1 /*
2  * Twofish for CryptoAPI
3  *
4  * Originally Twofish for GPG
5  * By Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998
6  * 256-bit key length added March 20, 1999
7  * Some modifications to reduce the text size by Werner Koch, April, 1998
8  * Ported to the kerneli patch by Marc Mutz <Marc@Mutz.com>
9  * Ported to CryptoAPI by Colin Slater <hoho@tacomeat.net>
10  *
11  * The original author has disclaimed all copyright interest in this
12  * code and thus put it in the public domain. The subsequent authors
13  * have put this under the GNU General Public License.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with this program; if not, write to the Free Software
27  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307
28  * USA
29  *
30  * This code is a "clean room" implementation, written from the paper
31  * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey,
32  * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available
33  * through http://www.counterpane.com/twofish.html
34  *
35  * For background information on multiplication in finite fields, used for
36  * the matrix operations in the key schedule, see the book _Contemporary
37  * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the
38  * Third Edition.
39  */
40 #include <linux/module.h>
41 #include <linux/init.h>
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/crypto.h>
45 
46 
47 /* The large precomputed tables for the Twofish cipher (twofish.c)
48  * Taken from the same source as twofish.c
49  * Marc Mutz <Marc@Mutz.com>
50  */
51 
52 /* These two tables are the q0 and q1 permutations, exactly as described in
53  * the Twofish paper. */
54 
55 static const u8 q0[256] = {
56    0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78,
57    0xE4, 0xDD, 0xD1, 0x38, 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
58    0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 0xF2, 0xD0, 0x8B, 0x30,
59    0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
60    0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE,
61    0x16, 0x0C, 0xE3, 0x61, 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
62    0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 0xE1, 0xE6, 0xBD, 0x45,
63    0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
64    0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF,
65    0x33, 0xC9, 0x62, 0x71, 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
66    0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 0xA1, 0x1D, 0xAA, 0xED,
67    0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
68    0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B,
69    0x5F, 0x93, 0x0A, 0xEF, 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
70    0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 0x2A, 0xCE, 0xCB, 0x2F,
71    0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
72    0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17,
73    0x55, 0x1F, 0x8A, 0x7D, 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
74    0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 0x6E, 0x50, 0xDE, 0x68,
75    0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
76    0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42,
77    0x4A, 0x5E, 0xC1, 0xE0
78 };
79 
80 static const u8 q1[256] = {
81    0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B,
82    0x45, 0x7D, 0xE8, 0x4B, 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
83    0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 0x5E, 0xBA, 0xAE, 0x5B,
84    0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
85    0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54,
86    0x92, 0x74, 0x36, 0x51, 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
87    0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 0x13, 0x95, 0x9C, 0xC7,
88    0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
89    0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF,
90    0x40, 0xE7, 0x2B, 0xE2, 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
91    0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 0x66, 0x94, 0xA1, 0x1D,
92    0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
93    0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21,
94    0xC4, 0x1A, 0xEB, 0xD9, 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
95    0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 0x4F, 0xF2, 0x65, 0x8E,
96    0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
97    0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44,
98    0xE0, 0x4D, 0x43, 0x69, 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
99    0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 0x22, 0xC9, 0xC0, 0x9B,
100    0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
101    0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56,
102    0x55, 0x09, 0xBE, 0x91
103 };
104 
105 /* These MDS tables are actually tables of MDS composed with q0 and q1,
106  * because it is only ever used that way and we can save some time by
107  * precomputing.  Of course the main saving comes from precomputing the
108  * GF(2^8) multiplication involved in the MDS matrix multiply; by looking
109  * things up in these tables we reduce the matrix multiply to four lookups
110  * and three XORs.  Semi-formally, the definition of these tables is:
111  * mds[0][i] = MDS (q1[i] 0 0 0)^T  mds[1][i] = MDS (0 q0[i] 0 0)^T
112  * mds[2][i] = MDS (0 0 q1[i] 0)^T  mds[3][i] = MDS (0 0 0 q0[i])^T
113  * where ^T means "transpose", the matrix multiply is performed in GF(2^8)
114  * represented as GF(2)[x]/v(x) where v(x)=x^8+x^6+x^5+x^3+1 as described
115  * by Schneier et al, and I'm casually glossing over the byte/word
116  * conversion issues. */
117 
118 static const u32 mds[4][256] = {
119    {0xBCBC3275, 0xECEC21F3, 0x202043C6, 0xB3B3C9F4, 0xDADA03DB, 0x02028B7B,
120     0xE2E22BFB, 0x9E9EFAC8, 0xC9C9EC4A, 0xD4D409D3, 0x18186BE6, 0x1E1E9F6B,
121     0x98980E45, 0xB2B2387D, 0xA6A6D2E8, 0x2626B74B, 0x3C3C57D6, 0x93938A32,
122     0x8282EED8, 0x525298FD, 0x7B7BD437, 0xBBBB3771, 0x5B5B97F1, 0x474783E1,
123     0x24243C30, 0x5151E20F, 0xBABAC6F8, 0x4A4AF31B, 0xBFBF4887, 0x0D0D70FA,
124     0xB0B0B306, 0x7575DE3F, 0xD2D2FD5E, 0x7D7D20BA, 0x666631AE, 0x3A3AA35B,
125     0x59591C8A, 0x00000000, 0xCDCD93BC, 0x1A1AE09D, 0xAEAE2C6D, 0x7F7FABC1,
126     0x2B2BC7B1, 0xBEBEB90E, 0xE0E0A080, 0x8A8A105D, 0x3B3B52D2, 0x6464BAD5,
127     0xD8D888A0, 0xE7E7A584, 0x5F5FE807, 0x1B1B1114, 0x2C2CC2B5, 0xFCFCB490,
128     0x3131272C, 0x808065A3, 0x73732AB2, 0x0C0C8173, 0x79795F4C, 0x6B6B4154,
129     0x4B4B0292, 0x53536974, 0x94948F36, 0x83831F51, 0x2A2A3638, 0xC4C49CB0,
130     0x2222C8BD, 0xD5D5F85A, 0xBDBDC3FC, 0x48487860, 0xFFFFCE62, 0x4C4C0796,
131     0x4141776C, 0xC7C7E642, 0xEBEB24F7, 0x1C1C1410, 0x5D5D637C, 0x36362228,
132     0x6767C027, 0xE9E9AF8C, 0x4444F913, 0x1414EA95, 0xF5F5BB9C, 0xCFCF18C7,
133     0x3F3F2D24, 0xC0C0E346, 0x7272DB3B, 0x54546C70, 0x29294CCA, 0xF0F035E3,
134     0x0808FE85, 0xC6C617CB, 0xF3F34F11, 0x8C8CE4D0, 0xA4A45993, 0xCACA96B8,
135     0x68683BA6, 0xB8B84D83, 0x38382820, 0xE5E52EFF, 0xADAD569F, 0x0B0B8477,
136     0xC8C81DC3, 0x9999FFCC, 0x5858ED03, 0x19199A6F, 0x0E0E0A08, 0x95957EBF,
137     0x70705040, 0xF7F730E7, 0x6E6ECF2B, 0x1F1F6EE2, 0xB5B53D79, 0x09090F0C,
138     0x616134AA, 0x57571682, 0x9F9F0B41, 0x9D9D803A, 0x111164EA, 0x2525CDB9,
139     0xAFAFDDE4, 0x4545089A, 0xDFDF8DA4, 0xA3A35C97, 0xEAEAD57E, 0x353558DA,
140     0xEDEDD07A, 0x4343FC17, 0xF8F8CB66, 0xFBFBB194, 0x3737D3A1, 0xFAFA401D,
141     0xC2C2683D, 0xB4B4CCF0, 0x32325DDE, 0x9C9C71B3, 0x5656E70B, 0xE3E3DA72,
142     0x878760A7, 0x15151B1C, 0xF9F93AEF, 0x6363BFD1, 0x3434A953, 0x9A9A853E,
143     0xB1B1428F, 0x7C7CD133, 0x88889B26, 0x3D3DA65F, 0xA1A1D7EC, 0xE4E4DF76,
144     0x8181942A, 0x91910149, 0x0F0FFB81, 0xEEEEAA88, 0x161661EE, 0xD7D77321,
145     0x9797F5C4, 0xA5A5A81A, 0xFEFE3FEB, 0x6D6DB5D9, 0x7878AEC5, 0xC5C56D39,
146     0x1D1DE599, 0x7676A4CD, 0x3E3EDCAD, 0xCBCB6731, 0xB6B6478B, 0xEFEF5B01,
147     0x12121E18, 0x6060C523, 0x6A6AB0DD, 0x4D4DF61F, 0xCECEE94E, 0xDEDE7C2D,
148     0x55559DF9, 0x7E7E5A48, 0x2121B24F, 0x03037AF2, 0xA0A02665, 0x5E5E198E,
149     0x5A5A6678, 0x65654B5C, 0x62624E58, 0xFDFD4519, 0x0606F48D, 0x404086E5,
150     0xF2F2BE98, 0x3333AC57, 0x17179067, 0x05058E7F, 0xE8E85E05, 0x4F4F7D64,
151     0x89896AAF, 0x10109563, 0x74742FB6, 0x0A0A75FE, 0x5C5C92F5, 0x9B9B74B7,
152     0x2D2D333C, 0x3030D6A5, 0x2E2E49CE, 0x494989E9, 0x46467268, 0x77775544,
153     0xA8A8D8E0, 0x9696044D, 0x2828BD43, 0xA9A92969, 0xD9D97929, 0x8686912E,
154     0xD1D187AC, 0xF4F44A15, 0x8D8D1559, 0xD6D682A8, 0xB9B9BC0A, 0x42420D9E,
155     0xF6F6C16E, 0x2F2FB847, 0xDDDD06DF, 0x23233934, 0xCCCC6235, 0xF1F1C46A,
156     0xC1C112CF, 0x8585EBDC, 0x8F8F9E22, 0x7171A1C9, 0x9090F0C0, 0xAAAA539B,
157     0x0101F189, 0x8B8BE1D4, 0x4E4E8CED, 0x8E8E6FAB, 0xABABA212, 0x6F6F3EA2,
158     0xE6E6540D, 0xDBDBF252, 0x92927BBB, 0xB7B7B602, 0x6969CA2F, 0x3939D9A9,
159     0xD3D30CD7, 0xA7A72361, 0xA2A2AD1E, 0xC3C399B4, 0x6C6C4450, 0x07070504,
160     0x04047FF6, 0x272746C2, 0xACACA716, 0xD0D07625, 0x50501386, 0xDCDCF756,
161     0x84841A55, 0xE1E15109, 0x7A7A25BE, 0x1313EF91},
162 
163    {0xA9D93939, 0x67901717, 0xB3719C9C, 0xE8D2A6A6, 0x04050707, 0xFD985252,
164     0xA3658080, 0x76DFE4E4, 0x9A084545, 0x92024B4B, 0x80A0E0E0, 0x78665A5A,
165     0xE4DDAFAF, 0xDDB06A6A, 0xD1BF6363, 0x38362A2A, 0x0D54E6E6, 0xC6432020,
166     0x3562CCCC, 0x98BEF2F2, 0x181E1212, 0xF724EBEB, 0xECD7A1A1, 0x6C774141,
167     0x43BD2828, 0x7532BCBC, 0x37D47B7B, 0x269B8888, 0xFA700D0D, 0x13F94444,
168     0x94B1FBFB, 0x485A7E7E, 0xF27A0303, 0xD0E48C8C, 0x8B47B6B6, 0x303C2424,
169     0x84A5E7E7, 0x54416B6B, 0xDF06DDDD, 0x23C56060, 0x1945FDFD, 0x5BA33A3A,
170     0x3D68C2C2, 0x59158D8D, 0xF321ECEC, 0xAE316666, 0xA23E6F6F, 0x82165757,
171     0x63951010, 0x015BEFEF, 0x834DB8B8, 0x2E918686, 0xD9B56D6D, 0x511F8383,
172     0x9B53AAAA, 0x7C635D5D, 0xA63B6868, 0xEB3FFEFE, 0xA5D63030, 0xBE257A7A,
173     0x16A7ACAC, 0x0C0F0909, 0xE335F0F0, 0x6123A7A7, 0xC0F09090, 0x8CAFE9E9,
174     0x3A809D9D, 0xF5925C5C, 0x73810C0C, 0x2C273131, 0x2576D0D0, 0x0BE75656,
175     0xBB7B9292, 0x4EE9CECE, 0x89F10101, 0x6B9F1E1E, 0x53A93434, 0x6AC4F1F1,
176     0xB499C3C3, 0xF1975B5B, 0xE1834747, 0xE66B1818, 0xBDC82222, 0x450E9898,
177     0xE26E1F1F, 0xF4C9B3B3, 0xB62F7474, 0x66CBF8F8, 0xCCFF9999, 0x95EA1414,
178     0x03ED5858, 0x56F7DCDC, 0xD4E18B8B, 0x1C1B1515, 0x1EADA2A2, 0xD70CD3D3,
179     0xFB2BE2E2, 0xC31DC8C8, 0x8E195E5E, 0xB5C22C2C, 0xE9894949, 0xCF12C1C1,
180     0xBF7E9595, 0xBA207D7D, 0xEA641111, 0x77840B0B, 0x396DC5C5, 0xAF6A8989,
181     0x33D17C7C, 0xC9A17171, 0x62CEFFFF, 0x7137BBBB, 0x81FB0F0F, 0x793DB5B5,
182     0x0951E1E1, 0xADDC3E3E, 0x242D3F3F, 0xCDA47676, 0xF99D5555, 0xD8EE8282,
183     0xE5864040, 0xC5AE7878, 0xB9CD2525, 0x4D049696, 0x44557777, 0x080A0E0E,
184     0x86135050, 0xE730F7F7, 0xA1D33737, 0x1D40FAFA, 0xAA346161, 0xED8C4E4E,
185     0x06B3B0B0, 0x706C5454, 0xB22A7373, 0xD2523B3B, 0x410B9F9F, 0x7B8B0202,
186     0xA088D8D8, 0x114FF3F3, 0x3167CBCB, 0xC2462727, 0x27C06767, 0x90B4FCFC,
187     0x20283838, 0xF67F0404, 0x60784848, 0xFF2EE5E5, 0x96074C4C, 0x5C4B6565,
188     0xB1C72B2B, 0xAB6F8E8E, 0x9E0D4242, 0x9CBBF5F5, 0x52F2DBDB, 0x1BF34A4A,
189     0x5FA63D3D, 0x9359A4A4, 0x0ABCB9B9, 0xEF3AF9F9, 0x91EF1313, 0x85FE0808,
190     0x49019191, 0xEE611616, 0x2D7CDEDE, 0x4FB22121, 0x8F42B1B1, 0x3BDB7272,
191     0x47B82F2F, 0x8748BFBF, 0x6D2CAEAE, 0x46E3C0C0, 0xD6573C3C, 0x3E859A9A,
192     0x6929A9A9, 0x647D4F4F, 0x2A948181, 0xCE492E2E, 0xCB17C6C6, 0x2FCA6969,
193     0xFCC3BDBD, 0x975CA3A3, 0x055EE8E8, 0x7AD0EDED, 0xAC87D1D1, 0x7F8E0505,
194     0xD5BA6464, 0x1AA8A5A5, 0x4BB72626, 0x0EB9BEBE, 0xA7608787, 0x5AF8D5D5,
195     0x28223636, 0x14111B1B, 0x3FDE7575, 0x2979D9D9, 0x88AAEEEE, 0x3C332D2D,
196     0x4C5F7979, 0x02B6B7B7, 0xB896CACA, 0xDA583535, 0xB09CC4C4, 0x17FC4343,
197     0x551A8484, 0x1FF64D4D, 0x8A1C5959, 0x7D38B2B2, 0x57AC3333, 0xC718CFCF,
198     0x8DF40606, 0x74695353, 0xB7749B9B, 0xC4F59797, 0x9F56ADAD, 0x72DAE3E3,
199     0x7ED5EAEA, 0x154AF4F4, 0x229E8F8F, 0x12A2ABAB, 0x584E6262, 0x07E85F5F,
200     0x99E51D1D, 0x34392323, 0x6EC1F6F6, 0x50446C6C, 0xDE5D3232, 0x68724646,
201     0x6526A0A0, 0xBC93CDCD, 0xDB03DADA, 0xF8C6BABA, 0xC8FA9E9E, 0xA882D6D6,
202     0x2BCF6E6E, 0x40507070, 0xDCEB8585, 0xFE750A0A, 0x328A9393, 0xA48DDFDF,
203     0xCA4C2929, 0x10141C1C, 0x2173D7D7, 0xF0CCB4B4, 0xD309D4D4, 0x5D108A8A,
204     0x0FE25151, 0x00000000, 0x6F9A1919, 0x9DE01A1A, 0x368F9494, 0x42E6C7C7,
205     0x4AECC9C9, 0x5EFDD2D2, 0xC1AB7F7F, 0xE0D8A8A8},
206 
207    {0xBC75BC32, 0xECF3EC21, 0x20C62043, 0xB3F4B3C9, 0xDADBDA03, 0x027B028B,
208     0xE2FBE22B, 0x9EC89EFA, 0xC94AC9EC, 0xD4D3D409, 0x18E6186B, 0x1E6B1E9F,
209     0x9845980E, 0xB27DB238, 0xA6E8A6D2, 0x264B26B7, 0x3CD63C57, 0x9332938A,
210     0x82D882EE, 0x52FD5298, 0x7B377BD4, 0xBB71BB37, 0x5BF15B97, 0x47E14783,
211     0x2430243C, 0x510F51E2, 0xBAF8BAC6, 0x4A1B4AF3, 0xBF87BF48, 0x0DFA0D70,
212     0xB006B0B3, 0x753F75DE, 0xD25ED2FD, 0x7DBA7D20, 0x66AE6631, 0x3A5B3AA3,
213     0x598A591C, 0x00000000, 0xCDBCCD93, 0x1A9D1AE0, 0xAE6DAE2C, 0x7FC17FAB,
214     0x2BB12BC7, 0xBE0EBEB9, 0xE080E0A0, 0x8A5D8A10, 0x3BD23B52, 0x64D564BA,
215     0xD8A0D888, 0xE784E7A5, 0x5F075FE8, 0x1B141B11, 0x2CB52CC2, 0xFC90FCB4,
216     0x312C3127, 0x80A38065, 0x73B2732A, 0x0C730C81, 0x794C795F, 0x6B546B41,
217     0x4B924B02, 0x53745369, 0x9436948F, 0x8351831F, 0x2A382A36, 0xC4B0C49C,
218     0x22BD22C8, 0xD55AD5F8, 0xBDFCBDC3, 0x48604878, 0xFF62FFCE, 0x4C964C07,
219     0x416C4177, 0xC742C7E6, 0xEBF7EB24, 0x1C101C14, 0x5D7C5D63, 0x36283622,
220     0x672767C0, 0xE98CE9AF, 0x441344F9, 0x149514EA, 0xF59CF5BB, 0xCFC7CF18,
221     0x3F243F2D, 0xC046C0E3, 0x723B72DB, 0x5470546C, 0x29CA294C, 0xF0E3F035,
222     0x088508FE, 0xC6CBC617, 0xF311F34F, 0x8CD08CE4, 0xA493A459, 0xCAB8CA96,
223     0x68A6683B, 0xB883B84D, 0x38203828, 0xE5FFE52E, 0xAD9FAD56, 0x0B770B84,
224     0xC8C3C81D, 0x99CC99FF, 0x580358ED, 0x196F199A, 0x0E080E0A, 0x95BF957E,
225     0x70407050, 0xF7E7F730, 0x6E2B6ECF, 0x1FE21F6E, 0xB579B53D, 0x090C090F,
226     0x61AA6134, 0x57825716, 0x9F419F0B, 0x9D3A9D80, 0x11EA1164, 0x25B925CD,
227     0xAFE4AFDD, 0x459A4508, 0xDFA4DF8D, 0xA397A35C, 0xEA7EEAD5, 0x35DA3558,
228     0xED7AEDD0, 0x431743FC, 0xF866F8CB, 0xFB94FBB1, 0x37A137D3, 0xFA1DFA40,
229     0xC23DC268, 0xB4F0B4CC, 0x32DE325D, 0x9CB39C71, 0x560B56E7, 0xE372E3DA,
230     0x87A78760, 0x151C151B, 0xF9EFF93A, 0x63D163BF, 0x345334A9, 0x9A3E9A85,
231     0xB18FB142, 0x7C337CD1, 0x8826889B, 0x3D5F3DA6, 0xA1ECA1D7, 0xE476E4DF,
232     0x812A8194, 0x91499101, 0x0F810FFB, 0xEE88EEAA, 0x16EE1661, 0xD721D773,
233     0x97C497F5, 0xA51AA5A8, 0xFEEBFE3F, 0x6DD96DB5, 0x78C578AE, 0xC539C56D,
234     0x1D991DE5, 0x76CD76A4, 0x3EAD3EDC, 0xCB31CB67, 0xB68BB647, 0xEF01EF5B,
235     0x1218121E, 0x602360C5, 0x6ADD6AB0, 0x4D1F4DF6, 0xCE4ECEE9, 0xDE2DDE7C,
236     0x55F9559D, 0x7E487E5A, 0x214F21B2, 0x03F2037A, 0xA065A026, 0x5E8E5E19,
237     0x5A785A66, 0x655C654B, 0x6258624E, 0xFD19FD45, 0x068D06F4, 0x40E54086,
238     0xF298F2BE, 0x335733AC, 0x17671790, 0x057F058E, 0xE805E85E, 0x4F644F7D,
239     0x89AF896A, 0x10631095, 0x74B6742F, 0x0AFE0A75, 0x5CF55C92, 0x9BB79B74,
240     0x2D3C2D33, 0x30A530D6, 0x2ECE2E49, 0x49E94989, 0x46684672, 0x77447755,
241     0xA8E0A8D8, 0x964D9604, 0x284328BD, 0xA969A929, 0xD929D979, 0x862E8691,
242     0xD1ACD187, 0xF415F44A, 0x8D598D15, 0xD6A8D682, 0xB90AB9BC, 0x429E420D,
243     0xF66EF6C1, 0x2F472FB8, 0xDDDFDD06, 0x23342339, 0xCC35CC62, 0xF16AF1C4,
244     0xC1CFC112, 0x85DC85EB, 0x8F228F9E, 0x71C971A1, 0x90C090F0, 0xAA9BAA53,
245     0x018901F1, 0x8BD48BE1, 0x4EED4E8C, 0x8EAB8E6F, 0xAB12ABA2, 0x6FA26F3E,
246     0xE60DE654, 0xDB52DBF2, 0x92BB927B, 0xB702B7B6, 0x692F69CA, 0x39A939D9,
247     0xD3D7D30C, 0xA761A723, 0xA21EA2AD, 0xC3B4C399, 0x6C506C44, 0x07040705,
248     0x04F6047F, 0x27C22746, 0xAC16ACA7, 0xD025D076, 0x50865013, 0xDC56DCF7,
249     0x8455841A, 0xE109E151, 0x7ABE7A25, 0x139113EF},
250 
251    {0xD939A9D9, 0x90176790, 0x719CB371, 0xD2A6E8D2, 0x05070405, 0x9852FD98,
252     0x6580A365, 0xDFE476DF, 0x08459A08, 0x024B9202, 0xA0E080A0, 0x665A7866,
253     0xDDAFE4DD, 0xB06ADDB0, 0xBF63D1BF, 0x362A3836, 0x54E60D54, 0x4320C643,
254     0x62CC3562, 0xBEF298BE, 0x1E12181E, 0x24EBF724, 0xD7A1ECD7, 0x77416C77,
255     0xBD2843BD, 0x32BC7532, 0xD47B37D4, 0x9B88269B, 0x700DFA70, 0xF94413F9,
256     0xB1FB94B1, 0x5A7E485A, 0x7A03F27A, 0xE48CD0E4, 0x47B68B47, 0x3C24303C,
257     0xA5E784A5, 0x416B5441, 0x06DDDF06, 0xC56023C5, 0x45FD1945, 0xA33A5BA3,
258     0x68C23D68, 0x158D5915, 0x21ECF321, 0x3166AE31, 0x3E6FA23E, 0x16578216,
259     0x95106395, 0x5BEF015B, 0x4DB8834D, 0x91862E91, 0xB56DD9B5, 0x1F83511F,
260     0x53AA9B53, 0x635D7C63, 0x3B68A63B, 0x3FFEEB3F, 0xD630A5D6, 0x257ABE25,
261     0xA7AC16A7, 0x0F090C0F, 0x35F0E335, 0x23A76123, 0xF090C0F0, 0xAFE98CAF,
262     0x809D3A80, 0x925CF592, 0x810C7381, 0x27312C27, 0x76D02576, 0xE7560BE7,
263     0x7B92BB7B, 0xE9CE4EE9, 0xF10189F1, 0x9F1E6B9F, 0xA93453A9, 0xC4F16AC4,
264     0x99C3B499, 0x975BF197, 0x8347E183, 0x6B18E66B, 0xC822BDC8, 0x0E98450E,
265     0x6E1FE26E, 0xC9B3F4C9, 0x2F74B62F, 0xCBF866CB, 0xFF99CCFF, 0xEA1495EA,
266     0xED5803ED, 0xF7DC56F7, 0xE18BD4E1, 0x1B151C1B, 0xADA21EAD, 0x0CD3D70C,
267     0x2BE2FB2B, 0x1DC8C31D, 0x195E8E19, 0xC22CB5C2, 0x8949E989, 0x12C1CF12,
268     0x7E95BF7E, 0x207DBA20, 0x6411EA64, 0x840B7784, 0x6DC5396D, 0x6A89AF6A,
269     0xD17C33D1, 0xA171C9A1, 0xCEFF62CE, 0x37BB7137, 0xFB0F81FB, 0x3DB5793D,
270     0x51E10951, 0xDC3EADDC, 0x2D3F242D, 0xA476CDA4, 0x9D55F99D, 0xEE82D8EE,
271     0x8640E586, 0xAE78C5AE, 0xCD25B9CD, 0x04964D04, 0x55774455, 0x0A0E080A,
272     0x13508613, 0x30F7E730, 0xD337A1D3, 0x40FA1D40, 0x3461AA34, 0x8C4EED8C,
273     0xB3B006B3, 0x6C54706C, 0x2A73B22A, 0x523BD252, 0x0B9F410B, 0x8B027B8B,
274     0x88D8A088, 0x4FF3114F, 0x67CB3167, 0x4627C246, 0xC06727C0, 0xB4FC90B4,
275     0x28382028, 0x7F04F67F, 0x78486078, 0x2EE5FF2E, 0x074C9607, 0x4B655C4B,
276     0xC72BB1C7, 0x6F8EAB6F, 0x0D429E0D, 0xBBF59CBB, 0xF2DB52F2, 0xF34A1BF3,
277     0xA63D5FA6, 0x59A49359, 0xBCB90ABC, 0x3AF9EF3A, 0xEF1391EF, 0xFE0885FE,
278     0x01914901, 0x6116EE61, 0x7CDE2D7C, 0xB2214FB2, 0x42B18F42, 0xDB723BDB,
279     0xB82F47B8, 0x48BF8748, 0x2CAE6D2C, 0xE3C046E3, 0x573CD657, 0x859A3E85,
280     0x29A96929, 0x7D4F647D, 0x94812A94, 0x492ECE49, 0x17C6CB17, 0xCA692FCA,
281     0xC3BDFCC3, 0x5CA3975C, 0x5EE8055E, 0xD0ED7AD0, 0x87D1AC87, 0x8E057F8E,
282     0xBA64D5BA, 0xA8A51AA8, 0xB7264BB7, 0xB9BE0EB9, 0x6087A760, 0xF8D55AF8,
283     0x22362822, 0x111B1411, 0xDE753FDE, 0x79D92979, 0xAAEE88AA, 0x332D3C33,
284     0x5F794C5F, 0xB6B702B6, 0x96CAB896, 0x5835DA58, 0x9CC4B09C, 0xFC4317FC,
285     0x1A84551A, 0xF64D1FF6, 0x1C598A1C, 0x38B27D38, 0xAC3357AC, 0x18CFC718,
286     0xF4068DF4, 0x69537469, 0x749BB774, 0xF597C4F5, 0x56AD9F56, 0xDAE372DA,
287     0xD5EA7ED5, 0x4AF4154A, 0x9E8F229E, 0xA2AB12A2, 0x4E62584E, 0xE85F07E8,
288     0xE51D99E5, 0x39233439, 0xC1F66EC1, 0x446C5044, 0x5D32DE5D, 0x72466872,
289     0x26A06526, 0x93CDBC93, 0x03DADB03, 0xC6BAF8C6, 0xFA9EC8FA, 0x82D6A882,
290     0xCF6E2BCF, 0x50704050, 0xEB85DCEB, 0x750AFE75, 0x8A93328A, 0x8DDFA48D,
291     0x4C29CA4C, 0x141C1014, 0x73D72173, 0xCCB4F0CC, 0x09D4D309, 0x108A5D10,
292     0xE2510FE2, 0x00000000, 0x9A196F9A, 0xE01A9DE0, 0x8F94368F, 0xE6C742E6,
293     0xECC94AEC, 0xFDD25EFD, 0xAB7FC1AB, 0xD8A8E0D8}
294 };
295 
296 /* The exp_to_poly and poly_to_exp tables are used to perform efficient
297  * operations in GF(2^8) represented as GF(2)[x]/w(x) where
298  * w(x)=x^8+x^6+x^3+x^2+1.  We care about doing that because it's part of the
299  * definition of the RS matrix in the key schedule.  Elements of that field
300  * are polynomials of degree not greater than 7 and all coefficients 0 or 1,
301  * which can be represented naturally by bytes (just substitute x=2).  In that
302  * form, GF(2^8) addition is the same as bitwise XOR, but GF(2^8)
303  * multiplication is inefficient without hardware support.  To multiply
304  * faster, I make use of the fact x is a generator for the nonzero elements,
305  * so that every element p of GF(2)[x]/w(x) is either 0 or equal to (x)^n for
306  * some n in 0..254.  Note that that caret is exponentiation in GF(2^8),
307  * *not* polynomial notation.  So if I want to compute pq where p and q are
308  * in GF(2^8), I can just say:
309  *    1. if p=0 or q=0 then pq=0
310  *    2. otherwise, find m and n such that p=x^m and q=x^n
311  *    3. pq=(x^m)(x^n)=x^(m+n), so add m and n and find pq
312  * The translations in steps 2 and 3 are looked up in the tables
313  * poly_to_exp (for step 2) and exp_to_poly (for step 3).  To see this
314  * in action, look at the CALC_S macro.  As additional wrinkles, note that
315  * one of my operands is always a constant, so the poly_to_exp lookup on it
316  * is done in advance; I included the original values in the comments so
317  * readers can have some chance of recognizing that this *is* the RS matrix
318  * from the Twofish paper.  I've only included the table entries I actually
319  * need; I never do a lookup on a variable input of zero and the biggest
320  * exponents I'll ever see are 254 (variable) and 237 (constant), so they'll
321  * never sum to more than 491.	I'm repeating part of the exp_to_poly table
322  * so that I don't have to do mod-255 reduction in the exponent arithmetic.
323  * Since I know my constant operands are never zero, I only have to worry
324  * about zero values in the variable operand, and I do it with a simple
325  * conditional branch.	I know conditionals are expensive, but I couldn't
326  * see a non-horrible way of avoiding them, and I did manage to group the
327  * statements so that each if covers four group multiplications. */
328 
329 static const u8 poly_to_exp[255] = {
330    0x00, 0x01, 0x17, 0x02, 0x2E, 0x18, 0x53, 0x03, 0x6A, 0x2F, 0x93, 0x19,
331    0x34, 0x54, 0x45, 0x04, 0x5C, 0x6B, 0xB6, 0x30, 0xA6, 0x94, 0x4B, 0x1A,
332    0x8C, 0x35, 0x81, 0x55, 0xAA, 0x46, 0x0D, 0x05, 0x24, 0x5D, 0x87, 0x6C,
333    0x9B, 0xB7, 0xC1, 0x31, 0x2B, 0xA7, 0xA3, 0x95, 0x98, 0x4C, 0xCA, 0x1B,
334    0xE6, 0x8D, 0x73, 0x36, 0xCD, 0x82, 0x12, 0x56, 0x62, 0xAB, 0xF0, 0x47,
335    0x4F, 0x0E, 0xBD, 0x06, 0xD4, 0x25, 0xD2, 0x5E, 0x27, 0x88, 0x66, 0x6D,
336    0xD6, 0x9C, 0x79, 0xB8, 0x08, 0xC2, 0xDF, 0x32, 0x68, 0x2C, 0xFD, 0xA8,
337    0x8A, 0xA4, 0x5A, 0x96, 0x29, 0x99, 0x22, 0x4D, 0x60, 0xCB, 0xE4, 0x1C,
338    0x7B, 0xE7, 0x3B, 0x8E, 0x9E, 0x74, 0xF4, 0x37, 0xD8, 0xCE, 0xF9, 0x83,
339    0x6F, 0x13, 0xB2, 0x57, 0xE1, 0x63, 0xDC, 0xAC, 0xC4, 0xF1, 0xAF, 0x48,
340    0x0A, 0x50, 0x42, 0x0F, 0xBA, 0xBE, 0xC7, 0x07, 0xDE, 0xD5, 0x78, 0x26,
341    0x65, 0xD3, 0xD1, 0x5F, 0xE3, 0x28, 0x21, 0x89, 0x59, 0x67, 0xFC, 0x6E,
342    0xB1, 0xD7, 0xF8, 0x9D, 0xF3, 0x7A, 0x3A, 0xB9, 0xC6, 0x09, 0x41, 0xC3,
343    0xAE, 0xE0, 0xDB, 0x33, 0x44, 0x69, 0x92, 0x2D, 0x52, 0xFE, 0x16, 0xA9,
344    0x0C, 0x8B, 0x80, 0xA5, 0x4A, 0x5B, 0xB5, 0x97, 0xC9, 0x2A, 0xA2, 0x9A,
345    0xC0, 0x23, 0x86, 0x4E, 0xBC, 0x61, 0xEF, 0xCC, 0x11, 0xE5, 0x72, 0x1D,
346    0x3D, 0x7C, 0xEB, 0xE8, 0xE9, 0x3C, 0xEA, 0x8F, 0x7D, 0x9F, 0xEC, 0x75,
347    0x1E, 0xF5, 0x3E, 0x38, 0xF6, 0xD9, 0x3F, 0xCF, 0x76, 0xFA, 0x1F, 0x84,
348    0xA0, 0x70, 0xED, 0x14, 0x90, 0xB3, 0x7E, 0x58, 0xFB, 0xE2, 0x20, 0x64,
349    0xD0, 0xDD, 0x77, 0xAD, 0xDA, 0xC5, 0x40, 0xF2, 0x39, 0xB0, 0xF7, 0x49,
350    0xB4, 0x0B, 0x7F, 0x51, 0x15, 0x43, 0x91, 0x10, 0x71, 0xBB, 0xEE, 0xBF,
351    0x85, 0xC8, 0xA1
352 };
353 
354 static const u8 exp_to_poly[492] = {
355    0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, 0x9A, 0x79, 0xF2,
356    0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, 0xF5, 0xA7, 0x03,
357    0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, 0x8B, 0x5B, 0xB6,
358    0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, 0xA4, 0x05, 0x0A,
359    0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xED, 0x97, 0x63,
360    0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, 0x0F, 0x1E, 0x3C,
361    0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, 0xF4, 0xA5, 0x07,
362    0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, 0x22, 0x44, 0x88,
363    0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, 0xA2, 0x09, 0x12,
364    0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, 0xCC, 0xD5, 0xE7,
365    0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, 0x1B, 0x36, 0x6C,
366    0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, 0x32, 0x64, 0xC8,
367    0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, 0x5A, 0xB4, 0x25,
368    0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, 0xAC, 0x15, 0x2A,
369    0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, 0x91, 0x6F, 0xDE,
370    0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, 0x3F, 0x7E, 0xFC,
371    0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, 0xB1, 0x2F, 0x5E,
372    0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, 0x82, 0x49, 0x92,
373    0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, 0x71, 0xE2, 0x89,
374    0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, 0xDB, 0xFB, 0xBB,
375    0x3B, 0x76, 0xEC, 0x95, 0x67, 0xCE, 0xD1, 0xEF, 0x93, 0x6B, 0xD6, 0xE1,
376    0x8F, 0x53, 0xA6, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D,
377    0x9A, 0x79, 0xF2, 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC,
378    0xF5, 0xA7, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3,
379    0x8B, 0x5B, 0xB6, 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52,
380    0xA4, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0,
381    0xED, 0x97, 0x63, 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1,
382    0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A,
383    0xF4, 0xA5, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11,
384    0x22, 0x44, 0x88, 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51,
385    0xA2, 0x09, 0x12, 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66,
386    0xCC, 0xD5, 0xE7, 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB,
387    0x1B, 0x36, 0x6C, 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19,
388    0x32, 0x64, 0xC8, 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D,
389    0x5A, 0xB4, 0x25, 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56,
390    0xAC, 0x15, 0x2A, 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE,
391    0x91, 0x6F, 0xDE, 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9,
392    0x3F, 0x7E, 0xFC, 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE,
393    0xB1, 0x2F, 0x5E, 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41,
394    0x82, 0x49, 0x92, 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E,
395    0x71, 0xE2, 0x89, 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB
396 };
397 
398 
399 /* The table constants are indices of
400  * S-box entries, preprocessed through q0 and q1. */
401 static const u8 calc_sb_tbl[512] = {
402     0xA9, 0x75, 0x67, 0xF3, 0xB3, 0xC6, 0xE8, 0xF4,
403     0x04, 0xDB, 0xFD, 0x7B, 0xA3, 0xFB, 0x76, 0xC8,
404     0x9A, 0x4A, 0x92, 0xD3, 0x80, 0xE6, 0x78, 0x6B,
405     0xE4, 0x45, 0xDD, 0x7D, 0xD1, 0xE8, 0x38, 0x4B,
406     0x0D, 0xD6, 0xC6, 0x32, 0x35, 0xD8, 0x98, 0xFD,
407     0x18, 0x37, 0xF7, 0x71, 0xEC, 0xF1, 0x6C, 0xE1,
408     0x43, 0x30, 0x75, 0x0F, 0x37, 0xF8, 0x26, 0x1B,
409     0xFA, 0x87, 0x13, 0xFA, 0x94, 0x06, 0x48, 0x3F,
410     0xF2, 0x5E, 0xD0, 0xBA, 0x8B, 0xAE, 0x30, 0x5B,
411     0x84, 0x8A, 0x54, 0x00, 0xDF, 0xBC, 0x23, 0x9D,
412     0x19, 0x6D, 0x5B, 0xC1, 0x3D, 0xB1, 0x59, 0x0E,
413     0xF3, 0x80, 0xAE, 0x5D, 0xA2, 0xD2, 0x82, 0xD5,
414     0x63, 0xA0, 0x01, 0x84, 0x83, 0x07, 0x2E, 0x14,
415     0xD9, 0xB5, 0x51, 0x90, 0x9B, 0x2C, 0x7C, 0xA3,
416     0xA6, 0xB2, 0xEB, 0x73, 0xA5, 0x4C, 0xBE, 0x54,
417     0x16, 0x92, 0x0C, 0x74, 0xE3, 0x36, 0x61, 0x51,
418     0xC0, 0x38, 0x8C, 0xB0, 0x3A, 0xBD, 0xF5, 0x5A,
419     0x73, 0xFC, 0x2C, 0x60, 0x25, 0x62, 0x0B, 0x96,
420     0xBB, 0x6C, 0x4E, 0x42, 0x89, 0xF7, 0x6B, 0x10,
421     0x53, 0x7C, 0x6A, 0x28, 0xB4, 0x27, 0xF1, 0x8C,
422     0xE1, 0x13, 0xE6, 0x95, 0xBD, 0x9C, 0x45, 0xC7,
423     0xE2, 0x24, 0xF4, 0x46, 0xB6, 0x3B, 0x66, 0x70,
424     0xCC, 0xCA, 0x95, 0xE3, 0x03, 0x85, 0x56, 0xCB,
425     0xD4, 0x11, 0x1C, 0xD0, 0x1E, 0x93, 0xD7, 0xB8,
426     0xFB, 0xA6, 0xC3, 0x83, 0x8E, 0x20, 0xB5, 0xFF,
427     0xE9, 0x9F, 0xCF, 0x77, 0xBF, 0xC3, 0xBA, 0xCC,
428     0xEA, 0x03, 0x77, 0x6F, 0x39, 0x08, 0xAF, 0xBF,
429     0x33, 0x40, 0xC9, 0xE7, 0x62, 0x2B, 0x71, 0xE2,
430     0x81, 0x79, 0x79, 0x0C, 0x09, 0xAA, 0xAD, 0x82,
431     0x24, 0x41, 0xCD, 0x3A, 0xF9, 0xEA, 0xD8, 0xB9,
432     0xE5, 0xE4, 0xC5, 0x9A, 0xB9, 0xA4, 0x4D, 0x97,
433     0x44, 0x7E, 0x08, 0xDA, 0x86, 0x7A, 0xE7, 0x17,
434     0xA1, 0x66, 0x1D, 0x94, 0xAA, 0xA1, 0xED, 0x1D,
435     0x06, 0x3D, 0x70, 0xF0, 0xB2, 0xDE, 0xD2, 0xB3,
436     0x41, 0x0B, 0x7B, 0x72, 0xA0, 0xA7, 0x11, 0x1C,
437     0x31, 0xEF, 0xC2, 0xD1, 0x27, 0x53, 0x90, 0x3E,
438     0x20, 0x8F, 0xF6, 0x33, 0x60, 0x26, 0xFF, 0x5F,
439     0x96, 0xEC, 0x5C, 0x76, 0xB1, 0x2A, 0xAB, 0x49,
440     0x9E, 0x81, 0x9C, 0x88, 0x52, 0xEE, 0x1B, 0x21,
441     0x5F, 0xC4, 0x93, 0x1A, 0x0A, 0xEB, 0xEF, 0xD9,
442     0x91, 0xC5, 0x85, 0x39, 0x49, 0x99, 0xEE, 0xCD,
443     0x2D, 0xAD, 0x4F, 0x31, 0x8F, 0x8B, 0x3B, 0x01,
444     0x47, 0x18, 0x87, 0x23, 0x6D, 0xDD, 0x46, 0x1F,
445     0xD6, 0x4E, 0x3E, 0x2D, 0x69, 0xF9, 0x64, 0x48,
446     0x2A, 0x4F, 0xCE, 0xF2, 0xCB, 0x65, 0x2F, 0x8E,
447     0xFC, 0x78, 0x97, 0x5C, 0x05, 0x58, 0x7A, 0x19,
448     0xAC, 0x8D, 0x7F, 0xE5, 0xD5, 0x98, 0x1A, 0x57,
449     0x4B, 0x67, 0x0E, 0x7F, 0xA7, 0x05, 0x5A, 0x64,
450     0x28, 0xAF, 0x14, 0x63, 0x3F, 0xB6, 0x29, 0xFE,
451     0x88, 0xF5, 0x3C, 0xB7, 0x4C, 0x3C, 0x02, 0xA5,
452     0xB8, 0xCE, 0xDA, 0xE9, 0xB0, 0x68, 0x17, 0x44,
453     0x55, 0xE0, 0x1F, 0x4D, 0x8A, 0x43, 0x7D, 0x69,
454     0x57, 0x29, 0xC7, 0x2E, 0x8D, 0xAC, 0x74, 0x15,
455     0xB7, 0x59, 0xC4, 0xA8, 0x9F, 0x0A, 0x72, 0x9E,
456     0x7E, 0x6E, 0x15, 0x47, 0x22, 0xDF, 0x12, 0x34,
457     0x58, 0x35, 0x07, 0x6A, 0x99, 0xCF, 0x34, 0xDC,
458     0x6E, 0x22, 0x50, 0xC9, 0xDE, 0xC0, 0x68, 0x9B,
459     0x65, 0x89, 0xBC, 0xD4, 0xDB, 0xED, 0xF8, 0xAB,
460     0xC8, 0x12, 0xA8, 0xA2, 0x2B, 0x0D, 0x40, 0x52,
461     0xDC, 0xBB, 0xFE, 0x02, 0x32, 0x2F, 0xA4, 0xA9,
462     0xCA, 0xD7, 0x10, 0x61, 0x21, 0x1E, 0xF0, 0xB4,
463     0xD3, 0x50, 0x5D, 0x04, 0x0F, 0xF6, 0x00, 0xC2,
464     0x6F, 0x16, 0x9D, 0x25, 0x36, 0x86, 0x42, 0x56,
465     0x4A, 0x55, 0x5E, 0x09, 0xC1, 0xBE, 0xE0, 0x91
466 };
467 
468 /* Macro to perform one column of the RS matrix multiplication.  The
469  * parameters a, b, c, and d are the four bytes of output; i is the index
470  * of the key bytes, and w, x, y, and z, are the column of constants from
471  * the RS matrix, preprocessed through the poly_to_exp table. */
472 
473 #define CALC_S(a, b, c, d, i, w, x, y, z) \
474    if (key[i]) { \
475       tmp = poly_to_exp[key[i] - 1]; \
476       (a) ^= exp_to_poly[tmp + (w)]; \
477       (b) ^= exp_to_poly[tmp + (x)]; \
478       (c) ^= exp_to_poly[tmp + (y)]; \
479       (d) ^= exp_to_poly[tmp + (z)]; \
480    }
481 
482 /* Macros to calculate the key-dependent S-boxes for a 128-bit key using
483  * the S vector from CALC_S.  CALC_SB_2 computes a single entry in all
484  * four S-boxes, where i is the index of the entry to compute, and a and b
485  * are the index numbers preprocessed through the q0 and q1 tables
486  * respectively. */
487 
488 #define CALC_SB_2(i, a, b) \
489    ctx->s[0][i] = mds[0][q0[(a) ^ sa] ^ se]; \
490    ctx->s[1][i] = mds[1][q0[(b) ^ sb] ^ sf]; \
491    ctx->s[2][i] = mds[2][q1[(a) ^ sc] ^ sg]; \
492    ctx->s[3][i] = mds[3][q1[(b) ^ sd] ^ sh]
493 
494 /* Macro exactly like CALC_SB_2, but for 192-bit keys. */
495 
496 #define CALC_SB192_2(i, a, b) \
497    ctx->s[0][i] = mds[0][q0[q0[(b) ^ sa] ^ se] ^ si]; \
498    ctx->s[1][i] = mds[1][q0[q1[(b) ^ sb] ^ sf] ^ sj]; \
499    ctx->s[2][i] = mds[2][q1[q0[(a) ^ sc] ^ sg] ^ sk]; \
500    ctx->s[3][i] = mds[3][q1[q1[(a) ^ sd] ^ sh] ^ sl];
501 
502 /* Macro exactly like CALC_SB_2, but for 256-bit keys. */
503 
504 #define CALC_SB256_2(i, a, b) \
505    ctx->s[0][i] = mds[0][q0[q0[q1[(b) ^ sa] ^ se] ^ si] ^ sm]; \
506    ctx->s[1][i] = mds[1][q0[q1[q1[(a) ^ sb] ^ sf] ^ sj] ^ sn]; \
507    ctx->s[2][i] = mds[2][q1[q0[q0[(a) ^ sc] ^ sg] ^ sk] ^ so]; \
508    ctx->s[3][i] = mds[3][q1[q1[q0[(b) ^ sd] ^ sh] ^ sl] ^ sp];
509 
510 /* Macros to calculate the whitening and round subkeys.  CALC_K_2 computes the
511  * last two stages of the h() function for a given index (either 2i or 2i+1).
512  * a, b, c, and d are the four bytes going into the last two stages.  For
513  * 128-bit keys, this is the entire h() function and a and c are the index
514  * preprocessed through q0 and q1 respectively; for longer keys they are the
515  * output of previous stages.  j is the index of the first key byte to use.
516  * CALC_K computes a pair of subkeys for 128-bit Twofish, by calling CALC_K_2
517  * twice, doing the Pseudo-Hadamard Transform, and doing the necessary
518  * rotations.  Its parameters are: a, the array to write the results into,
519  * j, the index of the first output entry, k and l, the preprocessed indices
520  * for index 2i, and m and n, the preprocessed indices for index 2i+1.
521  * CALC_K192_2 expands CALC_K_2 to handle 192-bit keys, by doing an
522  * additional lookup-and-XOR stage.  The parameters a, b, c and d are the
523  * four bytes going into the last three stages.  For 192-bit keys, c = d
524  * are the index preprocessed through q0, and a = b are the index
525  * preprocessed through q1; j is the index of the first key byte to use.
526  * CALC_K192 is identical to CALC_K but for using the CALC_K192_2 macro
527  * instead of CALC_K_2.
528  * CALC_K256_2 expands CALC_K192_2 to handle 256-bit keys, by doing an
529  * additional lookup-and-XOR stage.  The parameters a and b are the index
530  * preprocessed through q0 and q1 respectively; j is the index of the first
531  * key byte to use.  CALC_K256 is identical to CALC_K but for using the
532  * CALC_K256_2 macro instead of CALC_K_2. */
533 
534 #define CALC_K_2(a, b, c, d, j) \
535      mds[0][q0[a ^ key[(j) + 8]] ^ key[j]] \
536    ^ mds[1][q0[b ^ key[(j) + 9]] ^ key[(j) + 1]] \
537    ^ mds[2][q1[c ^ key[(j) + 10]] ^ key[(j) + 2]] \
538    ^ mds[3][q1[d ^ key[(j) + 11]] ^ key[(j) + 3]]
539 
540 #define CALC_K(a, j, k, l, m, n) \
541    x = CALC_K_2 (k, l, k, l, 0); \
542    y = CALC_K_2 (m, n, m, n, 4); \
543    y = (y << 8) + (y >> 24); \
544    x += y; y += x; ctx->a[j] = x; \
545    ctx->a[(j) + 1] = (y << 9) + (y >> 23)
546 
547 #define CALC_K192_2(a, b, c, d, j) \
548    CALC_K_2 (q0[a ^ key[(j) + 16]], \
549 	     q1[b ^ key[(j) + 17]], \
550 	     q0[c ^ key[(j) + 18]], \
551 	     q1[d ^ key[(j) + 19]], j)
552 
553 #define CALC_K192(a, j, k, l, m, n) \
554    x = CALC_K192_2 (l, l, k, k, 0); \
555    y = CALC_K192_2 (n, n, m, m, 4); \
556    y = (y << 8) + (y >> 24); \
557    x += y; y += x; ctx->a[j] = x; \
558    ctx->a[(j) + 1] = (y << 9) + (y >> 23)
559 
560 #define CALC_K256_2(a, b, j) \
561    CALC_K192_2 (q1[b ^ key[(j) + 24]], \
562 	        q1[a ^ key[(j) + 25]], \
563 	        q0[a ^ key[(j) + 26]], \
564 	        q0[b ^ key[(j) + 27]], j)
565 
566 #define CALC_K256(a, j, k, l, m, n) \
567    x = CALC_K256_2 (k, l, 0); \
568    y = CALC_K256_2 (m, n, 4); \
569    y = (y << 8) + (y >> 24); \
570    x += y; y += x; ctx->a[j] = x; \
571    ctx->a[(j) + 1] = (y << 9) + (y >> 23)
572 
573 
574 /* Macros to compute the g() function in the encryption and decryption
575  * rounds.  G1 is the straight g() function; G2 includes the 8-bit
576  * rotation for the high 32-bit word. */
577 
578 #define G1(a) \
579      (ctx->s[0][(a) & 0xFF]) ^ (ctx->s[1][((a) >> 8) & 0xFF]) \
580    ^ (ctx->s[2][((a) >> 16) & 0xFF]) ^ (ctx->s[3][(a) >> 24])
581 
582 #define G2(b) \
583      (ctx->s[1][(b) & 0xFF]) ^ (ctx->s[2][((b) >> 8) & 0xFF]) \
584    ^ (ctx->s[3][((b) >> 16) & 0xFF]) ^ (ctx->s[0][(b) >> 24])
585 
586 /* Encryption and decryption Feistel rounds.  Each one calls the two g()
587  * macros, does the PHT, and performs the XOR and the appropriate bit
588  * rotations.  The parameters are the round number (used to select subkeys),
589  * and the four 32-bit chunks of the text. */
590 
591 #define ENCROUND(n, a, b, c, d) \
592    x = G1 (a); y = G2 (b); \
593    x += y; y += x + ctx->k[2 * (n) + 1]; \
594    (c) ^= x + ctx->k[2 * (n)]; \
595    (c) = ((c) >> 1) + ((c) << 31); \
596    (d) = (((d) << 1)+((d) >> 31)) ^ y
597 
598 #define DECROUND(n, a, b, c, d) \
599    x = G1 (a); y = G2 (b); \
600    x += y; y += x; \
601    (d) ^= y + ctx->k[2 * (n) + 1]; \
602    (d) = ((d) >> 1) + ((d) << 31); \
603    (c) = (((c) << 1)+((c) >> 31)); \
604    (c) ^= (x + ctx->k[2 * (n)])
605 
606 /* Encryption and decryption cycles; each one is simply two Feistel rounds
607  * with the 32-bit chunks re-ordered to simulate the "swap" */
608 
609 #define ENCCYCLE(n) \
610    ENCROUND (2 * (n), a, b, c, d); \
611    ENCROUND (2 * (n) + 1, c, d, a, b)
612 
613 #define DECCYCLE(n) \
614    DECROUND (2 * (n) + 1, c, d, a, b); \
615    DECROUND (2 * (n), a, b, c, d)
616 
617 /* Macros to convert the input and output bytes into 32-bit words,
618  * and simultaneously perform the whitening step.  INPACK packs word
619  * number n into the variable named by x, using whitening subkey number m.
620  * OUTUNPACK unpacks word number n from the variable named by x, using
621  * whitening subkey number m. */
622 
623 #define INPACK(n, x, m) \
624    x = in[4 * (n)] ^ (in[4 * (n) + 1] << 8) \
625      ^ (in[4 * (n) + 2] << 16) ^ (in[4 * (n) + 3] << 24) ^ ctx->w[m]
626 
627 #define OUTUNPACK(n, x, m) \
628    x ^= ctx->w[m]; \
629    out[4 * (n)] = x; out[4 * (n) + 1] = x >> 8; \
630    out[4 * (n) + 2] = x >> 16; out[4 * (n) + 3] = x >> 24
631 
632 #define TF_MIN_KEY_SIZE 16
633 #define TF_MAX_KEY_SIZE 32
634 #define TF_BLOCK_SIZE 16
635 
636 /* Structure for an expanded Twofish key.  s contains the key-dependent
637  * S-boxes composed with the MDS matrix; w contains the eight "whitening"
638  * subkeys, K[0] through K[7].	k holds the remaining, "round" subkeys.  Note
639  * that k[i] corresponds to what the Twofish paper calls K[i+8]. */
640 struct twofish_ctx {
641    u32 s[4][256], w[8], k[32];
642 };
643 
644 /* Perform the key setup. */
twofish_setkey(void * cx,const u8 * key,unsigned int key_len,u32 * flags)645 static int twofish_setkey(void *cx, const u8 *key,
646                           unsigned int key_len, u32 *flags)
647 {
648 
649 	struct twofish_ctx *ctx = cx;
650 
651 	int i, j, k;
652 
653 	/* Temporaries for CALC_K. */
654 	u32 x, y;
655 
656 	/* The S vector used to key the S-boxes, split up into individual bytes.
657 	 * 128-bit keys use only sa through sh; 256-bit use all of them. */
658 	u8 sa = 0, sb = 0, sc = 0, sd = 0, se = 0, sf = 0, sg = 0, sh = 0;
659 	u8 si = 0, sj = 0, sk = 0, sl = 0, sm = 0, sn = 0, so = 0, sp = 0;
660 
661 	/* Temporary for CALC_S. */
662 	u8 tmp;
663 
664 	/* Check key length. */
665 	if (key_len != 16 && key_len != 24 && key_len != 32)
666 	{
667 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
668 		return -EINVAL; /* unsupported key length */
669 	}
670 
671 	/* Compute the first two words of the S vector.  The magic numbers are
672 	 * the entries of the RS matrix, preprocessed through poly_to_exp. The
673 	 * numbers in the comments are the original (polynomial form) matrix
674 	 * entries. */
675 	CALC_S (sa, sb, sc, sd, 0, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
676 	CALC_S (sa, sb, sc, sd, 1, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
677 	CALC_S (sa, sb, sc, sd, 2, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
678 	CALC_S (sa, sb, sc, sd, 3, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
679 	CALC_S (sa, sb, sc, sd, 4, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
680 	CALC_S (sa, sb, sc, sd, 5, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
681 	CALC_S (sa, sb, sc, sd, 6, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
682 	CALC_S (sa, sb, sc, sd, 7, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
683 	CALC_S (se, sf, sg, sh, 8, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
684 	CALC_S (se, sf, sg, sh, 9, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
685 	CALC_S (se, sf, sg, sh, 10, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
686 	CALC_S (se, sf, sg, sh, 11, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
687 	CALC_S (se, sf, sg, sh, 12, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
688 	CALC_S (se, sf, sg, sh, 13, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
689 	CALC_S (se, sf, sg, sh, 14, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
690 	CALC_S (se, sf, sg, sh, 15, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
691 
692 	if (key_len == 24 || key_len == 32) { /* 192- or 256-bit key */
693 		/* Calculate the third word of the S vector */
694 		CALC_S (si, sj, sk, sl, 16, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
695 		CALC_S (si, sj, sk, sl, 17, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
696 		CALC_S (si, sj, sk, sl, 18, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
697 		CALC_S (si, sj, sk, sl, 19, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
698 		CALC_S (si, sj, sk, sl, 20, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
699 		CALC_S (si, sj, sk, sl, 21, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
700 		CALC_S (si, sj, sk, sl, 22, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
701 		CALC_S (si, sj, sk, sl, 23, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
702 	}
703 
704 	if (key_len == 32) { /* 256-bit key */
705 		/* Calculate the fourth word of the S vector */
706 		CALC_S (sm, sn, so, sp, 24, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
707 		CALC_S (sm, sn, so, sp, 25, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
708 		CALC_S (sm, sn, so, sp, 26, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
709 		CALC_S (sm, sn, so, sp, 27, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
710 		CALC_S (sm, sn, so, sp, 28, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
711 		CALC_S (sm, sn, so, sp, 29, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
712 		CALC_S (sm, sn, so, sp, 30, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
713 		CALC_S (sm, sn, so, sp, 31, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
714 
715 		/* Compute the S-boxes. */
716 		for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
717 			CALC_SB256_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
718 		}
719 
720 		/* Calculate whitening and round subkeys.  The constants are
721 		 * indices of subkeys, preprocessed through q0 and q1. */
722 		CALC_K256 (w, 0, 0xA9, 0x75, 0x67, 0xF3);
723 		CALC_K256 (w, 2, 0xB3, 0xC6, 0xE8, 0xF4);
724 		CALC_K256 (w, 4, 0x04, 0xDB, 0xFD, 0x7B);
725 		CALC_K256 (w, 6, 0xA3, 0xFB, 0x76, 0xC8);
726 		CALC_K256 (k, 0, 0x9A, 0x4A, 0x92, 0xD3);
727 		CALC_K256 (k, 2, 0x80, 0xE6, 0x78, 0x6B);
728 		CALC_K256 (k, 4, 0xE4, 0x45, 0xDD, 0x7D);
729 		CALC_K256 (k, 6, 0xD1, 0xE8, 0x38, 0x4B);
730 		CALC_K256 (k, 8, 0x0D, 0xD6, 0xC6, 0x32);
731 		CALC_K256 (k, 10, 0x35, 0xD8, 0x98, 0xFD);
732 		CALC_K256 (k, 12, 0x18, 0x37, 0xF7, 0x71);
733 		CALC_K256 (k, 14, 0xEC, 0xF1, 0x6C, 0xE1);
734 		CALC_K256 (k, 16, 0x43, 0x30, 0x75, 0x0F);
735 		CALC_K256 (k, 18, 0x37, 0xF8, 0x26, 0x1B);
736 		CALC_K256 (k, 20, 0xFA, 0x87, 0x13, 0xFA);
737 		CALC_K256 (k, 22, 0x94, 0x06, 0x48, 0x3F);
738 		CALC_K256 (k, 24, 0xF2, 0x5E, 0xD0, 0xBA);
739 		CALC_K256 (k, 26, 0x8B, 0xAE, 0x30, 0x5B);
740 		CALC_K256 (k, 28, 0x84, 0x8A, 0x54, 0x00);
741 		CALC_K256 (k, 30, 0xDF, 0xBC, 0x23, 0x9D);
742 	} else if (key_len == 24) { /* 192-bit key */
743 		/* Compute the S-boxes. */
744 		for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
745 		        CALC_SB192_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
746 		}
747 
748 		/* Calculate whitening and round subkeys.  The constants are
749 		 * indices of subkeys, preprocessed through q0 and q1. */
750 		CALC_K192 (w, 0, 0xA9, 0x75, 0x67, 0xF3);
751 		CALC_K192 (w, 2, 0xB3, 0xC6, 0xE8, 0xF4);
752 		CALC_K192 (w, 4, 0x04, 0xDB, 0xFD, 0x7B);
753 		CALC_K192 (w, 6, 0xA3, 0xFB, 0x76, 0xC8);
754 		CALC_K192 (k, 0, 0x9A, 0x4A, 0x92, 0xD3);
755 		CALC_K192 (k, 2, 0x80, 0xE6, 0x78, 0x6B);
756 		CALC_K192 (k, 4, 0xE4, 0x45, 0xDD, 0x7D);
757 		CALC_K192 (k, 6, 0xD1, 0xE8, 0x38, 0x4B);
758 		CALC_K192 (k, 8, 0x0D, 0xD6, 0xC6, 0x32);
759 		CALC_K192 (k, 10, 0x35, 0xD8, 0x98, 0xFD);
760 		CALC_K192 (k, 12, 0x18, 0x37, 0xF7, 0x71);
761 		CALC_K192 (k, 14, 0xEC, 0xF1, 0x6C, 0xE1);
762 		CALC_K192 (k, 16, 0x43, 0x30, 0x75, 0x0F);
763 		CALC_K192 (k, 18, 0x37, 0xF8, 0x26, 0x1B);
764 		CALC_K192 (k, 20, 0xFA, 0x87, 0x13, 0xFA);
765 		CALC_K192 (k, 22, 0x94, 0x06, 0x48, 0x3F);
766 		CALC_K192 (k, 24, 0xF2, 0x5E, 0xD0, 0xBA);
767 		CALC_K192 (k, 26, 0x8B, 0xAE, 0x30, 0x5B);
768 		CALC_K192 (k, 28, 0x84, 0x8A, 0x54, 0x00);
769 		CALC_K192 (k, 30, 0xDF, 0xBC, 0x23, 0x9D);
770 	} else { /* 128-bit key */
771 		/* Compute the S-boxes. */
772 		for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
773 			CALC_SB_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
774 		}
775 
776 		/* Calculate whitening and round subkeys.  The constants are
777 		 * indices of subkeys, preprocessed through q0 and q1. */
778 		CALC_K (w, 0, 0xA9, 0x75, 0x67, 0xF3);
779 		CALC_K (w, 2, 0xB3, 0xC6, 0xE8, 0xF4);
780 		CALC_K (w, 4, 0x04, 0xDB, 0xFD, 0x7B);
781 		CALC_K (w, 6, 0xA3, 0xFB, 0x76, 0xC8);
782 		CALC_K (k, 0, 0x9A, 0x4A, 0x92, 0xD3);
783 		CALC_K (k, 2, 0x80, 0xE6, 0x78, 0x6B);
784 		CALC_K (k, 4, 0xE4, 0x45, 0xDD, 0x7D);
785 		CALC_K (k, 6, 0xD1, 0xE8, 0x38, 0x4B);
786 		CALC_K (k, 8, 0x0D, 0xD6, 0xC6, 0x32);
787 		CALC_K (k, 10, 0x35, 0xD8, 0x98, 0xFD);
788 		CALC_K (k, 12, 0x18, 0x37, 0xF7, 0x71);
789 		CALC_K (k, 14, 0xEC, 0xF1, 0x6C, 0xE1);
790 		CALC_K (k, 16, 0x43, 0x30, 0x75, 0x0F);
791 		CALC_K (k, 18, 0x37, 0xF8, 0x26, 0x1B);
792 		CALC_K (k, 20, 0xFA, 0x87, 0x13, 0xFA);
793 		CALC_K (k, 22, 0x94, 0x06, 0x48, 0x3F);
794 		CALC_K (k, 24, 0xF2, 0x5E, 0xD0, 0xBA);
795 		CALC_K (k, 26, 0x8B, 0xAE, 0x30, 0x5B);
796 		CALC_K (k, 28, 0x84, 0x8A, 0x54, 0x00);
797 		CALC_K (k, 30, 0xDF, 0xBC, 0x23, 0x9D);
798 	}
799 
800 	return 0;
801 }
802 
803 /* Encrypt one block.  in and out may be the same. */
twofish_encrypt(void * cx,u8 * out,const u8 * in)804 static void twofish_encrypt(void *cx, u8 *out, const u8 *in)
805 {
806 	struct twofish_ctx *ctx = cx;
807 
808 	/* The four 32-bit chunks of the text. */
809 	u32 a, b, c, d;
810 
811 	/* Temporaries used by the round function. */
812 	u32 x, y;
813 
814 	/* Input whitening and packing. */
815 	INPACK (0, a, 0);
816 	INPACK (1, b, 1);
817 	INPACK (2, c, 2);
818 	INPACK (3, d, 3);
819 
820 	/* Encryption Feistel cycles. */
821 	ENCCYCLE (0);
822 	ENCCYCLE (1);
823 	ENCCYCLE (2);
824 	ENCCYCLE (3);
825 	ENCCYCLE (4);
826 	ENCCYCLE (5);
827 	ENCCYCLE (6);
828 	ENCCYCLE (7);
829 
830 	/* Output whitening and unpacking. */
831 	OUTUNPACK (0, c, 4);
832 	OUTUNPACK (1, d, 5);
833 	OUTUNPACK (2, a, 6);
834 	OUTUNPACK (3, b, 7);
835 
836 }
837 
838 /* Decrypt one block.  in and out may be the same. */
twofish_decrypt(void * cx,u8 * out,const u8 * in)839 static void twofish_decrypt(void *cx, u8 *out, const u8 *in)
840 {
841 	struct twofish_ctx *ctx = cx;
842 
843 	/* The four 32-bit chunks of the text. */
844 	u32 a, b, c, d;
845 
846 	/* Temporaries used by the round function. */
847 	u32 x, y;
848 
849 	/* Input whitening and packing. */
850 	INPACK (0, c, 4);
851 	INPACK (1, d, 5);
852 	INPACK (2, a, 6);
853 	INPACK (3, b, 7);
854 
855 	/* Encryption Feistel cycles. */
856 	DECCYCLE (7);
857 	DECCYCLE (6);
858 	DECCYCLE (5);
859 	DECCYCLE (4);
860 	DECCYCLE (3);
861 	DECCYCLE (2);
862 	DECCYCLE (1);
863 	DECCYCLE (0);
864 
865 	/* Output whitening and unpacking. */
866 	OUTUNPACK (0, a, 0);
867 	OUTUNPACK (1, b, 1);
868 	OUTUNPACK (2, c, 2);
869 	OUTUNPACK (3, d, 3);
870 
871 }
872 
873 static struct crypto_alg alg = {
874 	.cra_name           =   "twofish",
875 	.cra_flags          =   CRYPTO_ALG_TYPE_CIPHER,
876 	.cra_blocksize      =   TF_BLOCK_SIZE,
877 	.cra_ctxsize        =   sizeof(struct twofish_ctx),
878 	.cra_module         =   THIS_MODULE,
879 	.cra_list           =   LIST_HEAD_INIT(alg.cra_list),
880 	.cra_u              =   { .cipher = {
881 	.cia_min_keysize    =   TF_MIN_KEY_SIZE,
882 	.cia_max_keysize    =   TF_MAX_KEY_SIZE,
883 	.cia_setkey         =   twofish_setkey,
884 	.cia_encrypt        =   twofish_encrypt,
885 	.cia_decrypt        =   twofish_decrypt } }
886 };
887 
init(void)888 static int __init init(void)
889 {
890 	return crypto_register_alg(&alg);
891 }
892 
fini(void)893 static void __exit fini(void)
894 {
895 	crypto_unregister_alg(&alg);
896 }
897 
898 module_init(init);
899 module_exit(fini);
900 
901 MODULE_LICENSE("GPL");
902 MODULE_DESCRIPTION ("Twofish Cipher Algorithm");
903