1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux.
2
3 Copyright 2000,2001 The Linux Kernel Team
4 Written/copyright 1994-2001 by Donald Becker.
5
6 This software may be used and distributed according to the terms
7 of the GNU General Public License, incorporated herein by reference.
8
9 Please submit bugs to http://bugzilla.kernel.org/ .
10 */
11
12 #define pr_fmt(fmt) "tulip: " fmt
13
14 #define DRV_NAME "tulip"
15 #ifdef CONFIG_TULIP_NAPI
16 #define DRV_VERSION "1.1.15-NAPI" /* Keep at least for test */
17 #else
18 #define DRV_VERSION "1.1.15"
19 #endif
20 #define DRV_RELDATE "Feb 27, 2007"
21
22
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "tulip.h"
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/mii.h>
32 #include <linux/crc32.h>
33 #include <asm/unaligned.h>
34 #include <asm/uaccess.h>
35
36 #ifdef CONFIG_SPARC
37 #include <asm/prom.h>
38 #endif
39
40 static char version[] __devinitdata =
41 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
42
43 /* A few user-configurable values. */
44
45 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
46 static unsigned int max_interrupt_work = 25;
47
48 #define MAX_UNITS 8
49 /* Used to pass the full-duplex flag, etc. */
50 static int full_duplex[MAX_UNITS];
51 static int options[MAX_UNITS];
52 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
53
54 /* The possible media types that can be set in options[] are: */
55 const char * const medianame[32] = {
56 "10baseT", "10base2", "AUI", "100baseTx",
57 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
58 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
59 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
60 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
61 "","","","", "","","","", "","","","Transceiver reset",
62 };
63
64 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
65 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
66 defined(CONFIG_SPARC) || defined(__ia64__) || \
67 defined(__sh__) || defined(__mips__)
68 static int rx_copybreak = 1518;
69 #else
70 static int rx_copybreak = 100;
71 #endif
72
73 /*
74 Set the bus performance register.
75 Typical: Set 16 longword cache alignment, no burst limit.
76 Cache alignment bits 15:14 Burst length 13:8
77 0000 No alignment 0x00000000 unlimited 0800 8 longwords
78 4000 8 longwords 0100 1 longword 1000 16 longwords
79 8000 16 longwords 0200 2 longwords 2000 32 longwords
80 C000 32 longwords 0400 4 longwords
81 Warning: many older 486 systems are broken and require setting 0x00A04800
82 8 longword cache alignment, 8 longword burst.
83 ToDo: Non-Intel setting could be better.
84 */
85
86 #if defined(__alpha__) || defined(__ia64__)
87 static int csr0 = 0x01A00000 | 0xE000;
88 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
89 static int csr0 = 0x01A00000 | 0x8000;
90 #elif defined(CONFIG_SPARC) || defined(__hppa__)
91 /* The UltraSparc PCI controllers will disconnect at every 64-byte
92 * crossing anyways so it makes no sense to tell Tulip to burst
93 * any more than that.
94 */
95 static int csr0 = 0x01A00000 | 0x9000;
96 #elif defined(__arm__) || defined(__sh__)
97 static int csr0 = 0x01A00000 | 0x4800;
98 #elif defined(__mips__)
99 static int csr0 = 0x00200000 | 0x4000;
100 #else
101 #warning Processor architecture undefined!
102 static int csr0 = 0x00A00000 | 0x4800;
103 #endif
104
105 /* Operational parameters that usually are not changed. */
106 /* Time in jiffies before concluding the transmitter is hung. */
107 #define TX_TIMEOUT (4*HZ)
108
109
110 MODULE_AUTHOR("The Linux Kernel Team");
111 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
112 MODULE_LICENSE("GPL");
113 MODULE_VERSION(DRV_VERSION);
114 module_param(tulip_debug, int, 0);
115 module_param(max_interrupt_work, int, 0);
116 module_param(rx_copybreak, int, 0);
117 module_param(csr0, int, 0);
118 module_param_array(options, int, NULL, 0);
119 module_param_array(full_duplex, int, NULL, 0);
120
121 #ifdef TULIP_DEBUG
122 int tulip_debug = TULIP_DEBUG;
123 #else
124 int tulip_debug = 1;
125 #endif
126
tulip_timer(unsigned long data)127 static void tulip_timer(unsigned long data)
128 {
129 struct net_device *dev = (struct net_device *)data;
130 struct tulip_private *tp = netdev_priv(dev);
131
132 if (netif_running(dev))
133 schedule_work(&tp->media_work);
134 }
135
136 /*
137 * This table use during operation for capabilities and media timer.
138 *
139 * It is indexed via the values in 'enum chips'
140 */
141
142 struct tulip_chip_table tulip_tbl[] = {
143 { }, /* placeholder for array, slot unused currently */
144 { }, /* placeholder for array, slot unused currently */
145
146 /* DC21140 */
147 { "Digital DS21140 Tulip", 128, 0x0001ebef,
148 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
149 tulip_media_task },
150
151 /* DC21142, DC21143 */
152 { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
153 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
154 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
155
156 /* LC82C168 */
157 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
158 HAS_MII | HAS_PNICNWAY, pnic_timer, },
159
160 /* MX98713 */
161 { "Macronix 98713 PMAC", 128, 0x0001ebef,
162 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
163
164 /* MX98715 */
165 { "Macronix 98715 PMAC", 256, 0x0001ebef,
166 HAS_MEDIA_TABLE, mxic_timer, },
167
168 /* MX98725 */
169 { "Macronix 98725 PMAC", 256, 0x0001ebef,
170 HAS_MEDIA_TABLE, mxic_timer, },
171
172 /* AX88140 */
173 { "ASIX AX88140", 128, 0x0001fbff,
174 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
175 | IS_ASIX, tulip_timer, tulip_media_task },
176
177 /* PNIC2 */
178 { "Lite-On PNIC-II", 256, 0x0801fbff,
179 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
180
181 /* COMET */
182 { "ADMtek Comet", 256, 0x0001abef,
183 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
184
185 /* COMPEX9881 */
186 { "Compex 9881 PMAC", 128, 0x0001ebef,
187 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
188
189 /* I21145 */
190 { "Intel DS21145 Tulip", 128, 0x0801fbff,
191 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
192 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
193
194 /* DM910X */
195 #ifdef CONFIG_TULIP_DM910X
196 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
197 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
198 tulip_timer, tulip_media_task },
199 #else
200 { NULL },
201 #endif
202
203 /* RS7112 */
204 { "Conexant LANfinity", 256, 0x0001ebef,
205 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
206
207 };
208
209
210 static DEFINE_PCI_DEVICE_TABLE(tulip_pci_tbl) = {
211 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
212 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
213 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
214 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
215 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
216 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
217 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
218 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
219 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
220 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
221 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
225 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
229 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
230 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
231 #ifdef CONFIG_TULIP_DM910X
232 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
233 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
234 #endif
235 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
236 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
237 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
240 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
241 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
242 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
243 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
244 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
245 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
246 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
247 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
248 { 0x1414, 0x0001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Microsoft MN-120 */
249 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
250 { } /* terminate list */
251 };
252 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
253
254
255 /* A full-duplex map for media types. */
256 const char tulip_media_cap[32] =
257 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
258
259 static void tulip_tx_timeout(struct net_device *dev);
260 static void tulip_init_ring(struct net_device *dev);
261 static void tulip_free_ring(struct net_device *dev);
262 static netdev_tx_t tulip_start_xmit(struct sk_buff *skb,
263 struct net_device *dev);
264 static int tulip_open(struct net_device *dev);
265 static int tulip_close(struct net_device *dev);
266 static void tulip_up(struct net_device *dev);
267 static void tulip_down(struct net_device *dev);
268 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
269 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
270 static void set_rx_mode(struct net_device *dev);
271 static void tulip_set_wolopts(struct pci_dev *pdev, u32 wolopts);
272 #ifdef CONFIG_NET_POLL_CONTROLLER
273 static void poll_tulip(struct net_device *dev);
274 #endif
275
tulip_set_power_state(struct tulip_private * tp,int sleep,int snooze)276 static void tulip_set_power_state (struct tulip_private *tp,
277 int sleep, int snooze)
278 {
279 if (tp->flags & HAS_ACPI) {
280 u32 tmp, newtmp;
281 pci_read_config_dword (tp->pdev, CFDD, &tmp);
282 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
283 if (sleep)
284 newtmp |= CFDD_Sleep;
285 else if (snooze)
286 newtmp |= CFDD_Snooze;
287 if (tmp != newtmp)
288 pci_write_config_dword (tp->pdev, CFDD, newtmp);
289 }
290
291 }
292
293
tulip_up(struct net_device * dev)294 static void tulip_up(struct net_device *dev)
295 {
296 struct tulip_private *tp = netdev_priv(dev);
297 void __iomem *ioaddr = tp->base_addr;
298 int next_tick = 3*HZ;
299 u32 reg;
300 int i;
301
302 #ifdef CONFIG_TULIP_NAPI
303 napi_enable(&tp->napi);
304 #endif
305
306 /* Wake the chip from sleep/snooze mode. */
307 tulip_set_power_state (tp, 0, 0);
308
309 /* Disable all WOL events */
310 pci_enable_wake(tp->pdev, PCI_D3hot, 0);
311 pci_enable_wake(tp->pdev, PCI_D3cold, 0);
312 tulip_set_wolopts(tp->pdev, 0);
313
314 /* On some chip revs we must set the MII/SYM port before the reset!? */
315 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
316 iowrite32(0x00040000, ioaddr + CSR6);
317
318 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
319 iowrite32(0x00000001, ioaddr + CSR0);
320 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
321 udelay(100);
322
323 /* Deassert reset.
324 Wait the specified 50 PCI cycles after a reset by initializing
325 Tx and Rx queues and the address filter list. */
326 iowrite32(tp->csr0, ioaddr + CSR0);
327 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
328 udelay(100);
329
330 if (tulip_debug > 1)
331 netdev_dbg(dev, "tulip_up(), irq==%d\n", dev->irq);
332
333 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
334 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
335 tp->cur_rx = tp->cur_tx = 0;
336 tp->dirty_rx = tp->dirty_tx = 0;
337
338 if (tp->flags & MC_HASH_ONLY) {
339 u32 addr_low = get_unaligned_le32(dev->dev_addr);
340 u32 addr_high = get_unaligned_le16(dev->dev_addr + 4);
341 if (tp->chip_id == AX88140) {
342 iowrite32(0, ioaddr + CSR13);
343 iowrite32(addr_low, ioaddr + CSR14);
344 iowrite32(1, ioaddr + CSR13);
345 iowrite32(addr_high, ioaddr + CSR14);
346 } else if (tp->flags & COMET_MAC_ADDR) {
347 iowrite32(addr_low, ioaddr + 0xA4);
348 iowrite32(addr_high, ioaddr + 0xA8);
349 iowrite32(0, ioaddr + CSR27);
350 iowrite32(0, ioaddr + CSR28);
351 }
352 } else {
353 /* This is set_rx_mode(), but without starting the transmitter. */
354 u16 *eaddrs = (u16 *)dev->dev_addr;
355 u16 *setup_frm = &tp->setup_frame[15*6];
356 dma_addr_t mapping;
357
358 /* 21140 bug: you must add the broadcast address. */
359 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
360 /* Fill the final entry of the table with our physical address. */
361 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
362 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
363 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
364
365 mapping = pci_map_single(tp->pdev, tp->setup_frame,
366 sizeof(tp->setup_frame),
367 PCI_DMA_TODEVICE);
368 tp->tx_buffers[tp->cur_tx].skb = NULL;
369 tp->tx_buffers[tp->cur_tx].mapping = mapping;
370
371 /* Put the setup frame on the Tx list. */
372 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
373 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
374 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
375
376 tp->cur_tx++;
377 }
378
379 tp->saved_if_port = dev->if_port;
380 if (dev->if_port == 0)
381 dev->if_port = tp->default_port;
382
383 /* Allow selecting a default media. */
384 i = 0;
385 if (tp->mtable == NULL)
386 goto media_picked;
387 if (dev->if_port) {
388 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
389 (dev->if_port == 12 ? 0 : dev->if_port);
390 for (i = 0; i < tp->mtable->leafcount; i++)
391 if (tp->mtable->mleaf[i].media == looking_for) {
392 dev_info(&dev->dev,
393 "Using user-specified media %s\n",
394 medianame[dev->if_port]);
395 goto media_picked;
396 }
397 }
398 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
399 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
400 for (i = 0; i < tp->mtable->leafcount; i++)
401 if (tp->mtable->mleaf[i].media == looking_for) {
402 dev_info(&dev->dev,
403 "Using EEPROM-set media %s\n",
404 medianame[looking_for]);
405 goto media_picked;
406 }
407 }
408 /* Start sensing first non-full-duplex media. */
409 for (i = tp->mtable->leafcount - 1;
410 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
411 ;
412 media_picked:
413
414 tp->csr6 = 0;
415 tp->cur_index = i;
416 tp->nwayset = 0;
417
418 if (dev->if_port) {
419 if (tp->chip_id == DC21143 &&
420 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
421 /* We must reset the media CSRs when we force-select MII mode. */
422 iowrite32(0x0000, ioaddr + CSR13);
423 iowrite32(0x0000, ioaddr + CSR14);
424 iowrite32(0x0008, ioaddr + CSR15);
425 }
426 tulip_select_media(dev, 1);
427 } else if (tp->chip_id == DC21142) {
428 if (tp->mii_cnt) {
429 tulip_select_media(dev, 1);
430 if (tulip_debug > 1)
431 dev_info(&dev->dev,
432 "Using MII transceiver %d, status %04x\n",
433 tp->phys[0],
434 tulip_mdio_read(dev, tp->phys[0], 1));
435 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
436 tp->csr6 = csr6_mask_hdcap;
437 dev->if_port = 11;
438 iowrite32(0x0000, ioaddr + CSR13);
439 iowrite32(0x0000, ioaddr + CSR14);
440 } else
441 t21142_start_nway(dev);
442 } else if (tp->chip_id == PNIC2) {
443 /* for initial startup advertise 10/100 Full and Half */
444 tp->sym_advertise = 0x01E0;
445 /* enable autonegotiate end interrupt */
446 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
447 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
448 pnic2_start_nway(dev);
449 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
450 if (tp->mii_cnt) {
451 dev->if_port = 11;
452 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
453 iowrite32(0x0001, ioaddr + CSR15);
454 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
455 pnic_do_nway(dev);
456 else {
457 /* Start with 10mbps to do autonegotiation. */
458 iowrite32(0x32, ioaddr + CSR12);
459 tp->csr6 = 0x00420000;
460 iowrite32(0x0001B078, ioaddr + 0xB8);
461 iowrite32(0x0201B078, ioaddr + 0xB8);
462 next_tick = 1*HZ;
463 }
464 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881) &&
465 ! tp->medialock) {
466 dev->if_port = 0;
467 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
468 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
469 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
470 /* Provided by BOLO, Macronix - 12/10/1998. */
471 dev->if_port = 0;
472 tp->csr6 = 0x01a80200;
473 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
474 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
475 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
476 /* Enable automatic Tx underrun recovery. */
477 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
478 dev->if_port = tp->mii_cnt ? 11 : 0;
479 tp->csr6 = 0x00040000;
480 } else if (tp->chip_id == AX88140) {
481 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
482 } else
483 tulip_select_media(dev, 1);
484
485 /* Start the chip's Tx to process setup frame. */
486 tulip_stop_rxtx(tp);
487 barrier();
488 udelay(5);
489 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
490
491 /* Enable interrupts by setting the interrupt mask. */
492 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
493 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
494 tulip_start_rxtx(tp);
495 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
496
497 if (tulip_debug > 2) {
498 netdev_dbg(dev, "Done tulip_up(), CSR0 %08x, CSR5 %08x CSR6 %08x\n",
499 ioread32(ioaddr + CSR0),
500 ioread32(ioaddr + CSR5),
501 ioread32(ioaddr + CSR6));
502 }
503
504 /* Set the timer to switch to check for link beat and perhaps switch
505 to an alternate media type. */
506 tp->timer.expires = RUN_AT(next_tick);
507 add_timer(&tp->timer);
508 #ifdef CONFIG_TULIP_NAPI
509 init_timer(&tp->oom_timer);
510 tp->oom_timer.data = (unsigned long)dev;
511 tp->oom_timer.function = oom_timer;
512 #endif
513 }
514
515 static int
tulip_open(struct net_device * dev)516 tulip_open(struct net_device *dev)
517 {
518 int retval;
519
520 tulip_init_ring (dev);
521
522 retval = request_irq(dev->irq, tulip_interrupt, IRQF_SHARED, dev->name, dev);
523 if (retval)
524 goto free_ring;
525
526 tulip_up (dev);
527
528 netif_start_queue (dev);
529
530 return 0;
531
532 free_ring:
533 tulip_free_ring (dev);
534 return retval;
535 }
536
537
tulip_tx_timeout(struct net_device * dev)538 static void tulip_tx_timeout(struct net_device *dev)
539 {
540 struct tulip_private *tp = netdev_priv(dev);
541 void __iomem *ioaddr = tp->base_addr;
542 unsigned long flags;
543
544 spin_lock_irqsave (&tp->lock, flags);
545
546 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
547 /* Do nothing -- the media monitor should handle this. */
548 if (tulip_debug > 1)
549 dev_warn(&dev->dev,
550 "Transmit timeout using MII device\n");
551 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142 ||
552 tp->chip_id == MX98713 || tp->chip_id == COMPEX9881 ||
553 tp->chip_id == DM910X) {
554 dev_warn(&dev->dev,
555 "21140 transmit timed out, status %08x, SIA %08x %08x %08x %08x, resetting...\n",
556 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
557 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14),
558 ioread32(ioaddr + CSR15));
559 tp->timeout_recovery = 1;
560 schedule_work(&tp->media_work);
561 goto out_unlock;
562 } else if (tp->chip_id == PNIC2) {
563 dev_warn(&dev->dev,
564 "PNIC2 transmit timed out, status %08x, CSR6/7 %08x / %08x CSR12 %08x, resetting...\n",
565 (int)ioread32(ioaddr + CSR5),
566 (int)ioread32(ioaddr + CSR6),
567 (int)ioread32(ioaddr + CSR7),
568 (int)ioread32(ioaddr + CSR12));
569 } else {
570 dev_warn(&dev->dev,
571 "Transmit timed out, status %08x, CSR12 %08x, resetting...\n",
572 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
573 dev->if_port = 0;
574 }
575
576 #if defined(way_too_many_messages)
577 if (tulip_debug > 3) {
578 int i;
579 for (i = 0; i < RX_RING_SIZE; i++) {
580 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
581 int j;
582 printk(KERN_DEBUG
583 "%2d: %08x %08x %08x %08x %02x %02x %02x\n",
584 i,
585 (unsigned int)tp->rx_ring[i].status,
586 (unsigned int)tp->rx_ring[i].length,
587 (unsigned int)tp->rx_ring[i].buffer1,
588 (unsigned int)tp->rx_ring[i].buffer2,
589 buf[0], buf[1], buf[2]);
590 for (j = 0; buf[j] != 0xee && j < 1600; j++)
591 if (j < 100)
592 pr_cont(" %02x", buf[j]);
593 pr_cont(" j=%d\n", j);
594 }
595 printk(KERN_DEBUG " Rx ring %p: ", tp->rx_ring);
596 for (i = 0; i < RX_RING_SIZE; i++)
597 pr_cont(" %08x", (unsigned int)tp->rx_ring[i].status);
598 printk(KERN_DEBUG " Tx ring %p: ", tp->tx_ring);
599 for (i = 0; i < TX_RING_SIZE; i++)
600 pr_cont(" %08x", (unsigned int)tp->tx_ring[i].status);
601 pr_cont("\n");
602 }
603 #endif
604
605 tulip_tx_timeout_complete(tp, ioaddr);
606
607 out_unlock:
608 spin_unlock_irqrestore (&tp->lock, flags);
609 dev->trans_start = jiffies; /* prevent tx timeout */
610 netif_wake_queue (dev);
611 }
612
613
614 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
tulip_init_ring(struct net_device * dev)615 static void tulip_init_ring(struct net_device *dev)
616 {
617 struct tulip_private *tp = netdev_priv(dev);
618 int i;
619
620 tp->susp_rx = 0;
621 tp->ttimer = 0;
622 tp->nir = 0;
623
624 for (i = 0; i < RX_RING_SIZE; i++) {
625 tp->rx_ring[i].status = 0x00000000;
626 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
627 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
628 tp->rx_buffers[i].skb = NULL;
629 tp->rx_buffers[i].mapping = 0;
630 }
631 /* Mark the last entry as wrapping the ring. */
632 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
633 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
634
635 for (i = 0; i < RX_RING_SIZE; i++) {
636 dma_addr_t mapping;
637
638 /* Note the receive buffer must be longword aligned.
639 netdev_alloc_skb() provides 16 byte alignment. But do *not*
640 use skb_reserve() to align the IP header! */
641 struct sk_buff *skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
642 tp->rx_buffers[i].skb = skb;
643 if (skb == NULL)
644 break;
645 mapping = pci_map_single(tp->pdev, skb->data,
646 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
647 tp->rx_buffers[i].mapping = mapping;
648 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
649 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
650 }
651 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
652
653 /* The Tx buffer descriptor is filled in as needed, but we
654 do need to clear the ownership bit. */
655 for (i = 0; i < TX_RING_SIZE; i++) {
656 tp->tx_buffers[i].skb = NULL;
657 tp->tx_buffers[i].mapping = 0;
658 tp->tx_ring[i].status = 0x00000000;
659 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
660 }
661 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
662 }
663
664 static netdev_tx_t
tulip_start_xmit(struct sk_buff * skb,struct net_device * dev)665 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
666 {
667 struct tulip_private *tp = netdev_priv(dev);
668 int entry;
669 u32 flag;
670 dma_addr_t mapping;
671 unsigned long flags;
672
673 spin_lock_irqsave(&tp->lock, flags);
674
675 /* Calculate the next Tx descriptor entry. */
676 entry = tp->cur_tx % TX_RING_SIZE;
677
678 tp->tx_buffers[entry].skb = skb;
679 mapping = pci_map_single(tp->pdev, skb->data,
680 skb->len, PCI_DMA_TODEVICE);
681 tp->tx_buffers[entry].mapping = mapping;
682 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
683
684 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
685 flag = 0x60000000; /* No interrupt */
686 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
687 flag = 0xe0000000; /* Tx-done intr. */
688 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
689 flag = 0x60000000; /* No Tx-done intr. */
690 } else { /* Leave room for set_rx_mode() to fill entries. */
691 flag = 0xe0000000; /* Tx-done intr. */
692 netif_stop_queue(dev);
693 }
694 if (entry == TX_RING_SIZE-1)
695 flag = 0xe0000000 | DESC_RING_WRAP;
696
697 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
698 /* if we were using Transmit Automatic Polling, we would need a
699 * wmb() here. */
700 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
701 wmb();
702
703 tp->cur_tx++;
704
705 /* Trigger an immediate transmit demand. */
706 iowrite32(0, tp->base_addr + CSR1);
707
708 spin_unlock_irqrestore(&tp->lock, flags);
709
710 return NETDEV_TX_OK;
711 }
712
tulip_clean_tx_ring(struct tulip_private * tp)713 static void tulip_clean_tx_ring(struct tulip_private *tp)
714 {
715 unsigned int dirty_tx;
716
717 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
718 dirty_tx++) {
719 int entry = dirty_tx % TX_RING_SIZE;
720 int status = le32_to_cpu(tp->tx_ring[entry].status);
721
722 if (status < 0) {
723 tp->dev->stats.tx_errors++; /* It wasn't Txed */
724 tp->tx_ring[entry].status = 0;
725 }
726
727 /* Check for Tx filter setup frames. */
728 if (tp->tx_buffers[entry].skb == NULL) {
729 /* test because dummy frames not mapped */
730 if (tp->tx_buffers[entry].mapping)
731 pci_unmap_single(tp->pdev,
732 tp->tx_buffers[entry].mapping,
733 sizeof(tp->setup_frame),
734 PCI_DMA_TODEVICE);
735 continue;
736 }
737
738 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
739 tp->tx_buffers[entry].skb->len,
740 PCI_DMA_TODEVICE);
741
742 /* Free the original skb. */
743 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
744 tp->tx_buffers[entry].skb = NULL;
745 tp->tx_buffers[entry].mapping = 0;
746 }
747 }
748
tulip_down(struct net_device * dev)749 static void tulip_down (struct net_device *dev)
750 {
751 struct tulip_private *tp = netdev_priv(dev);
752 void __iomem *ioaddr = tp->base_addr;
753 unsigned long flags;
754
755 cancel_work_sync(&tp->media_work);
756
757 #ifdef CONFIG_TULIP_NAPI
758 napi_disable(&tp->napi);
759 #endif
760
761 del_timer_sync (&tp->timer);
762 #ifdef CONFIG_TULIP_NAPI
763 del_timer_sync (&tp->oom_timer);
764 #endif
765 spin_lock_irqsave (&tp->lock, flags);
766
767 /* Disable interrupts by clearing the interrupt mask. */
768 iowrite32 (0x00000000, ioaddr + CSR7);
769
770 /* Stop the Tx and Rx processes. */
771 tulip_stop_rxtx(tp);
772
773 /* prepare receive buffers */
774 tulip_refill_rx(dev);
775
776 /* release any unconsumed transmit buffers */
777 tulip_clean_tx_ring(tp);
778
779 if (ioread32(ioaddr + CSR6) != 0xffffffff)
780 dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
781
782 spin_unlock_irqrestore (&tp->lock, flags);
783
784 init_timer(&tp->timer);
785 tp->timer.data = (unsigned long)dev;
786 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
787
788 dev->if_port = tp->saved_if_port;
789
790 /* Leave the driver in snooze, not sleep, mode. */
791 tulip_set_power_state (tp, 0, 1);
792 }
793
tulip_free_ring(struct net_device * dev)794 static void tulip_free_ring (struct net_device *dev)
795 {
796 struct tulip_private *tp = netdev_priv(dev);
797 int i;
798
799 /* Free all the skbuffs in the Rx queue. */
800 for (i = 0; i < RX_RING_SIZE; i++) {
801 struct sk_buff *skb = tp->rx_buffers[i].skb;
802 dma_addr_t mapping = tp->rx_buffers[i].mapping;
803
804 tp->rx_buffers[i].skb = NULL;
805 tp->rx_buffers[i].mapping = 0;
806
807 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
808 tp->rx_ring[i].length = 0;
809 /* An invalid address. */
810 tp->rx_ring[i].buffer1 = cpu_to_le32(0xBADF00D0);
811 if (skb) {
812 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
813 PCI_DMA_FROMDEVICE);
814 dev_kfree_skb (skb);
815 }
816 }
817
818 for (i = 0; i < TX_RING_SIZE; i++) {
819 struct sk_buff *skb = tp->tx_buffers[i].skb;
820
821 if (skb != NULL) {
822 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
823 skb->len, PCI_DMA_TODEVICE);
824 dev_kfree_skb (skb);
825 }
826 tp->tx_buffers[i].skb = NULL;
827 tp->tx_buffers[i].mapping = 0;
828 }
829 }
830
tulip_close(struct net_device * dev)831 static int tulip_close (struct net_device *dev)
832 {
833 struct tulip_private *tp = netdev_priv(dev);
834 void __iomem *ioaddr = tp->base_addr;
835
836 netif_stop_queue (dev);
837
838 tulip_down (dev);
839
840 if (tulip_debug > 1)
841 netdev_dbg(dev, "Shutting down ethercard, status was %02x\n",
842 ioread32 (ioaddr + CSR5));
843
844 free_irq (dev->irq, dev);
845
846 tulip_free_ring (dev);
847
848 return 0;
849 }
850
tulip_get_stats(struct net_device * dev)851 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
852 {
853 struct tulip_private *tp = netdev_priv(dev);
854 void __iomem *ioaddr = tp->base_addr;
855
856 if (netif_running(dev)) {
857 unsigned long flags;
858
859 spin_lock_irqsave (&tp->lock, flags);
860
861 dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
862
863 spin_unlock_irqrestore(&tp->lock, flags);
864 }
865
866 return &dev->stats;
867 }
868
869
tulip_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)870 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
871 {
872 struct tulip_private *np = netdev_priv(dev);
873 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
874 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
875 strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
876 }
877
878
tulip_ethtool_set_wol(struct net_device * dev,struct ethtool_wolinfo * wolinfo)879 static int tulip_ethtool_set_wol(struct net_device *dev,
880 struct ethtool_wolinfo *wolinfo)
881 {
882 struct tulip_private *tp = netdev_priv(dev);
883
884 if (wolinfo->wolopts & (~tp->wolinfo.supported))
885 return -EOPNOTSUPP;
886
887 tp->wolinfo.wolopts = wolinfo->wolopts;
888 device_set_wakeup_enable(&tp->pdev->dev, tp->wolinfo.wolopts);
889 return 0;
890 }
891
tulip_ethtool_get_wol(struct net_device * dev,struct ethtool_wolinfo * wolinfo)892 static void tulip_ethtool_get_wol(struct net_device *dev,
893 struct ethtool_wolinfo *wolinfo)
894 {
895 struct tulip_private *tp = netdev_priv(dev);
896
897 wolinfo->supported = tp->wolinfo.supported;
898 wolinfo->wolopts = tp->wolinfo.wolopts;
899 return;
900 }
901
902
903 static const struct ethtool_ops ops = {
904 .get_drvinfo = tulip_get_drvinfo,
905 .set_wol = tulip_ethtool_set_wol,
906 .get_wol = tulip_ethtool_get_wol,
907 };
908
909 /* Provide ioctl() calls to examine the MII xcvr state. */
private_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)910 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
911 {
912 struct tulip_private *tp = netdev_priv(dev);
913 void __iomem *ioaddr = tp->base_addr;
914 struct mii_ioctl_data *data = if_mii(rq);
915 const unsigned int phy_idx = 0;
916 int phy = tp->phys[phy_idx] & 0x1f;
917 unsigned int regnum = data->reg_num;
918
919 switch (cmd) {
920 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
921 if (tp->mii_cnt)
922 data->phy_id = phy;
923 else if (tp->flags & HAS_NWAY)
924 data->phy_id = 32;
925 else if (tp->chip_id == COMET)
926 data->phy_id = 1;
927 else
928 return -ENODEV;
929
930 case SIOCGMIIREG: /* Read MII PHY register. */
931 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
932 int csr12 = ioread32 (ioaddr + CSR12);
933 int csr14 = ioread32 (ioaddr + CSR14);
934 switch (regnum) {
935 case 0:
936 if (((csr14<<5) & 0x1000) ||
937 (dev->if_port == 5 && tp->nwayset))
938 data->val_out = 0x1000;
939 else
940 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
941 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
942 break;
943 case 1:
944 data->val_out =
945 0x1848 +
946 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
947 ((csr12&0x06) == 6 ? 0 : 4);
948 data->val_out |= 0x6048;
949 break;
950 case 4:
951 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
952 data->val_out =
953 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
954 ((csr14 >> 1) & 0x20) + 1;
955 data->val_out |= ((csr14 >> 9) & 0x03C0);
956 break;
957 case 5: data->val_out = tp->lpar; break;
958 default: data->val_out = 0; break;
959 }
960 } else {
961 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
962 }
963 return 0;
964
965 case SIOCSMIIREG: /* Write MII PHY register. */
966 if (regnum & ~0x1f)
967 return -EINVAL;
968 if (data->phy_id == phy) {
969 u16 value = data->val_in;
970 switch (regnum) {
971 case 0: /* Check for autonegotiation on or reset. */
972 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
973 if (tp->full_duplex_lock)
974 tp->full_duplex = (value & 0x0100) ? 1 : 0;
975 break;
976 case 4:
977 tp->advertising[phy_idx] =
978 tp->mii_advertise = data->val_in;
979 break;
980 }
981 }
982 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
983 u16 value = data->val_in;
984 if (regnum == 0) {
985 if ((value & 0x1200) == 0x1200) {
986 if (tp->chip_id == PNIC2) {
987 pnic2_start_nway (dev);
988 } else {
989 t21142_start_nway (dev);
990 }
991 }
992 } else if (regnum == 4)
993 tp->sym_advertise = value;
994 } else {
995 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
996 }
997 return 0;
998 default:
999 return -EOPNOTSUPP;
1000 }
1001
1002 return -EOPNOTSUPP;
1003 }
1004
1005
1006 /* Set or clear the multicast filter for this adaptor.
1007 Note that we only use exclusion around actually queueing the
1008 new frame, not around filling tp->setup_frame. This is non-deterministic
1009 when re-entered but still correct. */
1010
1011 #undef set_bit_le
1012 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
1013
build_setup_frame_hash(u16 * setup_frm,struct net_device * dev)1014 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
1015 {
1016 struct tulip_private *tp = netdev_priv(dev);
1017 u16 hash_table[32];
1018 struct netdev_hw_addr *ha;
1019 int i;
1020 u16 *eaddrs;
1021
1022 memset(hash_table, 0, sizeof(hash_table));
1023 set_bit_le(255, hash_table); /* Broadcast entry */
1024 /* This should work on big-endian machines as well. */
1025 netdev_for_each_mc_addr(ha, dev) {
1026 int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff;
1027
1028 set_bit_le(index, hash_table);
1029 }
1030 for (i = 0; i < 32; i++) {
1031 *setup_frm++ = hash_table[i];
1032 *setup_frm++ = hash_table[i];
1033 }
1034 setup_frm = &tp->setup_frame[13*6];
1035
1036 /* Fill the final entry with our physical address. */
1037 eaddrs = (u16 *)dev->dev_addr;
1038 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1039 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1040 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1041 }
1042
build_setup_frame_perfect(u16 * setup_frm,struct net_device * dev)1043 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
1044 {
1045 struct tulip_private *tp = netdev_priv(dev);
1046 struct netdev_hw_addr *ha;
1047 u16 *eaddrs;
1048
1049 /* We have <= 14 addresses so we can use the wonderful
1050 16 address perfect filtering of the Tulip. */
1051 netdev_for_each_mc_addr(ha, dev) {
1052 eaddrs = (u16 *) ha->addr;
1053 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1054 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1055 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1056 }
1057 /* Fill the unused entries with the broadcast address. */
1058 memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12);
1059 setup_frm = &tp->setup_frame[15*6];
1060
1061 /* Fill the final entry with our physical address. */
1062 eaddrs = (u16 *)dev->dev_addr;
1063 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1064 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1065 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1066 }
1067
1068
set_rx_mode(struct net_device * dev)1069 static void set_rx_mode(struct net_device *dev)
1070 {
1071 struct tulip_private *tp = netdev_priv(dev);
1072 void __iomem *ioaddr = tp->base_addr;
1073 int csr6;
1074
1075 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1076
1077 tp->csr6 &= ~0x00D5;
1078 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1079 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1080 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1081 } else if ((netdev_mc_count(dev) > 1000) ||
1082 (dev->flags & IFF_ALLMULTI)) {
1083 /* Too many to filter well -- accept all multicasts. */
1084 tp->csr6 |= AcceptAllMulticast;
1085 csr6 |= AcceptAllMulticast;
1086 } else if (tp->flags & MC_HASH_ONLY) {
1087 /* Some work-alikes have only a 64-entry hash filter table. */
1088 /* Should verify correctness on big-endian/__powerpc__ */
1089 struct netdev_hw_addr *ha;
1090 if (netdev_mc_count(dev) > 64) {
1091 /* Arbitrary non-effective limit. */
1092 tp->csr6 |= AcceptAllMulticast;
1093 csr6 |= AcceptAllMulticast;
1094 } else {
1095 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1096 int filterbit;
1097 netdev_for_each_mc_addr(ha, dev) {
1098 if (tp->flags & COMET_MAC_ADDR)
1099 filterbit = ether_crc_le(ETH_ALEN,
1100 ha->addr);
1101 else
1102 filterbit = ether_crc(ETH_ALEN,
1103 ha->addr) >> 26;
1104 filterbit &= 0x3f;
1105 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1106 if (tulip_debug > 2)
1107 dev_info(&dev->dev,
1108 "Added filter for %pM %08x bit %d\n",
1109 ha->addr,
1110 ether_crc(ETH_ALEN, ha->addr),
1111 filterbit);
1112 }
1113 if (mc_filter[0] == tp->mc_filter[0] &&
1114 mc_filter[1] == tp->mc_filter[1])
1115 ; /* No change. */
1116 else if (tp->flags & IS_ASIX) {
1117 iowrite32(2, ioaddr + CSR13);
1118 iowrite32(mc_filter[0], ioaddr + CSR14);
1119 iowrite32(3, ioaddr + CSR13);
1120 iowrite32(mc_filter[1], ioaddr + CSR14);
1121 } else if (tp->flags & COMET_MAC_ADDR) {
1122 iowrite32(mc_filter[0], ioaddr + CSR27);
1123 iowrite32(mc_filter[1], ioaddr + CSR28);
1124 }
1125 tp->mc_filter[0] = mc_filter[0];
1126 tp->mc_filter[1] = mc_filter[1];
1127 }
1128 } else {
1129 unsigned long flags;
1130 u32 tx_flags = 0x08000000 | 192;
1131
1132 /* Note that only the low-address shortword of setup_frame is valid!
1133 The values are doubled for big-endian architectures. */
1134 if (netdev_mc_count(dev) > 14) {
1135 /* Must use a multicast hash table. */
1136 build_setup_frame_hash(tp->setup_frame, dev);
1137 tx_flags = 0x08400000 | 192;
1138 } else {
1139 build_setup_frame_perfect(tp->setup_frame, dev);
1140 }
1141
1142 spin_lock_irqsave(&tp->lock, flags);
1143
1144 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1145 /* Same setup recently queued, we need not add it. */
1146 } else {
1147 unsigned int entry;
1148 int dummy = -1;
1149
1150 /* Now add this frame to the Tx list. */
1151
1152 entry = tp->cur_tx++ % TX_RING_SIZE;
1153
1154 if (entry != 0) {
1155 /* Avoid a chip errata by prefixing a dummy entry. */
1156 tp->tx_buffers[entry].skb = NULL;
1157 tp->tx_buffers[entry].mapping = 0;
1158 tp->tx_ring[entry].length =
1159 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1160 tp->tx_ring[entry].buffer1 = 0;
1161 /* Must set DescOwned later to avoid race with chip */
1162 dummy = entry;
1163 entry = tp->cur_tx++ % TX_RING_SIZE;
1164
1165 }
1166
1167 tp->tx_buffers[entry].skb = NULL;
1168 tp->tx_buffers[entry].mapping =
1169 pci_map_single(tp->pdev, tp->setup_frame,
1170 sizeof(tp->setup_frame),
1171 PCI_DMA_TODEVICE);
1172 /* Put the setup frame on the Tx list. */
1173 if (entry == TX_RING_SIZE-1)
1174 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1175 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1176 tp->tx_ring[entry].buffer1 =
1177 cpu_to_le32(tp->tx_buffers[entry].mapping);
1178 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1179 if (dummy >= 0)
1180 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1181 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1182 netif_stop_queue(dev);
1183
1184 /* Trigger an immediate transmit demand. */
1185 iowrite32(0, ioaddr + CSR1);
1186 }
1187
1188 spin_unlock_irqrestore(&tp->lock, flags);
1189 }
1190
1191 iowrite32(csr6, ioaddr + CSR6);
1192 }
1193
1194 #ifdef CONFIG_TULIP_MWI
tulip_mwi_config(struct pci_dev * pdev,struct net_device * dev)1195 static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1196 struct net_device *dev)
1197 {
1198 struct tulip_private *tp = netdev_priv(dev);
1199 u8 cache;
1200 u16 pci_command;
1201 u32 csr0;
1202
1203 if (tulip_debug > 3)
1204 netdev_dbg(dev, "tulip_mwi_config()\n");
1205
1206 tp->csr0 = csr0 = 0;
1207
1208 /* if we have any cache line size at all, we can do MRM and MWI */
1209 csr0 |= MRM | MWI;
1210
1211 /* Enable MWI in the standard PCI command bit.
1212 * Check for the case where MWI is desired but not available
1213 */
1214 pci_try_set_mwi(pdev);
1215
1216 /* read result from hardware (in case bit refused to enable) */
1217 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1218 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1219 csr0 &= ~MWI;
1220
1221 /* if cache line size hardwired to zero, no MWI */
1222 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1223 if ((csr0 & MWI) && (cache == 0)) {
1224 csr0 &= ~MWI;
1225 pci_clear_mwi(pdev);
1226 }
1227
1228 /* assign per-cacheline-size cache alignment and
1229 * burst length values
1230 */
1231 switch (cache) {
1232 case 8:
1233 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1234 break;
1235 case 16:
1236 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1237 break;
1238 case 32:
1239 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1240 break;
1241 default:
1242 cache = 0;
1243 break;
1244 }
1245
1246 /* if we have a good cache line size, we by now have a good
1247 * csr0, so save it and exit
1248 */
1249 if (cache)
1250 goto out;
1251
1252 /* we don't have a good csr0 or cache line size, disable MWI */
1253 if (csr0 & MWI) {
1254 pci_clear_mwi(pdev);
1255 csr0 &= ~MWI;
1256 }
1257
1258 /* sane defaults for burst length and cache alignment
1259 * originally from de4x5 driver
1260 */
1261 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1262
1263 out:
1264 tp->csr0 = csr0;
1265 if (tulip_debug > 2)
1266 netdev_dbg(dev, "MWI config cacheline=%d, csr0=%08x\n",
1267 cache, csr0);
1268 }
1269 #endif
1270
1271 /*
1272 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1273 * is the DM910X and the on chip ULi devices
1274 */
1275
tulip_uli_dm_quirk(struct pci_dev * pdev)1276 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1277 {
1278 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1279 return 1;
1280 return 0;
1281 }
1282
1283 static const struct net_device_ops tulip_netdev_ops = {
1284 .ndo_open = tulip_open,
1285 .ndo_start_xmit = tulip_start_xmit,
1286 .ndo_tx_timeout = tulip_tx_timeout,
1287 .ndo_stop = tulip_close,
1288 .ndo_get_stats = tulip_get_stats,
1289 .ndo_do_ioctl = private_ioctl,
1290 .ndo_set_rx_mode = set_rx_mode,
1291 .ndo_change_mtu = eth_change_mtu,
1292 .ndo_set_mac_address = eth_mac_addr,
1293 .ndo_validate_addr = eth_validate_addr,
1294 #ifdef CONFIG_NET_POLL_CONTROLLER
1295 .ndo_poll_controller = poll_tulip,
1296 #endif
1297 };
1298
1299 DEFINE_PCI_DEVICE_TABLE(early_486_chipsets) = {
1300 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1301 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1302 { },
1303 };
1304
tulip_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1305 static int __devinit tulip_init_one (struct pci_dev *pdev,
1306 const struct pci_device_id *ent)
1307 {
1308 struct tulip_private *tp;
1309 /* See note below on the multiport cards. */
1310 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1311 static int last_irq;
1312 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1313 int i, irq;
1314 unsigned short sum;
1315 unsigned char *ee_data;
1316 struct net_device *dev;
1317 void __iomem *ioaddr;
1318 static int board_idx = -1;
1319 int chip_idx = ent->driver_data;
1320 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1321 unsigned int eeprom_missing = 0;
1322 unsigned int force_csr0 = 0;
1323
1324 #ifndef MODULE
1325 if (tulip_debug > 0)
1326 printk_once(KERN_INFO "%s", version);
1327 #endif
1328
1329 board_idx++;
1330
1331 /*
1332 * Lan media wire a tulip chip to a wan interface. Needs a very
1333 * different driver (lmc driver)
1334 */
1335
1336 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1337 pr_err("skipping LMC card\n");
1338 return -ENODEV;
1339 } else if (pdev->subsystem_vendor == PCI_VENDOR_ID_SBE &&
1340 (pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_T3E3 ||
1341 pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P0 ||
1342 pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P1)) {
1343 pr_err("skipping SBE T3E3 port\n");
1344 return -ENODEV;
1345 }
1346
1347 /*
1348 * DM910x chips should be handled by the dmfe driver, except
1349 * on-board chips on SPARC systems. Also, early DM9100s need
1350 * software CRC which only the dmfe driver supports.
1351 */
1352
1353 #ifdef CONFIG_TULIP_DM910X
1354 if (chip_idx == DM910X) {
1355 struct device_node *dp;
1356
1357 if (pdev->vendor == 0x1282 && pdev->device == 0x9100 &&
1358 pdev->revision < 0x30) {
1359 pr_info("skipping early DM9100 with Crc bug (use dmfe)\n");
1360 return -ENODEV;
1361 }
1362
1363 dp = pci_device_to_OF_node(pdev);
1364 if (!(dp && of_get_property(dp, "local-mac-address", NULL))) {
1365 pr_info("skipping DM910x expansion card (use dmfe)\n");
1366 return -ENODEV;
1367 }
1368 }
1369 #endif
1370
1371 /*
1372 * Looks for early PCI chipsets where people report hangs
1373 * without the workarounds being on.
1374 */
1375
1376 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1377 aligned. Aries might need this too. The Saturn errata are not
1378 pretty reading but thankfully it's an old 486 chipset.
1379
1380 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1381 Saturn.
1382 */
1383
1384 if (pci_dev_present(early_486_chipsets)) {
1385 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1386 force_csr0 = 1;
1387 }
1388
1389 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1390 if (chip_idx == AX88140) {
1391 if ((csr0 & 0x3f00) == 0)
1392 csr0 |= 0x2000;
1393 }
1394
1395 /* PNIC doesn't have MWI/MRL/MRM... */
1396 if (chip_idx == LC82C168)
1397 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1398
1399 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1400 if (tulip_uli_dm_quirk(pdev)) {
1401 csr0 &= ~0x01f100ff;
1402 #if defined(CONFIG_SPARC)
1403 csr0 = (csr0 & ~0xff00) | 0xe000;
1404 #endif
1405 }
1406 /*
1407 * And back to business
1408 */
1409
1410 i = pci_enable_device(pdev);
1411 if (i) {
1412 pr_err("Cannot enable tulip board #%d, aborting\n", board_idx);
1413 return i;
1414 }
1415
1416 /* The chip will fail to enter a low-power state later unless
1417 * first explicitly commanded into D0 */
1418 if (pci_set_power_state(pdev, PCI_D0)) {
1419 pr_notice("Failed to set power state to D0\n");
1420 }
1421
1422 irq = pdev->irq;
1423
1424 /* alloc_etherdev ensures aligned and zeroed private structures */
1425 dev = alloc_etherdev (sizeof (*tp));
1426 if (!dev)
1427 return -ENOMEM;
1428
1429 SET_NETDEV_DEV(dev, &pdev->dev);
1430 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1431 pr_err("%s: I/O region (0x%llx@0x%llx) too small, aborting\n",
1432 pci_name(pdev),
1433 (unsigned long long)pci_resource_len (pdev, 0),
1434 (unsigned long long)pci_resource_start (pdev, 0));
1435 goto err_out_free_netdev;
1436 }
1437
1438 /* grab all resources from both PIO and MMIO regions, as we
1439 * don't want anyone else messing around with our hardware */
1440 if (pci_request_regions (pdev, DRV_NAME))
1441 goto err_out_free_netdev;
1442
1443 ioaddr = pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
1444
1445 if (!ioaddr)
1446 goto err_out_free_res;
1447
1448 /*
1449 * initialize private data structure 'tp'
1450 * it is zeroed and aligned in alloc_etherdev
1451 */
1452 tp = netdev_priv(dev);
1453 tp->dev = dev;
1454
1455 tp->rx_ring = pci_alloc_consistent(pdev,
1456 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1457 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1458 &tp->rx_ring_dma);
1459 if (!tp->rx_ring)
1460 goto err_out_mtable;
1461 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1462 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1463
1464 tp->chip_id = chip_idx;
1465 tp->flags = tulip_tbl[chip_idx].flags;
1466
1467 tp->wolinfo.supported = 0;
1468 tp->wolinfo.wolopts = 0;
1469 /* COMET: Enable power management only for AN983B */
1470 if (chip_idx == COMET ) {
1471 u32 sig;
1472 pci_read_config_dword (pdev, 0x80, &sig);
1473 if (sig == 0x09811317) {
1474 tp->flags |= COMET_PM;
1475 tp->wolinfo.supported = WAKE_PHY | WAKE_MAGIC;
1476 pr_info("%s: Enabled WOL support for AN983B\n",
1477 __func__);
1478 }
1479 }
1480 tp->pdev = pdev;
1481 tp->base_addr = ioaddr;
1482 tp->revision = pdev->revision;
1483 tp->csr0 = csr0;
1484 spin_lock_init(&tp->lock);
1485 spin_lock_init(&tp->mii_lock);
1486 init_timer(&tp->timer);
1487 tp->timer.data = (unsigned long)dev;
1488 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1489
1490 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);
1491
1492 dev->base_addr = (unsigned long)ioaddr;
1493
1494 #ifdef CONFIG_TULIP_MWI
1495 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1496 tulip_mwi_config (pdev, dev);
1497 #endif
1498
1499 /* Stop the chip's Tx and Rx processes. */
1500 tulip_stop_rxtx(tp);
1501
1502 pci_set_master(pdev);
1503
1504 #ifdef CONFIG_GSC
1505 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1506 switch (pdev->subsystem_device) {
1507 default:
1508 break;
1509 case 0x1061:
1510 case 0x1062:
1511 case 0x1063:
1512 case 0x1098:
1513 case 0x1099:
1514 case 0x10EE:
1515 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1516 chip_name = "GSC DS21140 Tulip";
1517 }
1518 }
1519 #endif
1520
1521 /* Clear the missed-packet counter. */
1522 ioread32(ioaddr + CSR8);
1523
1524 /* The station address ROM is read byte serially. The register must
1525 be polled, waiting for the value to be read bit serially from the
1526 EEPROM.
1527 */
1528 ee_data = tp->eeprom;
1529 memset(ee_data, 0, sizeof(tp->eeprom));
1530 sum = 0;
1531 if (chip_idx == LC82C168) {
1532 for (i = 0; i < 3; i++) {
1533 int value, boguscnt = 100000;
1534 iowrite32(0x600 | i, ioaddr + 0x98);
1535 do {
1536 value = ioread32(ioaddr + CSR9);
1537 } while (value < 0 && --boguscnt > 0);
1538 put_unaligned_le16(value, ((__le16 *)dev->dev_addr) + i);
1539 sum += value & 0xffff;
1540 }
1541 } else if (chip_idx == COMET) {
1542 /* No need to read the EEPROM. */
1543 put_unaligned_le32(ioread32(ioaddr + 0xA4), dev->dev_addr);
1544 put_unaligned_le16(ioread32(ioaddr + 0xA8), dev->dev_addr + 4);
1545 for (i = 0; i < 6; i ++)
1546 sum += dev->dev_addr[i];
1547 } else {
1548 /* A serial EEPROM interface, we read now and sort it out later. */
1549 int sa_offset = 0;
1550 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1551 int ee_max_addr = ((1 << ee_addr_size) - 1) * sizeof(u16);
1552
1553 if (ee_max_addr > sizeof(tp->eeprom))
1554 ee_max_addr = sizeof(tp->eeprom);
1555
1556 for (i = 0; i < ee_max_addr ; i += sizeof(u16)) {
1557 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1558 ee_data[i] = data & 0xff;
1559 ee_data[i + 1] = data >> 8;
1560 }
1561
1562 /* DEC now has a specification (see Notes) but early board makers
1563 just put the address in the first EEPROM locations. */
1564 /* This does memcmp(ee_data, ee_data+16, 8) */
1565 for (i = 0; i < 8; i ++)
1566 if (ee_data[i] != ee_data[16+i])
1567 sa_offset = 20;
1568 if (chip_idx == CONEXANT) {
1569 /* Check that the tuple type and length is correct. */
1570 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1571 sa_offset = 0x19A;
1572 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1573 ee_data[2] == 0) {
1574 sa_offset = 2; /* Grrr, damn Matrox boards. */
1575 multiport_cnt = 4;
1576 }
1577 #ifdef CONFIG_MIPS_COBALT
1578 if ((pdev->bus->number == 0) &&
1579 ((PCI_SLOT(pdev->devfn) == 7) ||
1580 (PCI_SLOT(pdev->devfn) == 12))) {
1581 /* Cobalt MAC address in first EEPROM locations. */
1582 sa_offset = 0;
1583 /* Ensure our media table fixup get's applied */
1584 memcpy(ee_data + 16, ee_data, 8);
1585 }
1586 #endif
1587 #ifdef CONFIG_GSC
1588 /* Check to see if we have a broken srom */
1589 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1590 /* pci_vendor_id and subsystem_id are swapped */
1591 ee_data[0] = ee_data[2];
1592 ee_data[1] = ee_data[3];
1593 ee_data[2] = 0x61;
1594 ee_data[3] = 0x10;
1595
1596 /* HSC-PCI boards need to be byte-swaped and shifted
1597 * up 1 word. This shift needs to happen at the end
1598 * of the MAC first because of the 2 byte overlap.
1599 */
1600 for (i = 4; i >= 0; i -= 2) {
1601 ee_data[17 + i + 3] = ee_data[17 + i];
1602 ee_data[16 + i + 5] = ee_data[16 + i];
1603 }
1604 }
1605 #endif
1606
1607 for (i = 0; i < 6; i ++) {
1608 dev->dev_addr[i] = ee_data[i + sa_offset];
1609 sum += ee_data[i + sa_offset];
1610 }
1611 }
1612 /* Lite-On boards have the address byte-swapped. */
1613 if ((dev->dev_addr[0] == 0xA0 ||
1614 dev->dev_addr[0] == 0xC0 ||
1615 dev->dev_addr[0] == 0x02) &&
1616 dev->dev_addr[1] == 0x00)
1617 for (i = 0; i < 6; i+=2) {
1618 char tmp = dev->dev_addr[i];
1619 dev->dev_addr[i] = dev->dev_addr[i+1];
1620 dev->dev_addr[i+1] = tmp;
1621 }
1622 /* On the Zynx 315 Etherarray and other multiport boards only the
1623 first Tulip has an EEPROM.
1624 On Sparc systems the mac address is held in the OBP property
1625 "local-mac-address".
1626 The addresses of the subsequent ports are derived from the first.
1627 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1628 that here as well. */
1629 if (sum == 0 || sum == 6*0xff) {
1630 #if defined(CONFIG_SPARC)
1631 struct device_node *dp = pci_device_to_OF_node(pdev);
1632 const unsigned char *addr;
1633 int len;
1634 #endif
1635 eeprom_missing = 1;
1636 for (i = 0; i < 5; i++)
1637 dev->dev_addr[i] = last_phys_addr[i];
1638 dev->dev_addr[i] = last_phys_addr[i] + 1;
1639 #if defined(CONFIG_SPARC)
1640 addr = of_get_property(dp, "local-mac-address", &len);
1641 if (addr && len == 6)
1642 memcpy(dev->dev_addr, addr, 6);
1643 #endif
1644 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1645 if (last_irq)
1646 irq = last_irq;
1647 #endif
1648 }
1649
1650 for (i = 0; i < 6; i++)
1651 last_phys_addr[i] = dev->dev_addr[i];
1652 last_irq = irq;
1653 dev->irq = irq;
1654
1655 /* The lower four bits are the media type. */
1656 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1657 if (options[board_idx] & MEDIA_MASK)
1658 tp->default_port = options[board_idx] & MEDIA_MASK;
1659 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1660 tp->full_duplex = 1;
1661 if (mtu[board_idx] > 0)
1662 dev->mtu = mtu[board_idx];
1663 }
1664 if (dev->mem_start & MEDIA_MASK)
1665 tp->default_port = dev->mem_start & MEDIA_MASK;
1666 if (tp->default_port) {
1667 pr_info(DRV_NAME "%d: Transceiver selection forced to %s\n",
1668 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1669 tp->medialock = 1;
1670 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1671 tp->full_duplex = 1;
1672 }
1673 if (tp->full_duplex)
1674 tp->full_duplex_lock = 1;
1675
1676 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1677 static const u16 media2advert[] = {
1678 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200
1679 };
1680 tp->mii_advertise = media2advert[tp->default_port - 9];
1681 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1682 }
1683
1684 if (tp->flags & HAS_MEDIA_TABLE) {
1685 sprintf(dev->name, DRV_NAME "%d", board_idx); /* hack */
1686 tulip_parse_eeprom(dev);
1687 strcpy(dev->name, "eth%d"); /* un-hack */
1688 }
1689
1690 if ((tp->flags & ALWAYS_CHECK_MII) ||
1691 (tp->mtable && tp->mtable->has_mii) ||
1692 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1693 if (tp->mtable && tp->mtable->has_mii) {
1694 for (i = 0; i < tp->mtable->leafcount; i++)
1695 if (tp->mtable->mleaf[i].media == 11) {
1696 tp->cur_index = i;
1697 tp->saved_if_port = dev->if_port;
1698 tulip_select_media(dev, 2);
1699 dev->if_port = tp->saved_if_port;
1700 break;
1701 }
1702 }
1703
1704 /* Find the connected MII xcvrs.
1705 Doing this in open() would allow detecting external xcvrs
1706 later, but takes much time. */
1707 tulip_find_mii (dev, board_idx);
1708 }
1709
1710 /* The Tulip-specific entries in the device structure. */
1711 dev->netdev_ops = &tulip_netdev_ops;
1712 dev->watchdog_timeo = TX_TIMEOUT;
1713 #ifdef CONFIG_TULIP_NAPI
1714 netif_napi_add(dev, &tp->napi, tulip_poll, 16);
1715 #endif
1716 SET_ETHTOOL_OPS(dev, &ops);
1717
1718 if (register_netdev(dev))
1719 goto err_out_free_ring;
1720
1721 pci_set_drvdata(pdev, dev);
1722
1723 dev_info(&dev->dev,
1724 #ifdef CONFIG_TULIP_MMIO
1725 "%s rev %d at MMIO %#llx,%s %pM, IRQ %d\n",
1726 #else
1727 "%s rev %d at Port %#llx,%s %pM, IRQ %d\n",
1728 #endif
1729 chip_name, pdev->revision,
1730 (unsigned long long)pci_resource_start(pdev, TULIP_BAR),
1731 eeprom_missing ? " EEPROM not present," : "",
1732 dev->dev_addr, irq);
1733
1734 if (tp->chip_id == PNIC2)
1735 tp->link_change = pnic2_lnk_change;
1736 else if (tp->flags & HAS_NWAY)
1737 tp->link_change = t21142_lnk_change;
1738 else if (tp->flags & HAS_PNICNWAY)
1739 tp->link_change = pnic_lnk_change;
1740
1741 /* Reset the xcvr interface and turn on heartbeat. */
1742 switch (chip_idx) {
1743 case DC21140:
1744 case DM910X:
1745 default:
1746 if (tp->mtable)
1747 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1748 break;
1749 case DC21142:
1750 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1751 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1752 iowrite32(0x0000, ioaddr + CSR13);
1753 iowrite32(0x0000, ioaddr + CSR14);
1754 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1755 } else
1756 t21142_start_nway(dev);
1757 break;
1758 case PNIC2:
1759 /* just do a reset for sanity sake */
1760 iowrite32(0x0000, ioaddr + CSR13);
1761 iowrite32(0x0000, ioaddr + CSR14);
1762 break;
1763 case LC82C168:
1764 if ( ! tp->mii_cnt) {
1765 tp->nway = 1;
1766 tp->nwayset = 0;
1767 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1768 iowrite32(0x30, ioaddr + CSR12);
1769 iowrite32(0x0001F078, ioaddr + CSR6);
1770 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1771 }
1772 break;
1773 case MX98713:
1774 case COMPEX9881:
1775 iowrite32(0x00000000, ioaddr + CSR6);
1776 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1777 iowrite32(0x00000001, ioaddr + CSR13);
1778 break;
1779 case MX98715:
1780 case MX98725:
1781 iowrite32(0x01a80000, ioaddr + CSR6);
1782 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1783 iowrite32(0x00001000, ioaddr + CSR12);
1784 break;
1785 case COMET:
1786 /* No initialization necessary. */
1787 break;
1788 }
1789
1790 /* put the chip in snooze mode until opened */
1791 tulip_set_power_state (tp, 0, 1);
1792
1793 return 0;
1794
1795 err_out_free_ring:
1796 pci_free_consistent (pdev,
1797 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1798 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1799 tp->rx_ring, tp->rx_ring_dma);
1800
1801 err_out_mtable:
1802 kfree (tp->mtable);
1803 pci_iounmap(pdev, ioaddr);
1804
1805 err_out_free_res:
1806 pci_release_regions (pdev);
1807
1808 err_out_free_netdev:
1809 free_netdev (dev);
1810 return -ENODEV;
1811 }
1812
1813
1814 /* set the registers according to the given wolopts */
tulip_set_wolopts(struct pci_dev * pdev,u32 wolopts)1815 static void tulip_set_wolopts (struct pci_dev *pdev, u32 wolopts)
1816 {
1817 struct net_device *dev = pci_get_drvdata(pdev);
1818 struct tulip_private *tp = netdev_priv(dev);
1819 void __iomem *ioaddr = tp->base_addr;
1820
1821 if (tp->flags & COMET_PM) {
1822
1823 unsigned int tmp;
1824
1825 tmp = ioread32(ioaddr + CSR18);
1826 tmp &= ~(comet_csr18_pmes_sticky | comet_csr18_apm_mode | comet_csr18_d3a);
1827 tmp |= comet_csr18_pm_mode;
1828 iowrite32(tmp, ioaddr + CSR18);
1829
1830 /* Set the Wake-up Control/Status Register to the given WOL options*/
1831 tmp = ioread32(ioaddr + CSR13);
1832 tmp &= ~(comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_wfre | comet_csr13_lsce | comet_csr13_mpre);
1833 if (wolopts & WAKE_MAGIC)
1834 tmp |= comet_csr13_mpre;
1835 if (wolopts & WAKE_PHY)
1836 tmp |= comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_lsce;
1837 /* Clear the event flags */
1838 tmp |= comet_csr13_wfr | comet_csr13_mpr | comet_csr13_lsc;
1839 iowrite32(tmp, ioaddr + CSR13);
1840 }
1841 }
1842
1843 #ifdef CONFIG_PM
1844
1845
tulip_suspend(struct pci_dev * pdev,pm_message_t state)1846 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1847 {
1848 pci_power_t pstate;
1849 struct net_device *dev = pci_get_drvdata(pdev);
1850 struct tulip_private *tp = netdev_priv(dev);
1851
1852 if (!dev)
1853 return -EINVAL;
1854
1855 if (!netif_running(dev))
1856 goto save_state;
1857
1858 tulip_down(dev);
1859
1860 netif_device_detach(dev);
1861 free_irq(dev->irq, dev);
1862
1863 save_state:
1864 pci_save_state(pdev);
1865 pci_disable_device(pdev);
1866 pstate = pci_choose_state(pdev, state);
1867 if (state.event == PM_EVENT_SUSPEND && pstate != PCI_D0) {
1868 int rc;
1869
1870 tulip_set_wolopts(pdev, tp->wolinfo.wolopts);
1871 rc = pci_enable_wake(pdev, pstate, tp->wolinfo.wolopts);
1872 if (rc)
1873 pr_err("pci_enable_wake failed (%d)\n", rc);
1874 }
1875 pci_set_power_state(pdev, pstate);
1876
1877 return 0;
1878 }
1879
1880
tulip_resume(struct pci_dev * pdev)1881 static int tulip_resume(struct pci_dev *pdev)
1882 {
1883 struct net_device *dev = pci_get_drvdata(pdev);
1884 struct tulip_private *tp = netdev_priv(dev);
1885 void __iomem *ioaddr = tp->base_addr;
1886 int retval;
1887 unsigned int tmp;
1888
1889 if (!dev)
1890 return -EINVAL;
1891
1892 pci_set_power_state(pdev, PCI_D0);
1893 pci_restore_state(pdev);
1894
1895 if (!netif_running(dev))
1896 return 0;
1897
1898 if ((retval = pci_enable_device(pdev))) {
1899 pr_err("pci_enable_device failed in resume\n");
1900 return retval;
1901 }
1902
1903 if ((retval = request_irq(dev->irq, tulip_interrupt, IRQF_SHARED, dev->name, dev))) {
1904 pr_err("request_irq failed in resume\n");
1905 return retval;
1906 }
1907
1908 if (tp->flags & COMET_PM) {
1909 pci_enable_wake(pdev, PCI_D3hot, 0);
1910 pci_enable_wake(pdev, PCI_D3cold, 0);
1911
1912 /* Clear the PMES flag */
1913 tmp = ioread32(ioaddr + CSR20);
1914 tmp |= comet_csr20_pmes;
1915 iowrite32(tmp, ioaddr + CSR20);
1916
1917 /* Disable all wake-up events */
1918 tulip_set_wolopts(pdev, 0);
1919 }
1920 netif_device_attach(dev);
1921
1922 if (netif_running(dev))
1923 tulip_up(dev);
1924
1925 return 0;
1926 }
1927
1928 #endif /* CONFIG_PM */
1929
1930
tulip_remove_one(struct pci_dev * pdev)1931 static void __devexit tulip_remove_one (struct pci_dev *pdev)
1932 {
1933 struct net_device *dev = pci_get_drvdata (pdev);
1934 struct tulip_private *tp;
1935
1936 if (!dev)
1937 return;
1938
1939 tp = netdev_priv(dev);
1940 unregister_netdev(dev);
1941 pci_free_consistent (pdev,
1942 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1943 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1944 tp->rx_ring, tp->rx_ring_dma);
1945 kfree (tp->mtable);
1946 pci_iounmap(pdev, tp->base_addr);
1947 free_netdev (dev);
1948 pci_release_regions (pdev);
1949 pci_set_drvdata (pdev, NULL);
1950
1951 /* pci_power_off (pdev, -1); */
1952 }
1953
1954 #ifdef CONFIG_NET_POLL_CONTROLLER
1955 /*
1956 * Polling 'interrupt' - used by things like netconsole to send skbs
1957 * without having to re-enable interrupts. It's not called while
1958 * the interrupt routine is executing.
1959 */
1960
poll_tulip(struct net_device * dev)1961 static void poll_tulip (struct net_device *dev)
1962 {
1963 /* disable_irq here is not very nice, but with the lockless
1964 interrupt handler we have no other choice. */
1965 disable_irq(dev->irq);
1966 tulip_interrupt (dev->irq, dev);
1967 enable_irq(dev->irq);
1968 }
1969 #endif
1970
1971 static struct pci_driver tulip_driver = {
1972 .name = DRV_NAME,
1973 .id_table = tulip_pci_tbl,
1974 .probe = tulip_init_one,
1975 .remove = __devexit_p(tulip_remove_one),
1976 #ifdef CONFIG_PM
1977 .suspend = tulip_suspend,
1978 .resume = tulip_resume,
1979 #endif /* CONFIG_PM */
1980 };
1981
1982
tulip_init(void)1983 static int __init tulip_init (void)
1984 {
1985 #ifdef MODULE
1986 pr_info("%s", version);
1987 #endif
1988
1989 /* copy module parms into globals */
1990 tulip_rx_copybreak = rx_copybreak;
1991 tulip_max_interrupt_work = max_interrupt_work;
1992
1993 /* probe for and init boards */
1994 return pci_register_driver(&tulip_driver);
1995 }
1996
1997
tulip_cleanup(void)1998 static void __exit tulip_cleanup (void)
1999 {
2000 pci_unregister_driver (&tulip_driver);
2001 }
2002
2003
2004 module_init(tulip_init);
2005 module_exit(tulip_cleanup);
2006