1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 /*
57 * reclaim_mode determines how the inactive list is shrunk
58 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59 * RECLAIM_MODE_ASYNC: Do not block
60 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
61 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
62 * page from the LRU and reclaim all pages within a
63 * naturally aligned range
64 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
65 * order-0 pages and then compact the zone
66 */
67 typedef unsigned __bitwise__ reclaim_mode_t;
68 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
69 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
70 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
71 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
72 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
73
74 struct scan_control {
75 /* Incremented by the number of inactive pages that were scanned */
76 unsigned long nr_scanned;
77
78 /* Number of pages freed so far during a call to shrink_zones() */
79 unsigned long nr_reclaimed;
80
81 /* How many pages shrink_list() should reclaim */
82 unsigned long nr_to_reclaim;
83
84 unsigned long hibernation_mode;
85
86 /* This context's GFP mask */
87 gfp_t gfp_mask;
88
89 int may_writepage;
90
91 /* Can mapped pages be reclaimed? */
92 int may_unmap;
93
94 /* Can pages be swapped as part of reclaim? */
95 int may_swap;
96
97 int order;
98
99 /*
100 * Intend to reclaim enough continuous memory rather than reclaim
101 * enough amount of memory. i.e, mode for high order allocation.
102 */
103 reclaim_mode_t reclaim_mode;
104
105 /*
106 * The memory cgroup that hit its limit and as a result is the
107 * primary target of this reclaim invocation.
108 */
109 struct mem_cgroup *target_mem_cgroup;
110
111 /*
112 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113 * are scanned.
114 */
115 nodemask_t *nodemask;
116 };
117
118 struct mem_cgroup_zone {
119 struct mem_cgroup *mem_cgroup;
120 struct zone *zone;
121 };
122
123 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
124
125 #ifdef ARCH_HAS_PREFETCH
126 #define prefetch_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
130 \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetch(&prev->_field); \
133 } \
134 } while (0)
135 #else
136 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138
139 #ifdef ARCH_HAS_PREFETCHW
140 #define prefetchw_prev_lru_page(_page, _base, _field) \
141 do { \
142 if ((_page)->lru.prev != _base) { \
143 struct page *prev; \
144 \
145 prev = lru_to_page(&(_page->lru)); \
146 prefetchw(&prev->_field); \
147 } \
148 } while (0)
149 #else
150 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
151 #endif
152
153 /*
154 * From 0 .. 100. Higher means more swappy.
155 */
156 int vm_swappiness = 60;
157 long vm_total_pages; /* The total number of pages which the VM controls */
158
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
161
162 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
global_reclaim(struct scan_control * sc)163 static bool global_reclaim(struct scan_control *sc)
164 {
165 return !sc->target_mem_cgroup;
166 }
167
scanning_global_lru(struct mem_cgroup_zone * mz)168 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
169 {
170 return !mz->mem_cgroup;
171 }
172 #else
global_reclaim(struct scan_control * sc)173 static bool global_reclaim(struct scan_control *sc)
174 {
175 return true;
176 }
177
scanning_global_lru(struct mem_cgroup_zone * mz)178 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
179 {
180 return true;
181 }
182 #endif
183
get_reclaim_stat(struct mem_cgroup_zone * mz)184 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
185 {
186 if (!scanning_global_lru(mz))
187 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
188
189 return &mz->zone->reclaim_stat;
190 }
191
zone_nr_lru_pages(struct mem_cgroup_zone * mz,enum lru_list lru)192 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
193 enum lru_list lru)
194 {
195 if (!scanning_global_lru(mz))
196 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
197 zone_to_nid(mz->zone),
198 zone_idx(mz->zone),
199 BIT(lru));
200
201 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
202 }
203
204
205 /*
206 * Add a shrinker callback to be called from the vm
207 */
register_shrinker(struct shrinker * shrinker)208 void register_shrinker(struct shrinker *shrinker)
209 {
210 atomic_long_set(&shrinker->nr_in_batch, 0);
211 down_write(&shrinker_rwsem);
212 list_add_tail(&shrinker->list, &shrinker_list);
213 up_write(&shrinker_rwsem);
214 }
215 EXPORT_SYMBOL(register_shrinker);
216
217 /*
218 * Remove one
219 */
unregister_shrinker(struct shrinker * shrinker)220 void unregister_shrinker(struct shrinker *shrinker)
221 {
222 down_write(&shrinker_rwsem);
223 list_del(&shrinker->list);
224 up_write(&shrinker_rwsem);
225 }
226 EXPORT_SYMBOL(unregister_shrinker);
227
do_shrinker_shrink(struct shrinker * shrinker,struct shrink_control * sc,unsigned long nr_to_scan)228 static inline int do_shrinker_shrink(struct shrinker *shrinker,
229 struct shrink_control *sc,
230 unsigned long nr_to_scan)
231 {
232 sc->nr_to_scan = nr_to_scan;
233 return (*shrinker->shrink)(shrinker, sc);
234 }
235
236 #define SHRINK_BATCH 128
237 /*
238 * Call the shrink functions to age shrinkable caches
239 *
240 * Here we assume it costs one seek to replace a lru page and that it also
241 * takes a seek to recreate a cache object. With this in mind we age equal
242 * percentages of the lru and ageable caches. This should balance the seeks
243 * generated by these structures.
244 *
245 * If the vm encountered mapped pages on the LRU it increase the pressure on
246 * slab to avoid swapping.
247 *
248 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
249 *
250 * `lru_pages' represents the number of on-LRU pages in all the zones which
251 * are eligible for the caller's allocation attempt. It is used for balancing
252 * slab reclaim versus page reclaim.
253 *
254 * Returns the number of slab objects which we shrunk.
255 */
shrink_slab(struct shrink_control * shrink,unsigned long nr_pages_scanned,unsigned long lru_pages)256 unsigned long shrink_slab(struct shrink_control *shrink,
257 unsigned long nr_pages_scanned,
258 unsigned long lru_pages)
259 {
260 struct shrinker *shrinker;
261 unsigned long ret = 0;
262
263 if (nr_pages_scanned == 0)
264 nr_pages_scanned = SWAP_CLUSTER_MAX;
265
266 if (!down_read_trylock(&shrinker_rwsem)) {
267 /* Assume we'll be able to shrink next time */
268 ret = 1;
269 goto out;
270 }
271
272 list_for_each_entry(shrinker, &shrinker_list, list) {
273 unsigned long long delta;
274 long total_scan;
275 long max_pass;
276 int shrink_ret = 0;
277 long nr;
278 long new_nr;
279 long batch_size = shrinker->batch ? shrinker->batch
280 : SHRINK_BATCH;
281
282 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
283 if (max_pass <= 0)
284 continue;
285
286 /*
287 * copy the current shrinker scan count into a local variable
288 * and zero it so that other concurrent shrinker invocations
289 * don't also do this scanning work.
290 */
291 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
292
293 total_scan = nr;
294 delta = (4 * nr_pages_scanned) / shrinker->seeks;
295 delta *= max_pass;
296 do_div(delta, lru_pages + 1);
297 total_scan += delta;
298 if (total_scan < 0) {
299 printk(KERN_ERR "shrink_slab: %pF negative objects to "
300 "delete nr=%ld\n",
301 shrinker->shrink, total_scan);
302 total_scan = max_pass;
303 }
304
305 /*
306 * We need to avoid excessive windup on filesystem shrinkers
307 * due to large numbers of GFP_NOFS allocations causing the
308 * shrinkers to return -1 all the time. This results in a large
309 * nr being built up so when a shrink that can do some work
310 * comes along it empties the entire cache due to nr >>>
311 * max_pass. This is bad for sustaining a working set in
312 * memory.
313 *
314 * Hence only allow the shrinker to scan the entire cache when
315 * a large delta change is calculated directly.
316 */
317 if (delta < max_pass / 4)
318 total_scan = min(total_scan, max_pass / 2);
319
320 /*
321 * Avoid risking looping forever due to too large nr value:
322 * never try to free more than twice the estimate number of
323 * freeable entries.
324 */
325 if (total_scan > max_pass * 2)
326 total_scan = max_pass * 2;
327
328 trace_mm_shrink_slab_start(shrinker, shrink, nr,
329 nr_pages_scanned, lru_pages,
330 max_pass, delta, total_scan);
331
332 while (total_scan >= batch_size) {
333 int nr_before;
334
335 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
336 shrink_ret = do_shrinker_shrink(shrinker, shrink,
337 batch_size);
338 if (shrink_ret == -1)
339 break;
340 if (shrink_ret < nr_before)
341 ret += nr_before - shrink_ret;
342 count_vm_events(SLABS_SCANNED, batch_size);
343 total_scan -= batch_size;
344
345 cond_resched();
346 }
347
348 /*
349 * move the unused scan count back into the shrinker in a
350 * manner that handles concurrent updates. If we exhausted the
351 * scan, there is no need to do an update.
352 */
353 if (total_scan > 0)
354 new_nr = atomic_long_add_return(total_scan,
355 &shrinker->nr_in_batch);
356 else
357 new_nr = atomic_long_read(&shrinker->nr_in_batch);
358
359 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
360 }
361 up_read(&shrinker_rwsem);
362 out:
363 cond_resched();
364 return ret;
365 }
366
set_reclaim_mode(int priority,struct scan_control * sc,bool sync)367 static void set_reclaim_mode(int priority, struct scan_control *sc,
368 bool sync)
369 {
370 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
371
372 /*
373 * Initially assume we are entering either lumpy reclaim or
374 * reclaim/compaction.Depending on the order, we will either set the
375 * sync mode or just reclaim order-0 pages later.
376 */
377 if (COMPACTION_BUILD)
378 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
379 else
380 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
381
382 /*
383 * Avoid using lumpy reclaim or reclaim/compaction if possible by
384 * restricting when its set to either costly allocations or when
385 * under memory pressure
386 */
387 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
388 sc->reclaim_mode |= syncmode;
389 else if (sc->order && priority < DEF_PRIORITY - 2)
390 sc->reclaim_mode |= syncmode;
391 else
392 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
393 }
394
reset_reclaim_mode(struct scan_control * sc)395 static void reset_reclaim_mode(struct scan_control *sc)
396 {
397 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
398 }
399
is_page_cache_freeable(struct page * page)400 static inline int is_page_cache_freeable(struct page *page)
401 {
402 /*
403 * A freeable page cache page is referenced only by the caller
404 * that isolated the page, the page cache radix tree and
405 * optional buffer heads at page->private.
406 */
407 return page_count(page) - page_has_private(page) == 2;
408 }
409
may_write_to_queue(struct backing_dev_info * bdi,struct scan_control * sc)410 static int may_write_to_queue(struct backing_dev_info *bdi,
411 struct scan_control *sc)
412 {
413 if (current->flags & PF_SWAPWRITE)
414 return 1;
415 if (!bdi_write_congested(bdi))
416 return 1;
417 if (bdi == current->backing_dev_info)
418 return 1;
419
420 /* lumpy reclaim for hugepage often need a lot of write */
421 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
422 return 1;
423 return 0;
424 }
425
426 /*
427 * We detected a synchronous write error writing a page out. Probably
428 * -ENOSPC. We need to propagate that into the address_space for a subsequent
429 * fsync(), msync() or close().
430 *
431 * The tricky part is that after writepage we cannot touch the mapping: nothing
432 * prevents it from being freed up. But we have a ref on the page and once
433 * that page is locked, the mapping is pinned.
434 *
435 * We're allowed to run sleeping lock_page() here because we know the caller has
436 * __GFP_FS.
437 */
handle_write_error(struct address_space * mapping,struct page * page,int error)438 static void handle_write_error(struct address_space *mapping,
439 struct page *page, int error)
440 {
441 lock_page(page);
442 if (page_mapping(page) == mapping)
443 mapping_set_error(mapping, error);
444 unlock_page(page);
445 }
446
447 /* possible outcome of pageout() */
448 typedef enum {
449 /* failed to write page out, page is locked */
450 PAGE_KEEP,
451 /* move page to the active list, page is locked */
452 PAGE_ACTIVATE,
453 /* page has been sent to the disk successfully, page is unlocked */
454 PAGE_SUCCESS,
455 /* page is clean and locked */
456 PAGE_CLEAN,
457 } pageout_t;
458
459 /*
460 * pageout is called by shrink_page_list() for each dirty page.
461 * Calls ->writepage().
462 */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)463 static pageout_t pageout(struct page *page, struct address_space *mapping,
464 struct scan_control *sc)
465 {
466 /*
467 * If the page is dirty, only perform writeback if that write
468 * will be non-blocking. To prevent this allocation from being
469 * stalled by pagecache activity. But note that there may be
470 * stalls if we need to run get_block(). We could test
471 * PagePrivate for that.
472 *
473 * If this process is currently in __generic_file_aio_write() against
474 * this page's queue, we can perform writeback even if that
475 * will block.
476 *
477 * If the page is swapcache, write it back even if that would
478 * block, for some throttling. This happens by accident, because
479 * swap_backing_dev_info is bust: it doesn't reflect the
480 * congestion state of the swapdevs. Easy to fix, if needed.
481 */
482 if (!is_page_cache_freeable(page))
483 return PAGE_KEEP;
484 if (!mapping) {
485 /*
486 * Some data journaling orphaned pages can have
487 * page->mapping == NULL while being dirty with clean buffers.
488 */
489 if (page_has_private(page)) {
490 if (try_to_free_buffers(page)) {
491 ClearPageDirty(page);
492 printk("%s: orphaned page\n", __func__);
493 return PAGE_CLEAN;
494 }
495 }
496 return PAGE_KEEP;
497 }
498 if (mapping->a_ops->writepage == NULL)
499 return PAGE_ACTIVATE;
500 if (!may_write_to_queue(mapping->backing_dev_info, sc))
501 return PAGE_KEEP;
502
503 if (clear_page_dirty_for_io(page)) {
504 int res;
505 struct writeback_control wbc = {
506 .sync_mode = WB_SYNC_NONE,
507 .nr_to_write = SWAP_CLUSTER_MAX,
508 .range_start = 0,
509 .range_end = LLONG_MAX,
510 .for_reclaim = 1,
511 };
512
513 SetPageReclaim(page);
514 res = mapping->a_ops->writepage(page, &wbc);
515 if (res < 0)
516 handle_write_error(mapping, page, res);
517 if (res == AOP_WRITEPAGE_ACTIVATE) {
518 ClearPageReclaim(page);
519 return PAGE_ACTIVATE;
520 }
521
522 if (!PageWriteback(page)) {
523 /* synchronous write or broken a_ops? */
524 ClearPageReclaim(page);
525 }
526 trace_mm_vmscan_writepage(page,
527 trace_reclaim_flags(page, sc->reclaim_mode));
528 inc_zone_page_state(page, NR_VMSCAN_WRITE);
529 return PAGE_SUCCESS;
530 }
531
532 return PAGE_CLEAN;
533 }
534
535 /*
536 * Same as remove_mapping, but if the page is removed from the mapping, it
537 * gets returned with a refcount of 0.
538 */
__remove_mapping(struct address_space * mapping,struct page * page)539 static int __remove_mapping(struct address_space *mapping, struct page *page)
540 {
541 BUG_ON(!PageLocked(page));
542 BUG_ON(mapping != page_mapping(page));
543
544 spin_lock_irq(&mapping->tree_lock);
545 /*
546 * The non racy check for a busy page.
547 *
548 * Must be careful with the order of the tests. When someone has
549 * a ref to the page, it may be possible that they dirty it then
550 * drop the reference. So if PageDirty is tested before page_count
551 * here, then the following race may occur:
552 *
553 * get_user_pages(&page);
554 * [user mapping goes away]
555 * write_to(page);
556 * !PageDirty(page) [good]
557 * SetPageDirty(page);
558 * put_page(page);
559 * !page_count(page) [good, discard it]
560 *
561 * [oops, our write_to data is lost]
562 *
563 * Reversing the order of the tests ensures such a situation cannot
564 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
565 * load is not satisfied before that of page->_count.
566 *
567 * Note that if SetPageDirty is always performed via set_page_dirty,
568 * and thus under tree_lock, then this ordering is not required.
569 */
570 if (!page_freeze_refs(page, 2))
571 goto cannot_free;
572 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
573 if (unlikely(PageDirty(page))) {
574 page_unfreeze_refs(page, 2);
575 goto cannot_free;
576 }
577
578 if (PageSwapCache(page)) {
579 swp_entry_t swap = { .val = page_private(page) };
580 __delete_from_swap_cache(page);
581 spin_unlock_irq(&mapping->tree_lock);
582 swapcache_free(swap, page);
583 } else {
584 void (*freepage)(struct page *);
585
586 freepage = mapping->a_ops->freepage;
587
588 __delete_from_page_cache(page);
589 spin_unlock_irq(&mapping->tree_lock);
590 mem_cgroup_uncharge_cache_page(page);
591
592 if (freepage != NULL)
593 freepage(page);
594 }
595
596 return 1;
597
598 cannot_free:
599 spin_unlock_irq(&mapping->tree_lock);
600 return 0;
601 }
602
603 /*
604 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
605 * someone else has a ref on the page, abort and return 0. If it was
606 * successfully detached, return 1. Assumes the caller has a single ref on
607 * this page.
608 */
remove_mapping(struct address_space * mapping,struct page * page)609 int remove_mapping(struct address_space *mapping, struct page *page)
610 {
611 if (__remove_mapping(mapping, page)) {
612 /*
613 * Unfreezing the refcount with 1 rather than 2 effectively
614 * drops the pagecache ref for us without requiring another
615 * atomic operation.
616 */
617 page_unfreeze_refs(page, 1);
618 return 1;
619 }
620 return 0;
621 }
622
623 /**
624 * putback_lru_page - put previously isolated page onto appropriate LRU list
625 * @page: page to be put back to appropriate lru list
626 *
627 * Add previously isolated @page to appropriate LRU list.
628 * Page may still be unevictable for other reasons.
629 *
630 * lru_lock must not be held, interrupts must be enabled.
631 */
putback_lru_page(struct page * page)632 void putback_lru_page(struct page *page)
633 {
634 int lru;
635 int active = !!TestClearPageActive(page);
636 int was_unevictable = PageUnevictable(page);
637
638 VM_BUG_ON(PageLRU(page));
639
640 redo:
641 ClearPageUnevictable(page);
642
643 if (page_evictable(page, NULL)) {
644 /*
645 * For evictable pages, we can use the cache.
646 * In event of a race, worst case is we end up with an
647 * unevictable page on [in]active list.
648 * We know how to handle that.
649 */
650 lru = active + page_lru_base_type(page);
651 lru_cache_add_lru(page, lru);
652 } else {
653 /*
654 * Put unevictable pages directly on zone's unevictable
655 * list.
656 */
657 lru = LRU_UNEVICTABLE;
658 add_page_to_unevictable_list(page);
659 /*
660 * When racing with an mlock or AS_UNEVICTABLE clearing
661 * (page is unlocked) make sure that if the other thread
662 * does not observe our setting of PG_lru and fails
663 * isolation/check_move_unevictable_pages,
664 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
665 * the page back to the evictable list.
666 *
667 * The other side is TestClearPageMlocked() or shmem_lock().
668 */
669 smp_mb();
670 }
671
672 /*
673 * page's status can change while we move it among lru. If an evictable
674 * page is on unevictable list, it never be freed. To avoid that,
675 * check after we added it to the list, again.
676 */
677 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
678 if (!isolate_lru_page(page)) {
679 put_page(page);
680 goto redo;
681 }
682 /* This means someone else dropped this page from LRU
683 * So, it will be freed or putback to LRU again. There is
684 * nothing to do here.
685 */
686 }
687
688 if (was_unevictable && lru != LRU_UNEVICTABLE)
689 count_vm_event(UNEVICTABLE_PGRESCUED);
690 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
691 count_vm_event(UNEVICTABLE_PGCULLED);
692
693 put_page(page); /* drop ref from isolate */
694 }
695
696 enum page_references {
697 PAGEREF_RECLAIM,
698 PAGEREF_RECLAIM_CLEAN,
699 PAGEREF_KEEP,
700 PAGEREF_ACTIVATE,
701 };
702
page_check_references(struct page * page,struct mem_cgroup_zone * mz,struct scan_control * sc)703 static enum page_references page_check_references(struct page *page,
704 struct mem_cgroup_zone *mz,
705 struct scan_control *sc)
706 {
707 int referenced_ptes, referenced_page;
708 unsigned long vm_flags;
709
710 referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
711 referenced_page = TestClearPageReferenced(page);
712
713 /* Lumpy reclaim - ignore references */
714 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
715 return PAGEREF_RECLAIM;
716
717 /*
718 * Mlock lost the isolation race with us. Let try_to_unmap()
719 * move the page to the unevictable list.
720 */
721 if (vm_flags & VM_LOCKED)
722 return PAGEREF_RECLAIM;
723
724 if (referenced_ptes) {
725 if (PageSwapBacked(page))
726 return PAGEREF_ACTIVATE;
727 /*
728 * All mapped pages start out with page table
729 * references from the instantiating fault, so we need
730 * to look twice if a mapped file page is used more
731 * than once.
732 *
733 * Mark it and spare it for another trip around the
734 * inactive list. Another page table reference will
735 * lead to its activation.
736 *
737 * Note: the mark is set for activated pages as well
738 * so that recently deactivated but used pages are
739 * quickly recovered.
740 */
741 SetPageReferenced(page);
742
743 if (referenced_page || referenced_ptes > 1)
744 return PAGEREF_ACTIVATE;
745
746 /*
747 * Activate file-backed executable pages after first usage.
748 */
749 if (vm_flags & VM_EXEC)
750 return PAGEREF_ACTIVATE;
751
752 return PAGEREF_KEEP;
753 }
754
755 /* Reclaim if clean, defer dirty pages to writeback */
756 if (referenced_page && !PageSwapBacked(page))
757 return PAGEREF_RECLAIM_CLEAN;
758
759 return PAGEREF_RECLAIM;
760 }
761
762 /*
763 * shrink_page_list() returns the number of reclaimed pages
764 */
shrink_page_list(struct list_head * page_list,struct mem_cgroup_zone * mz,struct scan_control * sc,int priority,unsigned long * ret_nr_dirty,unsigned long * ret_nr_writeback)765 static unsigned long shrink_page_list(struct list_head *page_list,
766 struct mem_cgroup_zone *mz,
767 struct scan_control *sc,
768 int priority,
769 unsigned long *ret_nr_dirty,
770 unsigned long *ret_nr_writeback)
771 {
772 LIST_HEAD(ret_pages);
773 LIST_HEAD(free_pages);
774 int pgactivate = 0;
775 unsigned long nr_dirty = 0;
776 unsigned long nr_congested = 0;
777 unsigned long nr_reclaimed = 0;
778 unsigned long nr_writeback = 0;
779
780 cond_resched();
781
782 while (!list_empty(page_list)) {
783 enum page_references references;
784 struct address_space *mapping;
785 struct page *page;
786 int may_enter_fs;
787
788 cond_resched();
789
790 page = lru_to_page(page_list);
791 list_del(&page->lru);
792
793 if (!trylock_page(page))
794 goto keep;
795
796 VM_BUG_ON(PageActive(page));
797 VM_BUG_ON(page_zone(page) != mz->zone);
798
799 sc->nr_scanned++;
800
801 if (unlikely(!page_evictable(page, NULL)))
802 goto cull_mlocked;
803
804 if (!sc->may_unmap && page_mapped(page))
805 goto keep_locked;
806
807 /* Double the slab pressure for mapped and swapcache pages */
808 if (page_mapped(page) || PageSwapCache(page))
809 sc->nr_scanned++;
810
811 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
812 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
813
814 if (PageWriteback(page)) {
815 nr_writeback++;
816 /*
817 * Synchronous reclaim cannot queue pages for
818 * writeback due to the possibility of stack overflow
819 * but if it encounters a page under writeback, wait
820 * for the IO to complete.
821 */
822 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
823 may_enter_fs)
824 wait_on_page_writeback(page);
825 else {
826 unlock_page(page);
827 goto keep_lumpy;
828 }
829 }
830
831 references = page_check_references(page, mz, sc);
832 switch (references) {
833 case PAGEREF_ACTIVATE:
834 goto activate_locked;
835 case PAGEREF_KEEP:
836 goto keep_locked;
837 case PAGEREF_RECLAIM:
838 case PAGEREF_RECLAIM_CLEAN:
839 ; /* try to reclaim the page below */
840 }
841
842 /*
843 * Anonymous process memory has backing store?
844 * Try to allocate it some swap space here.
845 */
846 if (PageAnon(page) && !PageSwapCache(page)) {
847 if (!(sc->gfp_mask & __GFP_IO))
848 goto keep_locked;
849 if (!add_to_swap(page))
850 goto activate_locked;
851 may_enter_fs = 1;
852 }
853
854 mapping = page_mapping(page);
855
856 /*
857 * The page is mapped into the page tables of one or more
858 * processes. Try to unmap it here.
859 */
860 if (page_mapped(page) && mapping) {
861 switch (try_to_unmap(page, TTU_UNMAP)) {
862 case SWAP_FAIL:
863 goto activate_locked;
864 case SWAP_AGAIN:
865 goto keep_locked;
866 case SWAP_MLOCK:
867 goto cull_mlocked;
868 case SWAP_SUCCESS:
869 ; /* try to free the page below */
870 }
871 }
872
873 if (PageDirty(page)) {
874 nr_dirty++;
875
876 /*
877 * Only kswapd can writeback filesystem pages to
878 * avoid risk of stack overflow but do not writeback
879 * unless under significant pressure.
880 */
881 if (page_is_file_cache(page) &&
882 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
883 /*
884 * Immediately reclaim when written back.
885 * Similar in principal to deactivate_page()
886 * except we already have the page isolated
887 * and know it's dirty
888 */
889 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
890 SetPageReclaim(page);
891
892 goto keep_locked;
893 }
894
895 if (references == PAGEREF_RECLAIM_CLEAN)
896 goto keep_locked;
897 if (!may_enter_fs)
898 goto keep_locked;
899 if (!sc->may_writepage)
900 goto keep_locked;
901
902 /* Page is dirty, try to write it out here */
903 switch (pageout(page, mapping, sc)) {
904 case PAGE_KEEP:
905 nr_congested++;
906 goto keep_locked;
907 case PAGE_ACTIVATE:
908 goto activate_locked;
909 case PAGE_SUCCESS:
910 if (PageWriteback(page))
911 goto keep_lumpy;
912 if (PageDirty(page))
913 goto keep;
914
915 /*
916 * A synchronous write - probably a ramdisk. Go
917 * ahead and try to reclaim the page.
918 */
919 if (!trylock_page(page))
920 goto keep;
921 if (PageDirty(page) || PageWriteback(page))
922 goto keep_locked;
923 mapping = page_mapping(page);
924 case PAGE_CLEAN:
925 ; /* try to free the page below */
926 }
927 }
928
929 /*
930 * If the page has buffers, try to free the buffer mappings
931 * associated with this page. If we succeed we try to free
932 * the page as well.
933 *
934 * We do this even if the page is PageDirty().
935 * try_to_release_page() does not perform I/O, but it is
936 * possible for a page to have PageDirty set, but it is actually
937 * clean (all its buffers are clean). This happens if the
938 * buffers were written out directly, with submit_bh(). ext3
939 * will do this, as well as the blockdev mapping.
940 * try_to_release_page() will discover that cleanness and will
941 * drop the buffers and mark the page clean - it can be freed.
942 *
943 * Rarely, pages can have buffers and no ->mapping. These are
944 * the pages which were not successfully invalidated in
945 * truncate_complete_page(). We try to drop those buffers here
946 * and if that worked, and the page is no longer mapped into
947 * process address space (page_count == 1) it can be freed.
948 * Otherwise, leave the page on the LRU so it is swappable.
949 */
950 if (page_has_private(page)) {
951 if (!try_to_release_page(page, sc->gfp_mask))
952 goto activate_locked;
953 if (!mapping && page_count(page) == 1) {
954 unlock_page(page);
955 if (put_page_testzero(page))
956 goto free_it;
957 else {
958 /*
959 * rare race with speculative reference.
960 * the speculative reference will free
961 * this page shortly, so we may
962 * increment nr_reclaimed here (and
963 * leave it off the LRU).
964 */
965 nr_reclaimed++;
966 continue;
967 }
968 }
969 }
970
971 if (!mapping || !__remove_mapping(mapping, page))
972 goto keep_locked;
973
974 /*
975 * At this point, we have no other references and there is
976 * no way to pick any more up (removed from LRU, removed
977 * from pagecache). Can use non-atomic bitops now (and
978 * we obviously don't have to worry about waking up a process
979 * waiting on the page lock, because there are no references.
980 */
981 __clear_page_locked(page);
982 free_it:
983 nr_reclaimed++;
984
985 /*
986 * Is there need to periodically free_page_list? It would
987 * appear not as the counts should be low
988 */
989 list_add(&page->lru, &free_pages);
990 continue;
991
992 cull_mlocked:
993 if (PageSwapCache(page))
994 try_to_free_swap(page);
995 unlock_page(page);
996 putback_lru_page(page);
997 reset_reclaim_mode(sc);
998 continue;
999
1000 activate_locked:
1001 /* Not a candidate for swapping, so reclaim swap space. */
1002 if (PageSwapCache(page) && vm_swap_full())
1003 try_to_free_swap(page);
1004 VM_BUG_ON(PageActive(page));
1005 SetPageActive(page);
1006 pgactivate++;
1007 keep_locked:
1008 unlock_page(page);
1009 keep:
1010 reset_reclaim_mode(sc);
1011 keep_lumpy:
1012 list_add(&page->lru, &ret_pages);
1013 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1014 }
1015
1016 /*
1017 * Tag a zone as congested if all the dirty pages encountered were
1018 * backed by a congested BDI. In this case, reclaimers should just
1019 * back off and wait for congestion to clear because further reclaim
1020 * will encounter the same problem
1021 */
1022 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1023 zone_set_flag(mz->zone, ZONE_CONGESTED);
1024
1025 free_hot_cold_page_list(&free_pages, 1);
1026
1027 list_splice(&ret_pages, page_list);
1028 count_vm_events(PGACTIVATE, pgactivate);
1029 *ret_nr_dirty += nr_dirty;
1030 *ret_nr_writeback += nr_writeback;
1031 return nr_reclaimed;
1032 }
1033
1034 /*
1035 * Attempt to remove the specified page from its LRU. Only take this page
1036 * if it is of the appropriate PageActive status. Pages which are being
1037 * freed elsewhere are also ignored.
1038 *
1039 * page: page to consider
1040 * mode: one of the LRU isolation modes defined above
1041 *
1042 * returns 0 on success, -ve errno on failure.
1043 */
__isolate_lru_page(struct page * page,isolate_mode_t mode,int file)1044 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1045 {
1046 bool all_lru_mode;
1047 int ret = -EINVAL;
1048
1049 /* Only take pages on the LRU. */
1050 if (!PageLRU(page))
1051 return ret;
1052
1053 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1054 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1055
1056 /*
1057 * When checking the active state, we need to be sure we are
1058 * dealing with comparible boolean values. Take the logical not
1059 * of each.
1060 */
1061 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1062 return ret;
1063
1064 if (!all_lru_mode && !!page_is_file_cache(page) != file)
1065 return ret;
1066
1067 /*
1068 * When this function is being called for lumpy reclaim, we
1069 * initially look into all LRU pages, active, inactive and
1070 * unevictable; only give shrink_page_list evictable pages.
1071 */
1072 if (PageUnevictable(page))
1073 return ret;
1074
1075 ret = -EBUSY;
1076
1077 /*
1078 * To minimise LRU disruption, the caller can indicate that it only
1079 * wants to isolate pages it will be able to operate on without
1080 * blocking - clean pages for the most part.
1081 *
1082 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1083 * is used by reclaim when it is cannot write to backing storage
1084 *
1085 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1086 * that it is possible to migrate without blocking
1087 */
1088 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1089 /* All the caller can do on PageWriteback is block */
1090 if (PageWriteback(page))
1091 return ret;
1092
1093 if (PageDirty(page)) {
1094 struct address_space *mapping;
1095
1096 /* ISOLATE_CLEAN means only clean pages */
1097 if (mode & ISOLATE_CLEAN)
1098 return ret;
1099
1100 /*
1101 * Only pages without mappings or that have a
1102 * ->migratepage callback are possible to migrate
1103 * without blocking
1104 */
1105 mapping = page_mapping(page);
1106 if (mapping && !mapping->a_ops->migratepage)
1107 return ret;
1108 }
1109 }
1110
1111 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1112 return ret;
1113
1114 if (likely(get_page_unless_zero(page))) {
1115 /*
1116 * Be careful not to clear PageLRU until after we're
1117 * sure the page is not being freed elsewhere -- the
1118 * page release code relies on it.
1119 */
1120 ClearPageLRU(page);
1121 ret = 0;
1122 }
1123
1124 return ret;
1125 }
1126
1127 /*
1128 * zone->lru_lock is heavily contended. Some of the functions that
1129 * shrink the lists perform better by taking out a batch of pages
1130 * and working on them outside the LRU lock.
1131 *
1132 * For pagecache intensive workloads, this function is the hottest
1133 * spot in the kernel (apart from copy_*_user functions).
1134 *
1135 * Appropriate locks must be held before calling this function.
1136 *
1137 * @nr_to_scan: The number of pages to look through on the list.
1138 * @mz: The mem_cgroup_zone to pull pages from.
1139 * @dst: The temp list to put pages on to.
1140 * @nr_scanned: The number of pages that were scanned.
1141 * @sc: The scan_control struct for this reclaim session
1142 * @mode: One of the LRU isolation modes
1143 * @active: True [1] if isolating active pages
1144 * @file: True [1] if isolating file [!anon] pages
1145 *
1146 * returns how many pages were moved onto *@dst.
1147 */
isolate_lru_pages(unsigned long nr_to_scan,struct mem_cgroup_zone * mz,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,isolate_mode_t mode,int active,int file)1148 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1149 struct mem_cgroup_zone *mz, struct list_head *dst,
1150 unsigned long *nr_scanned, struct scan_control *sc,
1151 isolate_mode_t mode, int active, int file)
1152 {
1153 struct lruvec *lruvec;
1154 struct list_head *src;
1155 unsigned long nr_taken = 0;
1156 unsigned long nr_lumpy_taken = 0;
1157 unsigned long nr_lumpy_dirty = 0;
1158 unsigned long nr_lumpy_failed = 0;
1159 unsigned long scan;
1160 int lru = LRU_BASE;
1161
1162 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1163 if (active)
1164 lru += LRU_ACTIVE;
1165 if (file)
1166 lru += LRU_FILE;
1167 src = &lruvec->lists[lru];
1168
1169 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1170 struct page *page;
1171 unsigned long pfn;
1172 unsigned long end_pfn;
1173 unsigned long page_pfn;
1174 int zone_id;
1175
1176 page = lru_to_page(src);
1177 prefetchw_prev_lru_page(page, src, flags);
1178
1179 VM_BUG_ON(!PageLRU(page));
1180
1181 switch (__isolate_lru_page(page, mode, file)) {
1182 case 0:
1183 mem_cgroup_lru_del(page);
1184 list_move(&page->lru, dst);
1185 nr_taken += hpage_nr_pages(page);
1186 break;
1187
1188 case -EBUSY:
1189 /* else it is being freed elsewhere */
1190 list_move(&page->lru, src);
1191 continue;
1192
1193 default:
1194 BUG();
1195 }
1196
1197 if (!sc->order || !(sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM))
1198 continue;
1199
1200 /*
1201 * Attempt to take all pages in the order aligned region
1202 * surrounding the tag page. Only take those pages of
1203 * the same active state as that tag page. We may safely
1204 * round the target page pfn down to the requested order
1205 * as the mem_map is guaranteed valid out to MAX_ORDER,
1206 * where that page is in a different zone we will detect
1207 * it from its zone id and abort this block scan.
1208 */
1209 zone_id = page_zone_id(page);
1210 page_pfn = page_to_pfn(page);
1211 pfn = page_pfn & ~((1 << sc->order) - 1);
1212 end_pfn = pfn + (1 << sc->order);
1213 for (; pfn < end_pfn; pfn++) {
1214 struct page *cursor_page;
1215
1216 /* The target page is in the block, ignore it. */
1217 if (unlikely(pfn == page_pfn))
1218 continue;
1219
1220 /* Avoid holes within the zone. */
1221 if (unlikely(!pfn_valid_within(pfn)))
1222 break;
1223
1224 cursor_page = pfn_to_page(pfn);
1225
1226 /* Check that we have not crossed a zone boundary. */
1227 if (unlikely(page_zone_id(cursor_page) != zone_id))
1228 break;
1229
1230 /*
1231 * If we don't have enough swap space, reclaiming of
1232 * anon page which don't already have a swap slot is
1233 * pointless.
1234 */
1235 if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1236 !PageSwapCache(cursor_page))
1237 break;
1238
1239 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1240 unsigned int isolated_pages;
1241
1242 mem_cgroup_lru_del(cursor_page);
1243 list_move(&cursor_page->lru, dst);
1244 isolated_pages = hpage_nr_pages(cursor_page);
1245 nr_taken += isolated_pages;
1246 nr_lumpy_taken += isolated_pages;
1247 if (PageDirty(cursor_page))
1248 nr_lumpy_dirty += isolated_pages;
1249 scan++;
1250 pfn += isolated_pages - 1;
1251 } else {
1252 /*
1253 * Check if the page is freed already.
1254 *
1255 * We can't use page_count() as that
1256 * requires compound_head and we don't
1257 * have a pin on the page here. If a
1258 * page is tail, we may or may not
1259 * have isolated the head, so assume
1260 * it's not free, it'd be tricky to
1261 * track the head status without a
1262 * page pin.
1263 */
1264 if (!PageTail(cursor_page) &&
1265 !atomic_read(&cursor_page->_count))
1266 continue;
1267 break;
1268 }
1269 }
1270
1271 /* If we break out of the loop above, lumpy reclaim failed */
1272 if (pfn < end_pfn)
1273 nr_lumpy_failed++;
1274 }
1275
1276 *nr_scanned = scan;
1277
1278 trace_mm_vmscan_lru_isolate(sc->order,
1279 nr_to_scan, scan,
1280 nr_taken,
1281 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1282 mode, file);
1283 return nr_taken;
1284 }
1285
1286 /**
1287 * isolate_lru_page - tries to isolate a page from its LRU list
1288 * @page: page to isolate from its LRU list
1289 *
1290 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1291 * vmstat statistic corresponding to whatever LRU list the page was on.
1292 *
1293 * Returns 0 if the page was removed from an LRU list.
1294 * Returns -EBUSY if the page was not on an LRU list.
1295 *
1296 * The returned page will have PageLRU() cleared. If it was found on
1297 * the active list, it will have PageActive set. If it was found on
1298 * the unevictable list, it will have the PageUnevictable bit set. That flag
1299 * may need to be cleared by the caller before letting the page go.
1300 *
1301 * The vmstat statistic corresponding to the list on which the page was
1302 * found will be decremented.
1303 *
1304 * Restrictions:
1305 * (1) Must be called with an elevated refcount on the page. This is a
1306 * fundamentnal difference from isolate_lru_pages (which is called
1307 * without a stable reference).
1308 * (2) the lru_lock must not be held.
1309 * (3) interrupts must be enabled.
1310 */
isolate_lru_page(struct page * page)1311 int isolate_lru_page(struct page *page)
1312 {
1313 int ret = -EBUSY;
1314
1315 VM_BUG_ON(!page_count(page));
1316
1317 if (PageLRU(page)) {
1318 struct zone *zone = page_zone(page);
1319
1320 spin_lock_irq(&zone->lru_lock);
1321 if (PageLRU(page)) {
1322 int lru = page_lru(page);
1323 ret = 0;
1324 get_page(page);
1325 ClearPageLRU(page);
1326
1327 del_page_from_lru_list(zone, page, lru);
1328 }
1329 spin_unlock_irq(&zone->lru_lock);
1330 }
1331 return ret;
1332 }
1333
1334 /*
1335 * Are there way too many processes in the direct reclaim path already?
1336 */
too_many_isolated(struct zone * zone,int file,struct scan_control * sc)1337 static int too_many_isolated(struct zone *zone, int file,
1338 struct scan_control *sc)
1339 {
1340 unsigned long inactive, isolated;
1341
1342 if (current_is_kswapd())
1343 return 0;
1344
1345 if (!global_reclaim(sc))
1346 return 0;
1347
1348 if (file) {
1349 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1350 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1351 } else {
1352 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1353 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1354 }
1355
1356 return isolated > inactive;
1357 }
1358
1359 static noinline_for_stack void
putback_inactive_pages(struct mem_cgroup_zone * mz,struct list_head * page_list)1360 putback_inactive_pages(struct mem_cgroup_zone *mz,
1361 struct list_head *page_list)
1362 {
1363 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1364 struct zone *zone = mz->zone;
1365 LIST_HEAD(pages_to_free);
1366
1367 /*
1368 * Put back any unfreeable pages.
1369 */
1370 while (!list_empty(page_list)) {
1371 struct page *page = lru_to_page(page_list);
1372 int lru;
1373
1374 VM_BUG_ON(PageLRU(page));
1375 list_del(&page->lru);
1376 if (unlikely(!page_evictable(page, NULL))) {
1377 spin_unlock_irq(&zone->lru_lock);
1378 putback_lru_page(page);
1379 spin_lock_irq(&zone->lru_lock);
1380 continue;
1381 }
1382 SetPageLRU(page);
1383 lru = page_lru(page);
1384 add_page_to_lru_list(zone, page, lru);
1385 if (is_active_lru(lru)) {
1386 int file = is_file_lru(lru);
1387 int numpages = hpage_nr_pages(page);
1388 reclaim_stat->recent_rotated[file] += numpages;
1389 }
1390 if (put_page_testzero(page)) {
1391 __ClearPageLRU(page);
1392 __ClearPageActive(page);
1393 del_page_from_lru_list(zone, page, lru);
1394
1395 if (unlikely(PageCompound(page))) {
1396 spin_unlock_irq(&zone->lru_lock);
1397 (*get_compound_page_dtor(page))(page);
1398 spin_lock_irq(&zone->lru_lock);
1399 } else
1400 list_add(&page->lru, &pages_to_free);
1401 }
1402 }
1403
1404 /*
1405 * To save our caller's stack, now use input list for pages to free.
1406 */
1407 list_splice(&pages_to_free, page_list);
1408 }
1409
1410 static noinline_for_stack void
update_isolated_counts(struct mem_cgroup_zone * mz,struct list_head * page_list,unsigned long * nr_anon,unsigned long * nr_file)1411 update_isolated_counts(struct mem_cgroup_zone *mz,
1412 struct list_head *page_list,
1413 unsigned long *nr_anon,
1414 unsigned long *nr_file)
1415 {
1416 struct zone *zone = mz->zone;
1417 unsigned int count[NR_LRU_LISTS] = { 0, };
1418 unsigned long nr_active = 0;
1419 struct page *page;
1420 int lru;
1421
1422 /*
1423 * Count pages and clear active flags
1424 */
1425 list_for_each_entry(page, page_list, lru) {
1426 int numpages = hpage_nr_pages(page);
1427 lru = page_lru_base_type(page);
1428 if (PageActive(page)) {
1429 lru += LRU_ACTIVE;
1430 ClearPageActive(page);
1431 nr_active += numpages;
1432 }
1433 count[lru] += numpages;
1434 }
1435
1436 preempt_disable();
1437 __count_vm_events(PGDEACTIVATE, nr_active);
1438
1439 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1440 -count[LRU_ACTIVE_FILE]);
1441 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1442 -count[LRU_INACTIVE_FILE]);
1443 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1444 -count[LRU_ACTIVE_ANON]);
1445 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1446 -count[LRU_INACTIVE_ANON]);
1447
1448 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1449 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1450
1451 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1452 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1453 preempt_enable();
1454 }
1455
1456 /*
1457 * Returns true if a direct reclaim should wait on pages under writeback.
1458 *
1459 * If we are direct reclaiming for contiguous pages and we do not reclaim
1460 * everything in the list, try again and wait for writeback IO to complete.
1461 * This will stall high-order allocations noticeably. Only do that when really
1462 * need to free the pages under high memory pressure.
1463 */
should_reclaim_stall(unsigned long nr_taken,unsigned long nr_freed,int priority,struct scan_control * sc)1464 static inline bool should_reclaim_stall(unsigned long nr_taken,
1465 unsigned long nr_freed,
1466 int priority,
1467 struct scan_control *sc)
1468 {
1469 int lumpy_stall_priority;
1470
1471 /* kswapd should not stall on sync IO */
1472 if (current_is_kswapd())
1473 return false;
1474
1475 /* Only stall on lumpy reclaim */
1476 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1477 return false;
1478
1479 /* If we have reclaimed everything on the isolated list, no stall */
1480 if (nr_freed == nr_taken)
1481 return false;
1482
1483 /*
1484 * For high-order allocations, there are two stall thresholds.
1485 * High-cost allocations stall immediately where as lower
1486 * order allocations such as stacks require the scanning
1487 * priority to be much higher before stalling.
1488 */
1489 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1490 lumpy_stall_priority = DEF_PRIORITY;
1491 else
1492 lumpy_stall_priority = DEF_PRIORITY / 3;
1493
1494 return priority <= lumpy_stall_priority;
1495 }
1496
1497 /*
1498 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1499 * of reclaimed pages
1500 */
1501 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct mem_cgroup_zone * mz,struct scan_control * sc,int priority,int file)1502 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1503 struct scan_control *sc, int priority, int file)
1504 {
1505 LIST_HEAD(page_list);
1506 unsigned long nr_scanned;
1507 unsigned long nr_reclaimed = 0;
1508 unsigned long nr_taken;
1509 unsigned long nr_anon;
1510 unsigned long nr_file;
1511 unsigned long nr_dirty = 0;
1512 unsigned long nr_writeback = 0;
1513 isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
1514 struct zone *zone = mz->zone;
1515 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1516
1517 while (unlikely(too_many_isolated(zone, file, sc))) {
1518 congestion_wait(BLK_RW_ASYNC, HZ/10);
1519
1520 /* We are about to die and free our memory. Return now. */
1521 if (fatal_signal_pending(current))
1522 return SWAP_CLUSTER_MAX;
1523 }
1524
1525 set_reclaim_mode(priority, sc, false);
1526 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1527 isolate_mode |= ISOLATE_ACTIVE;
1528
1529 lru_add_drain();
1530
1531 if (!sc->may_unmap)
1532 isolate_mode |= ISOLATE_UNMAPPED;
1533 if (!sc->may_writepage)
1534 isolate_mode |= ISOLATE_CLEAN;
1535
1536 spin_lock_irq(&zone->lru_lock);
1537
1538 nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1539 sc, isolate_mode, 0, file);
1540 if (global_reclaim(sc)) {
1541 zone->pages_scanned += nr_scanned;
1542 if (current_is_kswapd())
1543 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1544 nr_scanned);
1545 else
1546 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1547 nr_scanned);
1548 }
1549 spin_unlock_irq(&zone->lru_lock);
1550
1551 if (nr_taken == 0)
1552 return 0;
1553
1554 update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1555
1556 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1557 &nr_dirty, &nr_writeback);
1558
1559 /* Check if we should syncronously wait for writeback */
1560 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1561 set_reclaim_mode(priority, sc, true);
1562 nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1563 priority, &nr_dirty, &nr_writeback);
1564 }
1565
1566 spin_lock_irq(&zone->lru_lock);
1567
1568 reclaim_stat->recent_scanned[0] += nr_anon;
1569 reclaim_stat->recent_scanned[1] += nr_file;
1570
1571 if (global_reclaim(sc)) {
1572 if (current_is_kswapd())
1573 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1574 nr_reclaimed);
1575 else
1576 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1577 nr_reclaimed);
1578 }
1579
1580 putback_inactive_pages(mz, &page_list);
1581
1582 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1583 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1584
1585 spin_unlock_irq(&zone->lru_lock);
1586
1587 free_hot_cold_page_list(&page_list, 1);
1588
1589 /*
1590 * If reclaim is isolating dirty pages under writeback, it implies
1591 * that the long-lived page allocation rate is exceeding the page
1592 * laundering rate. Either the global limits are not being effective
1593 * at throttling processes due to the page distribution throughout
1594 * zones or there is heavy usage of a slow backing device. The
1595 * only option is to throttle from reclaim context which is not ideal
1596 * as there is no guarantee the dirtying process is throttled in the
1597 * same way balance_dirty_pages() manages.
1598 *
1599 * This scales the number of dirty pages that must be under writeback
1600 * before throttling depending on priority. It is a simple backoff
1601 * function that has the most effect in the range DEF_PRIORITY to
1602 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1603 * in trouble and reclaim is considered to be in trouble.
1604 *
1605 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1606 * DEF_PRIORITY-1 50% must be PageWriteback
1607 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1608 * ...
1609 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1610 * isolated page is PageWriteback
1611 */
1612 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1613 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1614
1615 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1616 zone_idx(zone),
1617 nr_scanned, nr_reclaimed,
1618 priority,
1619 trace_shrink_flags(file, sc->reclaim_mode));
1620 return nr_reclaimed;
1621 }
1622
1623 /*
1624 * This moves pages from the active list to the inactive list.
1625 *
1626 * We move them the other way if the page is referenced by one or more
1627 * processes, from rmap.
1628 *
1629 * If the pages are mostly unmapped, the processing is fast and it is
1630 * appropriate to hold zone->lru_lock across the whole operation. But if
1631 * the pages are mapped, the processing is slow (page_referenced()) so we
1632 * should drop zone->lru_lock around each page. It's impossible to balance
1633 * this, so instead we remove the pages from the LRU while processing them.
1634 * It is safe to rely on PG_active against the non-LRU pages in here because
1635 * nobody will play with that bit on a non-LRU page.
1636 *
1637 * The downside is that we have to touch page->_count against each page.
1638 * But we had to alter page->flags anyway.
1639 */
1640
move_active_pages_to_lru(struct zone * zone,struct list_head * list,struct list_head * pages_to_free,enum lru_list lru)1641 static void move_active_pages_to_lru(struct zone *zone,
1642 struct list_head *list,
1643 struct list_head *pages_to_free,
1644 enum lru_list lru)
1645 {
1646 unsigned long pgmoved = 0;
1647 struct page *page;
1648
1649 while (!list_empty(list)) {
1650 struct lruvec *lruvec;
1651
1652 page = lru_to_page(list);
1653
1654 VM_BUG_ON(PageLRU(page));
1655 SetPageLRU(page);
1656
1657 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1658 list_move(&page->lru, &lruvec->lists[lru]);
1659 pgmoved += hpage_nr_pages(page);
1660
1661 if (put_page_testzero(page)) {
1662 __ClearPageLRU(page);
1663 __ClearPageActive(page);
1664 del_page_from_lru_list(zone, page, lru);
1665
1666 if (unlikely(PageCompound(page))) {
1667 spin_unlock_irq(&zone->lru_lock);
1668 (*get_compound_page_dtor(page))(page);
1669 spin_lock_irq(&zone->lru_lock);
1670 } else
1671 list_add(&page->lru, pages_to_free);
1672 }
1673 }
1674 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1675 if (!is_active_lru(lru))
1676 __count_vm_events(PGDEACTIVATE, pgmoved);
1677 }
1678
shrink_active_list(unsigned long nr_to_scan,struct mem_cgroup_zone * mz,struct scan_control * sc,int priority,int file)1679 static void shrink_active_list(unsigned long nr_to_scan,
1680 struct mem_cgroup_zone *mz,
1681 struct scan_control *sc,
1682 int priority, int file)
1683 {
1684 unsigned long nr_taken;
1685 unsigned long nr_scanned;
1686 unsigned long vm_flags;
1687 LIST_HEAD(l_hold); /* The pages which were snipped off */
1688 LIST_HEAD(l_active);
1689 LIST_HEAD(l_inactive);
1690 struct page *page;
1691 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1692 unsigned long nr_rotated = 0;
1693 isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
1694 struct zone *zone = mz->zone;
1695
1696 lru_add_drain();
1697
1698 reset_reclaim_mode(sc);
1699
1700 if (!sc->may_unmap)
1701 isolate_mode |= ISOLATE_UNMAPPED;
1702 if (!sc->may_writepage)
1703 isolate_mode |= ISOLATE_CLEAN;
1704
1705 spin_lock_irq(&zone->lru_lock);
1706
1707 nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1708 isolate_mode, 1, file);
1709 if (global_reclaim(sc))
1710 zone->pages_scanned += nr_scanned;
1711
1712 reclaim_stat->recent_scanned[file] += nr_taken;
1713
1714 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1715 if (file)
1716 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1717 else
1718 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1719 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1720 spin_unlock_irq(&zone->lru_lock);
1721
1722 while (!list_empty(&l_hold)) {
1723 cond_resched();
1724 page = lru_to_page(&l_hold);
1725 list_del(&page->lru);
1726
1727 if (unlikely(!page_evictable(page, NULL))) {
1728 putback_lru_page(page);
1729 continue;
1730 }
1731
1732 if (unlikely(buffer_heads_over_limit)) {
1733 if (page_has_private(page) && trylock_page(page)) {
1734 if (page_has_private(page))
1735 try_to_release_page(page, 0);
1736 unlock_page(page);
1737 }
1738 }
1739
1740 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1741 nr_rotated += hpage_nr_pages(page);
1742 /*
1743 * Identify referenced, file-backed active pages and
1744 * give them one more trip around the active list. So
1745 * that executable code get better chances to stay in
1746 * memory under moderate memory pressure. Anon pages
1747 * are not likely to be evicted by use-once streaming
1748 * IO, plus JVM can create lots of anon VM_EXEC pages,
1749 * so we ignore them here.
1750 */
1751 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1752 list_add(&page->lru, &l_active);
1753 continue;
1754 }
1755 }
1756
1757 ClearPageActive(page); /* we are de-activating */
1758 list_add(&page->lru, &l_inactive);
1759 }
1760
1761 /*
1762 * Move pages back to the lru list.
1763 */
1764 spin_lock_irq(&zone->lru_lock);
1765 /*
1766 * Count referenced pages from currently used mappings as rotated,
1767 * even though only some of them are actually re-activated. This
1768 * helps balance scan pressure between file and anonymous pages in
1769 * get_scan_ratio.
1770 */
1771 reclaim_stat->recent_rotated[file] += nr_rotated;
1772
1773 move_active_pages_to_lru(zone, &l_active, &l_hold,
1774 LRU_ACTIVE + file * LRU_FILE);
1775 move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1776 LRU_BASE + file * LRU_FILE);
1777 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1778 spin_unlock_irq(&zone->lru_lock);
1779
1780 free_hot_cold_page_list(&l_hold, 1);
1781 }
1782
1783 #ifdef CONFIG_SWAP
inactive_anon_is_low_global(struct zone * zone)1784 static int inactive_anon_is_low_global(struct zone *zone)
1785 {
1786 unsigned long active, inactive;
1787
1788 active = zone_page_state(zone, NR_ACTIVE_ANON);
1789 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1790
1791 if (inactive * zone->inactive_ratio < active)
1792 return 1;
1793
1794 return 0;
1795 }
1796
1797 /**
1798 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1799 * @zone: zone to check
1800 * @sc: scan control of this context
1801 *
1802 * Returns true if the zone does not have enough inactive anon pages,
1803 * meaning some active anon pages need to be deactivated.
1804 */
inactive_anon_is_low(struct mem_cgroup_zone * mz)1805 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1806 {
1807 /*
1808 * If we don't have swap space, anonymous page deactivation
1809 * is pointless.
1810 */
1811 if (!total_swap_pages)
1812 return 0;
1813
1814 if (!scanning_global_lru(mz))
1815 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1816 mz->zone);
1817
1818 return inactive_anon_is_low_global(mz->zone);
1819 }
1820 #else
inactive_anon_is_low(struct mem_cgroup_zone * mz)1821 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1822 {
1823 return 0;
1824 }
1825 #endif
1826
inactive_file_is_low_global(struct zone * zone)1827 static int inactive_file_is_low_global(struct zone *zone)
1828 {
1829 unsigned long active, inactive;
1830
1831 active = zone_page_state(zone, NR_ACTIVE_FILE);
1832 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1833
1834 return (active > inactive);
1835 }
1836
1837 /**
1838 * inactive_file_is_low - check if file pages need to be deactivated
1839 * @mz: memory cgroup and zone to check
1840 *
1841 * When the system is doing streaming IO, memory pressure here
1842 * ensures that active file pages get deactivated, until more
1843 * than half of the file pages are on the inactive list.
1844 *
1845 * Once we get to that situation, protect the system's working
1846 * set from being evicted by disabling active file page aging.
1847 *
1848 * This uses a different ratio than the anonymous pages, because
1849 * the page cache uses a use-once replacement algorithm.
1850 */
inactive_file_is_low(struct mem_cgroup_zone * mz)1851 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1852 {
1853 if (!scanning_global_lru(mz))
1854 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1855 mz->zone);
1856
1857 return inactive_file_is_low_global(mz->zone);
1858 }
1859
inactive_list_is_low(struct mem_cgroup_zone * mz,int file)1860 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1861 {
1862 if (file)
1863 return inactive_file_is_low(mz);
1864 else
1865 return inactive_anon_is_low(mz);
1866 }
1867
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct mem_cgroup_zone * mz,struct scan_control * sc,int priority)1868 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1869 struct mem_cgroup_zone *mz,
1870 struct scan_control *sc, int priority)
1871 {
1872 int file = is_file_lru(lru);
1873
1874 if (is_active_lru(lru)) {
1875 if (inactive_list_is_low(mz, file))
1876 shrink_active_list(nr_to_scan, mz, sc, priority, file);
1877 return 0;
1878 }
1879
1880 return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1881 }
1882
vmscan_swappiness(struct mem_cgroup_zone * mz,struct scan_control * sc)1883 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1884 struct scan_control *sc)
1885 {
1886 if (global_reclaim(sc))
1887 return vm_swappiness;
1888 return mem_cgroup_swappiness(mz->mem_cgroup);
1889 }
1890
1891 /*
1892 * Determine how aggressively the anon and file LRU lists should be
1893 * scanned. The relative value of each set of LRU lists is determined
1894 * by looking at the fraction of the pages scanned we did rotate back
1895 * onto the active list instead of evict.
1896 *
1897 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1898 */
get_scan_count(struct mem_cgroup_zone * mz,struct scan_control * sc,unsigned long * nr,int priority)1899 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1900 unsigned long *nr, int priority)
1901 {
1902 unsigned long anon, file, free;
1903 unsigned long anon_prio, file_prio;
1904 unsigned long ap, fp;
1905 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1906 u64 fraction[2], denominator;
1907 enum lru_list lru;
1908 int noswap = 0;
1909 bool force_scan = false;
1910
1911 /*
1912 * If the zone or memcg is small, nr[l] can be 0. This
1913 * results in no scanning on this priority and a potential
1914 * priority drop. Global direct reclaim can go to the next
1915 * zone and tends to have no problems. Global kswapd is for
1916 * zone balancing and it needs to scan a minimum amount. When
1917 * reclaiming for a memcg, a priority drop can cause high
1918 * latencies, so it's better to scan a minimum amount there as
1919 * well.
1920 */
1921 if (current_is_kswapd() && mz->zone->all_unreclaimable)
1922 force_scan = true;
1923 if (!global_reclaim(sc))
1924 force_scan = true;
1925
1926 /* If we have no swap space, do not bother scanning anon pages. */
1927 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1928 noswap = 1;
1929 fraction[0] = 0;
1930 fraction[1] = 1;
1931 denominator = 1;
1932 goto out;
1933 }
1934
1935 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1936 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1937 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1938 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1939
1940 if (global_reclaim(sc)) {
1941 free = zone_page_state(mz->zone, NR_FREE_PAGES);
1942 /* If we have very few page cache pages,
1943 force-scan anon pages. */
1944 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1945 fraction[0] = 1;
1946 fraction[1] = 0;
1947 denominator = 1;
1948 goto out;
1949 }
1950 }
1951
1952 /*
1953 * With swappiness at 100, anonymous and file have the same priority.
1954 * This scanning priority is essentially the inverse of IO cost.
1955 */
1956 anon_prio = vmscan_swappiness(mz, sc);
1957 file_prio = 200 - vmscan_swappiness(mz, sc);
1958
1959 /*
1960 * OK, so we have swap space and a fair amount of page cache
1961 * pages. We use the recently rotated / recently scanned
1962 * ratios to determine how valuable each cache is.
1963 *
1964 * Because workloads change over time (and to avoid overflow)
1965 * we keep these statistics as a floating average, which ends
1966 * up weighing recent references more than old ones.
1967 *
1968 * anon in [0], file in [1]
1969 */
1970 spin_lock_irq(&mz->zone->lru_lock);
1971 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1972 reclaim_stat->recent_scanned[0] /= 2;
1973 reclaim_stat->recent_rotated[0] /= 2;
1974 }
1975
1976 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1977 reclaim_stat->recent_scanned[1] /= 2;
1978 reclaim_stat->recent_rotated[1] /= 2;
1979 }
1980
1981 /*
1982 * The amount of pressure on anon vs file pages is inversely
1983 * proportional to the fraction of recently scanned pages on
1984 * each list that were recently referenced and in active use.
1985 */
1986 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1987 ap /= reclaim_stat->recent_rotated[0] + 1;
1988
1989 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1990 fp /= reclaim_stat->recent_rotated[1] + 1;
1991 spin_unlock_irq(&mz->zone->lru_lock);
1992
1993 fraction[0] = ap;
1994 fraction[1] = fp;
1995 denominator = ap + fp + 1;
1996 out:
1997 for_each_evictable_lru(lru) {
1998 int file = is_file_lru(lru);
1999 unsigned long scan;
2000
2001 scan = zone_nr_lru_pages(mz, lru);
2002 if (priority || noswap || !vmscan_swappiness(mz, sc)) {
2003 scan >>= priority;
2004 if (!scan && force_scan)
2005 scan = SWAP_CLUSTER_MAX;
2006 scan = div64_u64(scan * fraction[file], denominator);
2007 }
2008 nr[lru] = scan;
2009 }
2010 }
2011
2012 /*
2013 * Reclaim/compaction depends on a number of pages being freed. To avoid
2014 * disruption to the system, a small number of order-0 pages continue to be
2015 * rotated and reclaimed in the normal fashion. However, by the time we get
2016 * back to the allocator and call try_to_compact_zone(), we ensure that
2017 * there are enough free pages for it to be likely successful
2018 */
should_continue_reclaim(struct mem_cgroup_zone * mz,unsigned long nr_reclaimed,unsigned long nr_scanned,struct scan_control * sc)2019 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
2020 unsigned long nr_reclaimed,
2021 unsigned long nr_scanned,
2022 struct scan_control *sc)
2023 {
2024 unsigned long pages_for_compaction;
2025 unsigned long inactive_lru_pages;
2026
2027 /* If not in reclaim/compaction mode, stop */
2028 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2029 return false;
2030
2031 /* Consider stopping depending on scan and reclaim activity */
2032 if (sc->gfp_mask & __GFP_REPEAT) {
2033 /*
2034 * For __GFP_REPEAT allocations, stop reclaiming if the
2035 * full LRU list has been scanned and we are still failing
2036 * to reclaim pages. This full LRU scan is potentially
2037 * expensive but a __GFP_REPEAT caller really wants to succeed
2038 */
2039 if (!nr_reclaimed && !nr_scanned)
2040 return false;
2041 } else {
2042 /*
2043 * For non-__GFP_REPEAT allocations which can presumably
2044 * fail without consequence, stop if we failed to reclaim
2045 * any pages from the last SWAP_CLUSTER_MAX number of
2046 * pages that were scanned. This will return to the
2047 * caller faster at the risk reclaim/compaction and
2048 * the resulting allocation attempt fails
2049 */
2050 if (!nr_reclaimed)
2051 return false;
2052 }
2053
2054 /*
2055 * If we have not reclaimed enough pages for compaction and the
2056 * inactive lists are large enough, continue reclaiming
2057 */
2058 pages_for_compaction = (2UL << sc->order);
2059 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2060 if (nr_swap_pages > 0)
2061 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2062 if (sc->nr_reclaimed < pages_for_compaction &&
2063 inactive_lru_pages > pages_for_compaction)
2064 return true;
2065
2066 /* If compaction would go ahead or the allocation would succeed, stop */
2067 switch (compaction_suitable(mz->zone, sc->order)) {
2068 case COMPACT_PARTIAL:
2069 case COMPACT_CONTINUE:
2070 return false;
2071 default:
2072 return true;
2073 }
2074 }
2075
2076 /*
2077 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2078 */
shrink_mem_cgroup_zone(int priority,struct mem_cgroup_zone * mz,struct scan_control * sc)2079 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2080 struct scan_control *sc)
2081 {
2082 unsigned long nr[NR_LRU_LISTS];
2083 unsigned long nr_to_scan;
2084 enum lru_list lru;
2085 unsigned long nr_reclaimed, nr_scanned;
2086 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2087 struct blk_plug plug;
2088
2089 restart:
2090 nr_reclaimed = 0;
2091 nr_scanned = sc->nr_scanned;
2092 get_scan_count(mz, sc, nr, priority);
2093
2094 blk_start_plug(&plug);
2095 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2096 nr[LRU_INACTIVE_FILE]) {
2097 for_each_evictable_lru(lru) {
2098 if (nr[lru]) {
2099 nr_to_scan = min_t(unsigned long,
2100 nr[lru], SWAP_CLUSTER_MAX);
2101 nr[lru] -= nr_to_scan;
2102
2103 nr_reclaimed += shrink_list(lru, nr_to_scan,
2104 mz, sc, priority);
2105 }
2106 }
2107 /*
2108 * On large memory systems, scan >> priority can become
2109 * really large. This is fine for the starting priority;
2110 * we want to put equal scanning pressure on each zone.
2111 * However, if the VM has a harder time of freeing pages,
2112 * with multiple processes reclaiming pages, the total
2113 * freeing target can get unreasonably large.
2114 */
2115 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2116 break;
2117 }
2118 blk_finish_plug(&plug);
2119 sc->nr_reclaimed += nr_reclaimed;
2120
2121 /*
2122 * Even if we did not try to evict anon pages at all, we want to
2123 * rebalance the anon lru active/inactive ratio.
2124 */
2125 if (inactive_anon_is_low(mz))
2126 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2127
2128 /* reclaim/compaction might need reclaim to continue */
2129 if (should_continue_reclaim(mz, nr_reclaimed,
2130 sc->nr_scanned - nr_scanned, sc))
2131 goto restart;
2132
2133 throttle_vm_writeout(sc->gfp_mask);
2134 }
2135
shrink_zone(int priority,struct zone * zone,struct scan_control * sc)2136 static void shrink_zone(int priority, struct zone *zone,
2137 struct scan_control *sc)
2138 {
2139 struct mem_cgroup *root = sc->target_mem_cgroup;
2140 struct mem_cgroup_reclaim_cookie reclaim = {
2141 .zone = zone,
2142 .priority = priority,
2143 };
2144 struct mem_cgroup *memcg;
2145
2146 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2147 do {
2148 struct mem_cgroup_zone mz = {
2149 .mem_cgroup = memcg,
2150 .zone = zone,
2151 };
2152
2153 shrink_mem_cgroup_zone(priority, &mz, sc);
2154 /*
2155 * Limit reclaim has historically picked one memcg and
2156 * scanned it with decreasing priority levels until
2157 * nr_to_reclaim had been reclaimed. This priority
2158 * cycle is thus over after a single memcg.
2159 *
2160 * Direct reclaim and kswapd, on the other hand, have
2161 * to scan all memory cgroups to fulfill the overall
2162 * scan target for the zone.
2163 */
2164 if (!global_reclaim(sc)) {
2165 mem_cgroup_iter_break(root, memcg);
2166 break;
2167 }
2168 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2169 } while (memcg);
2170 }
2171
2172 /* Returns true if compaction should go ahead for a high-order request */
compaction_ready(struct zone * zone,struct scan_control * sc)2173 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2174 {
2175 unsigned long balance_gap, watermark;
2176 bool watermark_ok;
2177
2178 /* Do not consider compaction for orders reclaim is meant to satisfy */
2179 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2180 return false;
2181
2182 /*
2183 * Compaction takes time to run and there are potentially other
2184 * callers using the pages just freed. Continue reclaiming until
2185 * there is a buffer of free pages available to give compaction
2186 * a reasonable chance of completing and allocating the page
2187 */
2188 balance_gap = min(low_wmark_pages(zone),
2189 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2190 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2191 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2192 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2193
2194 /*
2195 * If compaction is deferred, reclaim up to a point where
2196 * compaction will have a chance of success when re-enabled
2197 */
2198 if (compaction_deferred(zone, sc->order))
2199 return watermark_ok;
2200
2201 /* If compaction is not ready to start, keep reclaiming */
2202 if (!compaction_suitable(zone, sc->order))
2203 return false;
2204
2205 return watermark_ok;
2206 }
2207
2208 /*
2209 * This is the direct reclaim path, for page-allocating processes. We only
2210 * try to reclaim pages from zones which will satisfy the caller's allocation
2211 * request.
2212 *
2213 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2214 * Because:
2215 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2216 * allocation or
2217 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2218 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2219 * zone defense algorithm.
2220 *
2221 * If a zone is deemed to be full of pinned pages then just give it a light
2222 * scan then give up on it.
2223 *
2224 * This function returns true if a zone is being reclaimed for a costly
2225 * high-order allocation and compaction is ready to begin. This indicates to
2226 * the caller that it should consider retrying the allocation instead of
2227 * further reclaim.
2228 */
shrink_zones(int priority,struct zonelist * zonelist,struct scan_control * sc)2229 static bool shrink_zones(int priority, struct zonelist *zonelist,
2230 struct scan_control *sc)
2231 {
2232 struct zoneref *z;
2233 struct zone *zone;
2234 unsigned long nr_soft_reclaimed;
2235 unsigned long nr_soft_scanned;
2236 bool aborted_reclaim = false;
2237
2238 /*
2239 * If the number of buffer_heads in the machine exceeds the maximum
2240 * allowed level, force direct reclaim to scan the highmem zone as
2241 * highmem pages could be pinning lowmem pages storing buffer_heads
2242 */
2243 if (buffer_heads_over_limit)
2244 sc->gfp_mask |= __GFP_HIGHMEM;
2245
2246 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2247 gfp_zone(sc->gfp_mask), sc->nodemask) {
2248 if (!populated_zone(zone))
2249 continue;
2250 /*
2251 * Take care memory controller reclaiming has small influence
2252 * to global LRU.
2253 */
2254 if (global_reclaim(sc)) {
2255 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2256 continue;
2257 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2258 continue; /* Let kswapd poll it */
2259 if (COMPACTION_BUILD) {
2260 /*
2261 * If we already have plenty of memory free for
2262 * compaction in this zone, don't free any more.
2263 * Even though compaction is invoked for any
2264 * non-zero order, only frequent costly order
2265 * reclamation is disruptive enough to become a
2266 * noticeable problem, like transparent huge
2267 * page allocations.
2268 */
2269 if (compaction_ready(zone, sc)) {
2270 aborted_reclaim = true;
2271 continue;
2272 }
2273 }
2274 /*
2275 * This steals pages from memory cgroups over softlimit
2276 * and returns the number of reclaimed pages and
2277 * scanned pages. This works for global memory pressure
2278 * and balancing, not for a memcg's limit.
2279 */
2280 nr_soft_scanned = 0;
2281 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2282 sc->order, sc->gfp_mask,
2283 &nr_soft_scanned);
2284 sc->nr_reclaimed += nr_soft_reclaimed;
2285 sc->nr_scanned += nr_soft_scanned;
2286 /* need some check for avoid more shrink_zone() */
2287 }
2288
2289 shrink_zone(priority, zone, sc);
2290 }
2291
2292 return aborted_reclaim;
2293 }
2294
zone_reclaimable(struct zone * zone)2295 static bool zone_reclaimable(struct zone *zone)
2296 {
2297 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2298 }
2299
2300 /* All zones in zonelist are unreclaimable? */
all_unreclaimable(struct zonelist * zonelist,struct scan_control * sc)2301 static bool all_unreclaimable(struct zonelist *zonelist,
2302 struct scan_control *sc)
2303 {
2304 struct zoneref *z;
2305 struct zone *zone;
2306
2307 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2308 gfp_zone(sc->gfp_mask), sc->nodemask) {
2309 if (!populated_zone(zone))
2310 continue;
2311 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2312 continue;
2313 if (!zone->all_unreclaimable)
2314 return false;
2315 }
2316
2317 return true;
2318 }
2319
2320 /*
2321 * This is the main entry point to direct page reclaim.
2322 *
2323 * If a full scan of the inactive list fails to free enough memory then we
2324 * are "out of memory" and something needs to be killed.
2325 *
2326 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2327 * high - the zone may be full of dirty or under-writeback pages, which this
2328 * caller can't do much about. We kick the writeback threads and take explicit
2329 * naps in the hope that some of these pages can be written. But if the
2330 * allocating task holds filesystem locks which prevent writeout this might not
2331 * work, and the allocation attempt will fail.
2332 *
2333 * returns: 0, if no pages reclaimed
2334 * else, the number of pages reclaimed
2335 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc,struct shrink_control * shrink)2336 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2337 struct scan_control *sc,
2338 struct shrink_control *shrink)
2339 {
2340 int priority;
2341 unsigned long total_scanned = 0;
2342 struct reclaim_state *reclaim_state = current->reclaim_state;
2343 struct zoneref *z;
2344 struct zone *zone;
2345 unsigned long writeback_threshold;
2346 bool aborted_reclaim;
2347
2348 delayacct_freepages_start();
2349
2350 if (global_reclaim(sc))
2351 count_vm_event(ALLOCSTALL);
2352
2353 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2354 sc->nr_scanned = 0;
2355 if (!priority)
2356 disable_swap_token(sc->target_mem_cgroup);
2357 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2358
2359 /*
2360 * Don't shrink slabs when reclaiming memory from
2361 * over limit cgroups
2362 */
2363 if (global_reclaim(sc)) {
2364 unsigned long lru_pages = 0;
2365 for_each_zone_zonelist(zone, z, zonelist,
2366 gfp_zone(sc->gfp_mask)) {
2367 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2368 continue;
2369
2370 lru_pages += zone_reclaimable_pages(zone);
2371 }
2372
2373 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2374 if (reclaim_state) {
2375 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2376 reclaim_state->reclaimed_slab = 0;
2377 }
2378 }
2379 total_scanned += sc->nr_scanned;
2380 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2381 goto out;
2382
2383 /*
2384 * Try to write back as many pages as we just scanned. This
2385 * tends to cause slow streaming writers to write data to the
2386 * disk smoothly, at the dirtying rate, which is nice. But
2387 * that's undesirable in laptop mode, where we *want* lumpy
2388 * writeout. So in laptop mode, write out the whole world.
2389 */
2390 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2391 if (total_scanned > writeback_threshold) {
2392 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2393 WB_REASON_TRY_TO_FREE_PAGES);
2394 sc->may_writepage = 1;
2395 }
2396
2397 /* Take a nap, wait for some writeback to complete */
2398 if (!sc->hibernation_mode && sc->nr_scanned &&
2399 priority < DEF_PRIORITY - 2) {
2400 struct zone *preferred_zone;
2401
2402 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2403 &cpuset_current_mems_allowed,
2404 &preferred_zone);
2405 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2406 }
2407 }
2408
2409 out:
2410 delayacct_freepages_end();
2411
2412 if (sc->nr_reclaimed)
2413 return sc->nr_reclaimed;
2414
2415 /*
2416 * As hibernation is going on, kswapd is freezed so that it can't mark
2417 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2418 * check.
2419 */
2420 if (oom_killer_disabled)
2421 return 0;
2422
2423 /* Aborted reclaim to try compaction? don't OOM, then */
2424 if (aborted_reclaim)
2425 return 1;
2426
2427 /* top priority shrink_zones still had more to do? don't OOM, then */
2428 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2429 return 1;
2430
2431 return 0;
2432 }
2433
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)2434 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2435 gfp_t gfp_mask, nodemask_t *nodemask)
2436 {
2437 unsigned long nr_reclaimed;
2438 struct scan_control sc = {
2439 .gfp_mask = gfp_mask,
2440 .may_writepage = !laptop_mode,
2441 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2442 .may_unmap = 1,
2443 .may_swap = 1,
2444 .order = order,
2445 .target_mem_cgroup = NULL,
2446 .nodemask = nodemask,
2447 };
2448 struct shrink_control shrink = {
2449 .gfp_mask = sc.gfp_mask,
2450 };
2451
2452 trace_mm_vmscan_direct_reclaim_begin(order,
2453 sc.may_writepage,
2454 gfp_mask);
2455
2456 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2457
2458 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2459
2460 return nr_reclaimed;
2461 }
2462
2463 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2464
mem_cgroup_shrink_node_zone(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,struct zone * zone,unsigned long * nr_scanned)2465 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2466 gfp_t gfp_mask, bool noswap,
2467 struct zone *zone,
2468 unsigned long *nr_scanned)
2469 {
2470 struct scan_control sc = {
2471 .nr_scanned = 0,
2472 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2473 .may_writepage = !laptop_mode,
2474 .may_unmap = 1,
2475 .may_swap = !noswap,
2476 .order = 0,
2477 .target_mem_cgroup = memcg,
2478 };
2479 struct mem_cgroup_zone mz = {
2480 .mem_cgroup = memcg,
2481 .zone = zone,
2482 };
2483
2484 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2485 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2486
2487 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2488 sc.may_writepage,
2489 sc.gfp_mask);
2490
2491 /*
2492 * NOTE: Although we can get the priority field, using it
2493 * here is not a good idea, since it limits the pages we can scan.
2494 * if we don't reclaim here, the shrink_zone from balance_pgdat
2495 * will pick up pages from other mem cgroup's as well. We hack
2496 * the priority and make it zero.
2497 */
2498 shrink_mem_cgroup_zone(0, &mz, &sc);
2499
2500 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2501
2502 *nr_scanned = sc.nr_scanned;
2503 return sc.nr_reclaimed;
2504 }
2505
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap)2506 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2507 gfp_t gfp_mask,
2508 bool noswap)
2509 {
2510 struct zonelist *zonelist;
2511 unsigned long nr_reclaimed;
2512 int nid;
2513 struct scan_control sc = {
2514 .may_writepage = !laptop_mode,
2515 .may_unmap = 1,
2516 .may_swap = !noswap,
2517 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2518 .order = 0,
2519 .target_mem_cgroup = memcg,
2520 .nodemask = NULL, /* we don't care the placement */
2521 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2522 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2523 };
2524 struct shrink_control shrink = {
2525 .gfp_mask = sc.gfp_mask,
2526 };
2527
2528 /*
2529 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2530 * take care of from where we get pages. So the node where we start the
2531 * scan does not need to be the current node.
2532 */
2533 nid = mem_cgroup_select_victim_node(memcg);
2534
2535 zonelist = NODE_DATA(nid)->node_zonelists;
2536
2537 trace_mm_vmscan_memcg_reclaim_begin(0,
2538 sc.may_writepage,
2539 sc.gfp_mask);
2540
2541 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2542
2543 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2544
2545 return nr_reclaimed;
2546 }
2547 #endif
2548
age_active_anon(struct zone * zone,struct scan_control * sc,int priority)2549 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2550 int priority)
2551 {
2552 struct mem_cgroup *memcg;
2553
2554 if (!total_swap_pages)
2555 return;
2556
2557 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2558 do {
2559 struct mem_cgroup_zone mz = {
2560 .mem_cgroup = memcg,
2561 .zone = zone,
2562 };
2563
2564 if (inactive_anon_is_low(&mz))
2565 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2566 sc, priority, 0);
2567
2568 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2569 } while (memcg);
2570 }
2571
zone_balanced(struct zone * zone,int order,unsigned long balance_gap,int classzone_idx)2572 static bool zone_balanced(struct zone *zone, int order,
2573 unsigned long balance_gap, int classzone_idx)
2574 {
2575 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2576 balance_gap, classzone_idx, 0))
2577 return false;
2578
2579 if (COMPACTION_BUILD && order && !compaction_suitable(zone, order))
2580 return false;
2581
2582 return true;
2583 }
2584
2585 /*
2586 * pgdat_balanced is used when checking if a node is balanced for high-order
2587 * allocations. Only zones that meet watermarks and are in a zone allowed
2588 * by the callers classzone_idx are added to balanced_pages. The total of
2589 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2590 * for the node to be considered balanced. Forcing all zones to be balanced
2591 * for high orders can cause excessive reclaim when there are imbalanced zones.
2592 * The choice of 25% is due to
2593 * o a 16M DMA zone that is balanced will not balance a zone on any
2594 * reasonable sized machine
2595 * o On all other machines, the top zone must be at least a reasonable
2596 * percentage of the middle zones. For example, on 32-bit x86, highmem
2597 * would need to be at least 256M for it to be balance a whole node.
2598 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2599 * to balance a node on its own. These seemed like reasonable ratios.
2600 */
pgdat_balanced(pg_data_t * pgdat,unsigned long balanced_pages,int classzone_idx)2601 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2602 int classzone_idx)
2603 {
2604 unsigned long present_pages = 0;
2605 int i;
2606
2607 for (i = 0; i <= classzone_idx; i++)
2608 present_pages += pgdat->node_zones[i].present_pages;
2609
2610 /* A special case here: if zone has no page, we think it's balanced */
2611 return balanced_pages >= (present_pages >> 2);
2612 }
2613
2614 /* is kswapd sleeping prematurely? */
sleeping_prematurely(pg_data_t * pgdat,int order,long remaining,int classzone_idx)2615 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2616 int classzone_idx)
2617 {
2618 int i;
2619 unsigned long balanced = 0;
2620 bool all_zones_ok = true;
2621
2622 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2623 if (remaining)
2624 return true;
2625
2626 /* Check the watermark levels */
2627 for (i = 0; i <= classzone_idx; i++) {
2628 struct zone *zone = pgdat->node_zones + i;
2629
2630 if (!populated_zone(zone))
2631 continue;
2632
2633 /*
2634 * balance_pgdat() skips over all_unreclaimable after
2635 * DEF_PRIORITY. Effectively, it considers them balanced so
2636 * they must be considered balanced here as well if kswapd
2637 * is to sleep
2638 */
2639 if (zone->all_unreclaimable) {
2640 balanced += zone->present_pages;
2641 continue;
2642 }
2643
2644 if (!zone_balanced(zone, order, 0, i))
2645 all_zones_ok = false;
2646 else
2647 balanced += zone->present_pages;
2648 }
2649
2650 /*
2651 * For high-order requests, the balanced zones must contain at least
2652 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2653 * must be balanced
2654 */
2655 if (order)
2656 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2657 else
2658 return !all_zones_ok;
2659 }
2660
2661 /*
2662 * For kswapd, balance_pgdat() will work across all this node's zones until
2663 * they are all at high_wmark_pages(zone).
2664 *
2665 * Returns the final order kswapd was reclaiming at
2666 *
2667 * There is special handling here for zones which are full of pinned pages.
2668 * This can happen if the pages are all mlocked, or if they are all used by
2669 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2670 * What we do is to detect the case where all pages in the zone have been
2671 * scanned twice and there has been zero successful reclaim. Mark the zone as
2672 * dead and from now on, only perform a short scan. Basically we're polling
2673 * the zone for when the problem goes away.
2674 *
2675 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2676 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2677 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2678 * lower zones regardless of the number of free pages in the lower zones. This
2679 * interoperates with the page allocator fallback scheme to ensure that aging
2680 * of pages is balanced across the zones.
2681 */
balance_pgdat(pg_data_t * pgdat,int order,int * classzone_idx)2682 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2683 int *classzone_idx)
2684 {
2685 int all_zones_ok;
2686 unsigned long balanced;
2687 int priority;
2688 int i;
2689 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2690 unsigned long total_scanned;
2691 struct reclaim_state *reclaim_state = current->reclaim_state;
2692 unsigned long nr_soft_reclaimed;
2693 unsigned long nr_soft_scanned;
2694 struct scan_control sc = {
2695 .gfp_mask = GFP_KERNEL,
2696 .may_unmap = 1,
2697 .may_swap = 1,
2698 /*
2699 * kswapd doesn't want to be bailed out while reclaim. because
2700 * we want to put equal scanning pressure on each zone.
2701 */
2702 .nr_to_reclaim = ULONG_MAX,
2703 .order = order,
2704 .target_mem_cgroup = NULL,
2705 };
2706 struct shrink_control shrink = {
2707 .gfp_mask = sc.gfp_mask,
2708 };
2709 loop_again:
2710 total_scanned = 0;
2711 sc.nr_reclaimed = 0;
2712 sc.may_writepage = !laptop_mode;
2713 count_vm_event(PAGEOUTRUN);
2714
2715 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2716 unsigned long lru_pages = 0;
2717 int has_under_min_watermark_zone = 0;
2718
2719 /* The swap token gets in the way of swapout... */
2720 if (!priority)
2721 disable_swap_token(NULL);
2722
2723 all_zones_ok = 1;
2724 balanced = 0;
2725
2726 /*
2727 * Scan in the highmem->dma direction for the highest
2728 * zone which needs scanning
2729 */
2730 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2731 struct zone *zone = pgdat->node_zones + i;
2732
2733 if (!populated_zone(zone))
2734 continue;
2735
2736 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2737 continue;
2738
2739 /*
2740 * Do some background aging of the anon list, to give
2741 * pages a chance to be referenced before reclaiming.
2742 */
2743 age_active_anon(zone, &sc, priority);
2744
2745 /*
2746 * If the number of buffer_heads in the machine
2747 * exceeds the maximum allowed level and this node
2748 * has a highmem zone, force kswapd to reclaim from
2749 * it to relieve lowmem pressure.
2750 */
2751 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2752 end_zone = i;
2753 break;
2754 }
2755
2756 if (!zone_balanced(zone, order, 0, 0)) {
2757 end_zone = i;
2758 break;
2759 } else {
2760 /* If balanced, clear the congested flag */
2761 zone_clear_flag(zone, ZONE_CONGESTED);
2762 }
2763 }
2764 if (i < 0)
2765 goto out;
2766
2767 for (i = 0; i <= end_zone; i++) {
2768 struct zone *zone = pgdat->node_zones + i;
2769
2770 lru_pages += zone_reclaimable_pages(zone);
2771 }
2772
2773 /*
2774 * Now scan the zone in the dma->highmem direction, stopping
2775 * at the last zone which needs scanning.
2776 *
2777 * We do this because the page allocator works in the opposite
2778 * direction. This prevents the page allocator from allocating
2779 * pages behind kswapd's direction of progress, which would
2780 * cause too much scanning of the lower zones.
2781 */
2782 for (i = 0; i <= end_zone; i++) {
2783 struct zone *zone = pgdat->node_zones + i;
2784 int nr_slab, testorder;
2785 unsigned long balance_gap;
2786
2787 if (!populated_zone(zone))
2788 continue;
2789
2790 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2791 continue;
2792
2793 sc.nr_scanned = 0;
2794
2795 nr_soft_scanned = 0;
2796 /*
2797 * Call soft limit reclaim before calling shrink_zone.
2798 */
2799 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2800 order, sc.gfp_mask,
2801 &nr_soft_scanned);
2802 sc.nr_reclaimed += nr_soft_reclaimed;
2803 total_scanned += nr_soft_scanned;
2804
2805 /*
2806 * We put equal pressure on every zone, unless
2807 * one zone has way too many pages free
2808 * already. The "too many pages" is defined
2809 * as the high wmark plus a "gap" where the
2810 * gap is either the low watermark or 1%
2811 * of the zone, whichever is smaller.
2812 */
2813 balance_gap = min(low_wmark_pages(zone),
2814 (zone->present_pages +
2815 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2816 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2817 /*
2818 * Kswapd reclaims only single pages with compaction
2819 * enabled. Trying too hard to reclaim until contiguous
2820 * free pages have become available can hurt performance
2821 * by evicting too much useful data from memory.
2822 * Do not reclaim more than needed for compaction.
2823 */
2824 testorder = order;
2825 if (COMPACTION_BUILD && order &&
2826 compaction_suitable(zone, order) !=
2827 COMPACT_SKIPPED)
2828 testorder = 0;
2829
2830 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2831 !zone_balanced(zone, testorder,
2832 balance_gap, end_zone)) {
2833 shrink_zone(priority, zone, &sc);
2834
2835 reclaim_state->reclaimed_slab = 0;
2836 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2837 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2838 total_scanned += sc.nr_scanned;
2839
2840 if (nr_slab == 0 && !zone_reclaimable(zone))
2841 zone->all_unreclaimable = 1;
2842 }
2843
2844 /*
2845 * If we've done a decent amount of scanning and
2846 * the reclaim ratio is low, start doing writepage
2847 * even in laptop mode
2848 */
2849 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2850 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2851 sc.may_writepage = 1;
2852
2853 if (zone->all_unreclaimable) {
2854 if (end_zone && end_zone == i)
2855 end_zone--;
2856 continue;
2857 }
2858
2859 if (!zone_balanced(zone, testorder, 0, end_zone)) {
2860 all_zones_ok = 0;
2861 /*
2862 * We are still under min water mark. This
2863 * means that we have a GFP_ATOMIC allocation
2864 * failure risk. Hurry up!
2865 */
2866 if (!zone_watermark_ok_safe(zone, order,
2867 min_wmark_pages(zone), end_zone, 0))
2868 has_under_min_watermark_zone = 1;
2869 } else {
2870 /*
2871 * If a zone reaches its high watermark,
2872 * consider it to be no longer congested. It's
2873 * possible there are dirty pages backed by
2874 * congested BDIs but as pressure is relieved,
2875 * spectulatively avoid congestion waits
2876 */
2877 zone_clear_flag(zone, ZONE_CONGESTED);
2878 if (i <= *classzone_idx)
2879 balanced += zone->present_pages;
2880 }
2881
2882 }
2883 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2884 break; /* kswapd: all done */
2885 /*
2886 * OK, kswapd is getting into trouble. Take a nap, then take
2887 * another pass across the zones.
2888 */
2889 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2890 if (has_under_min_watermark_zone)
2891 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2892 else
2893 congestion_wait(BLK_RW_ASYNC, HZ/10);
2894 }
2895
2896 /*
2897 * We do this so kswapd doesn't build up large priorities for
2898 * example when it is freeing in parallel with allocators. It
2899 * matches the direct reclaim path behaviour in terms of impact
2900 * on zone->*_priority.
2901 */
2902 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2903 break;
2904 }
2905 out:
2906
2907 /*
2908 * order-0: All zones must meet high watermark for a balanced node
2909 * high-order: Balanced zones must make up at least 25% of the node
2910 * for the node to be balanced
2911 */
2912 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2913 cond_resched();
2914
2915 try_to_freeze();
2916
2917 /*
2918 * Fragmentation may mean that the system cannot be
2919 * rebalanced for high-order allocations in all zones.
2920 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2921 * it means the zones have been fully scanned and are still
2922 * not balanced. For high-order allocations, there is
2923 * little point trying all over again as kswapd may
2924 * infinite loop.
2925 *
2926 * Instead, recheck all watermarks at order-0 as they
2927 * are the most important. If watermarks are ok, kswapd will go
2928 * back to sleep. High-order users can still perform direct
2929 * reclaim if they wish.
2930 */
2931 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2932 order = sc.order = 0;
2933
2934 goto loop_again;
2935 }
2936
2937 /*
2938 * If kswapd was reclaiming at a higher order, it has the option of
2939 * sleeping without all zones being balanced. Before it does, it must
2940 * ensure that the watermarks for order-0 on *all* zones are met and
2941 * that the congestion flags are cleared. The congestion flag must
2942 * be cleared as kswapd is the only mechanism that clears the flag
2943 * and it is potentially going to sleep here.
2944 */
2945 if (order) {
2946 int zones_need_compaction = 1;
2947
2948 for (i = 0; i <= end_zone; i++) {
2949 struct zone *zone = pgdat->node_zones + i;
2950
2951 if (!populated_zone(zone))
2952 continue;
2953
2954 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2955 continue;
2956
2957 /* Would compaction fail due to lack of free memory? */
2958 if (COMPACTION_BUILD &&
2959 compaction_suitable(zone, order) == COMPACT_SKIPPED)
2960 goto loop_again;
2961
2962 /* Confirm the zone is balanced for order-0 */
2963 if (!zone_watermark_ok(zone, 0,
2964 high_wmark_pages(zone), 0, 0)) {
2965 order = sc.order = 0;
2966 goto loop_again;
2967 }
2968
2969 /* Check if the memory needs to be defragmented. */
2970 if (zone_watermark_ok(zone, order,
2971 low_wmark_pages(zone), *classzone_idx, 0))
2972 zones_need_compaction = 0;
2973
2974 /* If balanced, clear the congested flag */
2975 zone_clear_flag(zone, ZONE_CONGESTED);
2976 }
2977
2978 if (zones_need_compaction)
2979 compact_pgdat(pgdat, order);
2980 }
2981
2982 /*
2983 * Return the order we were reclaiming at so sleeping_prematurely()
2984 * makes a decision on the order we were last reclaiming at. However,
2985 * if another caller entered the allocator slow path while kswapd
2986 * was awake, order will remain at the higher level
2987 */
2988 *classzone_idx = end_zone;
2989 return order;
2990 }
2991
kswapd_try_to_sleep(pg_data_t * pgdat,int order,int classzone_idx)2992 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2993 {
2994 long remaining = 0;
2995 DEFINE_WAIT(wait);
2996
2997 if (freezing(current) || kthread_should_stop())
2998 return;
2999
3000 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3001
3002 /* Try to sleep for a short interval */
3003 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
3004 remaining = schedule_timeout(HZ/10);
3005 finish_wait(&pgdat->kswapd_wait, &wait);
3006 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3007 }
3008
3009 /*
3010 * After a short sleep, check if it was a premature sleep. If not, then
3011 * go fully to sleep until explicitly woken up.
3012 */
3013 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
3014 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3015
3016 /*
3017 * vmstat counters are not perfectly accurate and the estimated
3018 * value for counters such as NR_FREE_PAGES can deviate from the
3019 * true value by nr_online_cpus * threshold. To avoid the zone
3020 * watermarks being breached while under pressure, we reduce the
3021 * per-cpu vmstat threshold while kswapd is awake and restore
3022 * them before going back to sleep.
3023 */
3024 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3025
3026 if (!kthread_should_stop())
3027 schedule();
3028
3029 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3030 } else {
3031 if (remaining)
3032 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3033 else
3034 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3035 }
3036 finish_wait(&pgdat->kswapd_wait, &wait);
3037 }
3038
3039 /*
3040 * The background pageout daemon, started as a kernel thread
3041 * from the init process.
3042 *
3043 * This basically trickles out pages so that we have _some_
3044 * free memory available even if there is no other activity
3045 * that frees anything up. This is needed for things like routing
3046 * etc, where we otherwise might have all activity going on in
3047 * asynchronous contexts that cannot page things out.
3048 *
3049 * If there are applications that are active memory-allocators
3050 * (most normal use), this basically shouldn't matter.
3051 */
kswapd(void * p)3052 static int kswapd(void *p)
3053 {
3054 unsigned long order, new_order;
3055 unsigned balanced_order;
3056 int classzone_idx, new_classzone_idx;
3057 int balanced_classzone_idx;
3058 pg_data_t *pgdat = (pg_data_t*)p;
3059 struct task_struct *tsk = current;
3060
3061 struct reclaim_state reclaim_state = {
3062 .reclaimed_slab = 0,
3063 };
3064 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3065
3066 lockdep_set_current_reclaim_state(GFP_KERNEL);
3067
3068 if (!cpumask_empty(cpumask))
3069 set_cpus_allowed_ptr(tsk, cpumask);
3070 current->reclaim_state = &reclaim_state;
3071
3072 /*
3073 * Tell the memory management that we're a "memory allocator",
3074 * and that if we need more memory we should get access to it
3075 * regardless (see "__alloc_pages()"). "kswapd" should
3076 * never get caught in the normal page freeing logic.
3077 *
3078 * (Kswapd normally doesn't need memory anyway, but sometimes
3079 * you need a small amount of memory in order to be able to
3080 * page out something else, and this flag essentially protects
3081 * us from recursively trying to free more memory as we're
3082 * trying to free the first piece of memory in the first place).
3083 */
3084 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3085 set_freezable();
3086
3087 order = new_order = 0;
3088 balanced_order = 0;
3089 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3090 balanced_classzone_idx = classzone_idx;
3091 for ( ; ; ) {
3092 int ret;
3093
3094 /*
3095 * If the last balance_pgdat was unsuccessful it's unlikely a
3096 * new request of a similar or harder type will succeed soon
3097 * so consider going to sleep on the basis we reclaimed at
3098 */
3099 if (balanced_classzone_idx >= new_classzone_idx &&
3100 balanced_order == new_order) {
3101 new_order = pgdat->kswapd_max_order;
3102 new_classzone_idx = pgdat->classzone_idx;
3103 pgdat->kswapd_max_order = 0;
3104 pgdat->classzone_idx = pgdat->nr_zones - 1;
3105 }
3106
3107 if (order < new_order || classzone_idx > new_classzone_idx) {
3108 /*
3109 * Don't sleep if someone wants a larger 'order'
3110 * allocation or has tigher zone constraints
3111 */
3112 order = new_order;
3113 classzone_idx = new_classzone_idx;
3114 } else {
3115 kswapd_try_to_sleep(pgdat, balanced_order,
3116 balanced_classzone_idx);
3117 order = pgdat->kswapd_max_order;
3118 classzone_idx = pgdat->classzone_idx;
3119 new_order = order;
3120 new_classzone_idx = classzone_idx;
3121 pgdat->kswapd_max_order = 0;
3122 pgdat->classzone_idx = pgdat->nr_zones - 1;
3123 }
3124
3125 ret = try_to_freeze();
3126 if (kthread_should_stop())
3127 break;
3128
3129 /*
3130 * We can speed up thawing tasks if we don't call balance_pgdat
3131 * after returning from the refrigerator
3132 */
3133 if (!ret) {
3134 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3135 balanced_classzone_idx = classzone_idx;
3136 balanced_order = balance_pgdat(pgdat, order,
3137 &balanced_classzone_idx);
3138 }
3139 }
3140
3141 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3142 current->reclaim_state = NULL;
3143 lockdep_clear_current_reclaim_state();
3144
3145 return 0;
3146 }
3147
3148 /*
3149 * A zone is low on free memory, so wake its kswapd task to service it.
3150 */
wakeup_kswapd(struct zone * zone,int order,enum zone_type classzone_idx)3151 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3152 {
3153 pg_data_t *pgdat;
3154
3155 if (!populated_zone(zone))
3156 return;
3157
3158 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3159 return;
3160 pgdat = zone->zone_pgdat;
3161 if (pgdat->kswapd_max_order < order) {
3162 pgdat->kswapd_max_order = order;
3163 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3164 }
3165 if (!waitqueue_active(&pgdat->kswapd_wait))
3166 return;
3167 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3168 return;
3169
3170 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3171 wake_up_interruptible(&pgdat->kswapd_wait);
3172 }
3173
3174 /*
3175 * The reclaimable count would be mostly accurate.
3176 * The less reclaimable pages may be
3177 * - mlocked pages, which will be moved to unevictable list when encountered
3178 * - mapped pages, which may require several travels to be reclaimed
3179 * - dirty pages, which is not "instantly" reclaimable
3180 */
global_reclaimable_pages(void)3181 unsigned long global_reclaimable_pages(void)
3182 {
3183 int nr;
3184
3185 nr = global_page_state(NR_ACTIVE_FILE) +
3186 global_page_state(NR_INACTIVE_FILE);
3187
3188 if (nr_swap_pages > 0)
3189 nr += global_page_state(NR_ACTIVE_ANON) +
3190 global_page_state(NR_INACTIVE_ANON);
3191
3192 return nr;
3193 }
3194
zone_reclaimable_pages(struct zone * zone)3195 unsigned long zone_reclaimable_pages(struct zone *zone)
3196 {
3197 int nr;
3198
3199 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3200 zone_page_state(zone, NR_INACTIVE_FILE);
3201
3202 if (nr_swap_pages > 0)
3203 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3204 zone_page_state(zone, NR_INACTIVE_ANON);
3205
3206 return nr;
3207 }
3208
3209 #ifdef CONFIG_HIBERNATION
3210 /*
3211 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3212 * freed pages.
3213 *
3214 * Rather than trying to age LRUs the aim is to preserve the overall
3215 * LRU order by reclaiming preferentially
3216 * inactive > active > active referenced > active mapped
3217 */
shrink_all_memory(unsigned long nr_to_reclaim)3218 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3219 {
3220 struct reclaim_state reclaim_state;
3221 struct scan_control sc = {
3222 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3223 .may_swap = 1,
3224 .may_unmap = 1,
3225 .may_writepage = 1,
3226 .nr_to_reclaim = nr_to_reclaim,
3227 .hibernation_mode = 1,
3228 .order = 0,
3229 };
3230 struct shrink_control shrink = {
3231 .gfp_mask = sc.gfp_mask,
3232 };
3233 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3234 struct task_struct *p = current;
3235 unsigned long nr_reclaimed;
3236
3237 p->flags |= PF_MEMALLOC;
3238 lockdep_set_current_reclaim_state(sc.gfp_mask);
3239 reclaim_state.reclaimed_slab = 0;
3240 p->reclaim_state = &reclaim_state;
3241
3242 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3243
3244 p->reclaim_state = NULL;
3245 lockdep_clear_current_reclaim_state();
3246 p->flags &= ~PF_MEMALLOC;
3247
3248 return nr_reclaimed;
3249 }
3250 #endif /* CONFIG_HIBERNATION */
3251
3252 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3253 not required for correctness. So if the last cpu in a node goes
3254 away, we get changed to run anywhere: as the first one comes back,
3255 restore their cpu bindings. */
cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)3256 static int __devinit cpu_callback(struct notifier_block *nfb,
3257 unsigned long action, void *hcpu)
3258 {
3259 int nid;
3260
3261 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3262 for_each_node_state(nid, N_HIGH_MEMORY) {
3263 pg_data_t *pgdat = NODE_DATA(nid);
3264 const struct cpumask *mask;
3265
3266 mask = cpumask_of_node(pgdat->node_id);
3267
3268 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3269 /* One of our CPUs online: restore mask */
3270 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3271 }
3272 }
3273 return NOTIFY_OK;
3274 }
3275
3276 /*
3277 * This kswapd start function will be called by init and node-hot-add.
3278 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3279 */
kswapd_run(int nid)3280 int kswapd_run(int nid)
3281 {
3282 pg_data_t *pgdat = NODE_DATA(nid);
3283 int ret = 0;
3284
3285 if (pgdat->kswapd)
3286 return 0;
3287
3288 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3289 if (IS_ERR(pgdat->kswapd)) {
3290 /* failure at boot is fatal */
3291 BUG_ON(system_state == SYSTEM_BOOTING);
3292 printk("Failed to start kswapd on node %d\n",nid);
3293 ret = -1;
3294 }
3295 return ret;
3296 }
3297
3298 /*
3299 * Called by memory hotplug when all memory in a node is offlined. Caller must
3300 * hold lock_memory_hotplug().
3301 */
kswapd_stop(int nid)3302 void kswapd_stop(int nid)
3303 {
3304 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3305
3306 if (kswapd) {
3307 kthread_stop(kswapd);
3308 NODE_DATA(nid)->kswapd = NULL;
3309 }
3310 }
3311
kswapd_init(void)3312 static int __init kswapd_init(void)
3313 {
3314 int nid;
3315
3316 swap_setup();
3317 for_each_node_state(nid, N_HIGH_MEMORY)
3318 kswapd_run(nid);
3319 hotcpu_notifier(cpu_callback, 0);
3320 return 0;
3321 }
3322
3323 module_init(kswapd_init)
3324
3325 #ifdef CONFIG_NUMA
3326 /*
3327 * Zone reclaim mode
3328 *
3329 * If non-zero call zone_reclaim when the number of free pages falls below
3330 * the watermarks.
3331 */
3332 int zone_reclaim_mode __read_mostly;
3333
3334 #define RECLAIM_OFF 0
3335 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3336 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3337 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3338
3339 /*
3340 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3341 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3342 * a zone.
3343 */
3344 #define ZONE_RECLAIM_PRIORITY 4
3345
3346 /*
3347 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3348 * occur.
3349 */
3350 int sysctl_min_unmapped_ratio = 1;
3351
3352 /*
3353 * If the number of slab pages in a zone grows beyond this percentage then
3354 * slab reclaim needs to occur.
3355 */
3356 int sysctl_min_slab_ratio = 5;
3357
zone_unmapped_file_pages(struct zone * zone)3358 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3359 {
3360 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3361 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3362 zone_page_state(zone, NR_ACTIVE_FILE);
3363
3364 /*
3365 * It's possible for there to be more file mapped pages than
3366 * accounted for by the pages on the file LRU lists because
3367 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3368 */
3369 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3370 }
3371
3372 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
zone_pagecache_reclaimable(struct zone * zone)3373 static long zone_pagecache_reclaimable(struct zone *zone)
3374 {
3375 long nr_pagecache_reclaimable;
3376 long delta = 0;
3377
3378 /*
3379 * If RECLAIM_SWAP is set, then all file pages are considered
3380 * potentially reclaimable. Otherwise, we have to worry about
3381 * pages like swapcache and zone_unmapped_file_pages() provides
3382 * a better estimate
3383 */
3384 if (zone_reclaim_mode & RECLAIM_SWAP)
3385 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3386 else
3387 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3388
3389 /* If we can't clean pages, remove dirty pages from consideration */
3390 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3391 delta += zone_page_state(zone, NR_FILE_DIRTY);
3392
3393 /* Watch for any possible underflows due to delta */
3394 if (unlikely(delta > nr_pagecache_reclaimable))
3395 delta = nr_pagecache_reclaimable;
3396
3397 return nr_pagecache_reclaimable - delta;
3398 }
3399
3400 /*
3401 * Try to free up some pages from this zone through reclaim.
3402 */
__zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3403 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3404 {
3405 /* Minimum pages needed in order to stay on node */
3406 const unsigned long nr_pages = 1 << order;
3407 struct task_struct *p = current;
3408 struct reclaim_state reclaim_state;
3409 int priority;
3410 struct scan_control sc = {
3411 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3412 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3413 .may_swap = 1,
3414 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3415 SWAP_CLUSTER_MAX),
3416 .gfp_mask = gfp_mask,
3417 .order = order,
3418 };
3419 struct shrink_control shrink = {
3420 .gfp_mask = sc.gfp_mask,
3421 };
3422 unsigned long nr_slab_pages0, nr_slab_pages1;
3423
3424 cond_resched();
3425 /*
3426 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3427 * and we also need to be able to write out pages for RECLAIM_WRITE
3428 * and RECLAIM_SWAP.
3429 */
3430 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3431 lockdep_set_current_reclaim_state(gfp_mask);
3432 reclaim_state.reclaimed_slab = 0;
3433 p->reclaim_state = &reclaim_state;
3434
3435 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3436 /*
3437 * Free memory by calling shrink zone with increasing
3438 * priorities until we have enough memory freed.
3439 */
3440 priority = ZONE_RECLAIM_PRIORITY;
3441 do {
3442 shrink_zone(priority, zone, &sc);
3443 priority--;
3444 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3445 }
3446
3447 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3448 if (nr_slab_pages0 > zone->min_slab_pages) {
3449 /*
3450 * shrink_slab() does not currently allow us to determine how
3451 * many pages were freed in this zone. So we take the current
3452 * number of slab pages and shake the slab until it is reduced
3453 * by the same nr_pages that we used for reclaiming unmapped
3454 * pages.
3455 *
3456 * Note that shrink_slab will free memory on all zones and may
3457 * take a long time.
3458 */
3459 for (;;) {
3460 unsigned long lru_pages = zone_reclaimable_pages(zone);
3461
3462 /* No reclaimable slab or very low memory pressure */
3463 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3464 break;
3465
3466 /* Freed enough memory */
3467 nr_slab_pages1 = zone_page_state(zone,
3468 NR_SLAB_RECLAIMABLE);
3469 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3470 break;
3471 }
3472
3473 /*
3474 * Update nr_reclaimed by the number of slab pages we
3475 * reclaimed from this zone.
3476 */
3477 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3478 if (nr_slab_pages1 < nr_slab_pages0)
3479 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3480 }
3481
3482 p->reclaim_state = NULL;
3483 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3484 lockdep_clear_current_reclaim_state();
3485 return sc.nr_reclaimed >= nr_pages;
3486 }
3487
zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3488 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3489 {
3490 int node_id;
3491 int ret;
3492
3493 /*
3494 * Zone reclaim reclaims unmapped file backed pages and
3495 * slab pages if we are over the defined limits.
3496 *
3497 * A small portion of unmapped file backed pages is needed for
3498 * file I/O otherwise pages read by file I/O will be immediately
3499 * thrown out if the zone is overallocated. So we do not reclaim
3500 * if less than a specified percentage of the zone is used by
3501 * unmapped file backed pages.
3502 */
3503 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3504 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3505 return ZONE_RECLAIM_FULL;
3506
3507 if (zone->all_unreclaimable)
3508 return ZONE_RECLAIM_FULL;
3509
3510 /*
3511 * Do not scan if the allocation should not be delayed.
3512 */
3513 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3514 return ZONE_RECLAIM_NOSCAN;
3515
3516 /*
3517 * Only run zone reclaim on the local zone or on zones that do not
3518 * have associated processors. This will favor the local processor
3519 * over remote processors and spread off node memory allocations
3520 * as wide as possible.
3521 */
3522 node_id = zone_to_nid(zone);
3523 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3524 return ZONE_RECLAIM_NOSCAN;
3525
3526 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3527 return ZONE_RECLAIM_NOSCAN;
3528
3529 ret = __zone_reclaim(zone, gfp_mask, order);
3530 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3531
3532 if (!ret)
3533 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3534
3535 return ret;
3536 }
3537 #endif
3538
3539 /*
3540 * page_evictable - test whether a page is evictable
3541 * @page: the page to test
3542 * @vma: the VMA in which the page is or will be mapped, may be NULL
3543 *
3544 * Test whether page is evictable--i.e., should be placed on active/inactive
3545 * lists vs unevictable list. The vma argument is !NULL when called from the
3546 * fault path to determine how to instantate a new page.
3547 *
3548 * Reasons page might not be evictable:
3549 * (1) page's mapping marked unevictable
3550 * (2) page is part of an mlocked VMA
3551 *
3552 */
page_evictable(struct page * page,struct vm_area_struct * vma)3553 int page_evictable(struct page *page, struct vm_area_struct *vma)
3554 {
3555
3556 if (mapping_unevictable(page_mapping(page)))
3557 return 0;
3558
3559 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3560 return 0;
3561
3562 return 1;
3563 }
3564
3565 #ifdef CONFIG_SHMEM
3566 /**
3567 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3568 * @pages: array of pages to check
3569 * @nr_pages: number of pages to check
3570 *
3571 * Checks pages for evictability and moves them to the appropriate lru list.
3572 *
3573 * This function is only used for SysV IPC SHM_UNLOCK.
3574 */
check_move_unevictable_pages(struct page ** pages,int nr_pages)3575 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3576 {
3577 struct lruvec *lruvec;
3578 struct zone *zone = NULL;
3579 int pgscanned = 0;
3580 int pgrescued = 0;
3581 int i;
3582
3583 for (i = 0; i < nr_pages; i++) {
3584 struct page *page = pages[i];
3585 struct zone *pagezone;
3586
3587 pgscanned++;
3588 pagezone = page_zone(page);
3589 if (pagezone != zone) {
3590 if (zone)
3591 spin_unlock_irq(&zone->lru_lock);
3592 zone = pagezone;
3593 spin_lock_irq(&zone->lru_lock);
3594 }
3595
3596 if (!PageLRU(page) || !PageUnevictable(page))
3597 continue;
3598
3599 if (page_evictable(page, NULL)) {
3600 enum lru_list lru = page_lru_base_type(page);
3601
3602 VM_BUG_ON(PageActive(page));
3603 ClearPageUnevictable(page);
3604 __dec_zone_state(zone, NR_UNEVICTABLE);
3605 lruvec = mem_cgroup_lru_move_lists(zone, page,
3606 LRU_UNEVICTABLE, lru);
3607 list_move(&page->lru, &lruvec->lists[lru]);
3608 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3609 pgrescued++;
3610 }
3611 }
3612
3613 if (zone) {
3614 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3615 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3616 spin_unlock_irq(&zone->lru_lock);
3617 }
3618 }
3619 #endif /* CONFIG_SHMEM */
3620
warn_scan_unevictable_pages(void)3621 static void warn_scan_unevictable_pages(void)
3622 {
3623 printk_once(KERN_WARNING
3624 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3625 "disabled for lack of a legitimate use case. If you have "
3626 "one, please send an email to linux-mm@kvack.org.\n",
3627 current->comm);
3628 }
3629
3630 /*
3631 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3632 * all nodes' unevictable lists for evictable pages
3633 */
3634 unsigned long scan_unevictable_pages;
3635
scan_unevictable_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)3636 int scan_unevictable_handler(struct ctl_table *table, int write,
3637 void __user *buffer,
3638 size_t *length, loff_t *ppos)
3639 {
3640 warn_scan_unevictable_pages();
3641 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3642 scan_unevictable_pages = 0;
3643 return 0;
3644 }
3645
3646 #ifdef CONFIG_NUMA
3647 /*
3648 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3649 * a specified node's per zone unevictable lists for evictable pages.
3650 */
3651
read_scan_unevictable_node(struct device * dev,struct device_attribute * attr,char * buf)3652 static ssize_t read_scan_unevictable_node(struct device *dev,
3653 struct device_attribute *attr,
3654 char *buf)
3655 {
3656 warn_scan_unevictable_pages();
3657 return sprintf(buf, "0\n"); /* always zero; should fit... */
3658 }
3659
write_scan_unevictable_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3660 static ssize_t write_scan_unevictable_node(struct device *dev,
3661 struct device_attribute *attr,
3662 const char *buf, size_t count)
3663 {
3664 warn_scan_unevictable_pages();
3665 return 1;
3666 }
3667
3668
3669 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3670 read_scan_unevictable_node,
3671 write_scan_unevictable_node);
3672
scan_unevictable_register_node(struct node * node)3673 int scan_unevictable_register_node(struct node *node)
3674 {
3675 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3676 }
3677
scan_unevictable_unregister_node(struct node * node)3678 void scan_unevictable_unregister_node(struct node *node)
3679 {
3680 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3681 }
3682 #endif
3683