent its Finished message and received and validated the
2123 // Finished message from its peer, it may begin to send and receive
2124 // application data over the connection.
2125 //...
2126 // struct {
2127 // opaque verify_data[verify_data_length];
2128 // } Finished;
2129 //
2130 // verify_data
2131 // PRF(master_secret, finished_label, Hash(handshake_messages))
2132 // [0..verify_data_length-1];
2133 //
2134 // finished_label
2135 // For Finished messages sent by the client, the string
2136 // "client finished". For Finished messages sent by the server,
2137 // the string "server finished".
2138 //
2139 // Hash denotes a Hash of the handshake messages. For the PRF
2140 // defined in Section 5, the Hash MUST be the Hash used as the basis
2141 // for the PRF. Any cipher suite which defines a different PRF MUST
2142 // also define the Hash to use in the Finished computation.
2143 //
2144 // In previous versions of TLS, the verify_data was always 12 octets
2145 // long. In the current version of TLS, it depends on the cipher
2146 // suite. Any cipher suite which does not explicitly specify
2147 // verify_data_length has a verify_data_length equal to 12. This
2148 // includes all existing cipher suites.
send_client_finished(tls_state_t * tls)2149 static void send_client_finished(tls_state_t *tls)
2150 {
2151 struct finished {
2152 uint8_t type;
2153 uint8_t len24_hi, len24_mid, len24_lo;
2154 uint8_t prf_result[12];
2155 };
2156 struct finished *record = tls_get_outbuf(tls, sizeof(*record));
2157 uint8_t handshake_hash[TLS_MAX_MAC_SIZE];
2158 unsigned len;
2159
2160 fill_handshake_record_hdr(record, HANDSHAKE_FINISHED, sizeof(*record));
2161
2162 len = sha_end(&tls->hsd->handshake_hash_ctx, handshake_hash);
2163
2164 prf_hmac_sha256(/*tls,*/
2165 record->prf_result, sizeof(record->prf_result),
2166 tls->hsd->master_secret, sizeof(tls->hsd->master_secret),
2167 "client finished",
2168 handshake_hash, len
2169 );
2170 dump_hex("from secret: %s\n", tls->hsd->master_secret, sizeof(tls->hsd->master_secret));
2171 dump_hex("from labelSeed: %s", "client finished", sizeof("client finished")-1);
2172 dump_hex("%s\n", handshake_hash, sizeof(handshake_hash));
2173 dump_hex("=> digest: %s\n", record->prf_result, sizeof(record->prf_result));
2174
2175 dbg(">> FINISHED\n");
2176 xwrite_encrypted(tls, sizeof(*record), RECORD_TYPE_HANDSHAKE);
2177 }
2178
tls_handshake(tls_state_t * tls,const char * sni)2179 void FAST_FUNC tls_handshake(tls_state_t *tls, const char *sni)
2180 {
2181 // Client RFC 5246 Server
2182 // (*) - optional messages, not always sent
2183 //
2184 // ClientHello ------->
2185 // ServerHello
2186 // Certificate*
2187 // ServerKeyExchange*
2188 // CertificateRequest*
2189 // <------- ServerHelloDone
2190 // Certificate*
2191 // ClientKeyExchange
2192 // CertificateVerify*
2193 // [ChangeCipherSpec]
2194 // Finished ------->
2195 // [ChangeCipherSpec]
2196 // <------- Finished
2197 // Application Data <------> Application Data
2198 int len;
2199 int got_cert_req;
2200
2201 send_client_hello_and_alloc_hsd(tls, sni);
2202 get_server_hello(tls);
2203
2204 // RFC 5246
2205 // The server MUST send a Certificate message whenever the agreed-
2206 // upon key exchange method uses certificates for authentication
2207 // (this includes all key exchange methods defined in this document
2208 // except DH_anon). This message will always immediately follow the
2209 // ServerHello message.
2210 //
2211 // IOW: in practice, Certificate *always* follows.
2212 // (for example, kernel.org does not even accept DH_anon cipher id)
2213 get_server_cert(tls);
2214
2215 len = tls_xread_handshake_block(tls, 4);
2216 if (tls->inbuf[RECHDR_LEN] == HANDSHAKE_SERVER_KEY_EXCHANGE) {
2217 // 459 bytes:
2218 // 0c 00|01|c7 03|00|17|41|04|87|94|2e|2f|68|d0|c9|f4|97|a8|2d|ef|ed|67|ea|c6|f3|b3|56|47|5d|27|b6|bd|ee|70|25|30|5e|b0|8e|f6|21|5a...
2219 //SvKey len=455^
2220 // with TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: 461 bytes:
2221 // 0c 00|01|c9 03|00|17|41|04|cd|9b|b4|29|1f|f6|b0|c2|84|82|7f|29|6a|47|4e|ec|87|0b|c1|9c|69|e1|f8|c6|d0|53|e9|27|90|a5|c8|02|15|75...
2222 //
2223 // RFC 8422 5.4. Server Key Exchange
2224 // This message is sent when using the ECDHE_ECDSA, ECDHE_RSA, and
2225 // ECDH_anon key exchange algorithms.
2226 // This message is used to convey the server's ephemeral ECDH public key
2227 // (and the corresponding elliptic curve domain parameters) to the
2228 // client.
2229 dbg("<< SERVER_KEY_EXCHANGE len:%u\n", len);
2230 dump_raw_in("<< %s\n", tls->inbuf, RECHDR_LEN + len);
2231 if (tls->flags & NEED_EC_KEY)
2232 process_server_key(tls, len);
2233
2234 // read next handshake block
2235 len = tls_xread_handshake_block(tls, 4);
2236 }
2237
2238 got_cert_req = (tls->inbuf[RECHDR_LEN] == HANDSHAKE_CERTIFICATE_REQUEST);
2239 if (got_cert_req) {
2240 dbg("<< CERTIFICATE_REQUEST\n");
2241 // RFC 5246: "If no suitable certificate is available,
2242 // the client MUST send a certificate message containing no
2243 // certificates. That is, the certificate_list structure has a
2244 // length of zero. ...
2245 // Client certificates are sent using the Certificate structure
2246 // defined in Section 7.4.2."
2247 // (i.e. the same format as server certs)
2248
2249 /*send_empty_client_cert(tls); - WRONG (breaks handshake hash calc) */
2250 /* need to hash _all_ server replies first, up to ServerHelloDone */
2251 len = tls_xread_handshake_block(tls, 4);
2252 }
2253
2254 if (tls->inbuf[RECHDR_LEN] != HANDSHAKE_SERVER_HELLO_DONE) {
2255 bad_record_die(tls, "'server hello done'", len);
2256 }
2257 // 0e 000000 (len:0)
2258 dbg("<< SERVER_HELLO_DONE\n");
2259
2260 if (got_cert_req)
2261 send_empty_client_cert(tls);
2262
2263 send_client_key_exchange(tls);
2264
2265 send_change_cipher_spec(tls);
2266 /* from now on we should send encrypted */
2267 /* tls->write_seq64_be = 0; - already is */
2268 tls->flags |= ENCRYPT_ON_WRITE;
2269
2270 send_client_finished(tls);
2271
2272 /* Get CHANGE_CIPHER_SPEC */
2273 len = tls_xread_record(tls, "switch to encrypted traffic");
2274 if (len != 1 || memcmp(tls->inbuf, rec_CHANGE_CIPHER_SPEC, 6) != 0)
2275 bad_record_die(tls, "switch to encrypted traffic", len);
2276 dbg("<< CHANGE_CIPHER_SPEC\n");
2277
2278 if (ALLOW_RSA_NULL_SHA256
2279 && tls->cipher_id == TLS_RSA_WITH_NULL_SHA256
2280 ) {
2281 tls->min_encrypted_len_on_read = tls->MAC_size;
2282 } else
2283 if (!(tls->flags & ENCRYPTION_AESGCM)) {
2284 unsigned mac_blocks = (unsigned)(TLS_MAC_SIZE(tls) + AES_BLOCK_SIZE-1) / AES_BLOCK_SIZE;
2285 /* all incoming packets now should be encrypted and have
2286 * at least IV + (MAC padded to blocksize):
2287 */
2288 tls->min_encrypted_len_on_read = AES_BLOCK_SIZE + (mac_blocks * AES_BLOCK_SIZE);
2289 } else {
2290 tls->min_encrypted_len_on_read = 8 + AES_BLOCK_SIZE;
2291 }
2292 dbg("min_encrypted_len_on_read: %u\n", tls->min_encrypted_len_on_read);
2293
2294 /* Get (encrypted) FINISHED from the server */
2295 len = tls_xread_record(tls, "'server finished'");
2296 if (len < 4 || tls->inbuf[RECHDR_LEN] != HANDSHAKE_FINISHED)
2297 bad_record_die(tls, "'server finished'", len);
2298 dbg("<< FINISHED\n");
2299 /* application data can be sent/received */
2300
2301 /* free handshake data */
2302 psRsaKey_clear(&tls->hsd->server_rsa_pub_key);
2303 // if (PARANOIA)
2304 // memset(tls->hsd, 0, tls->hsd->hsd_size);
2305 free(tls->hsd);
2306 tls->hsd = NULL;
2307 }
2308
tls_xwrite(tls_state_t * tls,int len)2309 static void tls_xwrite(tls_state_t *tls, int len)
2310 {
2311 dbg(">> DATA\n");
2312 xwrite_encrypted(tls, len, RECORD_TYPE_APPLICATION_DATA);
2313 }
2314
2315 // To run a test server using openssl:
2316 // openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost'
2317 // openssl s_server -key key.pem -cert server.pem -debug -tls1_2
2318 //
2319 // Unencryped SHA256 example:
2320 // openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost'
2321 // openssl s_server -key key.pem -cert server.pem -debug -tls1_2 -cipher NULL
2322 // openssl s_client -connect 127.0.0.1:4433 -debug -tls1_2 -cipher NULL-SHA256
2323
tls_run_copy_loop(tls_state_t * tls,unsigned flags)2324 void FAST_FUNC tls_run_copy_loop(tls_state_t *tls, unsigned flags)
2325 {
2326 int inbuf_size;
2327 const int INBUF_STEP = 4 * 1024;
2328 struct pollfd pfds[2];
2329
2330 #if 0
2331 // Debug aid for comparing P256 implementations.
2332 // Enable this, set SP_DEBUG and FIXED_SECRET to 1,
2333 // and add
2334 // tls_run_copy_loop(NULL, 0);
2335 // e.g. at the very beginning of wget_main()
2336 //
2337 {
2338 uint8_t ecc_pub_key32[2 * 32];
2339 uint8_t pubkey2x32[2 * 32];
2340 uint8_t premaster32[32];
2341
2342 //Fixed input key:
2343 // memset(ecc_pub_key32, 0xee, sizeof(ecc_pub_key32));
2344 //Fixed 000000000000000000000000000000000000ab000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
2345 // memset(ecc_pub_key32, 0x00, sizeof(ecc_pub_key32));
2346 // ecc_pub_key32[18] = 0xab;
2347 //Random key:
2348 // tls_get_random(ecc_pub_key32, sizeof(ecc_pub_key32));
2349 //Biased random (almost all zeros or almost all ones):
2350 srand(time(NULL) ^ getpid());
2351 if (rand() & 1)
2352 memset(ecc_pub_key32, 0x00, sizeof(ecc_pub_key32));
2353 else
2354 memset(ecc_pub_key32, 0xff, sizeof(ecc_pub_key32));
2355 ecc_pub_key32[rand() & 0x3f] = rand();
2356
2357 xmove_fd(xopen("p256.OLD", O_WRONLY | O_CREAT | O_TRUNC), 2);
2358 curve_P256_compute_pubkey_and_premaster(
2359 pubkey2x32, premaster32,
2360 /*point:*/ ecc_pub_key32
2361 );
2362 xmove_fd(xopen("p256.NEW", O_WRONLY | O_CREAT | O_TRUNC), 2);
2363 curve_P256_compute_pubkey_and_premaster_NEW(
2364 pubkey2x32, premaster32,
2365 /*point:*/ ecc_pub_key32
2366 );
2367 exit(1);
2368 }
2369 #endif
2370
2371 pfds[0].fd = STDIN_FILENO;
2372 pfds[0].events = POLLIN;
2373 pfds[1].fd = tls->ifd;
2374 pfds[1].events = POLLIN;
2375
2376 inbuf_size = INBUF_STEP;
2377 for (;;) {
2378 int nread;
2379
2380 if (safe_poll(pfds, 2, -1) < 0)
2381 bb_simple_perror_msg_and_die("poll");
2382
2383 if (pfds[0].revents) {
2384 void *buf;
2385
2386 dbg("STDIN HAS DATA\n");
2387 buf = tls_get_outbuf(tls, inbuf_size);
2388 nread = safe_read(STDIN_FILENO, buf, inbuf_size);
2389 if (nread < 1) {
2390 /* We'd want to do this: */
2391 /* Close outgoing half-connection so they get EOF,
2392 * but leave incoming alone so we can see response
2393 */
2394 //shutdown(tls->ofd, SHUT_WR);
2395 /* But TLS has no way to encode this,
2396 * doubt it's ok to do it "raw"
2397 */
2398 pfds[0].fd = -1;
2399 tls_free_outbuf(tls); /* mem usage optimization */
2400 if (flags & TLSLOOP_EXIT_ON_LOCAL_EOF)
2401 break;
2402 } else {
2403 if (nread == inbuf_size) {
2404 /* TLS has per record overhead, if input comes fast,
2405 * read, encrypt and send bigger chunks
2406 */
2407 inbuf_size += INBUF_STEP;
2408 if (inbuf_size > TLS_MAX_OUTBUF)
2409 inbuf_size = TLS_MAX_OUTBUF;
2410 }
2411 tls_xwrite(tls, nread);
2412 }
2413 }
2414 if (pfds[1].revents) {
2415 dbg("NETWORK HAS DATA\n");
2416 read_record:
2417 nread = tls_xread_record(tls, "encrypted data");
2418 if (nread < 1) {
2419 /* TLS protocol has no real concept of one-sided shutdowns:
2420 * if we get "TLS EOF" from the peer, writes will fail too
2421 */
2422 //pfds[1].fd = -1;
2423 //close(STDOUT_FILENO);
2424 //tls_free_inbuf(tls); /* mem usage optimization */
2425 //continue;
2426 break;
2427 }
2428 if (tls->inbuf[0] != RECORD_TYPE_APPLICATION_DATA)
2429 bad_record_die(tls, "encrypted data", nread);
2430 xwrite(STDOUT_FILENO, tls->inbuf + RECHDR_LEN, nread);
2431 /* We may already have a complete next record buffered,
2432 * can process it without network reads (and possible blocking)
2433 */
2434 if (tls_has_buffered_record(tls))
2435 goto read_record;
2436 }
2437 }
2438 }
2439