1 #![allow(dead_code)]
2 use core::{any::Any, fmt::Debug};
3 
4 use alloc::{
5     collections::BTreeMap,
6     string::String,
7     sync::{Arc, Weak},
8     vec::Vec,
9 };
10 
11 use crate::{
12     filesystem::vfs::{
13         core::generate_inode_id, file::FilePrivateData, FileSystem, FileType, IndexNode, InodeId,
14         Metadata, PollStatus,
15     },
16     include::bindings::bindings::{
17         EFAULT, EINVAL, EISDIR, ENOENT, ENOSPC, ENOTDIR, ENOTEMPTY, ENOTSUP, EPERM, EROFS,
18     },
19     io::{device::LBA_SIZE, disk_info::Partition, SeekFrom},
20     kdebug, kerror,
21     libs::{
22         spinlock::{SpinLock, SpinLockGuard},
23         vec_cursor::VecCursor,
24     },
25     time::TimeSpec,
26 };
27 
28 use super::{
29     bpb::{BiosParameterBlock, FATType},
30     entry::{FATDir, FATDirEntry, FATDirIter, FATEntry},
31     utils::RESERVED_CLUSTERS,
32 };
33 
34 /// FAT32文件系统的最大的文件大小
35 pub const MAX_FILE_SIZE: u64 = 0xffff_ffff;
36 
37 /// @brief 表示当前簇和上一个簇的关系的结构体
38 /// 定义这样一个结构体的原因是,FAT文件系统的文件中,前后两个簇具有关联关系。
39 #[derive(Debug, Clone, Copy, Default)]
40 pub struct Cluster {
41     pub cluster_num: u64,
42     pub parent_cluster: u64,
43 }
44 
45 impl PartialOrd for Cluster {
46     /// @brief 根据当前簇号比较大小
partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering>47     fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
48         return self.cluster_num.partial_cmp(&other.cluster_num);
49     }
50 }
51 
52 impl PartialEq for Cluster {
53     /// @brief 根据当前簇号比较是否相等
eq(&self, other: &Self) -> bool54     fn eq(&self, other: &Self) -> bool {
55         self.cluster_num == other.cluster_num
56     }
57 }
58 
59 impl Eq for Cluster {}
60 
61 #[derive(Debug)]
62 pub struct FATFileSystem {
63     /// 当前文件系统所在的分区
64     pub partition: Arc<Partition>,
65     /// 当前文件系统的BOPB
66     pub bpb: BiosParameterBlock,
67     /// 当前文件系统的第一个数据扇区(相对分区开始位置)
68     pub first_data_sector: u64,
69     /// 文件系统信息结构体
70     pub fs_info: Arc<LockedFATFsInfo>,
71     /// 文件系统的根inode
72     root_inode: Arc<LockedFATInode>,
73 }
74 
75 /// FAT文件系统的Inode
76 #[derive(Debug)]
77 pub struct LockedFATInode(SpinLock<FATInode>);
78 
79 #[derive(Debug)]
80 pub struct LockedFATFsInfo(SpinLock<FATFsInfo>);
81 
82 impl LockedFATFsInfo {
83     #[inline]
new(fs_info: FATFsInfo) -> Self84     pub fn new(fs_info: FATFsInfo) -> Self {
85         return Self(SpinLock::new(fs_info));
86     }
87 }
88 
89 #[derive(Debug)]
90 pub struct FATInode {
91     /// 指向父Inode的弱引用
92     parent: Weak<LockedFATInode>,
93     /// 指向自身的弱引用
94     self_ref: Weak<LockedFATInode>,
95     /// 子Inode的B树. 该数据结构用作缓存区。其中,它的key表示inode的名称。
96     /// 请注意,由于FAT的查询过程对大小写不敏感,因此我们选择让key全部是大写的,方便统一操作。
97     children: BTreeMap<String, Arc<LockedFATInode>>,
98     /// 当前inode的元数据
99     metadata: Metadata,
100     /// 指向inode所在的文件系统对象的指针
101     fs: Weak<FATFileSystem>,
102 
103     /// 根据不同的Inode类型,创建不同的私有字段
104     inode_type: FATDirEntry,
105 }
106 
107 impl FATInode {
108     /// @brief 更新当前inode的元数据
update_metadata(&mut self)109     pub fn update_metadata(&mut self) {
110         // todo: 更新文件的访问时间等信息
111         match &self.inode_type {
112             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
113                 self.metadata.size = f.size() as i64;
114             }
115             FATDirEntry::Dir(d) => {
116                 self.metadata.size = d.size(&self.fs.upgrade().unwrap().clone()) as i64;
117             }
118             FATDirEntry::UnInit => {
119                 kerror!("update_metadata: Uninitialized FATDirEntry: {:?}", self);
120                 return;
121             }
122         };
123     }
124 
find(&mut self, name: &str) -> Result<Arc<LockedFATInode>, i32>125     fn find(&mut self, name: &str) -> Result<Arc<LockedFATInode>, i32> {
126         match &self.inode_type {
127             FATDirEntry::Dir(d) => {
128                 // 尝试在缓存区查找
129                 if let Some(entry) = self.children.get(&name.to_uppercase()) {
130                     return Ok(entry.clone());
131                 }
132                 // 在缓存区找不到
133                 // 在磁盘查找
134                 let fat_entry: FATDirEntry =
135                     d.find_entry(name, None, None, self.fs.upgrade().unwrap())?;
136                 // kdebug!("find entry from disk ok, entry={fat_entry:?}");
137                 // 创建新的inode
138                 let entry_inode: Arc<LockedFATInode> = LockedFATInode::new(
139                     self.fs.upgrade().unwrap(),
140                     self.self_ref.clone(),
141                     fat_entry,
142                 );
143                 // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的
144                 self.children
145                     .insert(name.to_uppercase(), entry_inode.clone());
146                 return Ok(entry_inode);
147             }
148             FATDirEntry::UnInit => {
149                 panic!(
150                     "Uninitialized FAT Inode, fs = {:?}, inode={self:?}",
151                     self.fs
152                 )
153             }
154             _ => {
155                 return Err(-(ENOTDIR as i32));
156             }
157         }
158     }
159 }
160 
161 impl LockedFATInode {
new( fs: Arc<FATFileSystem>, parent: Weak<LockedFATInode>, inode_type: FATDirEntry, ) -> Arc<LockedFATInode>162     pub fn new(
163         fs: Arc<FATFileSystem>,
164         parent: Weak<LockedFATInode>,
165         inode_type: FATDirEntry,
166     ) -> Arc<LockedFATInode> {
167         let file_type = if let FATDirEntry::Dir(_) = inode_type {
168             FileType::Dir
169         } else {
170             FileType::File
171         };
172 
173         let inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode {
174             parent: parent,
175             self_ref: Weak::default(),
176             children: BTreeMap::new(),
177             fs: Arc::downgrade(&fs),
178             inode_type: inode_type,
179             metadata: Metadata {
180                 dev_id: 0,
181                 inode_id: generate_inode_id(),
182                 size: 0,
183                 blk_size: fs.bpb.bytes_per_sector as usize,
184                 blocks: if let FATType::FAT32(_) = fs.bpb.fat_type {
185                     fs.bpb.total_sectors_32 as usize
186                 } else {
187                     fs.bpb.total_sectors_16 as usize
188                 },
189                 atime: TimeSpec::default(),
190                 mtime: TimeSpec::default(),
191                 ctime: TimeSpec::default(),
192                 file_type: file_type,
193                 mode: 0o777,
194                 nlinks: 1,
195                 uid: 0,
196                 gid: 0,
197                 raw_dev: 0,
198             },
199         })));
200 
201         inode.0.lock().self_ref = Arc::downgrade(&inode);
202 
203         inode.0.lock().update_metadata();
204 
205         return inode;
206     }
207 }
208 
209 /// FsInfo结构体(内存中的一份拷贝,当卸载卷或者sync的时候,把它写入磁盘)
210 #[derive(Debug)]
211 pub struct FATFsInfo {
212     /// Lead Signature - must equal 0x41615252
213     lead_sig: u32,
214     /// Value must equal 0x61417272
215     struc_sig: u32,
216     /// 空闲簇数目
217     free_count: u32,
218     /// 第一个空闲簇的位置(不一定准确,仅供加速查找)
219     next_free: u32,
220     /// 0xAA550000
221     trail_sig: u32,
222     /// Dirty flag to flush to disk
223     dirty: bool,
224     /// FsInfo Structure 在磁盘上的字节偏移量
225     /// Not present for FAT12 and FAT16
226     offset: Option<u64>,
227 }
228 
229 impl FileSystem for FATFileSystem {
root_inode(&self) -> Arc<dyn crate::filesystem::vfs::IndexNode>230     fn root_inode(&self) -> Arc<dyn crate::filesystem::vfs::IndexNode> {
231         return self.root_inode.clone();
232     }
233 
info(&self) -> crate::filesystem::vfs::FsInfo234     fn info(&self) -> crate::filesystem::vfs::FsInfo {
235         todo!()
236     }
237 
238     /// @brief 本函数用于实现动态转换。
239     /// 具体的文件系统在实现本函数时,最简单的方式就是:直接返回self
as_any_ref(&self) -> &dyn Any240     fn as_any_ref(&self) -> &dyn Any {
241         self
242     }
243 }
244 
245 impl FATFileSystem {
new(partition: Arc<Partition>) -> Result<Arc<FATFileSystem>, i32>246     pub fn new(partition: Arc<Partition>) -> Result<Arc<FATFileSystem>, i32> {
247         let bpb = BiosParameterBlock::new(partition.clone())?;
248 
249         // 从磁盘上读取FAT32文件系统的FsInfo结构体
250         let fs_info: FATFsInfo = match bpb.fat_type {
251             FATType::FAT32(bpb32) => {
252                 let fs_info_in_disk_bytes_offset = partition.lba_start * LBA_SIZE as u64
253                     + bpb32.fs_info as u64 * bpb.bytes_per_sector as u64;
254                 FATFsInfo::new(
255                     partition.clone(),
256                     fs_info_in_disk_bytes_offset,
257                     bpb.bytes_per_sector as usize,
258                 )?
259             }
260             _ => FATFsInfo::default(),
261         };
262 
263         // 根目录项占用的扇区数(向上取整)
264         let root_dir_sectors: u64 = ((bpb.root_entries_cnt as u64 * 32)
265             + (bpb.bytes_per_sector as u64 - 1))
266             / (bpb.bytes_per_sector as u64);
267 
268         // FAT表大小(单位:扇区)
269         let fat_size = if bpb.fat_size_16 != 0 {
270             bpb.fat_size_16 as u64
271         } else {
272             match bpb.fat_type {
273                 FATType::FAT32(x) => x.fat_size_32 as u64,
274                 _ => {
275                     kerror!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16");
276                     return Err(-(EINVAL as i32));
277                 }
278             }
279         };
280 
281         let first_data_sector =
282             bpb.rsvd_sec_cnt as u64 + (bpb.num_fats as u64 * fat_size) + root_dir_sectors;
283 
284         // 创建文件系统的根节点
285         let root_inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode {
286             parent: Weak::default(),
287             self_ref: Weak::default(),
288             children: BTreeMap::new(),
289             fs: Weak::default(),
290             inode_type: FATDirEntry::UnInit,
291             metadata: Metadata {
292                 dev_id: 0,
293                 inode_id: generate_inode_id(),
294                 size: 0,
295                 blk_size: bpb.bytes_per_sector as usize,
296                 blocks: if let FATType::FAT32(_) = bpb.fat_type {
297                     bpb.total_sectors_32 as usize
298                 } else {
299                     bpb.total_sectors_16 as usize
300                 },
301                 atime: TimeSpec::default(),
302                 mtime: TimeSpec::default(),
303                 ctime: TimeSpec::default(),
304                 file_type: FileType::Dir,
305                 mode: 0o777,
306                 nlinks: 1,
307                 uid: 0,
308                 gid: 0,
309                 raw_dev: 0,
310             },
311         })));
312 
313         let result: Arc<FATFileSystem> = Arc::new(FATFileSystem {
314             partition: partition,
315             bpb,
316             first_data_sector,
317             fs_info: Arc::new(LockedFATFsInfo::new(fs_info)),
318             root_inode: root_inode,
319         });
320 
321         // 对root inode加锁,并继续完成初始化工作
322         let mut root_guard: SpinLockGuard<FATInode> = result.root_inode.0.lock();
323         root_guard.inode_type = FATDirEntry::Dir(result.root_dir());
324         root_guard.parent = Arc::downgrade(&result.root_inode);
325         root_guard.self_ref = Arc::downgrade(&result.root_inode);
326         root_guard.fs = Arc::downgrade(&result);
327         // 释放锁
328         drop(root_guard);
329 
330         return Ok(result);
331     }
332 
333     /// @brief 计算每个簇有多少个字节
334     #[inline]
bytes_per_cluster(&self) -> u64335     pub fn bytes_per_cluster(&self) -> u64 {
336         return (self.bpb.bytes_per_sector as u64) * (self.bpb.sector_per_cluster as u64);
337     }
338 
339     /// @brief 读取当前簇在FAT表中存储的信息
340     ///
341     /// @param cluster 当前簇
342     ///
343     /// @return Ok(FATEntry) 当前簇在FAT表中,存储的信息。(详情见FATEntry的注释)
344     /// @return Err(i32) 错误码
get_fat_entry(&self, cluster: Cluster) -> Result<FATEntry, i32>345     pub fn get_fat_entry(&self, cluster: Cluster) -> Result<FATEntry, i32> {
346         let current_cluster = cluster.cluster_num;
347 
348         let fat_type: FATType = self.bpb.fat_type;
349         // 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
350         let fat_start_sector = self.fat_start_sector();
351         let bytes_per_sec = self.bpb.bytes_per_sector as u64;
352 
353         // cluster对应的FAT表项在分区内的字节偏移量
354         let fat_bytes_offset =
355             fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec);
356 
357         // FAT表项所在的LBA地址
358         // let fat_ent_lba = self.get_lba_from_offset(self.bytes_to_sector(fat_bytes_offset));
359         let fat_ent_lba = self.partition.lba_start + fat_bytes_offset / LBA_SIZE as u64;
360 
361         // FAT表项在逻辑块内的字节偏移量
362         let blk_offset = self.get_in_block_offset(fat_bytes_offset);
363 
364         let mut v = Vec::<u8>::new();
365         v.resize(self.bpb.bytes_per_sector as usize, 0);
366         self.partition
367             .disk()
368             .read_at(fat_ent_lba as usize, 1 * self.lba_per_sector(), &mut v)?;
369 
370         let mut cursor = VecCursor::new(v);
371         cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?;
372 
373         let res: FATEntry = match self.bpb.fat_type {
374             FATType::FAT12(_) => {
375                 let mut entry = cursor.read_u16()?;
376                 // 由于FAT12文件系统的FAT表,每个entry占用1.5字节,因此奇数的簇需要取高12位的值。
377                 if (current_cluster & 1) > 0 {
378                     entry >>= 4;
379                 } else {
380                     entry &= 0x0fff;
381                 }
382 
383                 if entry == 0 {
384                     FATEntry::Unused
385                 } else if entry == 0x0ff7 {
386                     FATEntry::Bad
387                 } else if entry >= 0x0ff8 {
388                     FATEntry::EndOfChain
389                 } else {
390                     FATEntry::Next(Cluster {
391                         cluster_num: entry as u64,
392                         parent_cluster: current_cluster,
393                     })
394                 }
395             }
396             FATType::FAT16(_) => {
397                 let entry = cursor.read_u16()?;
398 
399                 if entry == 0 {
400                     FATEntry::Unused
401                 } else if entry == 0xfff7 {
402                     FATEntry::Bad
403                 } else if entry >= 0xfff8 {
404                     FATEntry::EndOfChain
405                 } else {
406                     FATEntry::Next(Cluster {
407                         cluster_num: entry as u64,
408                         parent_cluster: current_cluster,
409                     })
410                 }
411             }
412             FATType::FAT32(_) => {
413                 let entry = cursor.read_u32()? & 0x0fffffff;
414 
415                 match entry {
416                     _n if (current_cluster >= 0x0ffffff7 && current_cluster <= 0x0fffffff) => {
417                         // 当前簇号不是一个能被获得的簇(可能是文件系统出错了)
418                         kerror!("FAT32 get fat entry: current cluster number [{}] is not an allocatable cluster number.", current_cluster);
419                         FATEntry::Bad
420                     }
421                     0 => FATEntry::Unused,
422                     0x0ffffff7 => FATEntry::Bad,
423                     0x0ffffff8..=0x0fffffff => FATEntry::EndOfChain,
424                     _n => FATEntry::Next(Cluster {
425                         cluster_num: entry as u64,
426                         parent_cluster: current_cluster,
427                     }),
428                 }
429             }
430         };
431         return Ok(res);
432     }
433 
434     /// @brief 读取当前簇在FAT表中存储的信息(直接返回读取到的值,而不加处理)
435     ///
436     /// @param cluster 当前簇
437     ///
438     /// @return Ok(u64) 当前簇在FAT表中,存储的信息。
439     /// @return Err(i32) 错误码
get_fat_entry_raw(&self, cluster: Cluster) -> Result<u64, i32>440     pub fn get_fat_entry_raw(&self, cluster: Cluster) -> Result<u64, i32> {
441         let current_cluster = cluster.cluster_num;
442 
443         let fat_type: FATType = self.bpb.fat_type;
444         // 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
445         let fat_start_sector = self.fat_start_sector();
446         let bytes_per_sec = self.bpb.bytes_per_sector as u64;
447 
448         // cluster对应的FAT表项在分区内的字节偏移量
449         let fat_bytes_offset =
450             fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec);
451 
452         // FAT表项所在的LBA地址
453         let fat_ent_lba = self.get_lba_from_offset(self.bytes_to_sector(fat_bytes_offset));
454 
455         // FAT表项在逻辑块内的字节偏移量
456         let blk_offset = self.get_in_block_offset(fat_bytes_offset);
457 
458         let mut v = Vec::<u8>::new();
459         v.resize(self.bpb.bytes_per_sector as usize, 0);
460         self.partition
461             .disk()
462             .read_at(fat_ent_lba, 1 * self.lba_per_sector(), &mut v)?;
463 
464         let mut cursor = VecCursor::new(v);
465         cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?;
466 
467         let res = match self.bpb.fat_type {
468             FATType::FAT12(_) => {
469                 let mut entry = cursor.read_u16()?;
470                 entry = if (current_cluster & 0x0001) > 0 {
471                     entry >> 4
472                 } else {
473                     entry & 0x0fff
474                 };
475                 entry as u64
476             }
477             FATType::FAT16(_) => {
478                 let entry = (cursor.read_u16()?) as u64;
479                 entry
480             }
481             FATType::FAT32(_) => {
482                 let entry = cursor.read_u32()? & 0x0fff_ffff;
483                 entry as u64
484             }
485         };
486 
487         return Ok(res);
488     }
489 
490     /// @brief 获取当前文件系统的root inode,在磁盘上的字节偏移量
root_dir_bytes_offset(&self) -> u64491     pub fn root_dir_bytes_offset(&self) -> u64 {
492         match self.bpb.fat_type {
493             FATType::FAT32(s) => {
494                 let first_sec_cluster: u64 = (s.root_cluster as u64 - 2)
495                     * (self.bpb.sector_per_cluster as u64)
496                     + self.first_data_sector;
497                 return (self.get_lba_from_offset(first_sec_cluster) * LBA_SIZE) as u64;
498             }
499             _ => {
500                 let root_sec = (self.bpb.rsvd_sec_cnt as u64)
501                     + (self.bpb.num_fats as u64) * (self.bpb.fat_size_16 as u64);
502                 return (self.get_lba_from_offset(root_sec) * LBA_SIZE) as u64;
503             }
504         }
505     }
506 
507     /// @brief 获取当前文件系统的根目录项区域的结束位置,在磁盘上的字节偏移量。
508     /// 请注意,当前函数只对FAT12/FAT16生效。对于FAT32,返回None
root_dir_end_bytes_offset(&self) -> Option<u64>509     pub fn root_dir_end_bytes_offset(&self) -> Option<u64> {
510         match self.bpb.fat_type {
511             FATType::FAT12(_) | FATType::FAT16(_) => {
512                 return Some(
513                     self.root_dir_bytes_offset() + (self.bpb.root_entries_cnt as u64) * 32,
514                 );
515             }
516             _ => {
517                 return None;
518             }
519         }
520     }
521 
522     /// @brief 获取簇在磁盘内的字节偏移量(相对磁盘起始位置。注意,不是分区内偏移量)
cluster_bytes_offset(&self, cluster: Cluster) -> u64523     pub fn cluster_bytes_offset(&self, cluster: Cluster) -> u64 {
524         if cluster.cluster_num >= 2 {
525             // 指定簇的第一个扇区号
526             let first_sec_of_cluster = (cluster.cluster_num - 2)
527                 * (self.bpb.sector_per_cluster as u64)
528                 + self.first_data_sector;
529             return (self.get_lba_from_offset(first_sec_of_cluster) * LBA_SIZE) as u64;
530         } else {
531             return 0;
532         }
533     }
534 
535     /// @brief 获取一个空闲簇
536     ///
537     /// @param prev_cluster 簇链的前一个簇。本函数将会把新获取的簇,连接到它的后面。
538     ///
539     /// @return Ok(Cluster) 新获取的空闲簇
540     /// @return Err(i32) 错误码
allocate_cluster(&self, prev_cluster: Option<Cluster>) -> Result<Cluster, i32>541     pub fn allocate_cluster(&self, prev_cluster: Option<Cluster>) -> Result<Cluster, i32> {
542         let end_cluster: Cluster = self.max_cluster_number();
543         let start_cluster: Cluster = match self.bpb.fat_type {
544             FATType::FAT32(_) => {
545                 let next_free: u64 = match self.fs_info.0.lock().next_free() {
546                     Some(x) => x,
547                     None => 0xffffffff,
548                 };
549                 if next_free < end_cluster.cluster_num {
550                     Cluster::new(next_free)
551                 } else {
552                     Cluster::new(RESERVED_CLUSTERS as u64)
553                 }
554             }
555             _ => Cluster::new(RESERVED_CLUSTERS as u64),
556         };
557 
558         // 寻找一个空的簇
559         let free_cluster: Cluster = match self.get_free_cluster(start_cluster, end_cluster) {
560             Ok(c) => c,
561             Err(_) if start_cluster.cluster_num > RESERVED_CLUSTERS as u64 => {
562                 self.get_free_cluster(Cluster::new(RESERVED_CLUSTERS as u64), end_cluster)?
563             }
564             Err(e) => return Err(e),
565         };
566 
567         self.set_entry(free_cluster, FATEntry::EndOfChain)?;
568         // 减少空闲簇计数
569         self.fs_info.0.lock().update_free_count_delta(-1);
570         // 更新搜索空闲簇的参考量
571         self.fs_info
572             .0
573             .lock()
574             .update_next_free((free_cluster.cluster_num + 1) as u32);
575 
576         // 如果这个空闲簇不是簇链的第一个簇,那么把当前簇跟前一个簇连上。
577         if let Some(prev_cluster) = prev_cluster {
578             // kdebug!("set entry, prev ={prev_cluster:?}, next = {free_cluster:?}");
579             self.set_entry(prev_cluster, FATEntry::Next(free_cluster))?;
580         }
581         // 清空新获取的这个簇
582         self.zero_cluster(free_cluster)?;
583         return Ok(free_cluster);
584     }
585 
586     /// @brief 释放簇链上的所有簇
587     ///
588     /// @param start_cluster 簇链的第一个簇
deallocate_cluster_chain(&self, start_cluster: Cluster) -> Result<(), i32>589     pub fn deallocate_cluster_chain(&self, start_cluster: Cluster) -> Result<(), i32> {
590         let clusters: Vec<Cluster> = self.clusters(start_cluster);
591         for c in clusters {
592             self.deallocate_cluster(c)?;
593         }
594         return Ok(());
595     }
596 
597     /// @brief 释放簇
598     ///
599     /// @param 要释放的簇
deallocate_cluster(&self, cluster: Cluster) -> Result<(), i32>600     pub fn deallocate_cluster(&self, cluster: Cluster) -> Result<(), i32> {
601         let entry: FATEntry = self.get_fat_entry(cluster)?;
602         // 如果不是坏簇
603         if entry != FATEntry::Bad {
604             self.set_entry(cluster, FATEntry::Unused)?;
605             self.fs_info.0.lock().update_free_count_delta(1);
606             // 安全选项:清空被释放的簇
607             #[cfg(feature = "secure")]
608             self.zero_cluster(cluster)?;
609             return Ok(());
610         } else {
611             // 不能释放坏簇
612             kerror!("Bad clusters cannot be freed.");
613             return Err(-(EFAULT as i32));
614         }
615     }
616 
617     /// @brief 获取文件系统的根目录项
root_dir(&self) -> FATDir618     pub fn root_dir(&self) -> FATDir {
619         match self.bpb.fat_type {
620             FATType::FAT32(s) => {
621                 return FATDir {
622                     first_cluster: Cluster::new(s.root_cluster as u64),
623                     dir_name: String::from("/"),
624                     root_offset: None,
625                     short_dir_entry: None,
626                     loc: None,
627                 };
628             }
629             _ => FATDir {
630                 first_cluster: Cluster::new(0),
631                 dir_name: String::from("/"),
632                 root_offset: Some(self.root_dir_bytes_offset()),
633                 short_dir_entry: None,
634                 loc: None,
635             },
636         }
637     }
638 
639     /// @brief 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
fat_start_sector(&self) -> u64640     pub fn fat_start_sector(&self) -> u64 {
641         let active_fat = self.active_fat();
642         let fat_size = self.fat_size();
643         return self.bpb.rsvd_sec_cnt as u64 + active_fat * fat_size;
644     }
645 
646     /// @brief 获取当前活动的FAT表
active_fat(&self) -> u64647     pub fn active_fat(&self) -> u64 {
648         if self.mirroring_enabled() {
649             return 0;
650         } else {
651             match self.bpb.fat_type {
652                 FATType::FAT32(bpb32) => {
653                     return (bpb32.ext_flags & 0x0f) as u64;
654                 }
655                 _ => {
656                     return 0;
657                 }
658             }
659         }
660     }
661 
662     /// @brief 获取当前文件系统的每个FAT表的大小
fat_size(&self) -> u64663     pub fn fat_size(&self) -> u64 {
664         if self.bpb.fat_size_16 != 0 {
665             return self.bpb.fat_size_16 as u64;
666         } else {
667             match self.bpb.fat_type {
668                 FATType::FAT32(bpb32) => {
669                     return bpb32.fat_size_32 as u64;
670                 }
671 
672                 _ => {
673                     panic!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16");
674                 }
675             }
676         }
677     }
678 
679     /// @brief 判断当前文件系统是否启用了FAT表镜像
mirroring_enabled(&self) -> bool680     pub fn mirroring_enabled(&self) -> bool {
681         match self.bpb.fat_type {
682             FATType::FAT32(bpb32) => {
683                 return (bpb32.ext_flags & 0x80) == 0;
684             }
685             _ => {
686                 return false;
687             }
688         }
689     }
690 
691     /// @brief 根据分区内的扇区偏移量,获得在磁盘上的LBA地址
692     #[inline]
get_lba_from_offset(&self, in_partition_sec_offset: u64) -> usize693     pub fn get_lba_from_offset(&self, in_partition_sec_offset: u64) -> usize {
694         return (self.partition.lba_start
695             + in_partition_sec_offset * (self.bpb.bytes_per_sector as u64 / LBA_SIZE as u64))
696             as usize;
697     }
698 
699     /// @brief 获取每个扇区占用多少个LBA
700     #[inline]
lba_per_sector(&self) -> usize701     pub fn lba_per_sector(&self) -> usize {
702         return self.bpb.bytes_per_sector as usize / LBA_SIZE;
703     }
704 
705     /// @brief 将分区内字节偏移量转换为扇区偏移量
706     #[inline]
bytes_to_sector(&self, in_partition_bytes_offset: u64) -> u64707     pub fn bytes_to_sector(&self, in_partition_bytes_offset: u64) -> u64 {
708         return in_partition_bytes_offset / (self.bpb.bytes_per_sector as u64);
709     }
710 
711     /// @brief 根据磁盘上的字节偏移量,获取对应位置在分区内的字节偏移量
712     #[inline]
get_in_partition_bytes_offset(&self, disk_bytes_offset: u64) -> u64713     pub fn get_in_partition_bytes_offset(&self, disk_bytes_offset: u64) -> u64 {
714         return disk_bytes_offset - (self.partition.lba_start * LBA_SIZE as u64);
715     }
716 
717     /// @brief 根据字节偏移量计算在逻辑块内的字节偏移量
718     #[inline]
get_in_block_offset(&self, bytes_offset: u64) -> u64719     pub fn get_in_block_offset(&self, bytes_offset: u64) -> u64 {
720         return bytes_offset % LBA_SIZE as u64;
721     }
722 
723     /// @brief 获取在FAT表中,以start_cluster开头的FAT链的所有簇的信息
724     ///
725     /// @param start_cluster 整个FAT链的起始簇号
clusters(&self, start_cluster: Cluster) -> Vec<Cluster>726     pub fn clusters(&self, start_cluster: Cluster) -> Vec<Cluster> {
727         return self.cluster_iter(start_cluster).collect();
728     }
729 
730     /// @brief 获取在FAT表中,以start_cluster开头的FAT链的长度(总计经过多少个簇)
731     ///
732     /// @param start_cluster 整个FAT链的起始簇号
num_clusters_chain(&self, start_cluster: Cluster) -> u64733     pub fn num_clusters_chain(&self, start_cluster: Cluster) -> u64 {
734         return self
735             .cluster_iter(start_cluster)
736             .fold(0, |size, _cluster| size + 1);
737     }
738     /// @brief 获取一个簇迭代器对象
739     ///
740     /// @param start_cluster 整个FAT链的起始簇号
cluster_iter(&self, start_cluster: Cluster) -> ClusterIter741     fn cluster_iter(&self, start_cluster: Cluster) -> ClusterIter {
742         return ClusterIter {
743             current_cluster: Some(start_cluster),
744             fs: self,
745         };
746     }
747 
748     /// @brief 获取从start_cluster开始的簇链中,第n个簇的信息。(请注意,下标从0开始)
749     #[inline]
get_cluster_by_relative(&self, start_cluster: Cluster, n: usize) -> Option<Cluster>750     pub fn get_cluster_by_relative(&self, start_cluster: Cluster, n: usize) -> Option<Cluster> {
751         return self.cluster_iter(start_cluster).skip(n).next();
752     }
753 
754     /// @brief 获取整个簇链的最后一个簇
755     #[inline]
get_last_cluster(&self, start_cluster: Cluster) -> Option<Cluster>756     pub fn get_last_cluster(&self, start_cluster: Cluster) -> Option<Cluster> {
757         return self.cluster_iter(start_cluster).last();
758     }
759 
760     /// @brief 判断FAT文件系统的shut bit是否正常。
761     /// shut bit 表示文件系统是否正常卸载。如果这一位是1,则表示这个卷是“干净的”
762     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
763     ///
764     /// @return Ok(true) 正常
765     /// @return Ok(false) 不正常
766     /// @return Err(i32) 在判断时发生错误
is_shut_bit_ok(&mut self) -> Result<bool, i32>767     pub fn is_shut_bit_ok(&mut self) -> Result<bool, i32> {
768         match self.bpb.fat_type {
769             FATType::FAT32(_) => {
770                 // 对于FAT32, error bit位于第一个扇区的第8字节。
771                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0800_0000;
772                 return Ok(bit > 0);
773             }
774             FATType::FAT16(_) => {
775                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x8000;
776                 return Ok(bit > 0);
777             }
778             _ => return Ok(true),
779         }
780     }
781 
782     /// @brief 判断FAT文件系统的hard error bit是否正常。
783     /// 如果此位为0,则文件系统驱动程序在上次安装卷时遇到磁盘 I/O 错误,这表明
784     /// 卷上的某些扇区可能已损坏。
785     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
786     ///
787     /// @return Ok(true) 正常
788     /// @return Ok(false) 不正常
789     /// @return Err(i32) 在判断时发生错误
is_hard_error_bit_ok(&mut self) -> Result<bool, i32>790     pub fn is_hard_error_bit_ok(&mut self) -> Result<bool, i32> {
791         match self.bpb.fat_type {
792             FATType::FAT32(_) => {
793                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0400_0000;
794                 return Ok(bit > 0);
795             }
796             FATType::FAT16(_) => {
797                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x4000;
798                 return Ok(bit > 0);
799             }
800             _ => return Ok(true),
801         }
802     }
803 
804     /// @brief 设置文件系统的shut bit为正常状态
805     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
806     ///
807     /// @return Ok(()) 设置成功
808     /// @return Err(i32) 在设置过程中,出现错误
set_shut_bit_ok(&mut self) -> Result<(), i32>809     pub fn set_shut_bit_ok(&mut self) -> Result<(), i32> {
810         match self.bpb.fat_type {
811             FATType::FAT32(_) => {
812                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0800_0000;
813                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
814 
815                 return Ok(());
816             }
817 
818             FATType::FAT16(_) => {
819                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x8000;
820                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
821                 return Ok(());
822             }
823             _ => return Ok(()),
824         }
825     }
826 
827     /// @brief 设置文件系统的hard error bit为正常状态
828     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
829     ///
830     /// @return Ok(()) 设置成功
831     /// @return Err(i32) 在设置过程中,出现错误
set_hard_error_bit_ok(&mut self) -> Result<(), i32>832     pub fn set_hard_error_bit_ok(&mut self) -> Result<(), i32> {
833         match self.bpb.fat_type {
834             FATType::FAT32(_) => {
835                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0400_0000;
836                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
837                 return Ok(());
838             }
839 
840             FATType::FAT16(_) => {
841                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x4000;
842                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
843                 return Ok(());
844             }
845             _ => return Ok(()),
846         }
847     }
848 
849     /// @brief 执行文件系统卸载前的一些准备工作:设置好对应的标志位,并把缓存中的数据刷入磁盘
umount(&mut self) -> Result<(), i32>850     pub fn umount(&mut self) -> Result<(), i32> {
851         self.fs_info.0.lock().flush(&self.partition)?;
852 
853         self.set_shut_bit_ok()?;
854 
855         self.set_hard_error_bit_ok()?;
856 
857         self.partition.disk().sync()?;
858 
859         return Ok(());
860     }
861 
862     /// @brief 获取文件系统的最大簇号
max_cluster_number(&self) -> Cluster863     pub fn max_cluster_number(&self) -> Cluster {
864         match self.bpb.fat_type {
865             FATType::FAT32(s) => {
866                 // FAT32
867 
868                 // 数据扇区数量(总扇区数-保留扇区-FAT占用的扇区)
869                 let data_sec: u64 = self.bpb.total_sectors_32 as u64
870                     - (self.bpb.rsvd_sec_cnt as u64
871                         + self.bpb.num_fats as u64 * s.fat_size_32 as u64);
872 
873                 // 数据区的簇数量
874                 let total_clusters: u64 = data_sec / self.bpb.sector_per_cluster as u64;
875 
876                 // 返回最大的簇号
877                 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1);
878             }
879 
880             _ => {
881                 // FAT12 / FAT16
882                 let root_dir_sectors: u64 = (((self.bpb.root_entries_cnt as u64) * 32)
883                     + self.bpb.bytes_per_sector as u64
884                     - 1)
885                     / self.bpb.bytes_per_sector as u64;
886                 // 数据区扇区数
887                 let data_sec: u64 = self.bpb.total_sectors_16 as u64
888                     - (self.bpb.rsvd_sec_cnt as u64
889                         + (self.bpb.num_fats as u64 * self.bpb.fat_size_16 as u64)
890                         + root_dir_sectors);
891                 let total_clusters = data_sec / self.bpb.sector_per_cluster as u64;
892                 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1);
893             }
894         }
895     }
896 
897     /// @brief 在文件系统中寻找一个簇号在给定的范围(左闭右开区间)内的空闲簇
898     ///
899     /// @param start_cluster 起始簇号
900     /// @param end_cluster 终止簇号(不包含)
901     ///
902     /// @return Ok(Cluster) 寻找到的空闲簇
903     /// @return Err(i32) 错误码。如果磁盘无剩余空间,或者簇号达到给定的最大值,则返回-ENOSPC.
get_free_cluster( &self, start_cluster: Cluster, end_cluster: Cluster, ) -> Result<Cluster, i32>904     pub fn get_free_cluster(
905         &self,
906         start_cluster: Cluster,
907         end_cluster: Cluster,
908     ) -> Result<Cluster, i32> {
909         let max_cluster: Cluster = self.max_cluster_number();
910         let mut cluster: u64 = start_cluster.cluster_num;
911 
912         let fat_type: FATType = self.bpb.fat_type;
913         let fat_start_sector: u64 = self.fat_start_sector();
914         let bytes_per_sec: u64 = self.bpb.bytes_per_sector as u64;
915 
916         match fat_type {
917             FATType::FAT12(_) => {
918                 let part_bytes_offset: u64 =
919                     fat_type.get_fat_bytes_offset(start_cluster, fat_start_sector, bytes_per_sec);
920                 let in_block_offset = self.get_in_block_offset(part_bytes_offset);
921 
922                 let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
923 
924                 // 由于FAT12的FAT表不大于6K,因此直接读取6K
925                 let num_lba = (6 * 1024) / LBA_SIZE;
926                 let mut v: Vec<u8> = Vec::new();
927                 v.resize(num_lba * LBA_SIZE, 0);
928                 self.partition.disk().read_at(lba, num_lba, &mut v)?;
929 
930                 let mut cursor: VecCursor = VecCursor::new(v);
931                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
932 
933                 let mut packed_val: u16 = cursor.read_u16()?;
934                 loop {
935                     let val = if (cluster & 0x1) > 0 {
936                         packed_val >> 4
937                     } else {
938                         packed_val & 0x0fff
939                     };
940                     if val == 0 {
941                         return Ok(Cluster::new(cluster as u64));
942                     }
943 
944                     cluster += 1;
945 
946                     // 磁盘无剩余空间,或者簇号达到给定的最大值
947                     if cluster == end_cluster.cluster_num || cluster == max_cluster.cluster_num {
948                         return Err(-(ENOSPC as i32));
949                     }
950 
951                     packed_val = match cluster & 1 {
952                         0 => cursor.read_u16()?,
953                         _ => {
954                             let next_byte = cursor.read_u8()? as u16;
955                             (packed_val >> 8) | (next_byte << 8)
956                         }
957                     };
958                 }
959             }
960             FATType::FAT16(_) => {
961                 // todo: 优化这里,减少读取磁盘的次数。
962                 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num {
963                     let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset(
964                         Cluster::new(cluster),
965                         fat_start_sector,
966                         bytes_per_sec,
967                     );
968                     let in_block_offset = self.get_in_block_offset(part_bytes_offset);
969 
970                     let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
971 
972                     let mut v: Vec<u8> = Vec::new();
973                     v.resize(self.lba_per_sector() * LBA_SIZE, 0);
974                     self.partition
975                         .disk()
976                         .read_at(lba, self.lba_per_sector(), &mut v)?;
977 
978                     let mut cursor: VecCursor = VecCursor::new(v);
979                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
980 
981                     let val = cursor.read_u16()?;
982                     // 找到空闲簇
983                     if val == 0 {
984                         return Ok(Cluster::new(val as u64));
985                     }
986                     cluster += 1;
987                 }
988 
989                 // 磁盘无剩余空间,或者簇号达到给定的最大值
990                 return Err(-(ENOSPC as i32));
991             }
992             FATType::FAT32(_) => {
993                 // todo: 优化这里,减少读取磁盘的次数。
994                 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num {
995                     let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset(
996                         Cluster::new(cluster),
997                         fat_start_sector,
998                         bytes_per_sec,
999                     );
1000                     let in_block_offset = self.get_in_block_offset(part_bytes_offset);
1001 
1002                     let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
1003 
1004                     let mut v: Vec<u8> = Vec::new();
1005                     v.resize(self.lba_per_sector() * LBA_SIZE, 0);
1006                     self.partition
1007                         .disk()
1008                         .read_at(lba, self.lba_per_sector(), &mut v)?;
1009 
1010                     let mut cursor: VecCursor = VecCursor::new(v);
1011                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1012 
1013                     let val = cursor.read_u32()? & 0x0fffffff;
1014 
1015                     if val == 0 {
1016                         return Ok(Cluster::new(cluster));
1017                     }
1018                     cluster += 1;
1019                 }
1020 
1021                 // 磁盘无剩余空间,或者簇号达到给定的最大值
1022                 return Err(-(ENOSPC as i32));
1023             }
1024         }
1025     }
1026 
1027     /// @brief 在FAT表中,设置指定的簇的信息。
1028     ///
1029     /// @param cluster 目标簇
1030     /// @param fat_entry 这个簇在FAT表中,存储的信息(下一个簇的簇号)
set_entry(&self, cluster: Cluster, fat_entry: FATEntry) -> Result<(), i32>1031     pub fn set_entry(&self, cluster: Cluster, fat_entry: FATEntry) -> Result<(), i32> {
1032         // fat表项在分区上的字节偏移量
1033         let fat_part_bytes_offset: u64 = self.bpb.fat_type.get_fat_bytes_offset(
1034             cluster,
1035             self.fat_start_sector(),
1036             self.bpb.bytes_per_sector as u64,
1037         );
1038 
1039         match self.bpb.fat_type {
1040             FATType::FAT12(_) => {
1041                 // 计算要写入的值
1042                 let raw_val: u16 = match fat_entry {
1043                     FATEntry::Unused => 0,
1044                     FATEntry::Bad => 0xff7,
1045                     FATEntry::EndOfChain => 0xfff,
1046                     FATEntry::Next(c) => c.cluster_num as u16,
1047                 };
1048 
1049                 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset);
1050 
1051                 let lba = self.get_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset));
1052 
1053                 let mut v: Vec<u8> = Vec::new();
1054                 v.resize(LBA_SIZE, 0);
1055                 self.partition.disk().read_at(lba, 1, &mut v)?;
1056 
1057                 let mut cursor: VecCursor = VecCursor::new(v);
1058                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1059 
1060                 let old_val: u16 = cursor.read_u16()?;
1061                 let new_val: u16 = if (cluster.cluster_num & 0x1) > 0 {
1062                     (old_val & 0x000f) | (raw_val << 4)
1063                 } else {
1064                     (old_val & 0xf000) | raw_val
1065                 };
1066 
1067                 // 写回数据到磁盘上
1068                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1069                 cursor.write_u16(new_val)?;
1070                 self.partition.disk().write_at(lba, 1, cursor.as_slice())?;
1071                 return Ok(());
1072             }
1073             FATType::FAT16(_) => {
1074                 // 计算要写入的值
1075                 let raw_val: u16 = match fat_entry {
1076                     FATEntry::Unused => 0,
1077                     FATEntry::Bad => 0xfff7,
1078                     FATEntry::EndOfChain => 0xfdff,
1079                     FATEntry::Next(c) => c.cluster_num as u16,
1080                 };
1081 
1082                 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset);
1083 
1084                 let lba = self.get_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset));
1085 
1086                 let mut v: Vec<u8> = Vec::new();
1087                 v.resize(LBA_SIZE, 0);
1088                 self.partition.disk().read_at(lba, 1, &mut v)?;
1089 
1090                 let mut cursor: VecCursor = VecCursor::new(v);
1091                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1092 
1093                 cursor.write_u16(raw_val)?;
1094                 self.partition.disk().write_at(lba, 1, cursor.as_slice())?;
1095 
1096                 return Ok(());
1097             }
1098             FATType::FAT32(_) => {
1099                 let fat_size: u64 = self.fat_size();
1100                 let bound: u64 = if self.mirroring_enabled() {
1101                     1
1102                 } else {
1103                     self.bpb.num_fats as u64
1104                 };
1105                 // kdebug!("set entry, bound={bound}, fat_size={fat_size}");
1106                 for i in 0..bound {
1107                     // 当前操作的FAT表在磁盘上的字节偏移量
1108                     let f_offset: u64 = fat_part_bytes_offset + i * fat_size;
1109                     let in_block_offset: u64 = self.get_in_block_offset(f_offset);
1110                     let lba = self.get_lba_from_offset(self.bytes_to_sector(f_offset));
1111 
1112                     // kdebug!("set entry, lba={lba}, in_block_offset={in_block_offset}");
1113                     let mut v: Vec<u8> = Vec::new();
1114                     v.resize(LBA_SIZE, 0);
1115                     self.partition.disk().read_at(lba, 1, &mut v)?;
1116 
1117                     let mut cursor: VecCursor = VecCursor::new(v);
1118                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1119 
1120                     // FAT32的高4位保留
1121                     let old_bits = cursor.read_u32()? & 0xf0000000;
1122 
1123                     if fat_entry == FATEntry::Unused
1124                         && cluster.cluster_num >= 0x0ffffff7
1125                         && cluster.cluster_num <= 0x0fffffff
1126                     {
1127                         kerror!(
1128                             "FAT32: Reserved Cluster {:?} cannot be marked as free",
1129                             cluster
1130                         );
1131                         return Err(-(EPERM as i32));
1132                     }
1133 
1134                     // 计算要写入的值
1135                     let mut raw_val: u32 = match fat_entry {
1136                         FATEntry::Unused => 0,
1137                         FATEntry::Bad => 0x0FFFFFF7,
1138                         FATEntry::EndOfChain => 0x0FFFFFFF,
1139                         FATEntry::Next(c) => c.cluster_num as u32,
1140                     };
1141 
1142                     // 恢复保留位
1143                     raw_val |= old_bits;
1144 
1145                     // kdebug!("sent entry, raw_val={raw_val}");
1146 
1147                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1148                     cursor.write_u32(raw_val)?;
1149 
1150                     self.partition.disk().write_at(lba, 1, cursor.as_slice())?;
1151                 }
1152 
1153                 return Ok(());
1154             }
1155         }
1156     }
1157 
1158     /// @brief 清空指定的簇
1159     ///
1160     /// @param cluster 要被清空的簇
zero_cluster(&self, cluster: Cluster) -> Result<(), i32>1161     pub fn zero_cluster(&self, cluster: Cluster) -> Result<(), i32> {
1162         // 准备数据,用于写入
1163         let zeros: Vec<u8> = vec![0u8; self.bytes_per_cluster() as usize];
1164         let offset: usize = self.cluster_bytes_offset(cluster) as usize;
1165         self.partition
1166             .disk()
1167             .device()
1168             .write_at(offset, zeros.len(), zeros.as_slice())?;
1169         return Ok(());
1170     }
1171 }
1172 
1173 impl Drop for FATFileSystem {
drop(&mut self)1174     fn drop(&mut self) {
1175         let r = self.umount();
1176         if r.is_err() {
1177             kerror!(
1178                 "Umount FAT filesystem failed: errno={}, FS detail:{self:?}",
1179                 r.unwrap_err()
1180             );
1181         }
1182     }
1183 }
1184 
1185 impl FATFsInfo {
1186     const LEAD_SIG: u32 = 0x41615252;
1187     const STRUC_SIG: u32 = 0x61417272;
1188     const TRAIL_SIG: u32 = 0xAA550000;
1189     const FS_INFO_SIZE: u64 = 512;
1190 
1191     /// @brief 从磁盘上读取FAT文件系统的FSInfo结构体
1192     ///
1193     /// @param partition 磁盘分区
1194     /// @param in_disk_fs_info_offset FSInfo扇区在磁盘内的字节偏移量(单位:字节)
1195     /// @param bytes_per_sec 每扇区字节数
new( partition: Arc<Partition>, in_disk_fs_info_offset: u64, bytes_per_sec: usize, ) -> Result<Self, i32>1196     pub fn new(
1197         partition: Arc<Partition>,
1198         in_disk_fs_info_offset: u64,
1199         bytes_per_sec: usize,
1200     ) -> Result<Self, i32> {
1201         let mut v = Vec::<u8>::new();
1202         v.resize(bytes_per_sec, 0);
1203 
1204         // 计算fs_info扇区在磁盘上的字节偏移量,从磁盘读取数据
1205         partition
1206             .disk()
1207             .read_at(in_disk_fs_info_offset as usize / LBA_SIZE, 1, &mut v)?;
1208         let mut cursor = VecCursor::new(v);
1209 
1210         let mut fsinfo = FATFsInfo::default();
1211 
1212         fsinfo.lead_sig = cursor.read_u32()?;
1213         cursor.seek(SeekFrom::SeekCurrent(480))?;
1214         fsinfo.struc_sig = cursor.read_u32()?;
1215         fsinfo.free_count = cursor.read_u32()?;
1216         fsinfo.next_free = cursor.read_u32()?;
1217 
1218         cursor.seek(SeekFrom::SeekCurrent(12))?;
1219 
1220         fsinfo.trail_sig = cursor.read_u32()?;
1221         fsinfo.dirty = false;
1222         fsinfo.offset = Some(in_disk_fs_info_offset);
1223 
1224         if fsinfo.is_valid() {
1225             return Ok(fsinfo);
1226         } else {
1227             kerror!("Error occurred while parsing FATFsInfo.");
1228             return Err(-(EINVAL as i32));
1229         }
1230     }
1231 
1232     /// @brief 判断是否为正确的FsInfo结构体
is_valid(&self) -> bool1233     fn is_valid(&self) -> bool {
1234         self.lead_sig == Self::LEAD_SIG
1235             && self.struc_sig == Self::STRUC_SIG
1236             && self.trail_sig == Self::TRAIL_SIG
1237     }
1238 
1239     /// @brief 根据fsinfo的信息,计算当前总的空闲簇数量
1240     ///
1241     /// @param 当前文件系统的最大簇号
count_free_cluster(&self, max_cluster: Cluster) -> Option<u64>1242     pub fn count_free_cluster(&self, max_cluster: Cluster) -> Option<u64> {
1243         let count_clusters = max_cluster.cluster_num - RESERVED_CLUSTERS as u64 + 1;
1244         // 信息不合理,当前的FsInfo中存储的free count大于计算出来的值
1245         if self.free_count as u64 > count_clusters {
1246             return None;
1247         } else {
1248             match self.free_count {
1249                 // free count字段不可用
1250                 0xffffffff => return None,
1251                 // 返回FsInfo中存储的数据
1252                 n => return Some(n as u64),
1253             }
1254         }
1255     }
1256 
1257     /// @brief 更新FsInfo中的“空闲簇统计信息“为new_count
1258     ///
1259     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
update_free_count_abs(&mut self, new_count: u32)1260     pub fn update_free_count_abs(&mut self, new_count: u32) {
1261         self.free_count = new_count;
1262     }
1263 
1264     /// @brief 更新FsInfo中的“空闲簇统计信息“,把它加上delta.
1265     ///
1266     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
update_free_count_delta(&mut self, delta: i32)1267     pub fn update_free_count_delta(&mut self, delta: i32) {
1268         self.free_count = (self.free_count as i32 + delta) as u32;
1269     }
1270 
1271     /// @brief 更新FsInfo中的“第一个空闲簇统计信息“为next_free.
1272     ///
1273     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
update_next_free(&mut self, next_free: u32)1274     pub fn update_next_free(&mut self, next_free: u32) {
1275         // 这个值是参考量,不一定要准确,仅供加速查找
1276         self.next_free = next_free;
1277     }
1278 
1279     /// @brief 获取fs info 记载的第一个空闲簇。(不一定准确,仅供参考)
next_free(&self) -> Option<u64>1280     pub fn next_free(&self) -> Option<u64> {
1281         match self.next_free {
1282             0xffffffff => return None,
1283             0 | 1 => return None,
1284             n => return Some(n as u64),
1285         };
1286     }
1287 
1288     /// @brief 把fs info刷入磁盘
1289     ///
1290     /// @param partition fs info所在的分区
flush(&self, partition: &Arc<Partition>) -> Result<(), i32>1291     pub fn flush(&self, partition: &Arc<Partition>) -> Result<(), i32> {
1292         if let Some(off) = self.offset {
1293             let in_block_offset = off % LBA_SIZE as u64;
1294 
1295             let lba = off as usize / LBA_SIZE;
1296 
1297             let mut v: Vec<u8> = Vec::new();
1298             v.resize(LBA_SIZE, 0);
1299             partition.disk().read_at(lba, 1, &mut v)?;
1300 
1301             let mut cursor: VecCursor = VecCursor::new(v);
1302             cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1303 
1304             cursor.write_u32(self.lead_sig)?;
1305             cursor.seek(SeekFrom::SeekCurrent(480))?;
1306             cursor.write_u32(self.struc_sig)?;
1307             cursor.write_u32(self.free_count)?;
1308             cursor.write_u32(self.next_free)?;
1309             cursor.seek(SeekFrom::SeekCurrent(12))?;
1310             cursor.write_u32(self.trail_sig)?;
1311 
1312             partition.disk().write_at(lba, 1, cursor.as_slice())?;
1313         }
1314         return Ok(());
1315     }
1316 
1317     /// @brief 读取磁盘上的Fs Info扇区,将里面的内容更新到结构体中
1318     ///
1319     /// @param partition fs info所在的分区
update(&mut self, partition: Arc<Partition>) -> Result<(), i32>1320     pub fn update(&mut self, partition: Arc<Partition>) -> Result<(), i32> {
1321         if let Some(off) = self.offset {
1322             let in_block_offset = off % LBA_SIZE as u64;
1323 
1324             let lba = off as usize / LBA_SIZE;
1325 
1326             let mut v: Vec<u8> = Vec::new();
1327             v.resize(LBA_SIZE, 0);
1328             partition.disk().read_at(lba, 1, &mut v)?;
1329             let mut cursor: VecCursor = VecCursor::new(v);
1330             cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1331             self.lead_sig = cursor.read_u32()?;
1332 
1333             cursor.seek(SeekFrom::SeekCurrent(480))?;
1334             self.struc_sig = cursor.read_u32()?;
1335             self.free_count = cursor.read_u32()?;
1336             self.next_free = cursor.read_u32()?;
1337             cursor.seek(SeekFrom::SeekCurrent(12))?;
1338             self.trail_sig = cursor.read_u32()?;
1339         }
1340         return Ok(());
1341     }
1342 }
1343 
1344 impl IndexNode for LockedFATInode {
read_at( &self, offset: usize, len: usize, buf: &mut [u8], _data: &mut FilePrivateData, ) -> Result<usize, i32>1345     fn read_at(
1346         &self,
1347         offset: usize,
1348         len: usize,
1349         buf: &mut [u8],
1350         _data: &mut FilePrivateData,
1351     ) -> Result<usize, i32> {
1352         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1353         match &guard.inode_type {
1354             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
1355                 let r = f.read(
1356                     &guard.fs.upgrade().unwrap(),
1357                     &mut buf[0..len],
1358                     offset as u64,
1359                 );
1360                 guard.update_metadata();
1361                 return r;
1362             }
1363             FATDirEntry::Dir(_) => {
1364                 return Err(-(EISDIR as i32));
1365             }
1366             FATDirEntry::UnInit => {
1367                 kerror!("FATFS: param: Inode_type uninitialized.");
1368                 return Err(-(EROFS as i32));
1369             }
1370         }
1371     }
1372 
write_at( &self, offset: usize, len: usize, buf: &[u8], _data: &mut FilePrivateData, ) -> Result<usize, i32>1373     fn write_at(
1374         &self,
1375         offset: usize,
1376         len: usize,
1377         buf: &[u8],
1378         _data: &mut FilePrivateData,
1379     ) -> Result<usize, i32> {
1380         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1381         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1382 
1383         match &mut guard.inode_type {
1384             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
1385                 let r = f.write(fs, &buf[0..len], offset as u64);
1386                 guard.update_metadata();
1387                 return r;
1388             }
1389             FATDirEntry::Dir(_) => {
1390                 return Err(-(EISDIR as i32));
1391             }
1392             FATDirEntry::UnInit => {
1393                 kerror!("FATFS: param: Inode_type uninitialized.");
1394                 return Err(-(EROFS as i32));
1395             }
1396         }
1397     }
1398 
poll(&self) -> Result<PollStatus, i32>1399     fn poll(&self) -> Result<PollStatus, i32> {
1400         // 加锁
1401         let inode: SpinLockGuard<FATInode> = self.0.lock();
1402 
1403         // 检查当前inode是否为一个文件夹,如果是的话,就返回错误
1404         if inode.metadata.file_type == FileType::Dir {
1405             return Err(-(EISDIR as i32));
1406         }
1407 
1408         return Ok(PollStatus {
1409             flags: PollStatus::READ_MASK | PollStatus::WRITE_MASK,
1410         });
1411     }
1412 
create( &self, name: &str, file_type: FileType, _mode: u32, ) -> Result<Arc<dyn IndexNode>, i32>1413     fn create(
1414         &self,
1415         name: &str,
1416         file_type: FileType,
1417         _mode: u32,
1418     ) -> Result<Arc<dyn IndexNode>, i32> {
1419         // 由于FAT32不支持文件权限的功能,因此忽略mode参数
1420 
1421         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1422         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1423 
1424         match &mut guard.inode_type {
1425             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1426                 return Err(-(ENOTDIR as i32));
1427             }
1428             FATDirEntry::Dir(d) => match file_type {
1429                 FileType::File => {
1430                     d.create_file(name, fs)?;
1431                     return Ok(guard.find(name)?);
1432                 }
1433                 FileType::Dir => {
1434                     d.create_dir(name, fs)?;
1435                     return Ok(guard.find(name)?);
1436                 }
1437 
1438                 FileType::SymLink => return Err(-(ENOTSUP as i32)),
1439                 _ => return Err(-(EINVAL as i32)),
1440             },
1441             FATDirEntry::UnInit => {
1442                 kerror!("FATFS: param: Inode_type uninitialized.");
1443                 return Err(-(EROFS as i32));
1444             }
1445         }
1446     }
1447 
fs(&self) -> Arc<dyn FileSystem>1448     fn fs(&self) -> Arc<dyn FileSystem> {
1449         return self.0.lock().fs.upgrade().unwrap();
1450     }
1451 
as_any_ref(&self) -> &dyn core::any::Any1452     fn as_any_ref(&self) -> &dyn core::any::Any {
1453         return self;
1454     }
1455 
metadata(&self) -> Result<Metadata, i32>1456     fn metadata(&self) -> Result<Metadata, i32> {
1457         return Ok(self.0.lock().metadata.clone());
1458     }
1459 
list(&self) -> Result<Vec<String>, i32>1460     fn list(&self) -> Result<Vec<String>, i32> {
1461         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1462         let fatent: &FATDirEntry = &guard.inode_type;
1463         match fatent {
1464             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1465                 return Err(-(ENOTDIR as i32));
1466             }
1467             FATDirEntry::Dir(dir) => {
1468                 // 获取当前目录下的所有目录项
1469                 let mut ret: Vec<String> = Vec::new();
1470                 let dir_iter: FATDirIter = dir.to_iter(guard.fs.upgrade().unwrap());
1471                 for ent in dir_iter {
1472                     ret.push(ent.name());
1473 
1474                     // ====== 生成inode缓存,存入B树
1475                     let name: String = ent.name();
1476                     // kdebug!("name={name}");
1477 
1478                     if guard.children.contains_key(&name.to_uppercase()) == false
1479                         && name != "."
1480                         && name != ".."
1481                     {
1482                         // 创建新的inode
1483                         let entry_inode: Arc<LockedFATInode> = LockedFATInode::new(
1484                             guard.fs.upgrade().unwrap(),
1485                             guard.self_ref.clone(),
1486                             ent,
1487                         );
1488                         // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的
1489                         guard
1490                             .children
1491                             .insert(name.to_uppercase(), entry_inode.clone());
1492                     }
1493                 }
1494                 return Ok(ret);
1495             }
1496             FATDirEntry::UnInit => {
1497                 kerror!("FATFS: param: Inode_type uninitialized.");
1498                 return Err(-(EROFS as i32));
1499             }
1500         }
1501     }
1502 
find(&self, name: &str) -> Result<Arc<dyn IndexNode>, i32>1503     fn find(&self, name: &str) -> Result<Arc<dyn IndexNode>, i32> {
1504         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1505         let target = guard.find(name)?;
1506         return Ok(target);
1507     }
1508 
open(&self, _data: &mut FilePrivateData) -> Result<(), i32>1509     fn open(&self, _data: &mut FilePrivateData) -> Result<(), i32> {
1510         return Ok(());
1511     }
1512 
close(&self, _data: &mut FilePrivateData) -> Result<(), i32>1513     fn close(&self, _data: &mut FilePrivateData) -> Result<(), i32> {
1514         return Ok(());
1515     }
1516 
unlink(&self, name: &str) -> Result<(), i32>1517     fn unlink(&self, name: &str) -> Result<(), i32> {
1518         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1519         let target: Arc<LockedFATInode> = guard.find(name)?;
1520         // 对目标inode上锁,以防更改
1521         let target_guard: SpinLockGuard<FATInode> = target.0.lock();
1522         // 先从缓存删除
1523         guard.children.remove(&name.to_uppercase());
1524 
1525         let dir = match &guard.inode_type {
1526             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1527                 return Err(-(ENOTDIR as i32));
1528             }
1529             FATDirEntry::Dir(d) => d,
1530             FATDirEntry::UnInit => {
1531                 kerror!("FATFS: param: Inode_type uninitialized.");
1532                 return Err(-(EROFS as i32));
1533             }
1534         };
1535         // 检查文件是否存在
1536         dir.check_existence(name, Some(false), guard.fs.upgrade().unwrap())?;
1537 
1538         // 再从磁盘删除
1539         let r = dir.remove(guard.fs.upgrade().unwrap().clone(), name, true);
1540         drop(target_guard);
1541         return r;
1542 
1543     }
1544 
rmdir(&self, name: &str) -> Result<(), i32>1545     fn rmdir(&self, name: &str) -> Result<(), i32> {
1546         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1547         let target: Arc<LockedFATInode> = guard.find(name)?;
1548         // 对目标inode上锁,以防更改
1549         let target_guard: SpinLockGuard<FATInode> = target.0.lock();
1550         // 先从缓存删除
1551         guard.children.remove(&name.to_uppercase());
1552 
1553         let dir = match &guard.inode_type {
1554             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1555                 return Err(-(ENOTDIR as i32));
1556             }
1557             FATDirEntry::Dir(d) => d,
1558             FATDirEntry::UnInit => {
1559                 kerror!("FATFS: param: Inode_type uninitialized.");
1560                 return Err(-(EROFS as i32));
1561             }
1562         };
1563         // 检查文件夹是否存在
1564         dir.check_existence(name, Some(true), guard.fs.upgrade().unwrap())?;
1565 
1566         // 再从磁盘删除
1567         let r: Result<(), i32> = dir.remove(guard.fs.upgrade().unwrap().clone(), name, true);
1568         if r.is_ok() {
1569             return r;
1570         } else {
1571             let r = r.unwrap_err();
1572             if r == -(ENOTEMPTY as i32) {
1573                 // 如果要删除的是目录,且不为空,则删除动作未发生,重新加入缓存
1574                 guard.children.insert(name.to_uppercase(), target.clone());
1575                 drop(target_guard);
1576             }
1577             return Err(r);
1578         }
1579     }
1580 
get_entry_name(&self, ino: InodeId) -> Result<String, i32>1581     fn get_entry_name(&self, ino: InodeId) -> Result<String, i32> {
1582         let guard: SpinLockGuard<FATInode> = self.0.lock();
1583         if guard.metadata.file_type != FileType::Dir {
1584             return Err(-(ENOTDIR as i32));
1585         }
1586         match ino {
1587             0 => {
1588                 return Ok(String::from("."));
1589             }
1590             1 => {
1591                 return Ok(String::from(".."));
1592             }
1593             ino => {
1594                 // 暴力遍历所有的children,判断inode id是否相同
1595                 // TODO: 优化这里,这个地方性能很差!
1596                 let mut key: Vec<String> = guard
1597                     .children
1598                     .keys()
1599                     .filter(|k| guard.children.get(*k).unwrap().metadata().unwrap().inode_id == ino)
1600                     .cloned()
1601                     .collect();
1602 
1603                 match key.len() {
1604                     0=>{return Err(-(ENOENT as i32));}
1605                     1=>{return Ok(key.remove(0));}
1606                     _ => panic!("FatFS get_entry_name: key.len()={key_len}>1, current inode_id={inode_id}, to find={to_find}", key_len=key.len(), inode_id = guard.metadata.inode_id, to_find=ino)
1607                 }
1608             }
1609         }
1610     }
1611 }
1612 
1613 impl Default for FATFsInfo {
default() -> Self1614     fn default() -> Self {
1615         return FATFsInfo {
1616             lead_sig: FATFsInfo::LEAD_SIG,
1617             struc_sig: FATFsInfo::STRUC_SIG,
1618             free_count: 0xFFFFFFFF,
1619             next_free: RESERVED_CLUSTERS,
1620             trail_sig: FATFsInfo::TRAIL_SIG,
1621             dirty: false,
1622             offset: None,
1623         };
1624     }
1625 }
1626 
1627 impl Cluster {
new(cluster: u64) -> Self1628     pub fn new(cluster: u64) -> Self {
1629         return Cluster {
1630             cluster_num: cluster,
1631             parent_cluster: 0,
1632         };
1633     }
1634 }
1635 
1636 /// @brief 用于迭代FAT表的内容的簇迭代器对象
1637 #[derive(Debug)]
1638 struct ClusterIter<'a> {
1639     /// 迭代器的next要返回的簇
1640     current_cluster: Option<Cluster>,
1641     /// 属于的文件系统
1642     fs: &'a FATFileSystem,
1643 }
1644 
1645 impl<'a> Iterator for ClusterIter<'a> {
1646     type Item = Cluster;
1647 
next(&mut self) -> Option<Self::Item>1648     fn next(&mut self) -> Option<Self::Item> {
1649         // 当前要返回的簇
1650         let ret: Option<Cluster> = self.current_cluster;
1651 
1652         // 获得下一个要返回簇
1653         let new: Option<Cluster> = match self.current_cluster {
1654             Some(c) => {
1655                 let entry: Option<FATEntry> = self.fs.get_fat_entry(c).ok();
1656                 match entry {
1657                     Some(FATEntry::Next(c)) => Some(c),
1658                     _ => None,
1659                 }
1660             }
1661             _ => None,
1662         };
1663 
1664         self.current_cluster = new;
1665         return ret;
1666     }
1667 }
1668