1 /*
2 * linux/drivers/char/vt_ioctl.c
3 *
4 * Copyright (C) 1992 obz under the linux copyright
5 *
6 * Dynamic diacritical handling - aeb@cwi.nl - Dec 1993
7 * Dynamic keymap and string allocation - aeb@cwi.nl - May 1994
8 * Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995
9 * Some code moved for less code duplication - Andi Kleen - Mar 1997
10 * Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001
11 */
12
13 #include <linux/types.h>
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/tty.h>
17 #include <linux/timer.h>
18 #include <linux/kernel.h>
19 #include <linux/compat.h>
20 #include <linux/module.h>
21 #include <linux/kd.h>
22 #include <linux/vt.h>
23 #include <linux/string.h>
24 #include <linux/slab.h>
25 #include <linux/major.h>
26 #include <linux/fs.h>
27 #include <linux/console.h>
28 #include <linux/consolemap.h>
29 #include <linux/signal.h>
30 #include <linux/timex.h>
31
32 #include <asm/io.h>
33 #include <asm/uaccess.h>
34
35 #include <linux/kbd_kern.h>
36 #include <linux/vt_kern.h>
37 #include <linux/kbd_diacr.h>
38 #include <linux/selection.h>
39
40 char vt_dont_switch;
41 extern struct tty_driver *console_driver;
42
43 #define VT_IS_IN_USE(i) (console_driver->ttys[i] && console_driver->ttys[i]->count)
44 #define VT_BUSY(i) (VT_IS_IN_USE(i) || i == fg_console || vc_cons[i].d == sel_cons)
45
46 /*
47 * Console (vt and kd) routines, as defined by USL SVR4 manual, and by
48 * experimentation and study of X386 SYSV handling.
49 *
50 * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and
51 * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console,
52 * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will
53 * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to
54 * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using
55 * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing
56 * to the current console is done by the main ioctl code.
57 */
58
59 #ifdef CONFIG_X86
60 #include <linux/syscalls.h>
61 #endif
62
63 static void complete_change_console(struct vc_data *vc);
64
65 /*
66 * User space VT_EVENT handlers
67 */
68
69 struct vt_event_wait {
70 struct list_head list;
71 struct vt_event event;
72 int done;
73 };
74
75 static LIST_HEAD(vt_events);
76 static DEFINE_SPINLOCK(vt_event_lock);
77 static DECLARE_WAIT_QUEUE_HEAD(vt_event_waitqueue);
78
79 /**
80 * vt_event_post
81 * @event: the event that occurred
82 * @old: old console
83 * @new: new console
84 *
85 * Post an VT event to interested VT handlers
86 */
87
vt_event_post(unsigned int event,unsigned int old,unsigned int new)88 void vt_event_post(unsigned int event, unsigned int old, unsigned int new)
89 {
90 struct list_head *pos, *head;
91 unsigned long flags;
92 int wake = 0;
93
94 spin_lock_irqsave(&vt_event_lock, flags);
95 head = &vt_events;
96
97 list_for_each(pos, head) {
98 struct vt_event_wait *ve = list_entry(pos,
99 struct vt_event_wait, list);
100 if (!(ve->event.event & event))
101 continue;
102 ve->event.event = event;
103 /* kernel view is consoles 0..n-1, user space view is
104 console 1..n with 0 meaning current, so we must bias */
105 ve->event.oldev = old + 1;
106 ve->event.newev = new + 1;
107 wake = 1;
108 ve->done = 1;
109 }
110 spin_unlock_irqrestore(&vt_event_lock, flags);
111 if (wake)
112 wake_up_interruptible(&vt_event_waitqueue);
113 }
114
115 /**
116 * vt_event_wait - wait for an event
117 * @vw: our event
118 *
119 * Waits for an event to occur which completes our vt_event_wait
120 * structure. On return the structure has wv->done set to 1 for success
121 * or 0 if some event such as a signal ended the wait.
122 */
123
vt_event_wait(struct vt_event_wait * vw)124 static void vt_event_wait(struct vt_event_wait *vw)
125 {
126 unsigned long flags;
127 /* Prepare the event */
128 INIT_LIST_HEAD(&vw->list);
129 vw->done = 0;
130 /* Queue our event */
131 spin_lock_irqsave(&vt_event_lock, flags);
132 list_add(&vw->list, &vt_events);
133 spin_unlock_irqrestore(&vt_event_lock, flags);
134 /* Wait for it to pass */
135 wait_event_interruptible_tty(vt_event_waitqueue, vw->done);
136 /* Dequeue it */
137 spin_lock_irqsave(&vt_event_lock, flags);
138 list_del(&vw->list);
139 spin_unlock_irqrestore(&vt_event_lock, flags);
140 }
141
142 /**
143 * vt_event_wait_ioctl - event ioctl handler
144 * @arg: argument to ioctl
145 *
146 * Implement the VT_WAITEVENT ioctl using the VT event interface
147 */
148
vt_event_wait_ioctl(struct vt_event __user * event)149 static int vt_event_wait_ioctl(struct vt_event __user *event)
150 {
151 struct vt_event_wait vw;
152
153 if (copy_from_user(&vw.event, event, sizeof(struct vt_event)))
154 return -EFAULT;
155 /* Highest supported event for now */
156 if (vw.event.event & ~VT_MAX_EVENT)
157 return -EINVAL;
158
159 vt_event_wait(&vw);
160 /* If it occurred report it */
161 if (vw.done) {
162 if (copy_to_user(event, &vw.event, sizeof(struct vt_event)))
163 return -EFAULT;
164 return 0;
165 }
166 return -EINTR;
167 }
168
169 /**
170 * vt_waitactive - active console wait
171 * @event: event code
172 * @n: new console
173 *
174 * Helper for event waits. Used to implement the legacy
175 * event waiting ioctls in terms of events
176 */
177
vt_waitactive(int n)178 int vt_waitactive(int n)
179 {
180 struct vt_event_wait vw;
181 do {
182 if (n == fg_console + 1)
183 break;
184 vw.event.event = VT_EVENT_SWITCH;
185 vt_event_wait(&vw);
186 if (vw.done == 0)
187 return -EINTR;
188 } while (vw.event.newev != n);
189 return 0;
190 }
191
192 /*
193 * these are the valid i/o ports we're allowed to change. they map all the
194 * video ports
195 */
196 #define GPFIRST 0x3b4
197 #define GPLAST 0x3df
198 #define GPNUM (GPLAST - GPFIRST + 1)
199
200 #define i (tmp.kb_index)
201 #define s (tmp.kb_table)
202 #define v (tmp.kb_value)
203 static inline int
do_kdsk_ioctl(int cmd,struct kbentry __user * user_kbe,int perm,struct kbd_struct * kbd)204 do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, struct kbd_struct *kbd)
205 {
206 struct kbentry tmp;
207 ushort *key_map, val, ov;
208
209 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
210 return -EFAULT;
211
212 if (!capable(CAP_SYS_TTY_CONFIG))
213 perm = 0;
214
215 switch (cmd) {
216 case KDGKBENT:
217 key_map = key_maps[s];
218 if (key_map) {
219 val = U(key_map[i]);
220 if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
221 val = K_HOLE;
222 } else
223 val = (i ? K_HOLE : K_NOSUCHMAP);
224 return put_user(val, &user_kbe->kb_value);
225 case KDSKBENT:
226 if (!perm)
227 return -EPERM;
228 if (!i && v == K_NOSUCHMAP) {
229 /* deallocate map */
230 key_map = key_maps[s];
231 if (s && key_map) {
232 key_maps[s] = NULL;
233 if (key_map[0] == U(K_ALLOCATED)) {
234 kfree(key_map);
235 keymap_count--;
236 }
237 }
238 break;
239 }
240
241 if (KTYP(v) < NR_TYPES) {
242 if (KVAL(v) > max_vals[KTYP(v)])
243 return -EINVAL;
244 } else
245 if (kbd->kbdmode != VC_UNICODE)
246 return -EINVAL;
247
248 /* ++Geert: non-PC keyboards may generate keycode zero */
249 #if !defined(__mc68000__) && !defined(__powerpc__)
250 /* assignment to entry 0 only tests validity of args */
251 if (!i)
252 break;
253 #endif
254
255 if (!(key_map = key_maps[s])) {
256 int j;
257
258 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
259 !capable(CAP_SYS_RESOURCE))
260 return -EPERM;
261
262 key_map = kmalloc(sizeof(plain_map),
263 GFP_KERNEL);
264 if (!key_map)
265 return -ENOMEM;
266 key_maps[s] = key_map;
267 key_map[0] = U(K_ALLOCATED);
268 for (j = 1; j < NR_KEYS; j++)
269 key_map[j] = U(K_HOLE);
270 keymap_count++;
271 }
272 ov = U(key_map[i]);
273 if (v == ov)
274 break; /* nothing to do */
275 /*
276 * Attention Key.
277 */
278 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN))
279 return -EPERM;
280 key_map[i] = U(v);
281 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
282 compute_shiftstate();
283 break;
284 }
285 return 0;
286 }
287 #undef i
288 #undef s
289 #undef v
290
291 static inline int
do_kbkeycode_ioctl(int cmd,struct kbkeycode __user * user_kbkc,int perm)292 do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, int perm)
293 {
294 struct kbkeycode tmp;
295 int kc = 0;
296
297 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
298 return -EFAULT;
299 switch (cmd) {
300 case KDGETKEYCODE:
301 kc = getkeycode(tmp.scancode);
302 if (kc >= 0)
303 kc = put_user(kc, &user_kbkc->keycode);
304 break;
305 case KDSETKEYCODE:
306 if (!perm)
307 return -EPERM;
308 kc = setkeycode(tmp.scancode, tmp.keycode);
309 break;
310 }
311 return kc;
312 }
313
314 static inline int
do_kdgkb_ioctl(int cmd,struct kbsentry __user * user_kdgkb,int perm)315 do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
316 {
317 struct kbsentry *kbs;
318 char *p;
319 u_char *q;
320 u_char __user *up;
321 int sz;
322 int delta;
323 char *first_free, *fj, *fnw;
324 int i, j, k;
325 int ret;
326
327 if (!capable(CAP_SYS_TTY_CONFIG))
328 perm = 0;
329
330 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
331 if (!kbs) {
332 ret = -ENOMEM;
333 goto reterr;
334 }
335
336 /* we mostly copy too much here (512bytes), but who cares ;) */
337 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
338 ret = -EFAULT;
339 goto reterr;
340 }
341 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
342 i = kbs->kb_func;
343
344 switch (cmd) {
345 case KDGKBSENT:
346 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
347 a struct member */
348 up = user_kdgkb->kb_string;
349 p = func_table[i];
350 if(p)
351 for ( ; *p && sz; p++, sz--)
352 if (put_user(*p, up++)) {
353 ret = -EFAULT;
354 goto reterr;
355 }
356 if (put_user('\0', up)) {
357 ret = -EFAULT;
358 goto reterr;
359 }
360 kfree(kbs);
361 return ((p && *p) ? -EOVERFLOW : 0);
362 case KDSKBSENT:
363 if (!perm) {
364 ret = -EPERM;
365 goto reterr;
366 }
367
368 q = func_table[i];
369 first_free = funcbufptr + (funcbufsize - funcbufleft);
370 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
371 ;
372 if (j < MAX_NR_FUNC)
373 fj = func_table[j];
374 else
375 fj = first_free;
376
377 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
378 if (delta <= funcbufleft) { /* it fits in current buf */
379 if (j < MAX_NR_FUNC) {
380 memmove(fj + delta, fj, first_free - fj);
381 for (k = j; k < MAX_NR_FUNC; k++)
382 if (func_table[k])
383 func_table[k] += delta;
384 }
385 if (!q)
386 func_table[i] = fj;
387 funcbufleft -= delta;
388 } else { /* allocate a larger buffer */
389 sz = 256;
390 while (sz < funcbufsize - funcbufleft + delta)
391 sz <<= 1;
392 fnw = kmalloc(sz, GFP_KERNEL);
393 if(!fnw) {
394 ret = -ENOMEM;
395 goto reterr;
396 }
397
398 if (!q)
399 func_table[i] = fj;
400 if (fj > funcbufptr)
401 memmove(fnw, funcbufptr, fj - funcbufptr);
402 for (k = 0; k < j; k++)
403 if (func_table[k])
404 func_table[k] = fnw + (func_table[k] - funcbufptr);
405
406 if (first_free > fj) {
407 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
408 for (k = j; k < MAX_NR_FUNC; k++)
409 if (func_table[k])
410 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
411 }
412 if (funcbufptr != func_buf)
413 kfree(funcbufptr);
414 funcbufptr = fnw;
415 funcbufleft = funcbufleft - delta + sz - funcbufsize;
416 funcbufsize = sz;
417 }
418 strcpy(func_table[i], kbs->kb_string);
419 break;
420 }
421 ret = 0;
422 reterr:
423 kfree(kbs);
424 return ret;
425 }
426
427 static inline int
do_fontx_ioctl(int cmd,struct consolefontdesc __user * user_cfd,int perm,struct console_font_op * op)428 do_fontx_ioctl(int cmd, struct consolefontdesc __user *user_cfd, int perm, struct console_font_op *op)
429 {
430 struct consolefontdesc cfdarg;
431 int i;
432
433 if (copy_from_user(&cfdarg, user_cfd, sizeof(struct consolefontdesc)))
434 return -EFAULT;
435
436 switch (cmd) {
437 case PIO_FONTX:
438 if (!perm)
439 return -EPERM;
440 op->op = KD_FONT_OP_SET;
441 op->flags = KD_FONT_FLAG_OLD;
442 op->width = 8;
443 op->height = cfdarg.charheight;
444 op->charcount = cfdarg.charcount;
445 op->data = cfdarg.chardata;
446 return con_font_op(vc_cons[fg_console].d, op);
447 case GIO_FONTX: {
448 op->op = KD_FONT_OP_GET;
449 op->flags = KD_FONT_FLAG_OLD;
450 op->width = 8;
451 op->height = cfdarg.charheight;
452 op->charcount = cfdarg.charcount;
453 op->data = cfdarg.chardata;
454 i = con_font_op(vc_cons[fg_console].d, op);
455 if (i)
456 return i;
457 cfdarg.charheight = op->height;
458 cfdarg.charcount = op->charcount;
459 if (copy_to_user(user_cfd, &cfdarg, sizeof(struct consolefontdesc)))
460 return -EFAULT;
461 return 0;
462 }
463 }
464 return -EINVAL;
465 }
466
467 static inline int
do_unimap_ioctl(int cmd,struct unimapdesc __user * user_ud,int perm,struct vc_data * vc)468 do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud, int perm, struct vc_data *vc)
469 {
470 struct unimapdesc tmp;
471
472 if (copy_from_user(&tmp, user_ud, sizeof tmp))
473 return -EFAULT;
474 if (tmp.entries)
475 if (!access_ok(VERIFY_WRITE, tmp.entries,
476 tmp.entry_ct*sizeof(struct unipair)))
477 return -EFAULT;
478 switch (cmd) {
479 case PIO_UNIMAP:
480 if (!perm)
481 return -EPERM;
482 return con_set_unimap(vc, tmp.entry_ct, tmp.entries);
483 case GIO_UNIMAP:
484 if (!perm && fg_console != vc->vc_num)
485 return -EPERM;
486 return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp.entries);
487 }
488 return 0;
489 }
490
491
492
493 /*
494 * We handle the console-specific ioctl's here. We allow the
495 * capability to modify any console, not just the fg_console.
496 */
vt_ioctl(struct tty_struct * tty,unsigned int cmd,unsigned long arg)497 int vt_ioctl(struct tty_struct *tty,
498 unsigned int cmd, unsigned long arg)
499 {
500 struct vc_data *vc = tty->driver_data;
501 struct console_font_op op; /* used in multiple places here */
502 struct kbd_struct * kbd;
503 unsigned int console;
504 unsigned char ucval;
505 unsigned int uival;
506 void __user *up = (void __user *)arg;
507 int i, perm;
508 int ret = 0;
509
510 console = vc->vc_num;
511
512 tty_lock();
513
514 if (!vc_cons_allocated(console)) { /* impossible? */
515 ret = -ENOIOCTLCMD;
516 goto out;
517 }
518
519
520 /*
521 * To have permissions to do most of the vt ioctls, we either have
522 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
523 */
524 perm = 0;
525 if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
526 perm = 1;
527
528 kbd = kbd_table + console;
529 switch (cmd) {
530 case TIOCLINUX:
531 ret = tioclinux(tty, arg);
532 break;
533 case KIOCSOUND:
534 if (!perm)
535 goto eperm;
536 /*
537 * The use of PIT_TICK_RATE is historic, it used to be
538 * the platform-dependent CLOCK_TICK_RATE between 2.6.12
539 * and 2.6.36, which was a minor but unfortunate ABI
540 * change.
541 */
542 if (arg)
543 arg = PIT_TICK_RATE / arg;
544 kd_mksound(arg, 0);
545 break;
546
547 case KDMKTONE:
548 if (!perm)
549 goto eperm;
550 {
551 unsigned int ticks, count;
552
553 /*
554 * Generate the tone for the appropriate number of ticks.
555 * If the time is zero, turn off sound ourselves.
556 */
557 ticks = HZ * ((arg >> 16) & 0xffff) / 1000;
558 count = ticks ? (arg & 0xffff) : 0;
559 if (count)
560 count = PIT_TICK_RATE / count;
561 kd_mksound(count, ticks);
562 break;
563 }
564
565 case KDGKBTYPE:
566 /*
567 * this is naive.
568 */
569 ucval = KB_101;
570 goto setchar;
571
572 /*
573 * These cannot be implemented on any machine that implements
574 * ioperm() in user level (such as Alpha PCs) or not at all.
575 *
576 * XXX: you should never use these, just call ioperm directly..
577 */
578 #ifdef CONFIG_X86
579 case KDADDIO:
580 case KDDELIO:
581 /*
582 * KDADDIO and KDDELIO may be able to add ports beyond what
583 * we reject here, but to be safe...
584 */
585 if (arg < GPFIRST || arg > GPLAST) {
586 ret = -EINVAL;
587 break;
588 }
589 ret = sys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0;
590 break;
591
592 case KDENABIO:
593 case KDDISABIO:
594 ret = sys_ioperm(GPFIRST, GPNUM,
595 (cmd == KDENABIO)) ? -ENXIO : 0;
596 break;
597 #endif
598
599 /* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */
600
601 case KDKBDREP:
602 {
603 struct kbd_repeat kbrep;
604
605 if (!capable(CAP_SYS_TTY_CONFIG))
606 goto eperm;
607
608 if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat))) {
609 ret = -EFAULT;
610 break;
611 }
612 ret = kbd_rate(&kbrep);
613 if (ret)
614 break;
615 if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat)))
616 ret = -EFAULT;
617 break;
618 }
619
620 case KDSETMODE:
621 /*
622 * currently, setting the mode from KD_TEXT to KD_GRAPHICS
623 * doesn't do a whole lot. i'm not sure if it should do any
624 * restoration of modes or what...
625 *
626 * XXX It should at least call into the driver, fbdev's definitely
627 * need to restore their engine state. --BenH
628 */
629 if (!perm)
630 goto eperm;
631 switch (arg) {
632 case KD_GRAPHICS:
633 break;
634 case KD_TEXT0:
635 case KD_TEXT1:
636 arg = KD_TEXT;
637 case KD_TEXT:
638 break;
639 default:
640 ret = -EINVAL;
641 goto out;
642 }
643 if (vc->vc_mode == (unsigned char) arg)
644 break;
645 vc->vc_mode = (unsigned char) arg;
646 if (console != fg_console)
647 break;
648 /*
649 * explicitly blank/unblank the screen if switching modes
650 */
651 console_lock();
652 if (arg == KD_TEXT)
653 do_unblank_screen(1);
654 else
655 do_blank_screen(1);
656 console_unlock();
657 break;
658
659 case KDGETMODE:
660 uival = vc->vc_mode;
661 goto setint;
662
663 case KDMAPDISP:
664 case KDUNMAPDISP:
665 /*
666 * these work like a combination of mmap and KDENABIO.
667 * this could be easily finished.
668 */
669 ret = -EINVAL;
670 break;
671
672 case KDSKBMODE:
673 if (!perm)
674 goto eperm;
675 switch(arg) {
676 case K_RAW:
677 kbd->kbdmode = VC_RAW;
678 break;
679 case K_MEDIUMRAW:
680 kbd->kbdmode = VC_MEDIUMRAW;
681 break;
682 case K_XLATE:
683 kbd->kbdmode = VC_XLATE;
684 compute_shiftstate();
685 break;
686 case K_UNICODE:
687 kbd->kbdmode = VC_UNICODE;
688 compute_shiftstate();
689 break;
690 case K_OFF:
691 kbd->kbdmode = VC_OFF;
692 break;
693 default:
694 ret = -EINVAL;
695 goto out;
696 }
697 tty_ldisc_flush(tty);
698 break;
699
700 case KDGKBMODE:
701 uival = ((kbd->kbdmode == VC_RAW) ? K_RAW :
702 (kbd->kbdmode == VC_MEDIUMRAW) ? K_MEDIUMRAW :
703 (kbd->kbdmode == VC_UNICODE) ? K_UNICODE :
704 K_XLATE);
705 goto setint;
706
707 /* this could be folded into KDSKBMODE, but for compatibility
708 reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */
709 case KDSKBMETA:
710 switch(arg) {
711 case K_METABIT:
712 clr_vc_kbd_mode(kbd, VC_META);
713 break;
714 case K_ESCPREFIX:
715 set_vc_kbd_mode(kbd, VC_META);
716 break;
717 default:
718 ret = -EINVAL;
719 }
720 break;
721
722 case KDGKBMETA:
723 uival = (vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT);
724 setint:
725 ret = put_user(uival, (int __user *)arg);
726 break;
727
728 case KDGETKEYCODE:
729 case KDSETKEYCODE:
730 if(!capable(CAP_SYS_TTY_CONFIG))
731 perm = 0;
732 ret = do_kbkeycode_ioctl(cmd, up, perm);
733 break;
734
735 case KDGKBENT:
736 case KDSKBENT:
737 ret = do_kdsk_ioctl(cmd, up, perm, kbd);
738 break;
739
740 case KDGKBSENT:
741 case KDSKBSENT:
742 ret = do_kdgkb_ioctl(cmd, up, perm);
743 break;
744
745 case KDGKBDIACR:
746 {
747 struct kbdiacrs __user *a = up;
748 struct kbdiacr diacr;
749 int i;
750
751 if (put_user(accent_table_size, &a->kb_cnt)) {
752 ret = -EFAULT;
753 break;
754 }
755 for (i = 0; i < accent_table_size; i++) {
756 diacr.diacr = conv_uni_to_8bit(accent_table[i].diacr);
757 diacr.base = conv_uni_to_8bit(accent_table[i].base);
758 diacr.result = conv_uni_to_8bit(accent_table[i].result);
759 if (copy_to_user(a->kbdiacr + i, &diacr, sizeof(struct kbdiacr))) {
760 ret = -EFAULT;
761 break;
762 }
763 }
764 break;
765 }
766 case KDGKBDIACRUC:
767 {
768 struct kbdiacrsuc __user *a = up;
769
770 if (put_user(accent_table_size, &a->kb_cnt))
771 ret = -EFAULT;
772 else if (copy_to_user(a->kbdiacruc, accent_table,
773 accent_table_size*sizeof(struct kbdiacruc)))
774 ret = -EFAULT;
775 break;
776 }
777
778 case KDSKBDIACR:
779 {
780 struct kbdiacrs __user *a = up;
781 struct kbdiacr diacr;
782 unsigned int ct;
783 int i;
784
785 if (!perm)
786 goto eperm;
787 if (get_user(ct,&a->kb_cnt)) {
788 ret = -EFAULT;
789 break;
790 }
791 if (ct >= MAX_DIACR) {
792 ret = -EINVAL;
793 break;
794 }
795 accent_table_size = ct;
796 for (i = 0; i < ct; i++) {
797 if (copy_from_user(&diacr, a->kbdiacr + i, sizeof(struct kbdiacr))) {
798 ret = -EFAULT;
799 break;
800 }
801 accent_table[i].diacr = conv_8bit_to_uni(diacr.diacr);
802 accent_table[i].base = conv_8bit_to_uni(diacr.base);
803 accent_table[i].result = conv_8bit_to_uni(diacr.result);
804 }
805 break;
806 }
807
808 case KDSKBDIACRUC:
809 {
810 struct kbdiacrsuc __user *a = up;
811 unsigned int ct;
812
813 if (!perm)
814 goto eperm;
815 if (get_user(ct,&a->kb_cnt)) {
816 ret = -EFAULT;
817 break;
818 }
819 if (ct >= MAX_DIACR) {
820 ret = -EINVAL;
821 break;
822 }
823 accent_table_size = ct;
824 if (copy_from_user(accent_table, a->kbdiacruc, ct*sizeof(struct kbdiacruc)))
825 ret = -EFAULT;
826 break;
827 }
828
829 /* the ioctls below read/set the flags usually shown in the leds */
830 /* don't use them - they will go away without warning */
831 case KDGKBLED:
832 ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
833 goto setchar;
834
835 case KDSKBLED:
836 if (!perm)
837 goto eperm;
838 if (arg & ~0x77) {
839 ret = -EINVAL;
840 break;
841 }
842 kbd->ledflagstate = (arg & 7);
843 kbd->default_ledflagstate = ((arg >> 4) & 7);
844 set_leds();
845 break;
846
847 /* the ioctls below only set the lights, not the functions */
848 /* for those, see KDGKBLED and KDSKBLED above */
849 case KDGETLED:
850 ucval = getledstate();
851 setchar:
852 ret = put_user(ucval, (char __user *)arg);
853 break;
854
855 case KDSETLED:
856 if (!perm)
857 goto eperm;
858 setledstate(kbd, arg);
859 break;
860
861 /*
862 * A process can indicate its willingness to accept signals
863 * generated by pressing an appropriate key combination.
864 * Thus, one can have a daemon that e.g. spawns a new console
865 * upon a keypress and then changes to it.
866 * See also the kbrequest field of inittab(5).
867 */
868 case KDSIGACCEPT:
869 {
870 if (!perm || !capable(CAP_KILL))
871 goto eperm;
872 if (!valid_signal(arg) || arg < 1 || arg == SIGKILL)
873 ret = -EINVAL;
874 else {
875 spin_lock_irq(&vt_spawn_con.lock);
876 put_pid(vt_spawn_con.pid);
877 vt_spawn_con.pid = get_pid(task_pid(current));
878 vt_spawn_con.sig = arg;
879 spin_unlock_irq(&vt_spawn_con.lock);
880 }
881 break;
882 }
883
884 case VT_SETMODE:
885 {
886 struct vt_mode tmp;
887
888 if (!perm)
889 goto eperm;
890 if (copy_from_user(&tmp, up, sizeof(struct vt_mode))) {
891 ret = -EFAULT;
892 goto out;
893 }
894 if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS) {
895 ret = -EINVAL;
896 goto out;
897 }
898 console_lock();
899 vc->vt_mode = tmp;
900 /* the frsig is ignored, so we set it to 0 */
901 vc->vt_mode.frsig = 0;
902 put_pid(vc->vt_pid);
903 vc->vt_pid = get_pid(task_pid(current));
904 /* no switch is required -- saw@shade.msu.ru */
905 vc->vt_newvt = -1;
906 console_unlock();
907 break;
908 }
909
910 case VT_GETMODE:
911 {
912 struct vt_mode tmp;
913 int rc;
914
915 console_lock();
916 memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode));
917 console_unlock();
918
919 rc = copy_to_user(up, &tmp, sizeof(struct vt_mode));
920 if (rc)
921 ret = -EFAULT;
922 break;
923 }
924
925 /*
926 * Returns global vt state. Note that VT 0 is always open, since
927 * it's an alias for the current VT, and people can't use it here.
928 * We cannot return state for more than 16 VTs, since v_state is short.
929 */
930 case VT_GETSTATE:
931 {
932 struct vt_stat __user *vtstat = up;
933 unsigned short state, mask;
934
935 if (put_user(fg_console + 1, &vtstat->v_active))
936 ret = -EFAULT;
937 else {
938 state = 1; /* /dev/tty0 is always open */
939 for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask;
940 ++i, mask <<= 1)
941 if (VT_IS_IN_USE(i))
942 state |= mask;
943 ret = put_user(state, &vtstat->v_state);
944 }
945 break;
946 }
947
948 /*
949 * Returns the first available (non-opened) console.
950 */
951 case VT_OPENQRY:
952 for (i = 0; i < MAX_NR_CONSOLES; ++i)
953 if (! VT_IS_IN_USE(i))
954 break;
955 uival = i < MAX_NR_CONSOLES ? (i+1) : -1;
956 goto setint;
957
958 /*
959 * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num,
960 * with num >= 1 (switches to vt 0, our console, are not allowed, just
961 * to preserve sanity).
962 */
963 case VT_ACTIVATE:
964 if (!perm)
965 goto eperm;
966 if (arg == 0 || arg > MAX_NR_CONSOLES)
967 ret = -ENXIO;
968 else {
969 arg--;
970 console_lock();
971 ret = vc_allocate(arg);
972 console_unlock();
973 if (ret)
974 break;
975 set_console(arg);
976 }
977 break;
978
979 case VT_SETACTIVATE:
980 {
981 struct vt_setactivate vsa;
982
983 if (!perm)
984 goto eperm;
985
986 if (copy_from_user(&vsa, (struct vt_setactivate __user *)arg,
987 sizeof(struct vt_setactivate))) {
988 ret = -EFAULT;
989 goto out;
990 }
991 if (vsa.console == 0 || vsa.console > MAX_NR_CONSOLES)
992 ret = -ENXIO;
993 else {
994 vsa.console--;
995 console_lock();
996 ret = vc_allocate(vsa.console);
997 if (ret == 0) {
998 struct vc_data *nvc;
999 /* This is safe providing we don't drop the
1000 console sem between vc_allocate and
1001 finishing referencing nvc */
1002 nvc = vc_cons[vsa.console].d;
1003 nvc->vt_mode = vsa.mode;
1004 nvc->vt_mode.frsig = 0;
1005 put_pid(nvc->vt_pid);
1006 nvc->vt_pid = get_pid(task_pid(current));
1007 }
1008 console_unlock();
1009 if (ret)
1010 break;
1011 /* Commence switch and lock */
1012 set_console(vsa.console);
1013 }
1014 break;
1015 }
1016
1017 /*
1018 * wait until the specified VT has been activated
1019 */
1020 case VT_WAITACTIVE:
1021 if (!perm)
1022 goto eperm;
1023 if (arg == 0 || arg > MAX_NR_CONSOLES)
1024 ret = -ENXIO;
1025 else
1026 ret = vt_waitactive(arg);
1027 break;
1028
1029 /*
1030 * If a vt is under process control, the kernel will not switch to it
1031 * immediately, but postpone the operation until the process calls this
1032 * ioctl, allowing the switch to complete.
1033 *
1034 * According to the X sources this is the behavior:
1035 * 0: pending switch-from not OK
1036 * 1: pending switch-from OK
1037 * 2: completed switch-to OK
1038 */
1039 case VT_RELDISP:
1040 if (!perm)
1041 goto eperm;
1042
1043 if (vc->vt_mode.mode != VT_PROCESS) {
1044 ret = -EINVAL;
1045 break;
1046 }
1047 /*
1048 * Switching-from response
1049 */
1050 console_lock();
1051 if (vc->vt_newvt >= 0) {
1052 if (arg == 0)
1053 /*
1054 * Switch disallowed, so forget we were trying
1055 * to do it.
1056 */
1057 vc->vt_newvt = -1;
1058
1059 else {
1060 /*
1061 * The current vt has been released, so
1062 * complete the switch.
1063 */
1064 int newvt;
1065 newvt = vc->vt_newvt;
1066 vc->vt_newvt = -1;
1067 ret = vc_allocate(newvt);
1068 if (ret) {
1069 console_unlock();
1070 break;
1071 }
1072 /*
1073 * When we actually do the console switch,
1074 * make sure we are atomic with respect to
1075 * other console switches..
1076 */
1077 complete_change_console(vc_cons[newvt].d);
1078 }
1079 } else {
1080 /*
1081 * Switched-to response
1082 */
1083 /*
1084 * If it's just an ACK, ignore it
1085 */
1086 if (arg != VT_ACKACQ)
1087 ret = -EINVAL;
1088 }
1089 console_unlock();
1090 break;
1091
1092 /*
1093 * Disallocate memory associated to VT (but leave VT1)
1094 */
1095 case VT_DISALLOCATE:
1096 if (arg > MAX_NR_CONSOLES) {
1097 ret = -ENXIO;
1098 break;
1099 }
1100 if (arg == 0) {
1101 /* deallocate all unused consoles, but leave 0 */
1102 console_lock();
1103 for (i=1; i<MAX_NR_CONSOLES; i++)
1104 if (! VT_BUSY(i))
1105 vc_deallocate(i);
1106 console_unlock();
1107 } else {
1108 /* deallocate a single console, if possible */
1109 arg--;
1110 if (VT_BUSY(arg))
1111 ret = -EBUSY;
1112 else if (arg) { /* leave 0 */
1113 console_lock();
1114 vc_deallocate(arg);
1115 console_unlock();
1116 }
1117 }
1118 break;
1119
1120 case VT_RESIZE:
1121 {
1122 struct vt_sizes __user *vtsizes = up;
1123 struct vc_data *vc;
1124
1125 ushort ll,cc;
1126 if (!perm)
1127 goto eperm;
1128 if (get_user(ll, &vtsizes->v_rows) ||
1129 get_user(cc, &vtsizes->v_cols))
1130 ret = -EFAULT;
1131 else {
1132 console_lock();
1133 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1134 vc = vc_cons[i].d;
1135
1136 if (vc) {
1137 vc->vc_resize_user = 1;
1138 vc_resize(vc_cons[i].d, cc, ll);
1139 }
1140 }
1141 console_unlock();
1142 }
1143 break;
1144 }
1145
1146 case VT_RESIZEX:
1147 {
1148 struct vt_consize __user *vtconsize = up;
1149 ushort ll,cc,vlin,clin,vcol,ccol;
1150 if (!perm)
1151 goto eperm;
1152 if (!access_ok(VERIFY_READ, vtconsize,
1153 sizeof(struct vt_consize))) {
1154 ret = -EFAULT;
1155 break;
1156 }
1157 /* FIXME: Should check the copies properly */
1158 __get_user(ll, &vtconsize->v_rows);
1159 __get_user(cc, &vtconsize->v_cols);
1160 __get_user(vlin, &vtconsize->v_vlin);
1161 __get_user(clin, &vtconsize->v_clin);
1162 __get_user(vcol, &vtconsize->v_vcol);
1163 __get_user(ccol, &vtconsize->v_ccol);
1164 vlin = vlin ? vlin : vc->vc_scan_lines;
1165 if (clin) {
1166 if (ll) {
1167 if (ll != vlin/clin) {
1168 /* Parameters don't add up */
1169 ret = -EINVAL;
1170 break;
1171 }
1172 } else
1173 ll = vlin/clin;
1174 }
1175 if (vcol && ccol) {
1176 if (cc) {
1177 if (cc != vcol/ccol) {
1178 ret = -EINVAL;
1179 break;
1180 }
1181 } else
1182 cc = vcol/ccol;
1183 }
1184
1185 if (clin > 32) {
1186 ret = -EINVAL;
1187 break;
1188 }
1189
1190 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1191 if (!vc_cons[i].d)
1192 continue;
1193 console_lock();
1194 if (vlin)
1195 vc_cons[i].d->vc_scan_lines = vlin;
1196 if (clin)
1197 vc_cons[i].d->vc_font.height = clin;
1198 vc_cons[i].d->vc_resize_user = 1;
1199 vc_resize(vc_cons[i].d, cc, ll);
1200 console_unlock();
1201 }
1202 break;
1203 }
1204
1205 case PIO_FONT: {
1206 if (!perm)
1207 goto eperm;
1208 op.op = KD_FONT_OP_SET;
1209 op.flags = KD_FONT_FLAG_OLD | KD_FONT_FLAG_DONT_RECALC; /* Compatibility */
1210 op.width = 8;
1211 op.height = 0;
1212 op.charcount = 256;
1213 op.data = up;
1214 ret = con_font_op(vc_cons[fg_console].d, &op);
1215 break;
1216 }
1217
1218 case GIO_FONT: {
1219 op.op = KD_FONT_OP_GET;
1220 op.flags = KD_FONT_FLAG_OLD;
1221 op.width = 8;
1222 op.height = 32;
1223 op.charcount = 256;
1224 op.data = up;
1225 ret = con_font_op(vc_cons[fg_console].d, &op);
1226 break;
1227 }
1228
1229 case PIO_CMAP:
1230 if (!perm)
1231 ret = -EPERM;
1232 else
1233 ret = con_set_cmap(up);
1234 break;
1235
1236 case GIO_CMAP:
1237 ret = con_get_cmap(up);
1238 break;
1239
1240 case PIO_FONTX:
1241 case GIO_FONTX:
1242 ret = do_fontx_ioctl(cmd, up, perm, &op);
1243 break;
1244
1245 case PIO_FONTRESET:
1246 {
1247 if (!perm)
1248 goto eperm;
1249
1250 #ifdef BROKEN_GRAPHICS_PROGRAMS
1251 /* With BROKEN_GRAPHICS_PROGRAMS defined, the default
1252 font is not saved. */
1253 ret = -ENOSYS;
1254 break;
1255 #else
1256 {
1257 op.op = KD_FONT_OP_SET_DEFAULT;
1258 op.data = NULL;
1259 ret = con_font_op(vc_cons[fg_console].d, &op);
1260 if (ret)
1261 break;
1262 con_set_default_unimap(vc_cons[fg_console].d);
1263 break;
1264 }
1265 #endif
1266 }
1267
1268 case KDFONTOP: {
1269 if (copy_from_user(&op, up, sizeof(op))) {
1270 ret = -EFAULT;
1271 break;
1272 }
1273 if (!perm && op.op != KD_FONT_OP_GET)
1274 goto eperm;
1275 ret = con_font_op(vc, &op);
1276 if (ret)
1277 break;
1278 if (copy_to_user(up, &op, sizeof(op)))
1279 ret = -EFAULT;
1280 break;
1281 }
1282
1283 case PIO_SCRNMAP:
1284 if (!perm)
1285 ret = -EPERM;
1286 else
1287 ret = con_set_trans_old(up);
1288 break;
1289
1290 case GIO_SCRNMAP:
1291 ret = con_get_trans_old(up);
1292 break;
1293
1294 case PIO_UNISCRNMAP:
1295 if (!perm)
1296 ret = -EPERM;
1297 else
1298 ret = con_set_trans_new(up);
1299 break;
1300
1301 case GIO_UNISCRNMAP:
1302 ret = con_get_trans_new(up);
1303 break;
1304
1305 case PIO_UNIMAPCLR:
1306 { struct unimapinit ui;
1307 if (!perm)
1308 goto eperm;
1309 ret = copy_from_user(&ui, up, sizeof(struct unimapinit));
1310 if (ret)
1311 ret = -EFAULT;
1312 else
1313 con_clear_unimap(vc, &ui);
1314 break;
1315 }
1316
1317 case PIO_UNIMAP:
1318 case GIO_UNIMAP:
1319 ret = do_unimap_ioctl(cmd, up, perm, vc);
1320 break;
1321
1322 case VT_LOCKSWITCH:
1323 if (!capable(CAP_SYS_TTY_CONFIG))
1324 goto eperm;
1325 vt_dont_switch = 1;
1326 break;
1327 case VT_UNLOCKSWITCH:
1328 if (!capable(CAP_SYS_TTY_CONFIG))
1329 goto eperm;
1330 vt_dont_switch = 0;
1331 break;
1332 case VT_GETHIFONTMASK:
1333 ret = put_user(vc->vc_hi_font_mask,
1334 (unsigned short __user *)arg);
1335 break;
1336 case VT_WAITEVENT:
1337 ret = vt_event_wait_ioctl((struct vt_event __user *)arg);
1338 break;
1339 default:
1340 ret = -ENOIOCTLCMD;
1341 }
1342 out:
1343 tty_unlock();
1344 return ret;
1345 eperm:
1346 ret = -EPERM;
1347 goto out;
1348 }
1349
reset_vc(struct vc_data * vc)1350 void reset_vc(struct vc_data *vc)
1351 {
1352 vc->vc_mode = KD_TEXT;
1353 kbd_table[vc->vc_num].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1354 vc->vt_mode.mode = VT_AUTO;
1355 vc->vt_mode.waitv = 0;
1356 vc->vt_mode.relsig = 0;
1357 vc->vt_mode.acqsig = 0;
1358 vc->vt_mode.frsig = 0;
1359 put_pid(vc->vt_pid);
1360 vc->vt_pid = NULL;
1361 vc->vt_newvt = -1;
1362 if (!in_interrupt()) /* Via keyboard.c:SAK() - akpm */
1363 reset_palette(vc);
1364 }
1365
vc_SAK(struct work_struct * work)1366 void vc_SAK(struct work_struct *work)
1367 {
1368 struct vc *vc_con =
1369 container_of(work, struct vc, SAK_work);
1370 struct vc_data *vc;
1371 struct tty_struct *tty;
1372
1373 console_lock();
1374 vc = vc_con->d;
1375 if (vc) {
1376 tty = vc->port.tty;
1377 /*
1378 * SAK should also work in all raw modes and reset
1379 * them properly.
1380 */
1381 if (tty)
1382 __do_SAK(tty);
1383 reset_vc(vc);
1384 }
1385 console_unlock();
1386 }
1387
1388 #ifdef CONFIG_COMPAT
1389
1390 struct compat_consolefontdesc {
1391 unsigned short charcount; /* characters in font (256 or 512) */
1392 unsigned short charheight; /* scan lines per character (1-32) */
1393 compat_caddr_t chardata; /* font data in expanded form */
1394 };
1395
1396 static inline int
compat_fontx_ioctl(int cmd,struct compat_consolefontdesc __user * user_cfd,int perm,struct console_font_op * op)1397 compat_fontx_ioctl(int cmd, struct compat_consolefontdesc __user *user_cfd,
1398 int perm, struct console_font_op *op)
1399 {
1400 struct compat_consolefontdesc cfdarg;
1401 int i;
1402
1403 if (copy_from_user(&cfdarg, user_cfd, sizeof(struct compat_consolefontdesc)))
1404 return -EFAULT;
1405
1406 switch (cmd) {
1407 case PIO_FONTX:
1408 if (!perm)
1409 return -EPERM;
1410 op->op = KD_FONT_OP_SET;
1411 op->flags = KD_FONT_FLAG_OLD;
1412 op->width = 8;
1413 op->height = cfdarg.charheight;
1414 op->charcount = cfdarg.charcount;
1415 op->data = compat_ptr(cfdarg.chardata);
1416 return con_font_op(vc_cons[fg_console].d, op);
1417 case GIO_FONTX:
1418 op->op = KD_FONT_OP_GET;
1419 op->flags = KD_FONT_FLAG_OLD;
1420 op->width = 8;
1421 op->height = cfdarg.charheight;
1422 op->charcount = cfdarg.charcount;
1423 op->data = compat_ptr(cfdarg.chardata);
1424 i = con_font_op(vc_cons[fg_console].d, op);
1425 if (i)
1426 return i;
1427 cfdarg.charheight = op->height;
1428 cfdarg.charcount = op->charcount;
1429 if (copy_to_user(user_cfd, &cfdarg, sizeof(struct compat_consolefontdesc)))
1430 return -EFAULT;
1431 return 0;
1432 }
1433 return -EINVAL;
1434 }
1435
1436 struct compat_console_font_op {
1437 compat_uint_t op; /* operation code KD_FONT_OP_* */
1438 compat_uint_t flags; /* KD_FONT_FLAG_* */
1439 compat_uint_t width, height; /* font size */
1440 compat_uint_t charcount;
1441 compat_caddr_t data; /* font data with height fixed to 32 */
1442 };
1443
1444 static inline int
compat_kdfontop_ioctl(struct compat_console_font_op __user * fontop,int perm,struct console_font_op * op,struct vc_data * vc)1445 compat_kdfontop_ioctl(struct compat_console_font_op __user *fontop,
1446 int perm, struct console_font_op *op, struct vc_data *vc)
1447 {
1448 int i;
1449
1450 if (copy_from_user(op, fontop, sizeof(struct compat_console_font_op)))
1451 return -EFAULT;
1452 if (!perm && op->op != KD_FONT_OP_GET)
1453 return -EPERM;
1454 op->data = compat_ptr(((struct compat_console_font_op *)op)->data);
1455 op->flags |= KD_FONT_FLAG_OLD;
1456 i = con_font_op(vc, op);
1457 if (i)
1458 return i;
1459 ((struct compat_console_font_op *)op)->data = (unsigned long)op->data;
1460 if (copy_to_user(fontop, op, sizeof(struct compat_console_font_op)))
1461 return -EFAULT;
1462 return 0;
1463 }
1464
1465 struct compat_unimapdesc {
1466 unsigned short entry_ct;
1467 compat_caddr_t entries;
1468 };
1469
1470 static inline int
compat_unimap_ioctl(unsigned int cmd,struct compat_unimapdesc __user * user_ud,int perm,struct vc_data * vc)1471 compat_unimap_ioctl(unsigned int cmd, struct compat_unimapdesc __user *user_ud,
1472 int perm, struct vc_data *vc)
1473 {
1474 struct compat_unimapdesc tmp;
1475 struct unipair __user *tmp_entries;
1476
1477 if (copy_from_user(&tmp, user_ud, sizeof tmp))
1478 return -EFAULT;
1479 tmp_entries = compat_ptr(tmp.entries);
1480 if (tmp_entries)
1481 if (!access_ok(VERIFY_WRITE, tmp_entries,
1482 tmp.entry_ct*sizeof(struct unipair)))
1483 return -EFAULT;
1484 switch (cmd) {
1485 case PIO_UNIMAP:
1486 if (!perm)
1487 return -EPERM;
1488 return con_set_unimap(vc, tmp.entry_ct, tmp_entries);
1489 case GIO_UNIMAP:
1490 if (!perm && fg_console != vc->vc_num)
1491 return -EPERM;
1492 return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp_entries);
1493 }
1494 return 0;
1495 }
1496
vt_compat_ioctl(struct tty_struct * tty,unsigned int cmd,unsigned long arg)1497 long vt_compat_ioctl(struct tty_struct *tty,
1498 unsigned int cmd, unsigned long arg)
1499 {
1500 struct vc_data *vc = tty->driver_data;
1501 struct console_font_op op; /* used in multiple places here */
1502 struct kbd_struct *kbd;
1503 unsigned int console;
1504 void __user *up = (void __user *)arg;
1505 int perm;
1506 int ret = 0;
1507
1508 console = vc->vc_num;
1509
1510 tty_lock();
1511
1512 if (!vc_cons_allocated(console)) { /* impossible? */
1513 ret = -ENOIOCTLCMD;
1514 goto out;
1515 }
1516
1517 /*
1518 * To have permissions to do most of the vt ioctls, we either have
1519 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
1520 */
1521 perm = 0;
1522 if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
1523 perm = 1;
1524
1525 kbd = kbd_table + console;
1526 switch (cmd) {
1527 /*
1528 * these need special handlers for incompatible data structures
1529 */
1530 case PIO_FONTX:
1531 case GIO_FONTX:
1532 ret = compat_fontx_ioctl(cmd, up, perm, &op);
1533 break;
1534
1535 case KDFONTOP:
1536 ret = compat_kdfontop_ioctl(up, perm, &op, vc);
1537 break;
1538
1539 case PIO_UNIMAP:
1540 case GIO_UNIMAP:
1541 ret = compat_unimap_ioctl(cmd, up, perm, vc);
1542 break;
1543
1544 /*
1545 * all these treat 'arg' as an integer
1546 */
1547 case KIOCSOUND:
1548 case KDMKTONE:
1549 #ifdef CONFIG_X86
1550 case KDADDIO:
1551 case KDDELIO:
1552 #endif
1553 case KDSETMODE:
1554 case KDMAPDISP:
1555 case KDUNMAPDISP:
1556 case KDSKBMODE:
1557 case KDSKBMETA:
1558 case KDSKBLED:
1559 case KDSETLED:
1560 case KDSIGACCEPT:
1561 case VT_ACTIVATE:
1562 case VT_WAITACTIVE:
1563 case VT_RELDISP:
1564 case VT_DISALLOCATE:
1565 case VT_RESIZE:
1566 case VT_RESIZEX:
1567 goto fallback;
1568
1569 /*
1570 * the rest has a compatible data structure behind arg,
1571 * but we have to convert it to a proper 64 bit pointer.
1572 */
1573 default:
1574 arg = (unsigned long)compat_ptr(arg);
1575 goto fallback;
1576 }
1577 out:
1578 tty_unlock();
1579 return ret;
1580
1581 fallback:
1582 tty_unlock();
1583 return vt_ioctl(tty, cmd, arg);
1584 }
1585
1586
1587 #endif /* CONFIG_COMPAT */
1588
1589
1590 /*
1591 * Performs the back end of a vt switch. Called under the console
1592 * semaphore.
1593 */
complete_change_console(struct vc_data * vc)1594 static void complete_change_console(struct vc_data *vc)
1595 {
1596 unsigned char old_vc_mode;
1597 int old = fg_console;
1598
1599 last_console = fg_console;
1600
1601 /*
1602 * If we're switching, we could be going from KD_GRAPHICS to
1603 * KD_TEXT mode or vice versa, which means we need to blank or
1604 * unblank the screen later.
1605 */
1606 old_vc_mode = vc_cons[fg_console].d->vc_mode;
1607 switch_screen(vc);
1608
1609 /*
1610 * This can't appear below a successful kill_pid(). If it did,
1611 * then the *blank_screen operation could occur while X, having
1612 * received acqsig, is waking up on another processor. This
1613 * condition can lead to overlapping accesses to the VGA range
1614 * and the framebuffer (causing system lockups).
1615 *
1616 * To account for this we duplicate this code below only if the
1617 * controlling process is gone and we've called reset_vc.
1618 */
1619 if (old_vc_mode != vc->vc_mode) {
1620 if (vc->vc_mode == KD_TEXT)
1621 do_unblank_screen(1);
1622 else
1623 do_blank_screen(1);
1624 }
1625
1626 /*
1627 * If this new console is under process control, send it a signal
1628 * telling it that it has acquired. Also check if it has died and
1629 * clean up (similar to logic employed in change_console())
1630 */
1631 if (vc->vt_mode.mode == VT_PROCESS) {
1632 /*
1633 * Send the signal as privileged - kill_pid() will
1634 * tell us if the process has gone or something else
1635 * is awry
1636 */
1637 if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) {
1638 /*
1639 * The controlling process has died, so we revert back to
1640 * normal operation. In this case, we'll also change back
1641 * to KD_TEXT mode. I'm not sure if this is strictly correct
1642 * but it saves the agony when the X server dies and the screen
1643 * remains blanked due to KD_GRAPHICS! It would be nice to do
1644 * this outside of VT_PROCESS but there is no single process
1645 * to account for and tracking tty count may be undesirable.
1646 */
1647 reset_vc(vc);
1648
1649 if (old_vc_mode != vc->vc_mode) {
1650 if (vc->vc_mode == KD_TEXT)
1651 do_unblank_screen(1);
1652 else
1653 do_blank_screen(1);
1654 }
1655 }
1656 }
1657
1658 /*
1659 * Wake anyone waiting for their VT to activate
1660 */
1661 vt_event_post(VT_EVENT_SWITCH, old, vc->vc_num);
1662 return;
1663 }
1664
1665 /*
1666 * Performs the front-end of a vt switch
1667 */
change_console(struct vc_data * new_vc)1668 void change_console(struct vc_data *new_vc)
1669 {
1670 struct vc_data *vc;
1671
1672 if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch)
1673 return;
1674
1675 /*
1676 * If this vt is in process mode, then we need to handshake with
1677 * that process before switching. Essentially, we store where that
1678 * vt wants to switch to and wait for it to tell us when it's done
1679 * (via VT_RELDISP ioctl).
1680 *
1681 * We also check to see if the controlling process still exists.
1682 * If it doesn't, we reset this vt to auto mode and continue.
1683 * This is a cheap way to track process control. The worst thing
1684 * that can happen is: we send a signal to a process, it dies, and
1685 * the switch gets "lost" waiting for a response; hopefully, the
1686 * user will try again, we'll detect the process is gone (unless
1687 * the user waits just the right amount of time :-) and revert the
1688 * vt to auto control.
1689 */
1690 vc = vc_cons[fg_console].d;
1691 if (vc->vt_mode.mode == VT_PROCESS) {
1692 /*
1693 * Send the signal as privileged - kill_pid() will
1694 * tell us if the process has gone or something else
1695 * is awry.
1696 *
1697 * We need to set vt_newvt *before* sending the signal or we
1698 * have a race.
1699 */
1700 vc->vt_newvt = new_vc->vc_num;
1701 if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) {
1702 /*
1703 * It worked. Mark the vt to switch to and
1704 * return. The process needs to send us a
1705 * VT_RELDISP ioctl to complete the switch.
1706 */
1707 return;
1708 }
1709
1710 /*
1711 * The controlling process has died, so we revert back to
1712 * normal operation. In this case, we'll also change back
1713 * to KD_TEXT mode. I'm not sure if this is strictly correct
1714 * but it saves the agony when the X server dies and the screen
1715 * remains blanked due to KD_GRAPHICS! It would be nice to do
1716 * this outside of VT_PROCESS but there is no single process
1717 * to account for and tracking tty count may be undesirable.
1718 */
1719 reset_vc(vc);
1720
1721 /*
1722 * Fall through to normal (VT_AUTO) handling of the switch...
1723 */
1724 }
1725
1726 /*
1727 * Ignore all switches in KD_GRAPHICS+VT_AUTO mode
1728 */
1729 if (vc->vc_mode == KD_GRAPHICS)
1730 return;
1731
1732 complete_change_console(new_vc);
1733 }
1734
1735 /* Perform a kernel triggered VT switch for suspend/resume */
1736
1737 static int disable_vt_switch;
1738
vt_move_to_console(unsigned int vt,int alloc)1739 int vt_move_to_console(unsigned int vt, int alloc)
1740 {
1741 int prev;
1742
1743 console_lock();
1744 /* Graphics mode - up to X */
1745 if (disable_vt_switch) {
1746 console_unlock();
1747 return 0;
1748 }
1749 prev = fg_console;
1750
1751 if (alloc && vc_allocate(vt)) {
1752 /* we can't have a free VC for now. Too bad,
1753 * we don't want to mess the screen for now. */
1754 console_unlock();
1755 return -ENOSPC;
1756 }
1757
1758 if (set_console(vt)) {
1759 /*
1760 * We're unable to switch to the SUSPEND_CONSOLE.
1761 * Let the calling function know so it can decide
1762 * what to do.
1763 */
1764 console_unlock();
1765 return -EIO;
1766 }
1767 console_unlock();
1768 tty_lock();
1769 if (vt_waitactive(vt + 1)) {
1770 pr_debug("Suspend: Can't switch VCs.");
1771 tty_unlock();
1772 return -EINTR;
1773 }
1774 tty_unlock();
1775 return prev;
1776 }
1777
1778 /*
1779 * Normally during a suspend, we allocate a new console and switch to it.
1780 * When we resume, we switch back to the original console. This switch
1781 * can be slow, so on systems where the framebuffer can handle restoration
1782 * of video registers anyways, there's little point in doing the console
1783 * switch. This function allows you to disable it by passing it '0'.
1784 */
pm_set_vt_switch(int do_switch)1785 void pm_set_vt_switch(int do_switch)
1786 {
1787 console_lock();
1788 disable_vt_switch = !do_switch;
1789 console_unlock();
1790 }
1791 EXPORT_SYMBOL(pm_set_vt_switch);
1792