1 #include "xhci.h"
2 #include "internal.h"
3 #include <common/hid.h>
4 #include <common/kprint.h>
5 #include <common/spinlock.h>
6 #include <common/time.h>
7 #include <debug/bug.h>
8 #include <debug/traceback/traceback.h>
9 #include <driver/interrupt/apic/apic.h>
10 #include <exception/irq.h>
11 #include <mm/mm.h>
12 #include <mm/slab.h>
13
14 // 由于xhci寄存器读取需要对齐,因此禁用GCC优化选项
15 #pragma GCC optimize("O0")
16
17 spinlock_t xhci_controller_init_lock = {0}; // xhci控制器初始化锁(在usb_init中被初始化)
18
19 static int xhci_ctrl_count = 0; // xhci控制器计数
20
21 static struct xhci_host_controller_t xhci_hc[XHCI_MAX_HOST_CONTROLLERS] = {0};
22
23 void xhci_hc_irq_enable(uint64_t irq_num);
24 void xhci_hc_irq_disable(uint64_t irq_num);
25 uint64_t xhci_hc_irq_install(uint64_t irq_num, void *arg);
26 void xhci_hc_irq_uninstall(uint64_t irq_num);
27
28 static int xhci_hc_find_available_id();
29 static int xhci_hc_stop(int id);
30 static int xhci_hc_reset(int id);
31 static int xhci_hc_stop_legacy(int id);
32 static int xhci_hc_start_sched(int id);
33 static int xhci_hc_stop_sched(int id);
34 static uint32_t xhci_hc_get_protocol_offset(int id, uint32_t list_off, const int version, uint32_t *offset,
35 uint32_t *count, uint16_t *protocol_flag);
36 static int xhci_hc_pair_ports(int id);
37 static uint64_t xhci_create_ring(int trbs);
38 static uint64_t xhci_create_event_ring(int trbs, uint64_t *ret_ring_addr);
39 void xhci_hc_irq_handler(uint64_t irq_num, uint64_t cid, struct pt_regs *regs);
40 static int xhci_hc_init_intr(int id);
41 static int xhci_hc_start_ports(int id);
42
43 static int xhci_send_command(int id, struct xhci_TRB_t *trb, const bool do_ring);
44 static uint64_t xhci_initialize_slot(const int id, const int port, const int speed, const int max_packet);
45 static void xhci_initialize_ep(const int id, const uint64_t slot_vaddr, const int port_id, const int ep_num,
46 const int max_packet, const int max_burst, const int type, const int direction,
47 const int speed, const int ep_interval);
48 static int xhci_set_address(const int id, const uint64_t slot_vaddr, const int slot_id, const bool block);
49 static int xhci_control_in(const int id, struct usb_request_packet_t *packet, void *target, const int port_id,
50 const int max_packet);
51 static int xhci_control_out(const int id, struct usb_request_packet_t *packet, void *target, const int slot_id,
52 const int max_packet);
53 static int xhci_setup_stage(struct xhci_ep_info_t *ep, const struct usb_request_packet_t *packet,
54 const uint8_t direction);
55 static int xhci_data_stage(struct xhci_ep_info_t *ep, uint64_t buf_vaddr, uint8_t trb_type, const uint32_t size,
56 uint8_t direction, const int max_packet, const uint64_t status_vaddr);
57 static int xhci_status_stage(struct xhci_ep_info_t *ep, uint8_t direction, uint64_t status_buf_vaddr);
58 static int xhci_wait_for_interrupt(const int id, uint64_t status_vaddr);
59 static inline int xhci_get_desc(const int id, const int port_id, void *target, const uint16_t desc_type,
60 const uint8_t desc_index, const uint16_t lang_id, const uint16_t length);
61 static int xhci_get_config_desc(const int id, const int port_id, struct usb_config_desc *conf_desc);
62 static inline int xhci_get_config_desc_full(const int id, const int port_id, const struct usb_config_desc *conf_desc,
63 void *target);
64 static int xhci_get_interface_desc(const void *in_buf, const uint8_t if_num, struct usb_interface_desc **if_desc);
65 static inline int xhci_get_endpoint_desc(const struct usb_interface_desc *if_desc, const uint8_t ep_num,
66 struct usb_endpoint_desc **ep_desc);
67 static int xhci_get_descriptor(const int id, const int port_id, struct usb_device_desc *dev_desc);
68 static int xhci_configure_port(const int id, const int port_id);
69 static int xhci_configure_endpoint(const int id, const int port_id, const uint8_t ep_num, const uint8_t ep_type,
70 struct usb_endpoint_desc *ep_desc);
71 static int xhci_get_hid_report(int id, int port_id, int interface_number, void *ret_hid_report,
72 uint32_t hid_report_len);
73 static int xhci_get_hid_descriptor(int id, int port_id, const void *full_conf, int interface_number,
74 struct usb_hid_desc **ret_hid_desc);
75
76 hardware_intr_controller xhci_hc_intr_controller = {
77 .enable = xhci_hc_irq_enable,
78 .disable = xhci_hc_irq_disable,
79 .install = xhci_hc_irq_install,
80 .uninstall = xhci_hc_irq_uninstall,
81 .ack = apic_local_apic_edge_ack,
82 };
83
84 /**
85 * @brief 在controller数组之中寻找可用插槽
86 *
87 * 注意:该函数只能被获得init锁的进程所调用
88 * @return int 可用id(无空位时返回-1)
89 */
xhci_hc_find_available_id()90 static int xhci_hc_find_available_id()
91 {
92 if (unlikely(xhci_ctrl_count >= XHCI_MAX_HOST_CONTROLLERS))
93 return -1;
94
95 for (int i = 0; i < XHCI_MAX_HOST_CONTROLLERS; ++i)
96 {
97 if (xhci_hc[i].pci_dev_hdr == NULL)
98 return i;
99 }
100 return -1;
101 }
102
103 /**
104 * @brief 从指定地址读取trb
105 *
106 * @param trb 要存储到的trb的地址
107 * @param address 待读取trb的地址
108 */
xhci_get_trb(struct xhci_TRB_t * trb,const uint64_t address)109 static __always_inline void xhci_get_trb(struct xhci_TRB_t *trb, const uint64_t address)
110 {
111 trb->param = __read8b(address);
112 trb->status = __read4b(address + 8);
113 trb->command = __read4b(address + 12);
114 }
115
116 /**
117 * @brief 将给定的trb写入指定的地址
118 *
119 * @param trb 源trb
120 * @param address 拷贝的目标地址
121 */
xhci_set_trb(struct xhci_TRB_t * trb,const uint64_t address)122 static __always_inline void xhci_set_trb(struct xhci_TRB_t *trb, const uint64_t address)
123 {
124 __write8b(address, trb->param);
125 __write4b(address + 8, trb->status);
126 __write4b(address + 12, trb->command);
127 }
128
129 /**
130 * @brief 将ep结构体写入到设备上下文中的对应块内
131 *
132 * @param id 主机控制器id
133 * @param slot_vaddr 设备上下文虚拟地址
134 * @param ep_num ep结构体要写入到哪个块中(在设备上下文中的块号)
135 * @param ep 源数据
136 */
__write_ep(int id,uint64_t slot_vaddr,int ep_num,struct xhci_ep_context_t * ep)137 static __always_inline void __write_ep(int id, uint64_t slot_vaddr, int ep_num, struct xhci_ep_context_t *ep)
138 {
139 memcpy((void *)(slot_vaddr + ep_num * xhci_hc[id].context_size), ep, sizeof(struct xhci_ep_context_t));
140 }
141
142 /**
143 * @brief 从设备上下文中的对应块内读取数据到ep结构体
144 *
145 * @param id 主机控制器id
146 * @param slot_vaddr 设备上下文虚拟地址
147 * @param ep_num 要从哪个块中读取(在设备上下文中的块号)
148 * @param ep 目标地址
149 */
__read_from_ep(int id,uint64_t slot_vaddr,int ep_num,struct xhci_ep_context_t * ep)150 static __always_inline void __read_from_ep(int id, uint64_t slot_vaddr, int ep_num, struct xhci_ep_context_t *ep)
151 {
152 memcpy(ep, (void *)(slot_vaddr + ep_num * xhci_hc[id].context_size), sizeof(struct xhci_ep_context_t));
153 }
154
155 /**
156 * @brief 将slot上下文数组结构体写入插槽的上下文空间
157 *
158 * @param vaddr 目标地址
159 * @param slot_ctx slot上下文数组
160 */
__write_slot(const uint64_t vaddr,struct xhci_slot_context_t * slot_ctx)161 static __always_inline void __write_slot(const uint64_t vaddr, struct xhci_slot_context_t *slot_ctx)
162 {
163 memcpy((void *)vaddr, slot_ctx, sizeof(struct xhci_slot_context_t));
164 }
165
166 /**
167 * @brief 从指定地址读取slot context
168 *
169 * @param slot_ctx 目标地址
170 * @param slot_vaddr 源地址
171 * @return __always_inline
172 */
__read_from_slot(struct xhci_slot_context_t * slot_ctx,uint64_t slot_vaddr)173 static __always_inline void __read_from_slot(struct xhci_slot_context_t *slot_ctx, uint64_t slot_vaddr)
174 {
175 memcpy(slot_ctx, (void *)slot_vaddr, sizeof(struct xhci_slot_context_t));
176 }
177
178 /**
179 * @brief 写入doorbell寄存器
180 *
181 * @param id 主机控制器id
182 * @param slot_id usb控制器插槽id(0用作命令门铃,其他的用于具体的设备的门铃)
183 * @param value endpoint
184 */
__xhci_write_doorbell(const int id,const uint16_t slot_id,const uint32_t value)185 static __always_inline void __xhci_write_doorbell(const int id, const uint16_t slot_id, const uint32_t value)
186 {
187 // 确保写入门铃寄存器之前,所有的写操作均已完成
188 io_mfence();
189 xhci_write_cap_reg32(id, xhci_hc[id].db_offset + slot_id * sizeof(uint32_t), value);
190 io_mfence();
191 }
192
193 /**
194 * @brief 将trb写入指定的ring中,并更新下一个要写入的地址的值
195 *
196 * @param ep_info 端点信息结构体
197 * @param trb 待写入的trb
198 */
__xhci_write_trb(struct xhci_ep_info_t * ep_info,struct xhci_TRB_t * trb)199 static __always_inline void __xhci_write_trb(struct xhci_ep_info_t *ep_info, struct xhci_TRB_t *trb)
200 {
201 memcpy((void *)ep_info->current_ep_ring_vaddr, trb, sizeof(struct xhci_TRB_t));
202
203 ep_info->current_ep_ring_vaddr += sizeof(struct xhci_TRB_t);
204
205 struct xhci_TRB_normal_t *ptr = (struct xhci_TRB_normal_t *)(ep_info->current_ep_ring_vaddr);
206
207 // ring到头了,转换cycle,然后回到第一个trb
208 if (unlikely(ptr->TRB_type == TRB_TYPE_LINK))
209 {
210 ptr->cycle = ep_info->current_ep_ring_cycle;
211 ep_info->current_ep_ring_vaddr = ep_info->ep_ring_vbase;
212 ep_info->current_ep_ring_cycle ^= 1;
213 }
214 }
215
216 /**
217 * @brief 获取设备上下文缓冲区的虚拟地址
218 *
219 * @param id 主机控制器id
220 * @param port_id 端口id
221 * @return 设备上下文缓冲区的虚拟地址
222 */
xhci_get_device_context_vaddr(const int id,const int port_id)223 static __always_inline uint64_t xhci_get_device_context_vaddr(const int id, const int port_id)
224 {
225 return (uint64_t)phys_2_virt(
226 __read8b(xhci_hc[id].dcbaap_vaddr + (xhci_hc[id].ports[port_id].slot_id * sizeof(uint64_t))));
227 }
228
229 /**
230 * @brief 停止xhci主机控制器
231 *
232 * @param id 主机控制器id
233 * @return int
234 */
xhci_hc_stop(int id)235 static int xhci_hc_stop(int id)
236 {
237
238 // 判断是否已经停止
239 if (unlikely((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 1))
240 return 0;
241 io_mfence();
242 xhci_write_op_reg32(id, XHCI_OPS_USBCMD, 0x00000000);
243 io_mfence();
244 char timeout = 17;
245 while ((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 0)
246 {
247 io_mfence();
248 rs_usleep(1000);
249 if (--timeout == 0)
250 return -ETIMEDOUT;
251 }
252
253 return 0;
254 }
255
256 /**
257 * @brief reset xHCI主机控制器
258 *
259 * @param id 主机控制器id
260 * @return int
261 */
xhci_hc_reset(int id)262 static int xhci_hc_reset(int id)
263 {
264 int retval = 0;
265 io_mfence();
266 // 判断HCHalted是否置位
267 if ((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 0)
268 {
269 io_mfence();
270 kdebug("stopping usb hc...");
271 // 未置位,需要先尝试停止usb主机控制器
272 retval = xhci_hc_stop(id);
273 if (unlikely(retval))
274 return retval;
275 }
276 int timeout = 500; // wait 500ms
277 // reset
278 uint32_t cmd = xhci_read_op_reg32(id, XHCI_OPS_USBCMD);
279 io_mfence();
280
281 cmd |= (1 << 1);
282 xhci_write_op_reg32(id, XHCI_OPS_USBCMD, cmd);
283 io_mfence();
284 io_mfence();
285 while (xhci_read_op_reg32(id, XHCI_OPS_USBCMD) & (1 << 1))
286 {
287 io_mfence();
288 rs_usleep(1000);
289 if (--timeout == 0)
290 return -ETIMEDOUT;
291 }
292
293 return retval;
294 }
295
296 /**
297 * @brief 停止指定xhci控制器的legacy support
298 *
299 * @param id 控制器id
300 * @return int
301 */
xhci_hc_stop_legacy(int id)302 static int xhci_hc_stop_legacy(int id)
303 {
304 uint64_t current_offset = xhci_hc[id].ext_caps_off;
305
306 do
307 {
308 // 判断当前entry是否为legacy support entry
309 if ((xhci_read_cap_reg32(id, current_offset) & 0xff) == XHCI_XECP_ID_LEGACY)
310 {
311 io_mfence();
312 // 接管控制权
313 xhci_write_cap_reg32(id, current_offset,
314 xhci_read_cap_reg32(id, current_offset) | XHCI_XECP_LEGACY_OS_OWNED);
315 io_mfence();
316 // 等待响应完成
317 int timeout = XHCI_XECP_LEGACY_TIMEOUT;
318 while ((xhci_read_cap_reg32(id, current_offset) & XHCI_XECP_LEGACY_OWNING_MASK) !=
319 XHCI_XECP_LEGACY_OS_OWNED)
320 {
321 io_mfence();
322 rs_usleep(1000);
323 if (--timeout == 0)
324 {
325 kerror("The BIOS doesn't stop legacy support.");
326 return -ETIMEDOUT;
327 }
328 }
329 // 处理完成
330 return 0;
331 }
332 io_mfence();
333 // 读取下一个entry的偏移增加量
334 int next_off = ((xhci_read_cap_reg32(id, current_offset) & 0xff00) >> 8) << 2;
335 io_mfence();
336 // 将指针跳转到下一个entry
337 current_offset = next_off ? (current_offset + next_off) : 0;
338 } while (current_offset);
339
340 // 当前controller不存在legacy支持,也问题不大,不影响
341 return 0;
342 }
343
344 /**
345 * @brief 启用指定xhci控制器的调度
346 *
347 * @param id 控制器id
348 * @return int
349 */
xhci_hc_start_sched(int id)350 static int xhci_hc_start_sched(int id)
351 {
352 io_mfence();
353 xhci_write_op_reg32(id, XHCI_OPS_USBCMD, (1 << 0) | (1 << 2) | (1 << 3));
354 io_mfence();
355 rs_usleep(100 * 1000);
356 }
357
358 /**
359 * @brief 停止指定xhci控制器的调度
360 *
361 * @param id 控制器id
362 * @return int
363 */
xhci_hc_stop_sched(int id)364 static int xhci_hc_stop_sched(int id)
365 {
366 io_mfence();
367 xhci_write_op_reg32(id, XHCI_OPS_USBCMD, 0x00);
368 io_mfence();
369 }
370
371 /**
372 * @brief 在Ex capability list中寻找符合指定的协议号的寄存器offset、count、flag信息
373 *
374 * @param id 主机控制器id
375 * @param list_off 列表项位置距离控制器虚拟基地址的偏移量
376 * @param version 要寻找的端口版本号(2或3)
377 * @param offset 返回的 Compatible Port Offset
378 * @param count 返回的 Compatible Port Count
379 * @param protocol_flag 返回的与协议相关的flag
380 * @return uint32_t 下一个列表项的偏移量
381 */
xhci_hc_get_protocol_offset(int id,uint32_t list_off,const int version,uint32_t * offset,uint32_t * count,uint16_t * protocol_flag)382 static uint32_t xhci_hc_get_protocol_offset(int id, uint32_t list_off, const int version, uint32_t *offset,
383 uint32_t *count, uint16_t *protocol_flag)
384 {
385 if (count)
386 *count = 0;
387
388 do
389 {
390 uint32_t dw0 = xhci_read_cap_reg32(id, list_off);
391 io_mfence();
392 uint32_t next_list_off = (dw0 >> 8) & 0xff;
393 next_list_off = next_list_off ? (list_off + (next_list_off << 2)) : 0;
394
395 if ((dw0 & 0xff) == XHCI_XECP_ID_PROTOCOL && ((dw0 & 0xff000000) >> 24) == version)
396 {
397 uint32_t dw2 = xhci_read_cap_reg32(id, list_off + 8);
398 io_mfence();
399 if (offset != NULL)
400 *offset = (uint32_t)(dw2 & 0xff) - 1; // 使其转换为zero based
401 if (count != NULL)
402 *count = (uint32_t)((dw2 & 0xff00) >> 8);
403 if (protocol_flag != NULL && version == 2)
404 *protocol_flag = (uint16_t)((dw2 >> 16) & 0x0fff);
405
406 return next_list_off;
407 }
408
409 list_off = next_list_off;
410 } while (list_off);
411
412 return 0;
413 }
414 /**
415 * @brief 配对xhci主机控制器的usb2、usb3端口
416 *
417 * @param id 主机控制器id
418 * @return int 返回码
419 */
xhci_hc_pair_ports(int id)420 static int xhci_hc_pair_ports(int id)
421 {
422
423 struct xhci_caps_HCSPARAMS1_reg_t hcs1;
424 io_mfence();
425 memcpy(&hcs1, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t));
426 io_mfence();
427 // 从hcs1获取端口数量
428 xhci_hc[id].port_num = hcs1.max_ports;
429
430 // 找到所有的端口并标记其端口信息
431
432 xhci_hc[id].port_num_u2 = 0;
433 xhci_hc[id].port_num_u3 = 0;
434
435 uint32_t next_off = xhci_hc[id].ext_caps_off;
436 uint32_t offset, cnt;
437 uint16_t protocol_flags = 0;
438
439 // 寻找所有的usb2端口
440 while (next_off)
441 {
442 io_mfence();
443 next_off = xhci_hc_get_protocol_offset(id, next_off, 2, &offset, &cnt, &protocol_flags);
444 io_mfence();
445
446 if (cnt)
447 {
448 for (int i = 0; i < cnt; ++i)
449 {
450 io_mfence();
451 xhci_hc[id].ports[offset + i].offset = xhci_hc[id].port_num_u2++;
452 xhci_hc[id].ports[offset + i].flags = XHCI_PROTOCOL_USB2;
453 io_mfence();
454 // usb2 high speed only
455 if (protocol_flags & 2)
456 xhci_hc[id].ports[offset + i].flags |= XHCI_PROTOCOL_HSO;
457 }
458 }
459 }
460
461 // 寻找所有的usb3端口
462 next_off = xhci_hc[id].ext_caps_off;
463 while (next_off)
464 {
465 io_mfence();
466 next_off = xhci_hc_get_protocol_offset(id, next_off, 3, &offset, &cnt, &protocol_flags);
467 io_mfence();
468
469 if (cnt)
470 {
471 for (int i = 0; i < cnt; ++i)
472 {
473 io_mfence();
474 xhci_hc[id].ports[offset + i].offset = xhci_hc[id].port_num_u3++;
475 xhci_hc[id].ports[offset + i].flags = XHCI_PROTOCOL_USB3;
476 }
477 }
478 }
479
480 // 将对应的USB2端口和USB3端口进行配对
481 for (int i = 0; i < xhci_hc[id].port_num; ++i)
482 {
483 for (int j = 0; j < xhci_hc[id].port_num; ++j)
484 {
485 if (unlikely(i == j))
486 continue;
487 io_mfence();
488 if ((xhci_hc[id].ports[i].offset == xhci_hc[id].ports[j].offset) &&
489 ((xhci_hc[id].ports[i].flags & XHCI_PROTOCOL_INFO) !=
490 (xhci_hc[id].ports[j].flags & XHCI_PROTOCOL_INFO)))
491 {
492 xhci_hc[id].ports[i].paired_port_num = j;
493 xhci_hc[id].ports[i].flags |= XHCI_PROTOCOL_HAS_PAIR;
494 io_mfence();
495 xhci_hc[id].ports[j].paired_port_num = i;
496 xhci_hc[id].ports[j].flags |= XHCI_PROTOCOL_HAS_PAIR;
497 }
498 }
499 }
500
501 // 标记所有的usb3、单独的usb2端口为激活状态
502 for (int i = 0; i < xhci_hc[id].port_num; ++i)
503 {
504 io_mfence();
505 if (XHCI_PORT_IS_USB3(id, i) || (XHCI_PORT_IS_USB2(id, i) && (!XHCI_PORT_HAS_PAIR(id, i))))
506 xhci_hc[id].ports[i].flags |= XHCI_PROTOCOL_ACTIVE;
507 }
508 kinfo("Found %d ports on root hub, usb2 ports:%d, usb3 ports:%d", xhci_hc[id].port_num, xhci_hc[id].port_num_u2,
509 xhci_hc[id].port_num_u3);
510
511 /*
512 // 打印配对结果
513 for (int i = 1; i <= xhci_hc[id].port_num; ++i)
514 {
515 if (XHCI_PORT_IS_USB3(id, i))
516 {
517 kdebug("USB3 port %d, offset=%d, pair with usb2 port %d, current port is %s", i,
518 xhci_hc[id].ports[i].offset, xhci_hc[id].ports[i].paired_port_num, XHCI_PORT_IS_ACTIVE(id, i) ? "active" :
519 "inactive");
520 }
521 else if (XHCI_PORT_IS_USB2(id, i) && (!XHCI_PORT_HAS_PAIR(id, i))) // 单独的2.0接口
522 {
523 kdebug("Stand alone USB2 port %d, offset=%d, current port is %s", i, xhci_hc[id].ports[i].offset,
524 XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive");
525 }
526 else if (XHCI_PORT_IS_USB2(id, i))
527 {
528 kdebug("USB2 port %d, offset=%d, current port is %s, has pair=%s", i, xhci_hc[id].ports[i].offset,
529 XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive", XHCI_PORT_HAS_PAIR(id, i) ? "true" : "false");
530 }
531 }
532 */
533
534 return 0;
535 }
536
537 /**
538 * @brief 创建ring,并将最后一个trb指向头一个trb
539 *
540 * @param trbs 要创建的trb数量
541 * @return uint64_t trb数组的起始虚拟地址
542 */
xhci_create_ring(int trbs)543 static uint64_t xhci_create_ring(int trbs)
544 {
545 int total_size = trbs * sizeof(struct xhci_TRB_t);
546 const uint64_t vaddr = (uint64_t)kmalloc(total_size, 0);
547 io_mfence();
548 memset((void *)vaddr, 0, total_size);
549 io_mfence();
550 // 设置最后一个trb为link trb
551 xhci_TRB_set_link_cmd(vaddr + total_size - sizeof(struct xhci_TRB_t));
552 io_mfence();
553 return vaddr;
554 }
555
556 /**
557 * @brief 创建新的event ring table和对应的ring segment
558 *
559 * @param trbs 包含的trb的数量
560 * @param ret_ring_addr 返回的第一个event ring segment的基地址(虚拟)
561 * @return uint64_t trb table的虚拟地址
562 */
xhci_create_event_ring(int trbs,uint64_t * ret_ring_addr)563 static uint64_t xhci_create_event_ring(int trbs, uint64_t *ret_ring_addr)
564 {
565 const uint64_t table_vaddr = (const uint64_t)kmalloc(64, 0); // table支持8个segment
566 io_mfence();
567 if (unlikely(table_vaddr == NULL))
568 return -ENOMEM;
569 memset((void *)table_vaddr, 0, 64);
570
571 // 暂时只创建1个segment
572 const uint64_t seg_vaddr = (const uint64_t)kmalloc(trbs * sizeof(struct xhci_TRB_t), 0);
573 io_mfence();
574 if (unlikely(seg_vaddr == NULL))
575 return -ENOMEM;
576
577 memset((void *)seg_vaddr, 0, trbs * sizeof(struct xhci_TRB_t));
578 io_mfence();
579 // 将segment地址和大小写入table
580 *(uint64_t *)(table_vaddr) = virt_2_phys(seg_vaddr);
581 *(uint64_t *)(table_vaddr + 8) = trbs;
582
583 *ret_ring_addr = seg_vaddr;
584 return table_vaddr;
585 }
586
xhci_hc_irq_enable(uint64_t irq_num)587 void xhci_hc_irq_enable(uint64_t irq_num)
588 {
589 int cid = xhci_find_hcid_by_irq_num(irq_num);
590 io_mfence();
591 if (WARN_ON(cid == -1))
592 return;
593
594 io_mfence();
595 pci_start_msi(xhci_hc[cid].pci_dev_hdr);
596
597 io_mfence();
598 xhci_hc_start_sched(cid);
599 io_mfence();
600 xhci_hc_start_ports(cid);
601 }
602
xhci_hc_irq_disable(uint64_t irq_num)603 void xhci_hc_irq_disable(uint64_t irq_num)
604 {
605 int cid = xhci_find_hcid_by_irq_num(irq_num);
606 io_mfence();
607 if (WARN_ON(cid == -1))
608 return;
609
610 xhci_hc_stop_sched(cid);
611 io_mfence();
612 pci_disable_msi(xhci_hc[cid].pci_dev_hdr);
613 io_mfence();
614 }
615
616 /**
617 * @brief xhci中断的安装函数
618 *
619 * @param irq_num 要安装的中断向量号
620 * @param arg 参数
621 * @return uint64_t 错误码
622 */
xhci_hc_irq_install(uint64_t irq_num,void * arg)623 uint64_t xhci_hc_irq_install(uint64_t irq_num, void *arg)
624 {
625 int cid = xhci_find_hcid_by_irq_num(irq_num);
626 io_mfence();
627 if (WARN_ON(cid == -1))
628 return -EINVAL;
629
630 struct xhci_hc_irq_install_info_t *info = (struct xhci_hc_irq_install_info_t *)arg;
631 struct msi_desc_t msi_desc;
632 memset(&msi_desc, 0, sizeof(struct msi_desc_t));
633 io_mfence();
634 msi_desc.irq_num = irq_num;
635 msi_desc.msi_index = 0;
636 msi_desc.pci_dev = (struct pci_device_structure_header_t *)xhci_hc[cid].pci_dev_hdr;
637 msi_desc.assert = info->assert;
638 msi_desc.edge_trigger = info->edge_trigger;
639 msi_desc.processor = info->processor;
640 msi_desc.pci.msi_attribute.is_64 = 1;
641 msi_desc.pci.msi_attribute.is_msix = 1;
642 io_mfence();
643 // 因pci_enable_msi不再单独映射MSIX表,所以需要对pci设备的bar进行映射
644
645 int retval = pci_enable_msi(&msi_desc);
646
647 return 0;
648 }
649
xhci_hc_irq_uninstall(uint64_t irq_num)650 void xhci_hc_irq_uninstall(uint64_t irq_num)
651 {
652 // todo
653 int cid = xhci_find_hcid_by_irq_num(irq_num);
654 io_mfence();
655 if (WARN_ON(cid == -1))
656 return;
657 xhci_hc_stop(cid);
658 io_mfence();
659 }
660 /**
661 * @brief xhci主机控制器的中断处理函数
662 *
663 * @param irq_num 中断向量号
664 * @param cid 控制器号
665 * @param regs 寄存器值
666 */
xhci_hc_irq_handler(uint64_t irq_num,uint64_t cid,struct pt_regs * regs)667 void xhci_hc_irq_handler(uint64_t irq_num, uint64_t cid, struct pt_regs *regs)
668 {
669 // kdebug("USB irq received.");
670 /*
671 写入usb status寄存器,以表明当前收到了中断,清除usb status寄存器中的EINT位
672 需要先清除这个位,再清除interrupter中的pending bit)
673 */
674 xhci_write_op_reg32(cid, XHCI_OPS_USBSTS, xhci_read_op_reg32(cid, XHCI_OPS_USBSTS));
675
676 // 读取第0个usb interrupter的intr management寄存器
677 const uint32_t iman0 = xhci_read_intr_reg32(cid, 0, XHCI_IR_MAN);
678 uint64_t dequeue_reg = xhci_read_intr_reg64(cid, 0, XHCI_IR_DEQUEUE);
679
680 if (((iman0 & 3) == 3) || (dequeue_reg & 8)) // 中断被启用,且pending不为0
681 {
682 // kdebug("to handle");
683 // 写入1以清除该interrupter的pending bit
684 xhci_write_intr_reg32(cid, 0, XHCI_IR_MAN, iman0 | 3);
685 io_mfence();
686 struct xhci_TRB_t event_trb, origin_trb; // event ring trb以及其对应的command trb
687 uint64_t origin_vaddr;
688 // 暂存当前trb的起始地址
689 uint64_t last_event_ring_vaddr = xhci_hc[cid].current_event_ring_vaddr;
690 xhci_get_trb(&event_trb, xhci_hc[cid].current_event_ring_vaddr);
691
692 {
693 struct xhci_TRB_cmd_complete_t *event_trb_ptr = (struct xhci_TRB_cmd_complete_t *)&event_trb;
694 // kdebug("TRB_type=%d, comp_code=%d", event_trb_ptr->TRB_type, event_trb_ptr->code);
695 }
696 while ((event_trb.command & 1) == xhci_hc[cid].current_event_ring_cycle) // 循环处理处于当前周期的所有event ring
697 {
698
699 struct xhci_TRB_cmd_complete_t *event_trb_ptr = (struct xhci_TRB_cmd_complete_t *)&event_trb;
700 // kdebug("TRB_type=%d, comp_code=%d", event_trb_ptr->TRB_type, event_trb_ptr->code);
701 if ((event_trb.command & (1 << 2)) == 0) // 当前event trb不是由于short packet产生的
702 {
703 // kdebug("event_trb_ptr->code=%d", event_trb_ptr->code);
704 // kdebug("event_trb_ptr->TRB_type=%d", event_trb_ptr->TRB_type);
705 switch (event_trb_ptr->code) // 判断它的完成码
706 {
707 case TRB_COMP_TRB_SUCCESS: // trb执行成功,则将结果返回到对应的command ring的trb里面
708
709 switch (event_trb_ptr->TRB_type) // 根据event trb类型的不同,采取不同的措施
710 {
711 case TRB_TYPE_COMMAND_COMPLETION: // 命令已经完成
712 origin_vaddr = (uint64_t)phys_2_virt(event_trb.param);
713 // 获取对应的command trb
714 xhci_get_trb(&origin_trb, origin_vaddr);
715
716 switch (((struct xhci_TRB_normal_t *)&origin_trb)->TRB_type)
717 {
718 case TRB_TYPE_ENABLE_SLOT: // 源命令为enable slot
719 // 将slot id返回到命令TRB的command字段中
720 origin_trb.command &= 0x00ffffff;
721 origin_trb.command |= (event_trb.command & 0xff000000);
722 origin_trb.status = event_trb.status;
723 break;
724 default:
725 origin_trb.status = event_trb.status;
726 break;
727 }
728
729 // 标记该命令已经执行完成
730 origin_trb.status |= XHCI_IRQ_DONE;
731 // 将command trb写入到表中
732 xhci_set_trb(&origin_trb, origin_vaddr);
733 // kdebug("set origin:%#018lx", origin_vaddr);
734 break;
735 }
736 break;
737
738 default:
739 break;
740 }
741 }
742 else // 当前TRB是由short packet产生的
743 {
744 switch (event_trb_ptr->TRB_type)
745 {
746 case TRB_TYPE_TRANS_EVENT: // 当前 event trb是 transfer event TRB
747 // If SPD was encountered in this TD, comp_code will be SPD, else it should be SUCCESS
748 // (specs 4.10.1.1)
749 __write4b((uint64_t)phys_2_virt(event_trb.param),
750 (event_trb.status | XHCI_IRQ_DONE)); // return code + bytes *not* transferred
751 break;
752
753 default:
754 break;
755 }
756 }
757
758 // 获取下一个event ring TRB
759 last_event_ring_vaddr = xhci_hc[cid].current_event_ring_vaddr;
760 xhci_hc[cid].current_event_ring_vaddr += sizeof(struct xhci_TRB_t);
761 xhci_get_trb(&event_trb, xhci_hc[cid].current_event_ring_vaddr);
762 if (((struct xhci_TRB_normal_t *)&event_trb)->TRB_type == TRB_TYPE_LINK)
763 {
764 xhci_hc[cid].current_event_ring_vaddr = xhci_hc[cid].event_ring_vaddr;
765 xhci_get_trb(&event_trb, xhci_hc[cid].current_event_ring_vaddr);
766 }
767 }
768
769 // 当前event ring cycle的TRB处理结束
770 // 更新dequeue指针, 并清除event handler busy标志位
771 xhci_write_intr_reg64(cid, 0, XHCI_IR_DEQUEUE, virt_2_phys(last_event_ring_vaddr) | (1 << 3));
772 io_mfence();
773 }
774 }
775 /**
776 * @brief 重置端口
777 *
778 * @param id 控制器id
779 * @param port 端口id
780 * @return int
781 */
xhci_reset_port(const int id,const int port)782 static int xhci_reset_port(const int id, const int port)
783 {
784 int retval = 0;
785 // 相对于op寄存器基地址的偏移量
786 uint64_t port_status_offset = XHCI_OPS_PRS + port * 16;
787
788 io_mfence();
789 // 检查端口电源状态
790 if ((xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC) & (1 << 9)) == 0)
791 {
792 kdebug("port is power off, starting...");
793 io_mfence();
794 xhci_write_cap_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9));
795 io_mfence();
796 rs_usleep(2000);
797 // 检测端口是否被启用, 若未启用,则报错
798 if ((xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC) & (1 << 9)) == 0)
799 {
800 kdebug("cannot power on %d", port);
801 return -EAGAIN;
802 }
803 }
804 // kdebug("port:%d, power check ok", port);
805 io_mfence();
806 // 确保端口的status被清0
807 xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | XHCI_PORTUSB_CHANGE_BITS);
808 // kdebug("to reset timeout;");
809 io_mfence();
810 // 重置当前端口
811 if (XHCI_PORT_IS_USB3(id, port))
812 xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | (1U << 31));
813 else
814 xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | (1 << 4));
815
816 retval = -ETIMEDOUT;
817 // kdebug("to wait reset timeout;");
818 // 等待portsc的port reset change位被置位,说明reset完成
819 int timeout = 100;
820 while (timeout)
821 {
822 io_mfence();
823 uint32_t val = xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC);
824 io_mfence();
825 if (val & (1 << 21))
826 break;
827 // QEMU对usb的模拟有bug,因此需要检测这里
828 #ifdef __QEMU_EMULATION__
829
830 if (XHCI_PORT_IS_USB3(id, port) && (val & (1U << 31)) == 0)
831 break;
832 else if (XHCI_PORT_IS_USB2(id, port) && (val & (1 << 4)) == 0)
833 break;
834 #endif
835 --timeout;
836 rs_usleep(500);
837 }
838 // kdebug("timeout= %d", timeout);
839
840 if (timeout > 0)
841 {
842 // 等待恢复
843 rs_usleep(USB_TIME_RST_REC * 100);
844 uint32_t val = xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC);
845 io_mfence();
846
847 // kdebug("to check if reset ok, val=%#010lx", val);
848
849 // 如果reset之后,enable bit仍然是1,那么说明reset成功
850 if (val & (1 << 1))
851 {
852 // kdebug("reset ok");
853 retval = 0;
854 io_mfence();
855 // 清除status change bit
856 xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | XHCI_PORTUSB_CHANGE_BITS);
857 io_mfence();
858 }
859 else
860 retval = -1;
861 }
862 // kdebug("reset ok!");
863 // 如果usb2端口成功reset,则处理该端口的active状态
864 if (retval == 0 && XHCI_PORT_IS_USB2(id, port))
865 {
866 xhci_hc[id].ports[port].flags |= XHCI_PROTOCOL_ACTIVE;
867 if (XHCI_PORT_HAS_PAIR(id, port)) // 如果有对应的usb3端口,则将usb3端口设置为未激活
868 xhci_hc[id].ports[xhci_hc[id].ports[port].paired_port_num].flags &= ~(XHCI_PROTOCOL_ACTIVE);
869 }
870
871 // 如果usb3端口reset失败,则启用与之配对的usb2端口
872 if (retval != 0 && XHCI_PORT_IS_USB3(id, port))
873 {
874 xhci_hc[id].ports[port].flags &= ~XHCI_PROTOCOL_ACTIVE;
875 xhci_hc[id].ports[xhci_hc[id].ports[port].paired_port_num].flags |= XHCI_PROTOCOL_ACTIVE;
876 }
877
878 return retval;
879 }
880
881 /**
882 * @brief 初始化设备slot的上下文,并将其写入dcbaap中的上下文index数组
883 * - at this time, we don't know if the device is a hub or not, so we don't
884 * set the slot->hub, ->mtt, ->ttt, ->etc, items.
885 *
886 * @param id 控制器id
887 * @param port 端口号
888 * @param speed 端口速度
889 * @param max_packet 最大数据包大小
890 * @return uint64_t 初始化好的设备上下文空间的虚拟地址
891 */
xhci_initialize_slot(const int id,const int port,const int speed,const int max_packet)892 static uint64_t xhci_initialize_slot(const int id, const int port, const int speed, const int max_packet)
893 {
894 // 为所有的endpoint分配上下文空间
895 // todo: 按需分配上下文空间
896 uint64_t device_context_vaddr = (uint64_t)kzalloc(xhci_hc[id].context_size * 32, 0);
897 // kdebug("slot id=%d, device_context_vaddr=%#018lx, port=%d", slot_id, device_context_vaddr, port);
898 // 写到数组中
899 __write8b(xhci_hc[id].dcbaap_vaddr + (xhci_hc[id].ports[port].slot_id * sizeof(uint64_t)),
900 virt_2_phys(device_context_vaddr));
901 struct xhci_slot_context_t slot_ctx = {0};
902 slot_ctx.entries = 1;
903 slot_ctx.speed = speed;
904 slot_ctx.route_string = 0;
905 slot_ctx.rh_port_num = port + 1; // 由于xhci控制器是1-base的,因此把驱动程序中存储的端口号加1,才是真实的端口号
906 slot_ctx.max_exit_latency = 0; // 稍后会计算这个值
907 slot_ctx.int_target = 0; // 当前全部使用第0个interrupter
908 slot_ctx.slot_state = XHCI_SLOT_STATE_DISABLED_OR_ENABLED;
909 slot_ctx.device_address = 0;
910
911 // 将slot信息写入上下文空间
912 __write_slot(device_context_vaddr, &slot_ctx);
913
914 // 初始化控制端点
915 xhci_initialize_ep(id, device_context_vaddr, port, XHCI_EP_CONTROL, max_packet, 0, USB_EP_CONTROL, 0, speed, 0);
916
917 return device_context_vaddr;
918 }
919
920 /**
921 * @brief 初始化endpoint
922 *
923 * @param id 控制器id
924 * @param slot_vaddr slot上下文的虚拟地址
925 * @param port_id 插槽id
926 * @param ep_num 端点上下文在slot上下文区域内的编号
927 * @param max_packet 最大数据包大小
928 * @param type 端点类型
929 * @param direction 传输方向
930 * @param speed 传输速度
931 * @param ep_interval 端点的连续请求间隔
932 */
xhci_initialize_ep(const int id,const uint64_t slot_vaddr,const int port_id,const int ep_num,const int max_packet,const int max_burst,const int type,const int direction,const int speed,const int ep_interval)933 static void xhci_initialize_ep(const int id, const uint64_t slot_vaddr, const int port_id, const int ep_num,
934 const int max_packet, const int max_burst, const int type, const int direction,
935 const int speed, const int ep_interval)
936 {
937 // 由于目前只实现获取设备的描述符,因此暂时只支持control ep
938 if (type != USB_EP_CONTROL && type != USB_EP_INTERRUPT)
939 return;
940 struct xhci_ep_context_t ep_ctx = {0};
941 memset(&ep_ctx, 0, sizeof(struct xhci_ep_context_t));
942
943 xhci_hc[id].ports[port_id].ep_info[ep_num].ep_ring_vbase = xhci_create_ring(XHCI_TRBS_PER_RING);
944 // 申请ep的 transfer ring
945 ep_ctx.tr_dequeue_ptr = virt_2_phys(xhci_hc[id].ports[port_id].ep_info[ep_num].ep_ring_vbase);
946 xhci_ep_set_dequeue_cycle_state(&ep_ctx, XHCI_TRB_CYCLE_ON);
947
948 xhci_hc[id].ports[port_id].ep_info[ep_num].current_ep_ring_vaddr =
949 xhci_hc[id].ports[port_id].ep_info[ep_num].ep_ring_vbase;
950 xhci_hc[id].ports[port_id].ep_info[ep_num].current_ep_ring_cycle = xhci_ep_get_dequeue_cycle_state(&ep_ctx);
951 // kdebug("ep_ctx.tr_dequeue_ptr = %#018lx", ep_ctx.tr_dequeue_ptr);
952 // kdebug("xhci_hc[id].control_ep_info.current_ep_ring_cycle = %d",
953 // xhci_hc[id].control_ep_info.current_ep_ring_cycle);
954 kdebug("max_packet=%d, max_burst=%d", max_packet, max_burst);
955 switch (type)
956 {
957 case USB_EP_CONTROL: // Control ep
958 // 设置初始值
959 ep_ctx.max_packet_size = max_packet;
960 ep_ctx.linear_stream_array = 0;
961 ep_ctx.max_primary_streams = 0;
962 ep_ctx.mult = 0;
963 ep_ctx.ep_state = XHCI_EP_STATE_DISABLED;
964 ep_ctx.hid = 0;
965 ep_ctx.ep_type = XHCI_EP_TYPE_CONTROL;
966 ep_ctx.average_trb_len = 8; // 所有的control ep的该值均为8
967 ep_ctx.err_cnt = 3;
968 ep_ctx.max_burst_size = max_burst;
969 ep_ctx.interval = ep_interval;
970
971 break;
972 case USB_EP_INTERRUPT:
973 ep_ctx.max_packet_size = max_packet & 0x7ff;
974 ep_ctx.max_burst_size = max_burst;
975 ep_ctx.ep_state = XHCI_EP_STATE_DISABLED;
976 ep_ctx.mult = 0;
977 ep_ctx.err_cnt = 3;
978 ep_ctx.max_esti_payload_hi = ((max_packet * (max_burst + 1)) >> 8) & 0xff;
979 ep_ctx.max_esti_payload_lo = ((max_packet * (max_burst + 1))) & 0xff;
980 ep_ctx.interval = ep_interval;
981 ep_ctx.average_trb_len = 8; // todo: It's not sure how much to fill in this value
982 // ep_ctx.ep_type = XHCI_EP_TYPE_INTR_IN;
983 ep_ctx.ep_type = ((ep_num % 2) ? XHCI_EP_TYPE_INTR_IN : XHCI_EP_TYPE_INTR_OUT);
984
985 break;
986 default:
987 break;
988 }
989
990 // 将ep的信息写入到slot上下文中对应的ep的块中
991 __write_ep(id, slot_vaddr, ep_num, &ep_ctx);
992 }
993
994 /**
995 * @brief 向usb控制器发送 address_device命令
996 *
997 * @param id 主机控制器id
998 * @param slot_vaddr 插槽上下文的虚拟基地址
999 * @param slot_id 插槽id
1000 * @param block 是否阻断 set address 信息向usb设备的传输
1001 * @return int 错误码
1002 */
xhci_set_address(const int id,const uint64_t slot_vaddr,const int slot_id,const bool block)1003 static int xhci_set_address(const int id, const uint64_t slot_vaddr, const int slot_id, const bool block)
1004 {
1005 int retval = 0;
1006 struct xhci_slot_context_t slot;
1007 struct xhci_ep_context_t ep;
1008 // 创建输入上下文缓冲区
1009 uint64_t input_ctx_buffer = (uint64_t)kzalloc(xhci_hc[id].context_size * 33, 0);
1010
1011 // 置位input control context和slot context的add bit
1012 __write4b(input_ctx_buffer + 4, 0x3);
1013
1014 // 拷贝slot上下文和control ep上下文到输入上下文中
1015
1016 // __write_ep(id, input_ctx_buffer, 2, &ep_ctx);
1017 __read_from_slot(&slot, slot_vaddr);
1018 __read_from_ep(id, slot_vaddr, 1, &ep);
1019 ep.err_cnt = 3;
1020 kdebug("slot.slot_state=%d, speed=%d, root hub port num=%d", slot.slot_state, slot.speed, slot.rh_port_num);
1021 kdebug("ep.type=%d, max_packet=%d, dequeue_ptr=%#018lx", ep.ep_type, ep.max_packet_size, ep.tr_dequeue_ptr);
1022
1023 __write_slot(input_ctx_buffer + xhci_hc[id].context_size, &slot);
1024 __write_ep(id, input_ctx_buffer, 2, &ep);
1025
1026 struct xhci_TRB_normal_t trb = {0};
1027 trb.buf_paddr = virt_2_phys(input_ctx_buffer);
1028 trb.bei = (block ? 1 : 0);
1029 trb.TRB_type = TRB_TYPE_ADDRESS_DEVICE;
1030 trb.intr_target = 0;
1031 trb.cycle = xhci_hc[id].cmd_trb_cycle;
1032 trb.Reserved |= ((slot_id << 8) & 0xffff);
1033
1034 retval = xhci_send_command(id, (struct xhci_TRB_t *)&trb, true);
1035 if (unlikely(retval != 0))
1036 {
1037 kerror("slotid:%d, address device failed", slot_id);
1038 goto failed;
1039 }
1040
1041 struct xhci_TRB_cmd_complete_t *trb_done = (struct xhci_TRB_cmd_complete_t *)&trb;
1042 if (trb_done->code == TRB_COMP_TRB_SUCCESS) // 成功执行
1043 {
1044 // 如果要从控制器获取刚刚设置的设备地址的话,可以在这里读取slot context
1045 ksuccess("slot %d successfully addressed.", slot_id);
1046
1047 retval = 0;
1048 }
1049 else
1050 retval = -EAGAIN;
1051 done:;
1052 failed:;
1053 kfree((void *)input_ctx_buffer);
1054 return retval;
1055 }
1056
1057 /**
1058 * @brief 在指定的端点的ring中,写入一个setup stage TRB
1059 *
1060 * @param ep 端点信息结构体
1061 * @param packet usb请求包
1062 * @param direction 传输的方向
1063 * @return int 产生的TRB数量
1064 */
xhci_setup_stage(struct xhci_ep_info_t * ep,const struct usb_request_packet_t * packet,const uint8_t direction)1065 static int xhci_setup_stage(struct xhci_ep_info_t *ep, const struct usb_request_packet_t *packet,
1066 const uint8_t direction)
1067 {
1068 // kdebug("ep->current_ep_ring_cycle=%d", ep->current_ep_ring_cycle);
1069 struct xhci_TRB_setup_stage_t trb = {0};
1070 trb.bmRequestType = packet->request_type;
1071 trb.bRequest = packet->request;
1072 trb.wValue = packet->value;
1073 trb.wIndex = packet->index;
1074 trb.wLength = packet->length;
1075 trb.transfer_legth = 8;
1076 trb.intr_target = 0; // 使用第0个interrupter
1077 trb.cycle = ep->current_ep_ring_cycle;
1078 trb.ioc = 0;
1079 trb.idt = 1;
1080 trb.TRB_type = TRB_TYPE_SETUP_STAGE;
1081 trb.trt = direction;
1082
1083 // 将setup stage trb拷贝到ep的transfer ring中
1084 __xhci_write_trb(ep, (struct xhci_TRB_t *)&trb);
1085 return 1;
1086 }
1087
1088 /**
1089 * @brief 向指定的端点中写入data stage trb
1090 *
1091 * @param ep 端点信息结构体
1092 * @param buf_vaddr 数据缓冲区虚拟地址
1093 * @param trb_type trb类型
1094 * @param size 要传输的数据大小
1095 * @param direction 传输方向
1096 * @param max_packet 最大请求包大小
1097 * @param status_vaddr event data TRB的缓冲区(4字节,且地址按照16字节对齐)
1098 * @return int 产生的TRB数量
1099 */
xhci_data_stage(struct xhci_ep_info_t * ep,uint64_t buf_vaddr,uint8_t trb_type,const uint32_t size,uint8_t direction,const int max_packet,const uint64_t status_vaddr)1100 static int xhci_data_stage(struct xhci_ep_info_t *ep, uint64_t buf_vaddr, uint8_t trb_type, const uint32_t size,
1101 uint8_t direction, const int max_packet, const uint64_t status_vaddr)
1102 {
1103 if (size == 0)
1104 return 0;
1105 int64_t remain_bytes = size;
1106 uint32_t remain_packets = (size + max_packet - 1) / max_packet;
1107 struct xhci_TRB_data_stage_t trb = {0};
1108 int count_packets = 0;
1109 // 分多个trb来执行
1110 while (remain_bytes > 0)
1111 {
1112 --remain_packets;
1113
1114 trb.buf_paddr = virt_2_phys(buf_vaddr);
1115 trb.intr_target = 0;
1116 trb.TD_size = remain_packets;
1117 trb.transfer_length = (remain_bytes < max_packet ? size : max_packet);
1118 trb.dir = direction;
1119 trb.TRB_type = trb_type;
1120 trb.chain = 1;
1121 trb.ent = (remain_packets == 0);
1122 trb.cycle = ep->current_ep_ring_cycle;
1123 trb.ioc = 0;
1124
1125 // 将data stage trb拷贝到ep的transfer ring中
1126 __xhci_write_trb(ep, (struct xhci_TRB_t *)&trb);
1127
1128 buf_vaddr += max_packet;
1129 remain_bytes -= max_packet;
1130 ++count_packets;
1131
1132 // 对于data stage trb而言,除了第一个trb以外,剩下的trb都是NORMAL的,并且dir是无用的
1133 trb_type = TRB_TYPE_NORMAL;
1134 direction = 0;
1135 }
1136
1137 // 写入data event trb, 待完成后,完成信息将会存到status_vaddr指向的地址中
1138 memset(&trb, 0, sizeof(struct xhci_TRB_data_stage_t *));
1139 trb.buf_paddr = virt_2_phys(status_vaddr);
1140 trb.intr_target = 0;
1141 trb.cycle = ep->current_ep_ring_cycle;
1142 trb.ioc = 1;
1143 trb.TRB_type = TRB_TYPE_EVENT_DATA;
1144 __xhci_write_trb(ep, (struct xhci_TRB_t *)&trb);
1145
1146 return count_packets + 1;
1147 }
1148
1149 /**
1150 * @brief 填写xhci status stage TRB到control ep的transfer ring
1151 *
1152 * @param ep 端点信息结构体
1153 * @param direction 方向:(h2d:0, d2h:1)
1154 * @param status_buf_vaddr
1155 * @return int 创建的TRB数量
1156 */
xhci_status_stage(struct xhci_ep_info_t * ep,uint8_t direction,uint64_t status_buf_vaddr)1157 static int xhci_status_stage(struct xhci_ep_info_t *ep, uint8_t direction, uint64_t status_buf_vaddr)
1158 {
1159 // kdebug("write status stage trb");
1160
1161 {
1162 struct xhci_TRB_status_stage_t trb = {0};
1163
1164 // 写入status stage trb
1165 trb.intr_target = 0;
1166 trb.cycle = ep->current_ep_ring_cycle;
1167 trb.ent = 0;
1168 trb.ioc = 1;
1169 trb.TRB_type = TRB_TYPE_STATUS_STAGE;
1170 trb.dir = direction;
1171 __xhci_write_trb(ep, (struct xhci_TRB_t *)&trb);
1172 }
1173
1174 {
1175 // 写入event data TRB
1176 struct xhci_TRB_data_stage_t trb = {0};
1177 trb.buf_paddr = virt_2_phys(status_buf_vaddr);
1178 trb.intr_target = 0;
1179 trb.TRB_type = TRB_TYPE_EVENT_DATA;
1180 trb.ioc = 1;
1181
1182 trb.cycle = ep->current_ep_ring_cycle;
1183
1184 __xhci_write_trb(ep, (struct xhci_TRB_t *)&trb);
1185 }
1186
1187 return 2;
1188 }
1189
1190 /**
1191 * @brief 等待状态数据被拷贝到status缓冲区中
1192 *
1193 * @param id 主机控制器id
1194 * @param status_vaddr status 缓冲区
1195 * @return int 错误码
1196 */
xhci_wait_for_interrupt(const int id,uint64_t status_vaddr)1197 static int xhci_wait_for_interrupt(const int id, uint64_t status_vaddr)
1198 {
1199 int timer = 500;
1200 while (timer)
1201 {
1202 if (__read4b(status_vaddr) & XHCI_IRQ_DONE)
1203 {
1204 uint32_t status = __read4b(status_vaddr);
1205 // 判断完成码
1206 switch (xhci_get_comp_code(status))
1207 {
1208 case TRB_COMP_TRB_SUCCESS:
1209 case TRB_COMP_SHORT_PACKET:
1210 return 0;
1211 break;
1212 case TRB_COMP_STALL_ERROR:
1213 case TRB_COMP_DATA_BUFFER_ERROR:
1214 case TRB_COMP_BABBLE_DETECTION:
1215 return -EINVAL;
1216 default:
1217 kerror("xhci wait interrupt: status=%#010x, complete_code=%d", status, xhci_get_comp_code(status));
1218 return -EIO;
1219 }
1220 }
1221 --timer;
1222 rs_usleep(1000);
1223 }
1224
1225 kerror(" USB xHCI Interrupt wait timed out.");
1226 return -ETIMEDOUT;
1227 }
1228
1229 /**
1230 * @brief 从指定插槽的control endpoint读取信息
1231 *
1232 * @param id 主机控制器id
1233 * @param packet usb数据包
1234 * @param target 读取到的信息存放到的位置
1235 * @param port_id 端口id
1236 * @param max_packet 最大数据包大小
1237 * @return int 读取到的数据的大小
1238 */
xhci_control_in(const int id,struct usb_request_packet_t * packet,void * target,const int port_id,const int max_packet)1239 static int xhci_control_in(const int id, struct usb_request_packet_t *packet, void *target, const int port_id,
1240 const int max_packet)
1241 {
1242
1243 uint64_t status_buf_vaddr =
1244 (uint64_t)kzalloc(16, 0); // 本来是要申请4bytes的buffer的,但是因为xhci控制器需要16bytes对齐,因此申请16bytes
1245 uint64_t data_buf_vaddr = 0;
1246 int retval = 0;
1247
1248 // 往control ep写入一个setup stage trb
1249 xhci_setup_stage(&xhci_hc[id].ports[port_id].ep_info[XHCI_EP_CONTROL], packet, XHCI_DIR_IN);
1250 if (packet->length)
1251 {
1252 data_buf_vaddr = (uint64_t)kzalloc(packet->length, 0);
1253 xhci_data_stage(&xhci_hc[id].ports[port_id].ep_info[XHCI_EP_CONTROL], data_buf_vaddr, TRB_TYPE_DATA_STAGE,
1254 packet->length, XHCI_DIR_IN_BIT, max_packet, status_buf_vaddr);
1255 }
1256
1257 /*
1258 QEMU doesn't quite handle SETUP/DATA/STATUS transactions correctly.
1259 It will wait for the STATUS TRB before it completes the transfer.
1260 Technically, you need to check for a good transfer before you send the
1261 STATUS TRB. However, since QEMU doesn't update the status until after
1262 the STATUS TRB, waiting here will not complete a successful transfer.
1263 Bochs and real hardware handles this correctly, however QEMU does not.
1264 If you are using QEMU, do not ring the doorbell here. Ring the doorbell
1265 *after* you place the STATUS TRB on the ring.
1266 (See bug report: https://bugs.launchpad.net/qemu/+bug/1859378 )
1267 */
1268 #ifndef __QEMU_EMULATION__
1269 // 如果不是qemu虚拟机,则可以直接发起传输
1270 // kdebug(" not qemu");
1271 __xhci_write_doorbell(id, xhci_hc[id].ports[port_id].slot_id, XHCI_EP_CONTROL);
1272 retval = xhci_wait_for_interrupt(id, status_buf_vaddr);
1273 if (unlikely(retval != 0))
1274 goto failed;
1275 #endif
1276 memset((void *)status_buf_vaddr, 0, 16);
1277 xhci_status_stage(&xhci_hc[id].ports[port_id].ep_info[XHCI_EP_CONTROL], XHCI_DIR_OUT_BIT, status_buf_vaddr);
1278
1279 __xhci_write_doorbell(id, xhci_hc[id].ports[port_id].slot_id, XHCI_EP_CONTROL);
1280
1281 retval = xhci_wait_for_interrupt(id, status_buf_vaddr);
1282
1283 if (unlikely(retval != 0))
1284 goto failed;
1285
1286 // 将读取到的数据拷贝到目标区域
1287 if (packet->length)
1288 memcpy(target, (void *)data_buf_vaddr, packet->length);
1289 retval = packet->length;
1290 goto done;
1291
1292 failed:;
1293 kdebug("wait 4 interrupt failed");
1294 retval = 0;
1295 done:;
1296 // 释放内存
1297 kfree((void *)status_buf_vaddr);
1298 if (packet->length)
1299 kfree((void *)data_buf_vaddr);
1300 return retval;
1301 }
1302
1303 /**
1304 * @brief 向指定插槽的control ep输出信息
1305 *
1306 * @param id 主机控制器id
1307 * @param packet usb数据包
1308 * @param target 返回的数据存放的位置
1309 * @param port_id 端口id
1310 * @param max_packet 最大数据包大小
1311 * @return int 读取到的数据的大小
1312 */
xhci_control_out(const int id,struct usb_request_packet_t * packet,void * target,const int port_id,const int max_packet)1313 static int xhci_control_out(const int id, struct usb_request_packet_t *packet, void *target, const int port_id,
1314 const int max_packet)
1315 {
1316 uint64_t status_buf_vaddr = (uint64_t)kzalloc(16, 0);
1317 uint64_t data_buf_vaddr = 0;
1318 int retval = 0;
1319
1320 // 往control ep写入一个setup stage trb
1321 xhci_setup_stage(&xhci_hc[id].ports[port_id].ep_info[XHCI_EP_CONTROL], packet, XHCI_DIR_OUT);
1322
1323 if (packet->length)
1324 {
1325 data_buf_vaddr = (uint64_t)kzalloc(packet->length, 0);
1326 xhci_data_stage(&xhci_hc[id].ports[port_id].ep_info[XHCI_EP_CONTROL], data_buf_vaddr, TRB_TYPE_DATA_STAGE,
1327 packet->length, XHCI_DIR_OUT_BIT, max_packet, status_buf_vaddr);
1328 }
1329
1330 #ifndef __QEMU_EMULATION__
1331 // 如果不是qemu虚拟机,则可以直接发起传输
1332 __xhci_write_doorbell(id, xhci_hc[id].ports[port_id].slot_id, XHCI_EP_CONTROL);
1333 retval = xhci_wait_for_interrupt(id, status_buf_vaddr);
1334 if (unlikely(retval != 0))
1335 goto failed;
1336 #endif
1337
1338 memset((void *)status_buf_vaddr, 0, 16);
1339 xhci_status_stage(&xhci_hc[id].ports[port_id].ep_info[XHCI_EP_CONTROL], XHCI_DIR_IN_BIT, status_buf_vaddr);
1340
1341 __xhci_write_doorbell(id, xhci_hc[id].ports[port_id].slot_id, XHCI_EP_CONTROL);
1342 #ifndef __QEMU_EMULATION__
1343 // qemu对于这个操作的处理有问题,status_buf并不会被修改。而真机不存在该问题
1344 retval = xhci_wait_for_interrupt(id, status_buf_vaddr);
1345 #endif
1346
1347 if (unlikely(retval != 0))
1348 goto failed;
1349
1350 // 将读取到的数据拷贝到目标区域
1351 if (packet->length)
1352 memcpy(target, (void *)data_buf_vaddr, packet->length);
1353 retval = packet->length;
1354 goto done;
1355 failed:;
1356 kdebug("wait 4 interrupt failed");
1357 retval = 0;
1358 done:;
1359 // 释放内存
1360 kfree((void *)status_buf_vaddr);
1361 if (packet->length)
1362 kfree((void *)data_buf_vaddr);
1363 return retval;
1364 }
1365
1366 /**
1367 * @brief 获取描述符
1368 *
1369 * @param id 控制器号
1370 * @param port_id 端口号
1371 * @param target 获取到的数据要拷贝到的地址
1372 * @param desc_type 描述符类型
1373 * @param desc_index 描述符的索引号
1374 * @param lang_id 语言id(默认为0)
1375 * @param length 要传输的数据长度
1376 * @return int 错误码
1377 */
xhci_get_desc(const int id,const int port_id,void * target,const uint16_t desc_type,const uint8_t desc_index,const uint16_t lang_id,const uint16_t length)1378 static inline int xhci_get_desc(const int id, const int port_id, void *target, const uint16_t desc_type,
1379 const uint8_t desc_index, const uint16_t lang_id, const uint16_t length)
1380 {
1381 struct usb_device_desc *dev_desc = xhci_hc[id].ports[port_id].dev_desc;
1382 int count;
1383
1384 BUG_ON(dev_desc == NULL);
1385 // 设备端口没有对应的描述符
1386 if (unlikely(dev_desc == NULL))
1387 return -EINVAL;
1388
1389 uint8_t req_type = USB_REQ_TYPE_GET_REQUEST;
1390 if (desc_type == USB_DT_HID_REPORT)
1391 req_type = USB_REQ_TYPE_GET_INTERFACE_REQUEST;
1392
1393 DECLARE_USB_PACKET(ctrl_in_packet, req_type, USB_REQ_GET_DESCRIPTOR, (desc_type << 8) | desc_index, lang_id,
1394 length);
1395 count = xhci_control_in(id, &ctrl_in_packet, target, port_id, dev_desc->max_packet_size);
1396 if (unlikely(count == 0))
1397 return -EAGAIN;
1398 return 0;
1399 }
1400
xhci_set_configuration(const int id,const int port_id,const uint8_t conf_value)1401 static inline int xhci_set_configuration(const int id, const int port_id, const uint8_t conf_value)
1402 {
1403 struct usb_device_desc *dev_desc = xhci_hc[id].ports[port_id].dev_desc;
1404 int count;
1405
1406 BUG_ON(dev_desc == NULL);
1407 // 设备端口没有对应的描述符
1408 if (unlikely(dev_desc == NULL))
1409 return -EINVAL;
1410 DECLARE_USB_PACKET(ctrl_out_packet, USB_REQ_TYPE_SET_REQUEST, USB_REQ_SET_CONFIGURATION, conf_value & 0xff, 0, 0);
1411 // kdebug("set conf: to control out");
1412 count = xhci_control_out(id, &ctrl_out_packet, NULL, port_id, dev_desc->max_packet_size);
1413 // kdebug("set conf: count=%d", count);
1414 return 0;
1415 }
1416
1417 /**
1418 * @brief 获取usb 设备的config_desc
1419 *
1420 * @param id 主机控制器id
1421 * @param port_id 端口id
1422 * @param conf_desc 要获取的conf_desc
1423 * @return int 错误码
1424 */
xhci_get_config_desc(const int id,const int port_id,struct usb_config_desc * conf_desc)1425 static int xhci_get_config_desc(const int id, const int port_id, struct usb_config_desc *conf_desc)
1426 {
1427 if (unlikely(conf_desc == NULL))
1428 return -EINVAL;
1429
1430 kdebug("to get conf for port %d", port_id);
1431 int retval = xhci_get_desc(id, port_id, conf_desc, USB_DT_CONFIG, 0, 0, 9);
1432 if (unlikely(retval != 0))
1433 return retval;
1434 kdebug("port %d got conf ok. type=%d, len=%d, total_len=%d, num_interfaces=%d, max_power=%dmA", port_id,
1435 conf_desc->type, conf_desc->len, conf_desc->total_len, conf_desc->num_interfaces,
1436 (xhci_get_port_speed(id, port_id) == XHCI_PORT_SPEED_SUPER) ? (conf_desc->max_power * 8)
1437 : (conf_desc->max_power * 2));
1438 return 0;
1439 }
1440
1441 /**
1442 * @brief 获取完整的config desc(包含conf、interface、endpoint)
1443 *
1444 * @param id 控制器id
1445 * @param port_id 端口id
1446 * @param conf_desc 之前已经获取好的config_desc
1447 * @param target 最终结果要拷贝到的地址
1448 * @return int 错误码
1449 */
xhci_get_config_desc_full(const int id,const int port_id,const struct usb_config_desc * conf_desc,void * target)1450 static inline int xhci_get_config_desc_full(const int id, const int port_id, const struct usb_config_desc *conf_desc,
1451 void *target)
1452 {
1453 if (unlikely(conf_desc == NULL || target == NULL))
1454 return -EINVAL;
1455
1456 return xhci_get_desc(id, port_id, target, USB_DT_CONFIG, 0, 0, conf_desc->total_len);
1457 }
1458
1459 /**
1460 * @brief 从完整的conf_desc数据中获取指定的interface_desc的指针
1461 *
1462 * @param in_buf 存储了完整的conf_desc的缓冲区
1463 * @param if_num 接口号
1464 * @param if_desc 返回的指向接口结构体的指针
1465 * @return int 错误码
1466 */
xhci_get_interface_desc(const void * in_buf,const uint8_t if_num,struct usb_interface_desc ** if_desc)1467 static int xhci_get_interface_desc(const void *in_buf, const uint8_t if_num, struct usb_interface_desc **if_desc)
1468 {
1469 if (unlikely(if_desc == NULL || in_buf == NULL))
1470 return -EINVAL;
1471 // 判断接口index是否合理
1472 if (if_num >= ((struct usb_config_desc *)in_buf)->num_interfaces)
1473 return -EINVAL;
1474 uint32_t total_len = ((struct usb_config_desc *)in_buf)->total_len;
1475 uint32_t pos = 0;
1476 while (pos < total_len)
1477 {
1478 struct usb_interface_desc *ptr = (struct usb_interface_desc *)(in_buf + pos);
1479 if (ptr->type != USB_DT_INTERFACE)
1480 {
1481 pos += ptr->len;
1482 continue;
1483 }
1484
1485 if (ptr->interface_number == if_num) // 找到目标interface desc
1486 {
1487 kdebug("get interface desc ok. interface_number=%d, num_endpoints=%d, class=%d, subclass=%d",
1488 ptr->interface_number, ptr->num_endpoints, ptr->interface_class, ptr->interface_sub_class);
1489 *if_desc = ptr;
1490 return 0;
1491 }
1492 pos += ptr->len;
1493 }
1494
1495 return -EINVAL;
1496 }
1497
1498 /**
1499 * @brief 获取端点描述符
1500 *
1501 * @param if_desc 接口描述符
1502 * @param ep_num 端点号
1503 * @param ep_desc 返回的指向端点描述符的指针
1504 * @return int 错误码
1505 */
xhci_get_endpoint_desc(const struct usb_interface_desc * if_desc,const uint8_t ep_num,struct usb_endpoint_desc ** ep_desc)1506 static inline int xhci_get_endpoint_desc(const struct usb_interface_desc *if_desc, const uint8_t ep_num,
1507 struct usb_endpoint_desc **ep_desc)
1508 {
1509 if (unlikely(if_desc == NULL || ep_desc == NULL))
1510 return -EINVAL;
1511 BUG_ON(ep_num >= if_desc->num_endpoints);
1512
1513 *ep_desc = (struct usb_endpoint_desc *)((uint64_t)(if_desc + 1) + ep_num * sizeof(struct usb_endpoint_desc));
1514 kdebug("get endpoint desc: ep_addr=%d, max_packet=%d, attr=%#06x, interval=%d", (*ep_desc)->endpoint_addr,
1515 (*ep_desc)->max_packet, (*ep_desc)->attributes, (*ep_desc)->interval);
1516 return 0;
1517 }
1518
1519 /**
1520 * @brief 初始化设备端口,并获取端口的描述信息
1521 *
1522 * @param id 主机控制器id
1523 * @param port_id 端口id
1524 * @param dev_desc 设备描述符
1525 * @return int 错误码
1526 */
xhci_get_descriptor(const int id,const int port_id,struct usb_device_desc * dev_desc)1527 static int xhci_get_descriptor(const int id, const int port_id, struct usb_device_desc *dev_desc)
1528 {
1529 int retval = 0;
1530 int count = 0;
1531 if (unlikely(dev_desc == NULL))
1532 return -EINVAL;
1533 // 读取端口速度。 full=1, low=2, high=3, super=4
1534 uint32_t speed = xhci_get_port_speed(id, port_id);
1535
1536 /*
1537 * Some devices will only send the first 8 bytes of the device descriptor
1538 * while in the default state. We must request the first 8 bytes, then reset
1539 * the port, set address, then request all 18 bytes.
1540 */
1541 struct xhci_TRB_normal_t trb = {0};
1542 trb.TRB_type = TRB_TYPE_ENABLE_SLOT;
1543 // kdebug("to enable slot");
1544 if (xhci_send_command(id, (struct xhci_TRB_t *)&trb, true) != 0)
1545 {
1546 kerror("portid:%d: send enable slot failed", port_id);
1547 return -ETIMEDOUT;
1548 }
1549 // kdebug("send enable slot ok");
1550
1551 uint32_t slot_id = ((struct xhci_TRB_cmd_complete_t *)&trb)->slot_id;
1552 int16_t max_packet;
1553 if (slot_id != 0) // slot id不为0时,是合法的slot id
1554 {
1555 // 为不同速度的设备确定最大的数据包大小
1556 switch (speed)
1557 {
1558 case XHCI_PORT_SPEED_LOW:
1559 max_packet = 8;
1560 break;
1561 case XHCI_PORT_SPEED_FULL:
1562 case XHCI_PORT_SPEED_HI:
1563 max_packet = 64;
1564 break;
1565 case XHCI_PORT_SPEED_SUPER:
1566 max_packet = 512;
1567 break;
1568 }
1569 }
1570 else
1571 return -EAGAIN; // slot id 不合法
1572
1573 xhci_hc[id].ports[port_id].slot_id = slot_id;
1574 // kdebug("speed=%d", speed);
1575 // 初始化接口的上下文
1576 uint64_t slot_vaddr = xhci_initialize_slot(id, port_id, speed, max_packet);
1577
1578 retval = xhci_set_address(id, slot_vaddr, slot_id, true);
1579 // kdebug("set addr again");
1580 // 再次发送 set_address命令
1581 // kdebug("to set addr again");
1582 retval = xhci_set_address(id, slot_vaddr, slot_id, false);
1583 if (retval != 0)
1584 return retval;
1585
1586 memset(dev_desc, 0, sizeof(struct usb_device_desc));
1587 DECLARE_USB_PACKET(ctrl_in_packet, USB_REQ_TYPE_GET_REQUEST, USB_REQ_GET_DESCRIPTOR, (USB_DT_DEVICE << 8), 0, 18);
1588 count = xhci_control_in(id, &ctrl_in_packet, dev_desc, port_id, max_packet);
1589 if (unlikely(count == 0))
1590 return -EAGAIN;
1591 /*
1592 TODO: if the dev_desc->max_packet was different than what we have as max_packet,
1593 you would need to change it here and in the slot context by doing a
1594 evaluate_slot_context call.
1595 */
1596
1597 xhci_hc[id].ports[port_id].dev_desc = dev_desc;
1598
1599 // print the descriptor
1600 printk(" Found USB Device:\n"
1601 " port: %i\n"
1602 " len: %i\n"
1603 " type: %i\n"
1604 " version: %01X.%02X\n"
1605 " class: %i\n"
1606 " subclass: %i\n"
1607 " protocol: %i\n"
1608 " max packet size: %i\n"
1609 " vendor id: 0x%04X\n"
1610 " product id: 0x%04X\n"
1611 " release ver: %i%i.%i%i\n"
1612 " manufacture index: %i (index to a string)\n"
1613 " product index: %i\n"
1614 " serial index: %i\n"
1615 " number of configs: %i\n",
1616 port_id, dev_desc->len, dev_desc->type, dev_desc->usb_version >> 8, dev_desc->usb_version & 0xFF,
1617 dev_desc->_class, dev_desc->subclass, dev_desc->protocol, dev_desc->max_packet_size, dev_desc->vendor_id,
1618 dev_desc->product_id, (dev_desc->device_rel & 0xF000) >> 12, (dev_desc->device_rel & 0x0F00) >> 8,
1619 (dev_desc->device_rel & 0x00F0) >> 4, (dev_desc->device_rel & 0x000F) >> 0, dev_desc->manufacturer_index,
1620 dev_desc->procuct_index, dev_desc->serial_index, dev_desc->config);
1621 return 0;
1622 }
1623
1624 /**
1625 * @brief 启用xhci控制器的端口
1626 *
1627 * @param id 控制器id
1628 * @return int
1629 */
xhci_hc_start_ports(int id)1630 static int xhci_hc_start_ports(int id)
1631 {
1632 int cnt = 0;
1633 // 注意,这两个循环应该不能合并到一起,因为可能存在usb2端口offset在前,usb3端口在后的情况,那样的话就会出错
1634
1635 // 循环启动所有的usb3端口
1636 for (int i = 0; i < xhci_hc[id].port_num; ++i)
1637 {
1638 if (XHCI_PORT_IS_USB3(id, i) && XHCI_PORT_IS_ACTIVE(id, i))
1639 {
1640 io_mfence();
1641 // kdebug("to reset port %d, rflags=%#018lx", id, get_rflags());
1642 int rst_ret = xhci_reset_port(id, i);
1643 // kdebug("reset done!, val=%d", rst_ret);
1644 // reset该端口
1645 if (likely(rst_ret == 0)) // 如果端口reset成功,就获取它的描述符
1646 // 否则,reset函数会把它给设置为未激活,并且标志配对的usb2端口是激活的
1647 {
1648 // kdebug("reset port %d ok", id);
1649 struct usb_device_desc dev_desc = {0};
1650 if (xhci_get_descriptor(id, i, &dev_desc) == 0)
1651 {
1652 xhci_configure_port(id, i);
1653 ++cnt;
1654 }
1655 kdebug("usb3 port %d get desc ok", i);
1656 }
1657 }
1658 }
1659 kdebug("Active usb3 ports:%d", cnt);
1660
1661 // 循环启动所有的usb2端口
1662 for (int i = 0; i < xhci_hc[id].port_num; ++i)
1663 {
1664 if (XHCI_PORT_IS_USB2(id, i) && XHCI_PORT_IS_ACTIVE(id, i))
1665 {
1666 // kdebug("initializing usb2: %d", i);
1667 // reset该端口
1668 // kdebug("to reset port %d, rflags=%#018lx", i, get_rflags());
1669 if (likely(xhci_reset_port(id, i) ==
1670 0)) // 如果端口reset成功,就获取它的描述符
1671 // 否则,reset函数会把它给设置为未激活,并且标志配对的usb2端口是激活的
1672 {
1673 // kdebug("reset port %d ok", id);
1674
1675 struct usb_device_desc dev_desc = {0};
1676 if (xhci_get_descriptor(id, i, &dev_desc) == 0)
1677 {
1678 xhci_configure_port(id, i);
1679 ++cnt;
1680 }
1681 kdebug("USB2 port %d get desc ok", i);
1682 }
1683 }
1684 }
1685 kinfo("xHCI controller %d: Started %d ports.", id, cnt);
1686 return 0;
1687 }
1688
1689 /**
1690 * @brief 发送HID设备的IDLE数据包
1691 *
1692 * @param id 主机控制器号
1693 * @param port_id 端口号
1694 * @param if_desc 接口结构体
1695 * @return int
1696 */
xhci_hid_set_idle(const int id,const int port_id,struct usb_interface_desc * if_desc)1697 static int xhci_hid_set_idle(const int id, const int port_id, struct usb_interface_desc *if_desc)
1698 {
1699 struct usb_device_desc *dev_desc = xhci_hc[id].ports[port_id].dev_desc;
1700 if (unlikely(dev_desc) == NULL)
1701 {
1702 BUG_ON(1);
1703 return -EINVAL;
1704 }
1705
1706 DECLARE_USB_PACKET(ctrl_out_packet, USB_REQ_TYPE_SET_CLASS_INTERFACE, 0x0a, 0, 0, 0);
1707 xhci_control_out(id, &ctrl_out_packet, NULL, port_id, dev_desc->max_packet_size);
1708 kdebug("xhci set idle done!");
1709 return 0;
1710 }
1711
1712 /**
1713 * @brief 配置端点上下文,并发送configure endpoint命令
1714 *
1715 * @param id 主机控制器id
1716 * @param port_id 端口号
1717 * @param ep_num 端点号
1718 * @param ep_type 端点类型
1719 * @param ep_desc 端点描述符
1720 * @return int 错误码
1721 */
xhci_configure_endpoint(const int id,const int port_id,const uint8_t ep_num,const uint8_t ep_type,struct usb_endpoint_desc * ep_desc)1722 static int xhci_configure_endpoint(const int id, const int port_id, const uint8_t ep_num, const uint8_t ep_type,
1723 struct usb_endpoint_desc *ep_desc)
1724 {
1725
1726 int retval = 0;
1727 uint64_t slot_context_vaddr = xhci_get_device_context_vaddr(id, port_id);
1728
1729 xhci_initialize_ep(id, slot_context_vaddr, port_id, ep_num, xhci_hc[id].ports[port_id].dev_desc->max_packet_size,
1730 usb_get_max_burst_from_ep(ep_desc), ep_type, (ep_num % 2) ? XHCI_DIR_IN_BIT : XHCI_DIR_OUT_BIT,
1731 xhci_get_port_speed(id, port_id), ep_desc->interval);
1732
1733 struct xhci_slot_context_t slot;
1734 struct xhci_ep_context_t ep = {0};
1735 // 创建输入上下文缓冲区
1736 uint64_t input_ctx_buffer = (uint64_t)kzalloc(xhci_hc[id].context_size * 33, 0);
1737 // 置位对应的add bit
1738 __write4b(input_ctx_buffer + 4, (1 << ep_num) | 1);
1739 __write4b(input_ctx_buffer + 0x1c, 1);
1740
1741 // 拷贝slot上下文
1742 __read_from_slot(&slot, slot_context_vaddr);
1743 // 设置该端口的最大端点号。注意,必须设置这里,否则会出错
1744 slot.entries = (ep_num > slot.entries) ? ep_num : slot.entries;
1745
1746 __write_slot(input_ctx_buffer + xhci_hc[id].context_size, &slot);
1747
1748 // __write_ep(id, input_ctx_buffer, 2, &ep);
1749 // kdebug("ep_num=%d", ep_num);
1750 // 拷贝将要被配置的端点的信息
1751 __read_from_ep(id, slot_context_vaddr, ep_num, &ep);
1752 // kdebug("ep.tr_dequeue_ptr=%#018lx", ep.tr_dequeue_ptr);
1753 ep.err_cnt = 3;
1754 // 加一是因为input_context头部比slot_context多了一个input_control_ctx
1755 __write_ep(id, input_ctx_buffer, ep_num + 1, &ep);
1756
1757 struct xhci_TRB_normal_t trb = {0};
1758 trb.buf_paddr = virt_2_phys(input_ctx_buffer);
1759 trb.TRB_type = TRB_TYPE_CONFIG_EP;
1760 trb.cycle = xhci_hc[id].cmd_trb_cycle;
1761 trb.Reserved |= (((uint16_t)xhci_hc[id].ports[port_id].slot_id) << 8) & 0xffff;
1762
1763 // kdebug("addr=%#018lx", ((struct xhci_TRB_t *)&trb)->param);
1764 // kdebug("status=%#018lx", ((struct xhci_TRB_t *)&trb)->status);
1765 // kdebug("command=%#018lx", ((struct xhci_TRB_t *)&trb)->command);
1766 retval = xhci_send_command(id, (struct xhci_TRB_t *)&trb, true);
1767
1768 if (unlikely(retval != 0))
1769 {
1770 kerror("port_id:%d, configure endpoint %d failed", port_id, ep_num);
1771 goto failed;
1772 }
1773
1774 struct xhci_TRB_cmd_complete_t *trb_done = (struct xhci_TRB_cmd_complete_t *)&trb;
1775 if (trb_done->code == TRB_COMP_TRB_SUCCESS) // 成功执行
1776 {
1777 // 如果要从控制器获取刚刚设置的设备地址的话,可以在这里读取slot context
1778 ksuccess("port_id:%d, ep:%d successfully configured.", port_id, ep_num);
1779 retval = 0;
1780 }
1781 else
1782 retval = -EAGAIN;
1783 done:;
1784 failed:;
1785 kfree((void *)input_ctx_buffer);
1786 return retval;
1787 }
1788
1789 /**
1790 * @brief 配置连接在指定端口上的设备
1791 *
1792 * @param id 主机控制器id
1793 * @param port_id 端口id
1794 * @param full_conf 完整的config
1795 * @return int 错误码
1796 */
xhci_configure_port(const int id,const int port_id)1797 static int xhci_configure_port(const int id, const int port_id)
1798 {
1799 void *full_conf = NULL;
1800 struct usb_interface_desc *if_desc = NULL;
1801 struct usb_endpoint_desc *ep_desc = NULL;
1802 int retval = 0;
1803
1804 // hint: 暂时只考虑对键盘的初始化
1805 // 获取完整的config
1806 {
1807 struct usb_config_desc conf_desc = {0};
1808 retval = xhci_get_config_desc(id, port_id, &conf_desc);
1809 if (unlikely(retval != 0))
1810 return retval;
1811
1812 full_conf = kzalloc(conf_desc.total_len, 0);
1813 if (unlikely(full_conf == NULL))
1814 return -ENOMEM;
1815
1816 retval = xhci_get_config_desc_full(id, port_id, &conf_desc, full_conf);
1817 if (unlikely(retval != 0))
1818 goto failed;
1819 }
1820
1821 retval = xhci_get_interface_desc(full_conf, 0, &if_desc);
1822 if (unlikely(retval != 0))
1823 goto failed;
1824
1825 if (if_desc->interface_class == USB_CLASS_HID)
1826 {
1827 // 由于暂时只支持键盘,因此把键盘的驱动也写在这里
1828 // todo: 分离usb键盘驱动
1829
1830 retval = xhci_get_endpoint_desc(if_desc, 0, &ep_desc);
1831 if (unlikely(retval != 0))
1832 goto failed;
1833 // kdebug("to set conf, val=%#010lx", ((struct usb_config_desc *)full_conf)->value);
1834 retval = xhci_set_configuration(id, port_id, ((struct usb_config_desc *)full_conf)->value);
1835 if (unlikely(retval != 0))
1836 goto failed;
1837 // kdebug("set conf ok");
1838
1839 // configure endpoint
1840 retval = xhci_configure_endpoint(id, port_id, ep_desc->endpoint_addr, USB_EP_INTERRUPT, ep_desc);
1841 if (unlikely(retval != 0))
1842 goto failed;
1843
1844 retval = xhci_hid_set_idle(id, port_id, if_desc);
1845 if (unlikely(retval != 0))
1846 goto failed;
1847
1848 struct usb_hid_desc *hid_desc = NULL;
1849 uint32_t hid_desc_len = 0;
1850 // 获取hid desc
1851 retval = xhci_get_hid_descriptor(id, port_id, full_conf, if_desc->interface_number, &hid_desc);
1852 if (unlikely(retval != 0))
1853 goto failed;
1854
1855 // 获取hid report
1856 void *hid_report_data = kzalloc(hid_desc->report_desc_len, 0);
1857 if (unlikely(hid_report_data == NULL))
1858 goto failed;
1859 retval =
1860 xhci_get_hid_report(id, port_id, if_desc->interface_number, hid_report_data, hid_desc->report_desc_len);
1861 if (unlikely(retval != 0))
1862 {
1863 kfree(hid_report_data);
1864 goto failed;
1865 }
1866
1867 kdebug("to parse hid report");
1868 // todo:这里的parse有问题,详见hid_parse函数的注释
1869 // hid_parse_report(hid_report_data, hid_desc->report_desc_len);
1870 kdebug("parse hid report done");
1871
1872 // kdebug("to find object from hid path");
1873 // struct hid_data_t data = {0};
1874 // data.type = HID_ITEM_INPUT;
1875 // data.path.node[0].u_page = HID_USAGE_PAGE_GEN_DESKTOP;
1876 // data.path.node[0].usage = 0xff;
1877 // data.path.node[2].usage = USAGE_POINTER_Y; // to get the Y Coordinate, comment X above and uncomment this
1878 // line data.path.node[2].usage = USAGE_POINTER_WHEEL; // to get the Wheel Coordinate, comment X above and
1879 // uncomment this line
1880 // data.path.size = 1;
1881 // hid_parse_find_object(hid_report_data, hid_desc->report_desc_len, &data);
1882 kfree(hid_report_data);
1883 }
1884 goto out;
1885 failed:;
1886 kerror("failed at xhci_configure_port, retval=%d", retval);
1887 out:;
1888 kfree(full_conf);
1889 return retval;
1890 }
1891 /**
1892 * @brief 初始化xhci主机控制器的中断控制
1893 *
1894 * @param id 主机控制器id
1895 * @return int 返回码
1896 */
xhci_hc_init_intr(int id)1897 static int xhci_hc_init_intr(int id)
1898 {
1899 uint64_t retval = 0;
1900
1901 struct xhci_caps_HCSPARAMS1_reg_t hcs1;
1902 struct xhci_caps_HCSPARAMS2_reg_t hcs2;
1903 io_mfence();
1904 memcpy(&hcs1, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t));
1905 io_mfence();
1906 memcpy(&hcs2, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS2), sizeof(struct xhci_caps_HCSPARAMS2_reg_t));
1907 io_mfence();
1908
1909 uint32_t max_segs = (1 << (uint32_t)(hcs2.ERST_Max));
1910 uint32_t max_interrupters = hcs1.max_intrs;
1911
1912 // 创建 event ring
1913 retval = xhci_create_event_ring(4096, &xhci_hc[id].event_ring_vaddr);
1914 io_mfence();
1915 if (unlikely((int64_t)(retval) == -ENOMEM))
1916 return -ENOMEM;
1917 xhci_hc[id].event_ring_table_vaddr = retval;
1918 xhci_hc[id].current_event_ring_vaddr =
1919 xhci_hc[id].event_ring_vaddr; // 设置驱动程序要读取的下一个event ring trb的地址
1920 retval = 0;
1921
1922 xhci_hc[id].current_event_ring_cycle = 1;
1923
1924 // 写入第0个中断寄存器组
1925 io_mfence();
1926 xhci_write_intr_reg32(id, 0, XHCI_IR_MAN, 0x3); // 使能中断并清除pending位(这个pending位是写入1就清0的)
1927 io_mfence();
1928 xhci_write_intr_reg32(id, 0, XHCI_IR_MOD, 0); // 关闭中断管制
1929 io_mfence();
1930 xhci_write_intr_reg32(id, 0, XHCI_IR_TABLE_SIZE, 1); // 当前只有1个segment
1931 io_mfence();
1932 xhci_write_intr_reg64(id, 0, XHCI_IR_DEQUEUE,
1933 virt_2_phys(xhci_hc[id].current_event_ring_vaddr) |
1934 (1 << 3)); // 写入dequeue寄存器,并清除busy位(写1就会清除)
1935 io_mfence();
1936 xhci_write_intr_reg64(id, 0, XHCI_IR_TABLE_ADDR, virt_2_phys(xhci_hc[id].event_ring_table_vaddr)); // 写入table地址
1937 io_mfence();
1938
1939 // 清除状态位
1940 xhci_write_op_reg32(id, XHCI_OPS_USBSTS, (1 << 10) | (1 << 4) | (1 << 3) | (1 << 2));
1941 io_mfence();
1942 // 开启usb中断
1943 // 注册中断处理程序
1944 struct xhci_hc_irq_install_info_t install_info;
1945 install_info.assert = 1;
1946 install_info.edge_trigger = 1;
1947 install_info.processor = 0; // 投递到bsp
1948
1949 char *buf = (char *)kmalloc(16, 0);
1950 memset(buf, 0, 16);
1951 sprintk(buf, "xHCI HC%d", id);
1952 io_mfence();
1953 irq_register(xhci_controller_irq_num[id], &install_info, &xhci_hc_irq_handler, id, &xhci_hc_intr_controller, buf);
1954 io_mfence();
1955 kfree(buf);
1956
1957 kdebug("xhci host controller %d: interrupt registered. irq num=%d", id, xhci_controller_irq_num[id]);
1958
1959 return 0;
1960 }
1961
1962 /**
1963 * @brief 往xhci控制器发送trb, 并将返回的数据存入原始的trb中
1964 *
1965 * @param id xhci控制器号
1966 * @param trb 传输请求块
1967 * @param do_ring 是否通知doorbell register
1968 * @return int 错误码
1969 */
xhci_send_command(int id,struct xhci_TRB_t * trb,const bool do_ring)1970 static int xhci_send_command(int id, struct xhci_TRB_t *trb, const bool do_ring)
1971 {
1972 uint64_t origin_trb_vaddr = xhci_hc[id].cmd_trb_vaddr;
1973
1974 // 必须先写入参数和状态数据,最后写入command
1975 __write8b(xhci_hc[id].cmd_trb_vaddr, trb->param); // 参数
1976 __write4b(xhci_hc[id].cmd_trb_vaddr + 8, trb->status); // 状态
1977 __write4b(xhci_hc[id].cmd_trb_vaddr + 12, trb->command | xhci_hc[id].cmd_trb_cycle); // 命令
1978
1979 xhci_hc[id].cmd_trb_vaddr += sizeof(struct xhci_TRB_t); // 跳转到下一个trb
1980
1981 {
1982 // 如果下一个trb是link trb,则将下一个要操作的地址是设置为第一个trb
1983 struct xhci_TRB_normal_t *ptr = (struct xhci_TRB_normal_t *)xhci_hc[id].cmd_trb_vaddr;
1984 if (ptr->TRB_type == TRB_TYPE_LINK)
1985 {
1986 ptr->cycle = xhci_hc[id].cmd_trb_cycle;
1987 xhci_hc[id].cmd_trb_vaddr = xhci_hc[id].cmd_ring_vaddr;
1988 xhci_hc[id].cmd_trb_cycle ^= 1;
1989 }
1990 }
1991
1992 if (do_ring) // 按响命令门铃
1993 {
1994 __xhci_write_doorbell(id, 0, 0);
1995
1996 // 等待中断产生
1997 int timer = 400;
1998 const uint32_t iman0 = xhci_read_intr_reg32(id, 0, XHCI_IR_MAN);
1999
2000 // Now wait for the interrupt to happen
2001 // We use bit 31 of the command dword since it is reserved
2002 while (timer && ((__read4b(origin_trb_vaddr + 8) & XHCI_IRQ_DONE) == 0))
2003 {
2004 rs_usleep(1000);
2005 --timer;
2006 }
2007 uint32_t x = xhci_read_cap_reg32(id, xhci_hc[id].rts_offset + 0x20);
2008 if (timer == 0)
2009 return -ETIMEDOUT;
2010 else
2011 {
2012 xhci_get_trb(trb, origin_trb_vaddr);
2013 trb->status &= (~XHCI_IRQ_DONE);
2014 }
2015 }
2016 return 0;
2017 }
2018
2019 /**
2020 * @brief 获取接口的hid descriptor
2021 *
2022 * @param id 主机控制器号
2023 * @param port_id 端口号
2024 * @param full_conf 完整的cofig缓冲区
2025 * @param interface_number 接口号
2026 * @param ret_hid_desc 返回的指向hid描述符的指针
2027 * @return int 错误码
2028 */
xhci_get_hid_descriptor(int id,int port_id,const void * full_conf,int interface_number,struct usb_hid_desc ** ret_hid_desc)2029 static int xhci_get_hid_descriptor(int id, int port_id, const void *full_conf, int interface_number,
2030 struct usb_hid_desc **ret_hid_desc)
2031 {
2032 if (unlikely(ret_hid_desc == NULL || full_conf == NULL))
2033 return -EINVAL;
2034 kdebug("to get hid_descriptor.");
2035 // 判断接口index是否合理
2036 if (interface_number >= ((struct usb_config_desc *)full_conf)->num_interfaces)
2037 return -EINVAL;
2038 uint32_t total_len = ((struct usb_config_desc *)full_conf)->total_len;
2039 uint32_t pos = 0;
2040 while (pos < total_len)
2041 {
2042 struct usb_hid_desc *ptr = (struct usb_hid_desc *)(full_conf + pos);
2043 if (ptr->type != USB_DT_HID)
2044 {
2045 pos += ptr->len;
2046 continue;
2047 }
2048 // 找到目标hid描述符
2049 *ret_hid_desc = ptr;
2050 kdebug("Found hid descriptor for port:%d, if:%d, report_desc_len=%d", port_id, interface_number,
2051 ptr->report_desc_len);
2052 return 0;
2053 }
2054
2055 return -EINVAL;
2056 }
2057
2058 /**
2059 * @brief 发送get_hid_descriptor请求,将hid
2060 *
2061 * @param id 主机控制器号
2062 * @param port_id 端口号
2063 * @param interface_number 接口号
2064 * @param ret_hid_report hid report要拷贝到的地址
2065 * @param hid_report_len hid report的长度
2066 * @return int 错误码
2067 */
xhci_get_hid_report(int id,int port_id,int interface_number,void * ret_hid_report,uint32_t hid_report_len)2068 static int xhci_get_hid_report(int id, int port_id, int interface_number, void *ret_hid_report, uint32_t hid_report_len)
2069 {
2070 int retval = xhci_get_desc(id, port_id, ret_hid_report, USB_DT_HID_REPORT, 0, interface_number, hid_report_len);
2071 if (unlikely(retval != 0))
2072 kerror("xhci_get_hid_report failed: host_controller:%d, port:%d, interface %d", id, port_id, interface_number);
2073 return retval;
2074 }
2075 /**
2076 * @brief 初始化xhci控制器
2077 *
2078 * @param header 指定控制器的pci device头部
2079 */
xhci_init(struct pci_device_structure_general_device_t * dev_hdr)2080 void xhci_init(struct pci_device_structure_general_device_t *dev_hdr)
2081 {
2082
2083 if (xhci_ctrl_count >= XHCI_MAX_HOST_CONTROLLERS)
2084 {
2085 kerror("Initialize xhci controller failed: exceed the limit of max controllers.");
2086 return;
2087 }
2088
2089 spin_lock(&xhci_controller_init_lock);
2090 kinfo("Initializing xhci host controller: bus=%#02x, device=%#02x, func=%#02x, VendorID=%#04x, irq_line=%d, "
2091 "irq_pin=%d",
2092 dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, dev_hdr->header.Vendor_ID,
2093 dev_hdr->Interrupt_Line, dev_hdr->Interrupt_PIN);
2094 io_mfence();
2095 int cid = xhci_hc_find_available_id();
2096 if (cid < 0)
2097 {
2098 kerror("Initialize xhci controller failed: exceed the limit of max controllers.");
2099 goto failed_exceed_max;
2100 }
2101
2102 memset(&xhci_hc[cid], 0, sizeof(struct xhci_host_controller_t));
2103 xhci_hc[cid].controller_id = cid;
2104 xhci_hc[cid].pci_dev_hdr = dev_hdr;
2105 io_mfence();
2106 {
2107 uint32_t tmp = pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0x4);
2108 tmp |= 0x6;
2109 // mem I/O access enable and bus master enable
2110 pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0x4, tmp);
2111 }
2112 io_mfence();
2113 // 为当前控制器映射寄存器地址空间
2114 xhci_hc[cid].vbase =
2115 SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + XHCI_MAPPING_OFFSET + 65536 * xhci_hc[cid].controller_id;
2116 // kdebug("dev_hdr->BAR0 & (~0xf)=%#018lx", dev_hdr->BAR0 & (~0xf));
2117 mm_map_phys_addr(xhci_hc[cid].vbase, dev_hdr->BAR0 & (~0xf), 65536, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, true);
2118 io_mfence();
2119
2120 // 计算operational registers的地址
2121 xhci_hc[cid].vbase_op = xhci_hc[cid].vbase + (xhci_read_cap_reg32(cid, XHCI_CAPS_CAPLENGTH) & 0xff);
2122 io_mfence();
2123 // 重置xhci控制器
2124 FAIL_ON_TO(xhci_hc_reset(cid), failed);
2125 io_mfence();
2126
2127 // 读取xhci控制寄存器
2128 uint16_t iversion = *(uint16_t *)(xhci_hc[cid].vbase + XHCI_CAPS_HCIVERSION);
2129
2130 struct xhci_caps_HCCPARAMS1_reg_t hcc1;
2131 struct xhci_caps_HCCPARAMS2_reg_t hcc2;
2132
2133 struct xhci_caps_HCSPARAMS1_reg_t hcs1;
2134 struct xhci_caps_HCSPARAMS2_reg_t hcs2;
2135 memcpy(&hcc1, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCCPARAMS1), sizeof(struct xhci_caps_HCCPARAMS1_reg_t));
2136 memcpy(&hcc2, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCCPARAMS2), sizeof(struct xhci_caps_HCCPARAMS2_reg_t));
2137 memcpy(&hcs1, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t));
2138 memcpy(&hcs2, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCSPARAMS2), sizeof(struct xhci_caps_HCSPARAMS2_reg_t));
2139
2140 xhci_hc[cid].db_offset = xhci_read_cap_reg32(cid, XHCI_CAPS_DBOFF) & (~0x3); // bits [1:0] reserved
2141 io_mfence();
2142 xhci_hc[cid].rts_offset = xhci_read_cap_reg32(cid, XHCI_CAPS_RTSOFF) & (~0x1f); // bits [4:0] reserved.
2143 io_mfence();
2144
2145 xhci_hc[cid].ext_caps_off = 1UL * (hcc1.xECP) * 4;
2146 xhci_hc[cid].context_size = (hcc1.csz) ? 64 : 32;
2147
2148 if (iversion < 0x95)
2149 kwarn("Unsupported/Unknowned xHCI controller version: %#06x. This may cause unexpected behavior.", iversion);
2150
2151 {
2152
2153 // Write to the FLADJ register incase the BIOS didn't
2154 uint32_t tmp = pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0x60);
2155 tmp |= (0x20 << 8);
2156 pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0x60, tmp);
2157 }
2158 // if it is a Panther Point device, make sure sockets are xHCI controlled.
2159 if (((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0) & 0xffff) == 0x8086) &&
2160 (((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0) >> 16) & 0xffff) ==
2161 0x1E31) &&
2162 ((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 8) & 0xff) == 4))
2163 {
2164 kdebug("Is a Panther Point device");
2165 pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0xd8, 0xffffffff);
2166 pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0xd0, 0xffffffff);
2167 }
2168 io_mfence();
2169 // 关闭legacy支持
2170 FAIL_ON_TO(xhci_hc_stop_legacy(cid), failed);
2171 io_mfence();
2172
2173 // 端口配对
2174 FAIL_ON_TO(xhci_hc_pair_ports(cid), failed);
2175 io_mfence();
2176
2177 // ========== 设置USB host controller =========
2178 // 获取页面大小
2179 xhci_hc[cid].page_size = (xhci_read_op_reg32(cid, XHCI_OPS_PAGESIZE) & 0xffff) << 12;
2180 io_mfence();
2181 // 获取设备上下文空间
2182 xhci_hc[cid].dcbaap_vaddr = (uint64_t)kzalloc(2048, 0); // 分配2KB的设备上下文地址数组空间
2183
2184 io_mfence();
2185 // kdebug("dcbaap_vaddr=%#018lx", xhci_hc[cid].dcbaap_vaddr);
2186 if (unlikely(!xhci_is_aligned64(xhci_hc[cid].dcbaap_vaddr))) // 地址不是按照64byte对齐
2187 {
2188 kerror("dcbaap isn't 64 byte aligned.");
2189 goto failed_free_dyn;
2190 }
2191 // 写入dcbaap
2192 xhci_write_op_reg64(cid, XHCI_OPS_DCBAAP, virt_2_phys(xhci_hc[cid].dcbaap_vaddr));
2193 io_mfence();
2194
2195 // 创建scratchpad buffer array
2196 uint32_t max_scratchpad_buf = (((uint32_t)hcs2.max_scratchpad_buf_HI5) << 5) | hcs2.max_scratchpad_buf_LO5;
2197 kdebug("max scratchpad buffer=%d", max_scratchpad_buf);
2198 if (max_scratchpad_buf > 0)
2199 {
2200 xhci_hc[cid].scratchpad_buf_array_vaddr = (uint64_t)kzalloc(sizeof(uint64_t) * max_scratchpad_buf, 0);
2201 __write8b(xhci_hc[cid].dcbaap_vaddr, virt_2_phys(xhci_hc[cid].scratchpad_buf_array_vaddr));
2202
2203 // 创建scratchpad buffers
2204 for (int i = 0; i < max_scratchpad_buf; ++i)
2205 {
2206 uint64_t buf_vaddr = (uint64_t)kzalloc(xhci_hc[cid].page_size, 0);
2207 __write8b(xhci_hc[cid].scratchpad_buf_array_vaddr, virt_2_phys(buf_vaddr));
2208 }
2209 }
2210
2211 // 创建command ring
2212 xhci_hc[cid].cmd_ring_vaddr = xhci_create_ring(XHCI_CMND_RING_TRBS);
2213 xhci_hc[cid].cmd_trb_vaddr = xhci_hc[cid].cmd_ring_vaddr;
2214
2215 if (unlikely(!xhci_is_aligned64(xhci_hc[cid].cmd_ring_vaddr))) // 地址不是按照64byte对齐
2216 {
2217 kerror("cmd ring isn't 64 byte aligned.");
2218 goto failed_free_dyn;
2219 }
2220
2221 // 设置初始cycle bit为1
2222 xhci_hc[cid].cmd_trb_cycle = XHCI_TRB_CYCLE_ON;
2223 io_mfence();
2224 // 写入command ring控制寄存器
2225 xhci_write_op_reg64(cid, XHCI_OPS_CRCR, virt_2_phys(xhci_hc[cid].cmd_ring_vaddr) | xhci_hc[cid].cmd_trb_cycle);
2226 // 写入配置寄存器
2227 uint32_t max_slots = hcs1.max_slots;
2228 // kdebug("max slots = %d", max_slots);
2229 io_mfence();
2230 xhci_write_op_reg32(cid, XHCI_OPS_CONFIG, max_slots);
2231 io_mfence();
2232 // 写入设备通知控制寄存器
2233 xhci_write_op_reg32(cid, XHCI_OPS_DNCTRL, (1 << 1)); // 目前只有N1被支持
2234 io_mfence();
2235
2236 FAIL_ON_TO(xhci_hc_init_intr(cid), failed_free_dyn);
2237 io_mfence();
2238
2239 ++xhci_ctrl_count;
2240 io_mfence();
2241 spin_unlock(&xhci_controller_init_lock);
2242 io_mfence();
2243
2244 return;
2245
2246 failed_free_dyn:; // 释放动态申请的内存
2247 if (xhci_hc[cid].dcbaap_vaddr)
2248 kfree((void *)xhci_hc[cid].dcbaap_vaddr);
2249
2250 if (xhci_hc[cid].cmd_ring_vaddr)
2251 kfree((void *)xhci_hc[cid].cmd_ring_vaddr);
2252
2253 if (xhci_hc[cid].event_ring_table_vaddr)
2254 kfree((void *)xhci_hc[cid].event_ring_table_vaddr);
2255
2256 if (xhci_hc[cid].event_ring_vaddr)
2257 kfree((void *)xhci_hc[cid].event_ring_vaddr);
2258
2259 failed:;
2260 io_mfence();
2261 // 取消地址映射
2262 mm_unmap_addr(xhci_hc[cid].vbase, 65536);
2263 io_mfence();
2264 // 清空数组
2265 memset((void *)&xhci_hc[cid], 0, sizeof(struct xhci_host_controller_t));
2266
2267 failed_exceed_max:;
2268 kerror("Failed to initialize controller: bus=%d, dev=%d, func=%d", dev_hdr->header.bus, dev_hdr->header.device,
2269 dev_hdr->header.func);
2270 spin_unlock(&xhci_controller_init_lock);
2271 }