1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
6 *
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 * Copyright SUSE, 2021
10 *
11 * Author: Ingo Molnar <mingo@elte.hu>
12 * Paul E. McKenney <paulmck@linux.ibm.com>
13 * Frederic Weisbecker <frederic@kernel.org>
14 */
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
rcu_lockdep_is_held_nocb(struct rcu_data * rdp)19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
20 {
21 return lockdep_is_held(&rdp->nocb_lock);
22 }
23
rcu_current_is_nocb_kthread(struct rcu_data * rdp)24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
25 {
26 /* Race on early boot between thread creation and assignment */
27 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
28 return true;
29
30 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
31 if (in_task())
32 return true;
33 return false;
34 }
35
36 /*
37 * Offload callback processing from the boot-time-specified set of CPUs
38 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
39 * created that pull the callbacks from the corresponding CPU, wait for
40 * a grace period to elapse, and invoke the callbacks. These kthreads
41 * are organized into GP kthreads, which manage incoming callbacks, wait for
42 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
43 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
44 * do a wake_up() on their GP kthread when they insert a callback into any
45 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
46 * in which case each kthread actively polls its CPU. (Which isn't so great
47 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
48 *
49 * This is intended to be used in conjunction with Frederic Weisbecker's
50 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
51 * running CPU-bound user-mode computations.
52 *
53 * Offloading of callbacks can also be used as an energy-efficiency
54 * measure because CPUs with no RCU callbacks queued are more aggressive
55 * about entering dyntick-idle mode.
56 */
57
58
59 /*
60 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
61 * If the list is invalid, a warning is emitted and all CPUs are offloaded.
62 */
rcu_nocb_setup(char * str)63 static int __init rcu_nocb_setup(char *str)
64 {
65 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
66 if (*str == '=') {
67 if (cpulist_parse(++str, rcu_nocb_mask)) {
68 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
69 cpumask_setall(rcu_nocb_mask);
70 }
71 }
72 rcu_state.nocb_is_setup = true;
73 return 1;
74 }
75 __setup("rcu_nocbs", rcu_nocb_setup);
76
parse_rcu_nocb_poll(char * arg)77 static int __init parse_rcu_nocb_poll(char *arg)
78 {
79 rcu_nocb_poll = true;
80 return 0;
81 }
82 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
83
84 /*
85 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
86 * After all, the main point of bypassing is to avoid lock contention
87 * on ->nocb_lock, which only can happen at high call_rcu() rates.
88 */
89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
90 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
91
92 /*
93 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
94 * lock isn't immediately available, increment ->nocb_lock_contended to
95 * flag the contention.
96 */
rcu_nocb_bypass_lock(struct rcu_data * rdp)97 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
98 __acquires(&rdp->nocb_bypass_lock)
99 {
100 lockdep_assert_irqs_disabled();
101 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
102 return;
103 atomic_inc(&rdp->nocb_lock_contended);
104 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
105 smp_mb__after_atomic(); /* atomic_inc() before lock. */
106 raw_spin_lock(&rdp->nocb_bypass_lock);
107 smp_mb__before_atomic(); /* atomic_dec() after lock. */
108 atomic_dec(&rdp->nocb_lock_contended);
109 }
110
111 /*
112 * Spinwait until the specified rcu_data structure's ->nocb_lock is
113 * not contended. Please note that this is extremely special-purpose,
114 * relying on the fact that at most two kthreads and one CPU contend for
115 * this lock, and also that the two kthreads are guaranteed to have frequent
116 * grace-period-duration time intervals between successive acquisitions
117 * of the lock. This allows us to use an extremely simple throttling
118 * mechanism, and further to apply it only to the CPU doing floods of
119 * call_rcu() invocations. Don't try this at home!
120 */
rcu_nocb_wait_contended(struct rcu_data * rdp)121 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
122 {
123 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
124 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
125 cpu_relax();
126 }
127
128 /*
129 * Conditionally acquire the specified rcu_data structure's
130 * ->nocb_bypass_lock.
131 */
rcu_nocb_bypass_trylock(struct rcu_data * rdp)132 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
133 {
134 lockdep_assert_irqs_disabled();
135 return raw_spin_trylock(&rdp->nocb_bypass_lock);
136 }
137
138 /*
139 * Release the specified rcu_data structure's ->nocb_bypass_lock.
140 */
rcu_nocb_bypass_unlock(struct rcu_data * rdp)141 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
142 __releases(&rdp->nocb_bypass_lock)
143 {
144 lockdep_assert_irqs_disabled();
145 raw_spin_unlock(&rdp->nocb_bypass_lock);
146 }
147
148 /*
149 * Acquire the specified rcu_data structure's ->nocb_lock, but only
150 * if it corresponds to a no-CBs CPU.
151 */
rcu_nocb_lock(struct rcu_data * rdp)152 static void rcu_nocb_lock(struct rcu_data *rdp)
153 {
154 lockdep_assert_irqs_disabled();
155 if (!rcu_rdp_is_offloaded(rdp))
156 return;
157 raw_spin_lock(&rdp->nocb_lock);
158 }
159
160 /*
161 * Release the specified rcu_data structure's ->nocb_lock, but only
162 * if it corresponds to a no-CBs CPU.
163 */
rcu_nocb_unlock(struct rcu_data * rdp)164 static void rcu_nocb_unlock(struct rcu_data *rdp)
165 {
166 if (rcu_rdp_is_offloaded(rdp)) {
167 lockdep_assert_irqs_disabled();
168 raw_spin_unlock(&rdp->nocb_lock);
169 }
170 }
171
172 /*
173 * Release the specified rcu_data structure's ->nocb_lock and restore
174 * interrupts, but only if it corresponds to a no-CBs CPU.
175 */
rcu_nocb_unlock_irqrestore(struct rcu_data * rdp,unsigned long flags)176 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
177 unsigned long flags)
178 {
179 if (rcu_rdp_is_offloaded(rdp)) {
180 lockdep_assert_irqs_disabled();
181 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
182 } else {
183 local_irq_restore(flags);
184 }
185 }
186
187 /* Lockdep check that ->cblist may be safely accessed. */
rcu_lockdep_assert_cblist_protected(struct rcu_data * rdp)188 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
189 {
190 lockdep_assert_irqs_disabled();
191 if (rcu_rdp_is_offloaded(rdp))
192 lockdep_assert_held(&rdp->nocb_lock);
193 }
194
195 /*
196 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
197 * grace period.
198 */
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)199 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
200 {
201 swake_up_all(sq);
202 }
203
rcu_nocb_gp_get(struct rcu_node * rnp)204 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
205 {
206 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
207 }
208
rcu_init_one_nocb(struct rcu_node * rnp)209 static void rcu_init_one_nocb(struct rcu_node *rnp)
210 {
211 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
212 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
213 }
214
__wake_nocb_gp(struct rcu_data * rdp_gp,struct rcu_data * rdp,bool force,unsigned long flags)215 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
216 struct rcu_data *rdp,
217 bool force, unsigned long flags)
218 __releases(rdp_gp->nocb_gp_lock)
219 {
220 bool needwake = false;
221
222 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
223 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
224 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
225 TPS("AlreadyAwake"));
226 return false;
227 }
228
229 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
230 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
231 del_timer(&rdp_gp->nocb_timer);
232 }
233
234 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
235 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
236 needwake = true;
237 }
238 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
239 if (needwake) {
240 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
241 wake_up_process(rdp_gp->nocb_gp_kthread);
242 }
243
244 return needwake;
245 }
246
247 /*
248 * Kick the GP kthread for this NOCB group.
249 */
wake_nocb_gp(struct rcu_data * rdp,bool force)250 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
251 {
252 unsigned long flags;
253 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
254
255 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
256 return __wake_nocb_gp(rdp_gp, rdp, force, flags);
257 }
258
259 /*
260 * Arrange to wake the GP kthread for this NOCB group at some future
261 * time when it is safe to do so.
262 */
wake_nocb_gp_defer(struct rcu_data * rdp,int waketype,const char * reason)263 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
264 const char *reason)
265 {
266 unsigned long flags;
267 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
268
269 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
270
271 /*
272 * Bypass wakeup overrides previous deferments. In case
273 * of callback storm, no need to wake up too early.
274 */
275 if (waketype == RCU_NOCB_WAKE_BYPASS) {
276 mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
277 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
278 } else {
279 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
280 mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
281 if (rdp_gp->nocb_defer_wakeup < waketype)
282 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
283 }
284
285 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
286
287 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
288 }
289
290 /*
291 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
292 * However, if there is a callback to be enqueued and if ->nocb_bypass
293 * proves to be initially empty, just return false because the no-CB GP
294 * kthread may need to be awakened in this case.
295 *
296 * Note that this function always returns true if rhp is NULL.
297 */
rcu_nocb_do_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j)298 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
299 unsigned long j)
300 {
301 struct rcu_cblist rcl;
302
303 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
304 rcu_lockdep_assert_cblist_protected(rdp);
305 lockdep_assert_held(&rdp->nocb_bypass_lock);
306 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
307 raw_spin_unlock(&rdp->nocb_bypass_lock);
308 return false;
309 }
310 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
311 if (rhp)
312 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
313 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
314 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
315 WRITE_ONCE(rdp->nocb_bypass_first, j);
316 rcu_nocb_bypass_unlock(rdp);
317 return true;
318 }
319
320 /*
321 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
322 * However, if there is a callback to be enqueued and if ->nocb_bypass
323 * proves to be initially empty, just return false because the no-CB GP
324 * kthread may need to be awakened in this case.
325 *
326 * Note that this function always returns true if rhp is NULL.
327 */
rcu_nocb_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j)328 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
329 unsigned long j)
330 {
331 if (!rcu_rdp_is_offloaded(rdp))
332 return true;
333 rcu_lockdep_assert_cblist_protected(rdp);
334 rcu_nocb_bypass_lock(rdp);
335 return rcu_nocb_do_flush_bypass(rdp, rhp, j);
336 }
337
338 /*
339 * If the ->nocb_bypass_lock is immediately available, flush the
340 * ->nocb_bypass queue into ->cblist.
341 */
rcu_nocb_try_flush_bypass(struct rcu_data * rdp,unsigned long j)342 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
343 {
344 rcu_lockdep_assert_cblist_protected(rdp);
345 if (!rcu_rdp_is_offloaded(rdp) ||
346 !rcu_nocb_bypass_trylock(rdp))
347 return;
348 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
349 }
350
351 /*
352 * See whether it is appropriate to use the ->nocb_bypass list in order
353 * to control contention on ->nocb_lock. A limited number of direct
354 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
355 * is non-empty, further callbacks must be placed into ->nocb_bypass,
356 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
357 * back to direct use of ->cblist. However, ->nocb_bypass should not be
358 * used if ->cblist is empty, because otherwise callbacks can be stranded
359 * on ->nocb_bypass because we cannot count on the current CPU ever again
360 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
361 * non-empty, the corresponding no-CBs grace-period kthread must not be
362 * in an indefinite sleep state.
363 *
364 * Finally, it is not permitted to use the bypass during early boot,
365 * as doing so would confuse the auto-initialization code. Besides
366 * which, there is no point in worrying about lock contention while
367 * there is only one CPU in operation.
368 */
rcu_nocb_try_bypass(struct rcu_data * rdp,struct rcu_head * rhp,bool * was_alldone,unsigned long flags)369 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
370 bool *was_alldone, unsigned long flags)
371 {
372 unsigned long c;
373 unsigned long cur_gp_seq;
374 unsigned long j = jiffies;
375 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
376
377 lockdep_assert_irqs_disabled();
378
379 // Pure softirq/rcuc based processing: no bypassing, no
380 // locking.
381 if (!rcu_rdp_is_offloaded(rdp)) {
382 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
383 return false;
384 }
385
386 // In the process of (de-)offloading: no bypassing, but
387 // locking.
388 if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
389 rcu_nocb_lock(rdp);
390 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
391 return false; /* Not offloaded, no bypassing. */
392 }
393
394 // Don't use ->nocb_bypass during early boot.
395 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
396 rcu_nocb_lock(rdp);
397 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
398 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
399 return false;
400 }
401
402 // If we have advanced to a new jiffy, reset counts to allow
403 // moving back from ->nocb_bypass to ->cblist.
404 if (j == rdp->nocb_nobypass_last) {
405 c = rdp->nocb_nobypass_count + 1;
406 } else {
407 WRITE_ONCE(rdp->nocb_nobypass_last, j);
408 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
409 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
410 nocb_nobypass_lim_per_jiffy))
411 c = 0;
412 else if (c > nocb_nobypass_lim_per_jiffy)
413 c = nocb_nobypass_lim_per_jiffy;
414 }
415 WRITE_ONCE(rdp->nocb_nobypass_count, c);
416
417 // If there hasn't yet been all that many ->cblist enqueues
418 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
419 // ->nocb_bypass first.
420 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
421 rcu_nocb_lock(rdp);
422 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
423 if (*was_alldone)
424 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
425 TPS("FirstQ"));
426 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
427 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
428 return false; // Caller must enqueue the callback.
429 }
430
431 // If ->nocb_bypass has been used too long or is too full,
432 // flush ->nocb_bypass to ->cblist.
433 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
434 ncbs >= qhimark) {
435 rcu_nocb_lock(rdp);
436 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
437 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
438 if (*was_alldone)
439 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
440 TPS("FirstQ"));
441 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
442 return false; // Caller must enqueue the callback.
443 }
444 if (j != rdp->nocb_gp_adv_time &&
445 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
446 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
447 rcu_advance_cbs_nowake(rdp->mynode, rdp);
448 rdp->nocb_gp_adv_time = j;
449 }
450 rcu_nocb_unlock_irqrestore(rdp, flags);
451 return true; // Callback already enqueued.
452 }
453
454 // We need to use the bypass.
455 rcu_nocb_wait_contended(rdp);
456 rcu_nocb_bypass_lock(rdp);
457 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
458 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
459 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
460 if (!ncbs) {
461 WRITE_ONCE(rdp->nocb_bypass_first, j);
462 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
463 }
464 rcu_nocb_bypass_unlock(rdp);
465 smp_mb(); /* Order enqueue before wake. */
466 if (ncbs) {
467 local_irq_restore(flags);
468 } else {
469 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
470 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
471 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
472 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
473 TPS("FirstBQwake"));
474 __call_rcu_nocb_wake(rdp, true, flags);
475 } else {
476 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
477 TPS("FirstBQnoWake"));
478 rcu_nocb_unlock_irqrestore(rdp, flags);
479 }
480 }
481 return true; // Callback already enqueued.
482 }
483
484 /*
485 * Awaken the no-CBs grace-period kthread if needed, either due to it
486 * legitimately being asleep or due to overload conditions.
487 *
488 * If warranted, also wake up the kthread servicing this CPUs queues.
489 */
__call_rcu_nocb_wake(struct rcu_data * rdp,bool was_alldone,unsigned long flags)490 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
491 unsigned long flags)
492 __releases(rdp->nocb_lock)
493 {
494 unsigned long cur_gp_seq;
495 unsigned long j;
496 long len;
497 struct task_struct *t;
498
499 // If we are being polled or there is no kthread, just leave.
500 t = READ_ONCE(rdp->nocb_gp_kthread);
501 if (rcu_nocb_poll || !t) {
502 rcu_nocb_unlock_irqrestore(rdp, flags);
503 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
504 TPS("WakeNotPoll"));
505 return;
506 }
507 // Need to actually to a wakeup.
508 len = rcu_segcblist_n_cbs(&rdp->cblist);
509 if (was_alldone) {
510 rdp->qlen_last_fqs_check = len;
511 if (!irqs_disabled_flags(flags)) {
512 /* ... if queue was empty ... */
513 rcu_nocb_unlock_irqrestore(rdp, flags);
514 wake_nocb_gp(rdp, false);
515 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
516 TPS("WakeEmpty"));
517 } else {
518 rcu_nocb_unlock_irqrestore(rdp, flags);
519 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
520 TPS("WakeEmptyIsDeferred"));
521 }
522 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
523 /* ... or if many callbacks queued. */
524 rdp->qlen_last_fqs_check = len;
525 j = jiffies;
526 if (j != rdp->nocb_gp_adv_time &&
527 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
528 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
529 rcu_advance_cbs_nowake(rdp->mynode, rdp);
530 rdp->nocb_gp_adv_time = j;
531 }
532 smp_mb(); /* Enqueue before timer_pending(). */
533 if ((rdp->nocb_cb_sleep ||
534 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
535 !timer_pending(&rdp->nocb_timer)) {
536 rcu_nocb_unlock_irqrestore(rdp, flags);
537 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
538 TPS("WakeOvfIsDeferred"));
539 } else {
540 rcu_nocb_unlock_irqrestore(rdp, flags);
541 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
542 }
543 } else {
544 rcu_nocb_unlock_irqrestore(rdp, flags);
545 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
546 }
547 }
548
nocb_gp_toggle_rdp(struct rcu_data * rdp,bool * wake_state)549 static int nocb_gp_toggle_rdp(struct rcu_data *rdp,
550 bool *wake_state)
551 {
552 struct rcu_segcblist *cblist = &rdp->cblist;
553 unsigned long flags;
554 int ret;
555
556 rcu_nocb_lock_irqsave(rdp, flags);
557 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
558 !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
559 /*
560 * Offloading. Set our flag and notify the offload worker.
561 * We will handle this rdp until it ever gets de-offloaded.
562 */
563 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
564 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
565 *wake_state = true;
566 ret = 1;
567 } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
568 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
569 /*
570 * De-offloading. Clear our flag and notify the de-offload worker.
571 * We will ignore this rdp until it ever gets re-offloaded.
572 */
573 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
574 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
575 *wake_state = true;
576 ret = 0;
577 } else {
578 WARN_ON_ONCE(1);
579 ret = -1;
580 }
581
582 rcu_nocb_unlock_irqrestore(rdp, flags);
583
584 return ret;
585 }
586
nocb_gp_sleep(struct rcu_data * my_rdp,int cpu)587 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
588 {
589 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
590 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
591 !READ_ONCE(my_rdp->nocb_gp_sleep));
592 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
593 }
594
595 /*
596 * No-CBs GP kthreads come here to wait for additional callbacks to show up
597 * or for grace periods to end.
598 */
nocb_gp_wait(struct rcu_data * my_rdp)599 static void nocb_gp_wait(struct rcu_data *my_rdp)
600 {
601 bool bypass = false;
602 long bypass_ncbs;
603 int __maybe_unused cpu = my_rdp->cpu;
604 unsigned long cur_gp_seq;
605 unsigned long flags;
606 bool gotcbs = false;
607 unsigned long j = jiffies;
608 bool needwait_gp = false; // This prevents actual uninitialized use.
609 bool needwake;
610 bool needwake_gp;
611 struct rcu_data *rdp, *rdp_toggling = NULL;
612 struct rcu_node *rnp;
613 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
614 bool wasempty = false;
615
616 /*
617 * Each pass through the following loop checks for CBs and for the
618 * nearest grace period (if any) to wait for next. The CB kthreads
619 * and the global grace-period kthread are awakened if needed.
620 */
621 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
622 /*
623 * An rcu_data structure is removed from the list after its
624 * CPU is de-offloaded and added to the list before that CPU is
625 * (re-)offloaded. If the following loop happens to be referencing
626 * that rcu_data structure during the time that the corresponding
627 * CPU is de-offloaded and then immediately re-offloaded, this
628 * loop's rdp pointer will be carried to the end of the list by
629 * the resulting pair of list operations. This can cause the loop
630 * to skip over some of the rcu_data structures that were supposed
631 * to have been scanned. Fortunately a new iteration through the
632 * entire loop is forced after a given CPU's rcu_data structure
633 * is added to the list, so the skipped-over rcu_data structures
634 * won't be ignored for long.
635 */
636 list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
637 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
638 rcu_nocb_lock_irqsave(rdp, flags);
639 lockdep_assert_held(&rdp->nocb_lock);
640 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
641 if (bypass_ncbs &&
642 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
643 bypass_ncbs > 2 * qhimark)) {
644 // Bypass full or old, so flush it.
645 (void)rcu_nocb_try_flush_bypass(rdp, j);
646 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
647 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
648 rcu_nocb_unlock_irqrestore(rdp, flags);
649 continue; /* No callbacks here, try next. */
650 }
651 if (bypass_ncbs) {
652 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
653 TPS("Bypass"));
654 bypass = true;
655 }
656 rnp = rdp->mynode;
657
658 // Advance callbacks if helpful and low contention.
659 needwake_gp = false;
660 if (!rcu_segcblist_restempty(&rdp->cblist,
661 RCU_NEXT_READY_TAIL) ||
662 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
663 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
664 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
665 needwake_gp = rcu_advance_cbs(rnp, rdp);
666 wasempty = rcu_segcblist_restempty(&rdp->cblist,
667 RCU_NEXT_READY_TAIL);
668 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
669 }
670 // Need to wait on some grace period?
671 WARN_ON_ONCE(wasempty &&
672 !rcu_segcblist_restempty(&rdp->cblist,
673 RCU_NEXT_READY_TAIL));
674 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
675 if (!needwait_gp ||
676 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
677 wait_gp_seq = cur_gp_seq;
678 needwait_gp = true;
679 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
680 TPS("NeedWaitGP"));
681 }
682 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
683 needwake = rdp->nocb_cb_sleep;
684 WRITE_ONCE(rdp->nocb_cb_sleep, false);
685 smp_mb(); /* CB invocation -after- GP end. */
686 } else {
687 needwake = false;
688 }
689 rcu_nocb_unlock_irqrestore(rdp, flags);
690 if (needwake) {
691 swake_up_one(&rdp->nocb_cb_wq);
692 gotcbs = true;
693 }
694 if (needwake_gp)
695 rcu_gp_kthread_wake();
696 }
697
698 my_rdp->nocb_gp_bypass = bypass;
699 my_rdp->nocb_gp_gp = needwait_gp;
700 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
701
702 if (bypass && !rcu_nocb_poll) {
703 // At least one child with non-empty ->nocb_bypass, so set
704 // timer in order to avoid stranding its callbacks.
705 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
706 TPS("WakeBypassIsDeferred"));
707 }
708 if (rcu_nocb_poll) {
709 /* Polling, so trace if first poll in the series. */
710 if (gotcbs)
711 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
712 if (list_empty(&my_rdp->nocb_head_rdp)) {
713 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
714 if (!my_rdp->nocb_toggling_rdp)
715 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
716 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
717 /* Wait for any offloading rdp */
718 nocb_gp_sleep(my_rdp, cpu);
719 } else {
720 schedule_timeout_idle(1);
721 }
722 } else if (!needwait_gp) {
723 /* Wait for callbacks to appear. */
724 nocb_gp_sleep(my_rdp, cpu);
725 } else {
726 rnp = my_rdp->mynode;
727 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
728 swait_event_interruptible_exclusive(
729 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
730 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
731 !READ_ONCE(my_rdp->nocb_gp_sleep));
732 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
733 }
734
735 if (!rcu_nocb_poll) {
736 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
737 // (De-)queue an rdp to/from the group if its nocb state is changing
738 rdp_toggling = my_rdp->nocb_toggling_rdp;
739 if (rdp_toggling)
740 my_rdp->nocb_toggling_rdp = NULL;
741
742 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
743 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
744 del_timer(&my_rdp->nocb_timer);
745 }
746 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
747 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
748 } else {
749 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
750 if (rdp_toggling) {
751 /*
752 * Paranoid locking to make sure nocb_toggling_rdp is well
753 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
754 * race with another round of nocb toggling for this rdp.
755 * Nocb locking should prevent from that already but we stick
756 * to paranoia, especially in rare path.
757 */
758 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
759 my_rdp->nocb_toggling_rdp = NULL;
760 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
761 }
762 }
763
764 if (rdp_toggling) {
765 bool wake_state = false;
766 int ret;
767
768 ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state);
769 if (ret == 1)
770 list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp);
771 else if (ret == 0)
772 list_del(&rdp_toggling->nocb_entry_rdp);
773 if (wake_state)
774 swake_up_one(&rdp_toggling->nocb_state_wq);
775 }
776
777 my_rdp->nocb_gp_seq = -1;
778 WARN_ON(signal_pending(current));
779 }
780
781 /*
782 * No-CBs grace-period-wait kthread. There is one of these per group
783 * of CPUs, but only once at least one CPU in that group has come online
784 * at least once since boot. This kthread checks for newly posted
785 * callbacks from any of the CPUs it is responsible for, waits for a
786 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
787 * that then have callback-invocation work to do.
788 */
rcu_nocb_gp_kthread(void * arg)789 static int rcu_nocb_gp_kthread(void *arg)
790 {
791 struct rcu_data *rdp = arg;
792
793 for (;;) {
794 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
795 nocb_gp_wait(rdp);
796 cond_resched_tasks_rcu_qs();
797 }
798 return 0;
799 }
800
nocb_cb_can_run(struct rcu_data * rdp)801 static inline bool nocb_cb_can_run(struct rcu_data *rdp)
802 {
803 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
804
805 return rcu_segcblist_test_flags(&rdp->cblist, flags);
806 }
807
nocb_cb_wait_cond(struct rcu_data * rdp)808 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
809 {
810 return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
811 }
812
813 /*
814 * Invoke any ready callbacks from the corresponding no-CBs CPU,
815 * then, if there are no more, wait for more to appear.
816 */
nocb_cb_wait(struct rcu_data * rdp)817 static void nocb_cb_wait(struct rcu_data *rdp)
818 {
819 struct rcu_segcblist *cblist = &rdp->cblist;
820 unsigned long cur_gp_seq;
821 unsigned long flags;
822 bool needwake_state = false;
823 bool needwake_gp = false;
824 bool can_sleep = true;
825 struct rcu_node *rnp = rdp->mynode;
826
827 do {
828 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
829 nocb_cb_wait_cond(rdp));
830
831 // VVV Ensure CB invocation follows _sleep test.
832 if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
833 WARN_ON(signal_pending(current));
834 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
835 }
836 } while (!nocb_cb_can_run(rdp));
837
838
839 local_irq_save(flags);
840 rcu_momentary_dyntick_idle();
841 local_irq_restore(flags);
842 /*
843 * Disable BH to provide the expected environment. Also, when
844 * transitioning to/from NOCB mode, a self-requeuing callback might
845 * be invoked from softirq. A short grace period could cause both
846 * instances of this callback would execute concurrently.
847 */
848 local_bh_disable();
849 rcu_do_batch(rdp);
850 local_bh_enable();
851 lockdep_assert_irqs_enabled();
852 rcu_nocb_lock_irqsave(rdp, flags);
853 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
854 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
855 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
856 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
857 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
858 }
859
860 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
861 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
862 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
863 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
864 needwake_state = true;
865 }
866 if (rcu_segcblist_ready_cbs(cblist))
867 can_sleep = false;
868 } else {
869 /*
870 * De-offloading. Clear our flag and notify the de-offload worker.
871 * We won't touch the callbacks and keep sleeping until we ever
872 * get re-offloaded.
873 */
874 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
875 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
876 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
877 needwake_state = true;
878 }
879
880 WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
881
882 if (rdp->nocb_cb_sleep)
883 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
884
885 rcu_nocb_unlock_irqrestore(rdp, flags);
886 if (needwake_gp)
887 rcu_gp_kthread_wake();
888
889 if (needwake_state)
890 swake_up_one(&rdp->nocb_state_wq);
891 }
892
893 /*
894 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
895 * nocb_cb_wait() to do the dirty work.
896 */
rcu_nocb_cb_kthread(void * arg)897 static int rcu_nocb_cb_kthread(void *arg)
898 {
899 struct rcu_data *rdp = arg;
900
901 // Each pass through this loop does one callback batch, and,
902 // if there are no more ready callbacks, waits for them.
903 for (;;) {
904 nocb_cb_wait(rdp);
905 cond_resched_tasks_rcu_qs();
906 }
907 return 0;
908 }
909
910 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp,int level)911 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
912 {
913 return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
914 }
915
916 /* Do a deferred wakeup of rcu_nocb_kthread(). */
do_nocb_deferred_wakeup_common(struct rcu_data * rdp_gp,struct rcu_data * rdp,int level,unsigned long flags)917 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
918 struct rcu_data *rdp, int level,
919 unsigned long flags)
920 __releases(rdp_gp->nocb_gp_lock)
921 {
922 int ndw;
923 int ret;
924
925 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
926 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
927 return false;
928 }
929
930 ndw = rdp_gp->nocb_defer_wakeup;
931 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
932 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
933
934 return ret;
935 }
936
937 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
do_nocb_deferred_wakeup_timer(struct timer_list * t)938 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
939 {
940 unsigned long flags;
941 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
942
943 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
944 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
945
946 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
947 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
948 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
949 }
950
951 /*
952 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
953 * This means we do an inexact common-case check. Note that if
954 * we miss, ->nocb_timer will eventually clean things up.
955 */
do_nocb_deferred_wakeup(struct rcu_data * rdp)956 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
957 {
958 unsigned long flags;
959 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
960
961 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
962 return false;
963
964 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
965 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
966 }
967
rcu_nocb_flush_deferred_wakeup(void)968 void rcu_nocb_flush_deferred_wakeup(void)
969 {
970 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
971 }
972 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
973
rdp_offload_toggle(struct rcu_data * rdp,bool offload,unsigned long flags)974 static int rdp_offload_toggle(struct rcu_data *rdp,
975 bool offload, unsigned long flags)
976 __releases(rdp->nocb_lock)
977 {
978 struct rcu_segcblist *cblist = &rdp->cblist;
979 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
980 bool wake_gp = false;
981
982 rcu_segcblist_offload(cblist, offload);
983
984 if (rdp->nocb_cb_sleep)
985 rdp->nocb_cb_sleep = false;
986 rcu_nocb_unlock_irqrestore(rdp, flags);
987
988 /*
989 * Ignore former value of nocb_cb_sleep and force wake up as it could
990 * have been spuriously set to false already.
991 */
992 swake_up_one(&rdp->nocb_cb_wq);
993
994 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
995 // Queue this rdp for add/del to/from the list to iterate on rcuog
996 WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
997 if (rdp_gp->nocb_gp_sleep) {
998 rdp_gp->nocb_gp_sleep = false;
999 wake_gp = true;
1000 }
1001 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1002
1003 return wake_gp;
1004 }
1005
rcu_nocb_rdp_deoffload(void * arg)1006 static long rcu_nocb_rdp_deoffload(void *arg)
1007 {
1008 struct rcu_data *rdp = arg;
1009 struct rcu_segcblist *cblist = &rdp->cblist;
1010 unsigned long flags;
1011 int wake_gp;
1012 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1013
1014 /*
1015 * rcu_nocb_rdp_deoffload() may be called directly if
1016 * rcuog/o[p] spawn failed, because at this time the rdp->cpu
1017 * is not online yet.
1018 */
1019 WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu));
1020
1021 pr_info("De-offloading %d\n", rdp->cpu);
1022
1023 rcu_nocb_lock_irqsave(rdp, flags);
1024 /*
1025 * Flush once and for all now. This suffices because we are
1026 * running on the target CPU holding ->nocb_lock (thus having
1027 * interrupts disabled), and because rdp_offload_toggle()
1028 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
1029 * Thus future calls to rcu_segcblist_completely_offloaded() will
1030 * return false, which means that future calls to rcu_nocb_try_bypass()
1031 * will refuse to put anything into the bypass.
1032 */
1033 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
1034 /*
1035 * Start with invoking rcu_core() early. This way if the current thread
1036 * happens to preempt an ongoing call to rcu_core() in the middle,
1037 * leaving some work dismissed because rcu_core() still thinks the rdp is
1038 * completely offloaded, we are guaranteed a nearby future instance of
1039 * rcu_core() to catch up.
1040 */
1041 rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE);
1042 invoke_rcu_core();
1043 wake_gp = rdp_offload_toggle(rdp, false, flags);
1044
1045 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1046 if (rdp_gp->nocb_gp_kthread) {
1047 if (wake_gp)
1048 wake_up_process(rdp_gp->nocb_gp_kthread);
1049
1050 /*
1051 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB.
1052 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog.
1053 */
1054 if (!rdp->nocb_cb_kthread) {
1055 rcu_nocb_lock_irqsave(rdp, flags);
1056 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
1057 rcu_nocb_unlock_irqrestore(rdp, flags);
1058 }
1059
1060 swait_event_exclusive(rdp->nocb_state_wq,
1061 !rcu_segcblist_test_flags(cblist,
1062 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP));
1063 } else {
1064 /*
1065 * No kthread to clear the flags for us or remove the rdp from the nocb list
1066 * to iterate. Do it here instead. Locking doesn't look stricly necessary
1067 * but we stick to paranoia in this rare path.
1068 */
1069 rcu_nocb_lock_irqsave(rdp, flags);
1070 rcu_segcblist_clear_flags(&rdp->cblist,
1071 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1072 rcu_nocb_unlock_irqrestore(rdp, flags);
1073
1074 list_del(&rdp->nocb_entry_rdp);
1075 }
1076 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1077
1078 /*
1079 * Lock one last time to acquire latest callback updates from kthreads
1080 * so we can later handle callbacks locally without locking.
1081 */
1082 rcu_nocb_lock_irqsave(rdp, flags);
1083 /*
1084 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb
1085 * lock is released but how about being paranoid for once?
1086 */
1087 rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING);
1088 /*
1089 * Without SEGCBLIST_LOCKING, we can't use
1090 * rcu_nocb_unlock_irqrestore() anymore.
1091 */
1092 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1093
1094 /* Sanity check */
1095 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1096
1097
1098 return 0;
1099 }
1100
rcu_nocb_cpu_deoffload(int cpu)1101 int rcu_nocb_cpu_deoffload(int cpu)
1102 {
1103 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1104 int ret = 0;
1105
1106 cpus_read_lock();
1107 mutex_lock(&rcu_state.barrier_mutex);
1108 if (rcu_rdp_is_offloaded(rdp)) {
1109 if (cpu_online(cpu)) {
1110 ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
1111 if (!ret)
1112 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1113 } else {
1114 pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu);
1115 ret = -EINVAL;
1116 }
1117 }
1118 mutex_unlock(&rcu_state.barrier_mutex);
1119 cpus_read_unlock();
1120
1121 return ret;
1122 }
1123 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1124
rcu_nocb_rdp_offload(void * arg)1125 static long rcu_nocb_rdp_offload(void *arg)
1126 {
1127 struct rcu_data *rdp = arg;
1128 struct rcu_segcblist *cblist = &rdp->cblist;
1129 unsigned long flags;
1130 int wake_gp;
1131 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1132
1133 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1134 /*
1135 * For now we only support re-offload, ie: the rdp must have been
1136 * offloaded on boot first.
1137 */
1138 if (!rdp->nocb_gp_rdp)
1139 return -EINVAL;
1140
1141 if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1142 return -EINVAL;
1143
1144 pr_info("Offloading %d\n", rdp->cpu);
1145
1146 /*
1147 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING
1148 * is set.
1149 */
1150 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1151
1152 /*
1153 * We didn't take the nocb lock while working on the
1154 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode).
1155 * Every modifications that have been done previously on
1156 * rdp->cblist must be visible remotely by the nocb kthreads
1157 * upon wake up after reading the cblist flags.
1158 *
1159 * The layout against nocb_lock enforces that ordering:
1160 *
1161 * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait()
1162 * ------------------------- ----------------------------
1163 * WRITE callbacks rcu_nocb_lock()
1164 * rcu_nocb_lock() READ flags
1165 * WRITE flags READ callbacks
1166 * rcu_nocb_unlock() rcu_nocb_unlock()
1167 */
1168 wake_gp = rdp_offload_toggle(rdp, true, flags);
1169 if (wake_gp)
1170 wake_up_process(rdp_gp->nocb_gp_kthread);
1171 swait_event_exclusive(rdp->nocb_state_wq,
1172 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
1173 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
1174
1175 /*
1176 * All kthreads are ready to work, we can finally relieve rcu_core() and
1177 * enable nocb bypass.
1178 */
1179 rcu_nocb_lock_irqsave(rdp, flags);
1180 rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE);
1181 rcu_nocb_unlock_irqrestore(rdp, flags);
1182
1183 return 0;
1184 }
1185
rcu_nocb_cpu_offload(int cpu)1186 int rcu_nocb_cpu_offload(int cpu)
1187 {
1188 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1189 int ret = 0;
1190
1191 cpus_read_lock();
1192 mutex_lock(&rcu_state.barrier_mutex);
1193 if (!rcu_rdp_is_offloaded(rdp)) {
1194 if (cpu_online(cpu)) {
1195 ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
1196 if (!ret)
1197 cpumask_set_cpu(cpu, rcu_nocb_mask);
1198 } else {
1199 pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu);
1200 ret = -EINVAL;
1201 }
1202 }
1203 mutex_unlock(&rcu_state.barrier_mutex);
1204 cpus_read_unlock();
1205
1206 return ret;
1207 }
1208 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1209
rcu_init_nohz(void)1210 void __init rcu_init_nohz(void)
1211 {
1212 int cpu;
1213 bool need_rcu_nocb_mask = false;
1214 bool offload_all = false;
1215 struct rcu_data *rdp;
1216
1217 #if defined(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL)
1218 if (!rcu_state.nocb_is_setup) {
1219 need_rcu_nocb_mask = true;
1220 offload_all = true;
1221 }
1222 #endif /* #if defined(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) */
1223
1224 #if defined(CONFIG_NO_HZ_FULL)
1225 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) {
1226 need_rcu_nocb_mask = true;
1227 offload_all = false; /* NO_HZ_FULL has its own mask. */
1228 }
1229 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
1230
1231 if (need_rcu_nocb_mask) {
1232 if (!cpumask_available(rcu_nocb_mask)) {
1233 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1234 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1235 return;
1236 }
1237 }
1238 rcu_state.nocb_is_setup = true;
1239 }
1240
1241 if (!rcu_state.nocb_is_setup)
1242 return;
1243
1244 #if defined(CONFIG_NO_HZ_FULL)
1245 if (tick_nohz_full_running)
1246 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
1247 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
1248
1249 if (offload_all)
1250 cpumask_setall(rcu_nocb_mask);
1251
1252 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1253 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1254 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1255 rcu_nocb_mask);
1256 }
1257 if (cpumask_empty(rcu_nocb_mask))
1258 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1259 else
1260 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1261 cpumask_pr_args(rcu_nocb_mask));
1262 if (rcu_nocb_poll)
1263 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1264
1265 for_each_cpu(cpu, rcu_nocb_mask) {
1266 rdp = per_cpu_ptr(&rcu_data, cpu);
1267 if (rcu_segcblist_empty(&rdp->cblist))
1268 rcu_segcblist_init(&rdp->cblist);
1269 rcu_segcblist_offload(&rdp->cblist, true);
1270 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1271 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE);
1272 }
1273 rcu_organize_nocb_kthreads();
1274 }
1275
1276 /* Initialize per-rcu_data variables for no-CBs CPUs. */
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)1277 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1278 {
1279 init_swait_queue_head(&rdp->nocb_cb_wq);
1280 init_swait_queue_head(&rdp->nocb_gp_wq);
1281 init_swait_queue_head(&rdp->nocb_state_wq);
1282 raw_spin_lock_init(&rdp->nocb_lock);
1283 raw_spin_lock_init(&rdp->nocb_bypass_lock);
1284 raw_spin_lock_init(&rdp->nocb_gp_lock);
1285 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1286 rcu_cblist_init(&rdp->nocb_bypass);
1287 mutex_init(&rdp->nocb_gp_kthread_mutex);
1288 }
1289
1290 /*
1291 * If the specified CPU is a no-CBs CPU that does not already have its
1292 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
1293 * for this CPU's group has not yet been created, spawn it as well.
1294 */
rcu_spawn_cpu_nocb_kthread(int cpu)1295 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1296 {
1297 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1298 struct rcu_data *rdp_gp;
1299 struct task_struct *t;
1300 struct sched_param sp;
1301
1302 if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1303 return;
1304
1305 /* If there already is an rcuo kthread, then nothing to do. */
1306 if (rdp->nocb_cb_kthread)
1307 return;
1308
1309 /* If we didn't spawn the GP kthread first, reorganize! */
1310 sp.sched_priority = kthread_prio;
1311 rdp_gp = rdp->nocb_gp_rdp;
1312 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1313 if (!rdp_gp->nocb_gp_kthread) {
1314 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1315 "rcuog/%d", rdp_gp->cpu);
1316 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1317 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1318 goto end;
1319 }
1320 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1321 if (kthread_prio)
1322 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1323 }
1324 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1325
1326 /* Spawn the kthread for this CPU. */
1327 t = kthread_run(rcu_nocb_cb_kthread, rdp,
1328 "rcuo%c/%d", rcu_state.abbr, cpu);
1329 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1330 goto end;
1331
1332 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1333 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1334
1335 WRITE_ONCE(rdp->nocb_cb_kthread, t);
1336 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1337 return;
1338 end:
1339 mutex_lock(&rcu_state.barrier_mutex);
1340 if (rcu_rdp_is_offloaded(rdp)) {
1341 rcu_nocb_rdp_deoffload(rdp);
1342 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1343 }
1344 mutex_unlock(&rcu_state.barrier_mutex);
1345 }
1346
1347 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
1348 static int rcu_nocb_gp_stride = -1;
1349 module_param(rcu_nocb_gp_stride, int, 0444);
1350
1351 /*
1352 * Initialize GP-CB relationships for all no-CBs CPU.
1353 */
rcu_organize_nocb_kthreads(void)1354 static void __init rcu_organize_nocb_kthreads(void)
1355 {
1356 int cpu;
1357 bool firsttime = true;
1358 bool gotnocbs = false;
1359 bool gotnocbscbs = true;
1360 int ls = rcu_nocb_gp_stride;
1361 int nl = 0; /* Next GP kthread. */
1362 struct rcu_data *rdp;
1363 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
1364
1365 if (!cpumask_available(rcu_nocb_mask))
1366 return;
1367 if (ls == -1) {
1368 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1369 rcu_nocb_gp_stride = ls;
1370 }
1371
1372 /*
1373 * Each pass through this loop sets up one rcu_data structure.
1374 * Should the corresponding CPU come online in the future, then
1375 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1376 */
1377 for_each_possible_cpu(cpu) {
1378 rdp = per_cpu_ptr(&rcu_data, cpu);
1379 if (rdp->cpu >= nl) {
1380 /* New GP kthread, set up for CBs & next GP. */
1381 gotnocbs = true;
1382 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1383 rdp_gp = rdp;
1384 INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1385 if (dump_tree) {
1386 if (!firsttime)
1387 pr_cont("%s\n", gotnocbscbs
1388 ? "" : " (self only)");
1389 gotnocbscbs = false;
1390 firsttime = false;
1391 pr_alert("%s: No-CB GP kthread CPU %d:",
1392 __func__, cpu);
1393 }
1394 } else {
1395 /* Another CB kthread, link to previous GP kthread. */
1396 gotnocbscbs = true;
1397 if (dump_tree)
1398 pr_cont(" %d", cpu);
1399 }
1400 rdp->nocb_gp_rdp = rdp_gp;
1401 if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1402 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1403 }
1404 if (gotnocbs && dump_tree)
1405 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1406 }
1407
1408 /*
1409 * Bind the current task to the offloaded CPUs. If there are no offloaded
1410 * CPUs, leave the task unbound. Splat if the bind attempt fails.
1411 */
rcu_bind_current_to_nocb(void)1412 void rcu_bind_current_to_nocb(void)
1413 {
1414 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1415 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1416 }
1417 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1418
1419 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1420 #ifdef CONFIG_SMP
show_rcu_should_be_on_cpu(struct task_struct * tsp)1421 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1422 {
1423 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1424 }
1425 #else // #ifdef CONFIG_SMP
show_rcu_should_be_on_cpu(struct task_struct * tsp)1426 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1427 {
1428 return "";
1429 }
1430 #endif // #else #ifdef CONFIG_SMP
1431
1432 /*
1433 * Dump out nocb grace-period kthread state for the specified rcu_data
1434 * structure.
1435 */
show_rcu_nocb_gp_state(struct rcu_data * rdp)1436 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1437 {
1438 struct rcu_node *rnp = rdp->mynode;
1439
1440 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1441 rdp->cpu,
1442 "kK"[!!rdp->nocb_gp_kthread],
1443 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1444 "dD"[!!rdp->nocb_defer_wakeup],
1445 "tT"[timer_pending(&rdp->nocb_timer)],
1446 "sS"[!!rdp->nocb_gp_sleep],
1447 ".W"[swait_active(&rdp->nocb_gp_wq)],
1448 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
1449 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
1450 ".B"[!!rdp->nocb_gp_bypass],
1451 ".G"[!!rdp->nocb_gp_gp],
1452 (long)rdp->nocb_gp_seq,
1453 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1454 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1455 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1456 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1457 }
1458
1459 /* Dump out nocb kthread state for the specified rcu_data structure. */
show_rcu_nocb_state(struct rcu_data * rdp)1460 static void show_rcu_nocb_state(struct rcu_data *rdp)
1461 {
1462 char bufw[20];
1463 char bufr[20];
1464 struct rcu_data *nocb_next_rdp;
1465 struct rcu_segcblist *rsclp = &rdp->cblist;
1466 bool waslocked;
1467 bool wassleep;
1468
1469 if (rdp->nocb_gp_rdp == rdp)
1470 show_rcu_nocb_gp_state(rdp);
1471
1472 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1473 &rdp->nocb_entry_rdp,
1474 typeof(*rdp),
1475 nocb_entry_rdp);
1476
1477 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1478 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1479 pr_info(" CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1480 rdp->cpu, rdp->nocb_gp_rdp->cpu,
1481 nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1482 "kK"[!!rdp->nocb_cb_kthread],
1483 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1484 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
1485 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1486 "sS"[!!rdp->nocb_cb_sleep],
1487 ".W"[swait_active(&rdp->nocb_cb_wq)],
1488 jiffies - rdp->nocb_bypass_first,
1489 jiffies - rdp->nocb_nobypass_last,
1490 rdp->nocb_nobypass_count,
1491 ".D"[rcu_segcblist_ready_cbs(rsclp)],
1492 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1493 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1494 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1495 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1496 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1497 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1498 rcu_segcblist_n_cbs(&rdp->cblist),
1499 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1500 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1501 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1502
1503 /* It is OK for GP kthreads to have GP state. */
1504 if (rdp->nocb_gp_rdp == rdp)
1505 return;
1506
1507 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1508 wassleep = swait_active(&rdp->nocb_gp_wq);
1509 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1510 return; /* Nothing untoward. */
1511
1512 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1513 "lL"[waslocked],
1514 "dD"[!!rdp->nocb_defer_wakeup],
1515 "sS"[!!rdp->nocb_gp_sleep],
1516 ".W"[wassleep]);
1517 }
1518
1519 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1520
rcu_lockdep_is_held_nocb(struct rcu_data * rdp)1521 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
1522 {
1523 return 0;
1524 }
1525
rcu_current_is_nocb_kthread(struct rcu_data * rdp)1526 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
1527 {
1528 return false;
1529 }
1530
1531 /* No ->nocb_lock to acquire. */
rcu_nocb_lock(struct rcu_data * rdp)1532 static void rcu_nocb_lock(struct rcu_data *rdp)
1533 {
1534 }
1535
1536 /* No ->nocb_lock to release. */
rcu_nocb_unlock(struct rcu_data * rdp)1537 static void rcu_nocb_unlock(struct rcu_data *rdp)
1538 {
1539 }
1540
1541 /* No ->nocb_lock to release. */
rcu_nocb_unlock_irqrestore(struct rcu_data * rdp,unsigned long flags)1542 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1543 unsigned long flags)
1544 {
1545 local_irq_restore(flags);
1546 }
1547
1548 /* Lockdep check that ->cblist may be safely accessed. */
rcu_lockdep_assert_cblist_protected(struct rcu_data * rdp)1549 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1550 {
1551 lockdep_assert_irqs_disabled();
1552 }
1553
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)1554 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1555 {
1556 }
1557
rcu_nocb_gp_get(struct rcu_node * rnp)1558 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1559 {
1560 return NULL;
1561 }
1562
rcu_init_one_nocb(struct rcu_node * rnp)1563 static void rcu_init_one_nocb(struct rcu_node *rnp)
1564 {
1565 }
1566
rcu_nocb_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j)1567 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1568 unsigned long j)
1569 {
1570 return true;
1571 }
1572
rcu_nocb_try_bypass(struct rcu_data * rdp,struct rcu_head * rhp,bool * was_alldone,unsigned long flags)1573 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1574 bool *was_alldone, unsigned long flags)
1575 {
1576 return false;
1577 }
1578
__call_rcu_nocb_wake(struct rcu_data * rdp,bool was_empty,unsigned long flags)1579 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1580 unsigned long flags)
1581 {
1582 WARN_ON_ONCE(1); /* Should be dead code! */
1583 }
1584
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)1585 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1586 {
1587 }
1588
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp,int level)1589 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1590 {
1591 return false;
1592 }
1593
do_nocb_deferred_wakeup(struct rcu_data * rdp)1594 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1595 {
1596 return false;
1597 }
1598
rcu_spawn_cpu_nocb_kthread(int cpu)1599 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1600 {
1601 }
1602
show_rcu_nocb_state(struct rcu_data * rdp)1603 static void show_rcu_nocb_state(struct rcu_data *rdp)
1604 {
1605 }
1606
1607 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1608