1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
28 
29 /* magic values for the inode_only field in btrfs_log_inode:
30  *
31  * LOG_INODE_ALL means to log everything
32  * LOG_INODE_EXISTS means to log just enough to recreate the inode
33  * during log replay
34  */
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
93 
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 			     struct btrfs_root *root, struct inode *inode,
96 			     int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 			     struct btrfs_root *root,
99 			     struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 				       struct btrfs_root *root,
102 				       struct btrfs_root *log,
103 				       struct btrfs_path *path,
104 				       u64 dirid, int del_all);
105 
106 /*
107  * tree logging is a special write ahead log used to make sure that
108  * fsyncs and O_SYNCs can happen without doing full tree commits.
109  *
110  * Full tree commits are expensive because they require commonly
111  * modified blocks to be recowed, creating many dirty pages in the
112  * extent tree an 4x-6x higher write load than ext3.
113  *
114  * Instead of doing a tree commit on every fsync, we use the
115  * key ranges and transaction ids to find items for a given file or directory
116  * that have changed in this transaction.  Those items are copied into
117  * a special tree (one per subvolume root), that tree is written to disk
118  * and then the fsync is considered complete.
119  *
120  * After a crash, items are copied out of the log-tree back into the
121  * subvolume tree.  Any file data extents found are recorded in the extent
122  * allocation tree, and the log-tree freed.
123  *
124  * The log tree is read three times, once to pin down all the extents it is
125  * using in ram and once, once to create all the inodes logged in the tree
126  * and once to do all the other items.
127  */
128 
129 /*
130  * start a sub transaction and setup the log tree
131  * this increments the log tree writer count to make the people
132  * syncing the tree wait for us to finish
133  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 			   struct btrfs_root *root)
136 {
137 	int ret;
138 	int err = 0;
139 
140 	mutex_lock(&root->log_mutex);
141 	if (root->log_root) {
142 		if (!root->log_start_pid) {
143 			root->log_start_pid = current->pid;
144 			root->log_multiple_pids = false;
145 		} else if (root->log_start_pid != current->pid) {
146 			root->log_multiple_pids = true;
147 		}
148 
149 		root->log_batch++;
150 		atomic_inc(&root->log_writers);
151 		mutex_unlock(&root->log_mutex);
152 		return 0;
153 	}
154 	root->log_multiple_pids = false;
155 	root->log_start_pid = current->pid;
156 	mutex_lock(&root->fs_info->tree_log_mutex);
157 	if (!root->fs_info->log_root_tree) {
158 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 		if (ret)
160 			err = ret;
161 	}
162 	if (err == 0 && !root->log_root) {
163 		ret = btrfs_add_log_tree(trans, root);
164 		if (ret)
165 			err = ret;
166 	}
167 	mutex_unlock(&root->fs_info->tree_log_mutex);
168 	root->log_batch++;
169 	atomic_inc(&root->log_writers);
170 	mutex_unlock(&root->log_mutex);
171 	return err;
172 }
173 
174 /*
175  * returns 0 if there was a log transaction running and we were able
176  * to join, or returns -ENOENT if there were not transactions
177  * in progress
178  */
join_running_log_trans(struct btrfs_root * root)179 static int join_running_log_trans(struct btrfs_root *root)
180 {
181 	int ret = -ENOENT;
182 
183 	smp_mb();
184 	if (!root->log_root)
185 		return -ENOENT;
186 
187 	mutex_lock(&root->log_mutex);
188 	if (root->log_root) {
189 		ret = 0;
190 		atomic_inc(&root->log_writers);
191 	}
192 	mutex_unlock(&root->log_mutex);
193 	return ret;
194 }
195 
196 /*
197  * This either makes the current running log transaction wait
198  * until you call btrfs_end_log_trans() or it makes any future
199  * log transactions wait until you call btrfs_end_log_trans()
200  */
btrfs_pin_log_trans(struct btrfs_root * root)201 int btrfs_pin_log_trans(struct btrfs_root *root)
202 {
203 	int ret = -ENOENT;
204 
205 	mutex_lock(&root->log_mutex);
206 	atomic_inc(&root->log_writers);
207 	mutex_unlock(&root->log_mutex);
208 	return ret;
209 }
210 
211 /*
212  * indicate we're done making changes to the log tree
213  * and wake up anyone waiting to do a sync
214  */
btrfs_end_log_trans(struct btrfs_root * root)215 void btrfs_end_log_trans(struct btrfs_root *root)
216 {
217 	if (atomic_dec_and_test(&root->log_writers)) {
218 		smp_mb();
219 		if (waitqueue_active(&root->log_writer_wait))
220 			wake_up(&root->log_writer_wait);
221 	}
222 }
223 
224 
225 /*
226  * the walk control struct is used to pass state down the chain when
227  * processing the log tree.  The stage field tells us which part
228  * of the log tree processing we are currently doing.  The others
229  * are state fields used for that specific part
230  */
231 struct walk_control {
232 	/* should we free the extent on disk when done?  This is used
233 	 * at transaction commit time while freeing a log tree
234 	 */
235 	int free;
236 
237 	/* should we write out the extent buffer?  This is used
238 	 * while flushing the log tree to disk during a sync
239 	 */
240 	int write;
241 
242 	/* should we wait for the extent buffer io to finish?  Also used
243 	 * while flushing the log tree to disk for a sync
244 	 */
245 	int wait;
246 
247 	/* pin only walk, we record which extents on disk belong to the
248 	 * log trees
249 	 */
250 	int pin;
251 
252 	/* what stage of the replay code we're currently in */
253 	int stage;
254 
255 	/* the root we are currently replaying */
256 	struct btrfs_root *replay_dest;
257 
258 	/* the trans handle for the current replay */
259 	struct btrfs_trans_handle *trans;
260 
261 	/* the function that gets used to process blocks we find in the
262 	 * tree.  Note the extent_buffer might not be up to date when it is
263 	 * passed in, and it must be checked or read if you need the data
264 	 * inside it
265 	 */
266 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
267 			    struct walk_control *wc, u64 gen);
268 };
269 
270 /*
271  * process_func used to pin down extents, write them or wait on them
272  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)273 static int process_one_buffer(struct btrfs_root *log,
274 			      struct extent_buffer *eb,
275 			      struct walk_control *wc, u64 gen)
276 {
277 	if (wc->pin)
278 		btrfs_pin_extent_for_log_replay(wc->trans,
279 						log->fs_info->extent_root,
280 						eb->start, eb->len);
281 
282 	if (btrfs_buffer_uptodate(eb, gen, 0)) {
283 		if (wc->write)
284 			btrfs_write_tree_block(eb);
285 		if (wc->wait)
286 			btrfs_wait_tree_block_writeback(eb);
287 	}
288 	return 0;
289 }
290 
291 /*
292  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
293  * to the src data we are copying out.
294  *
295  * root is the tree we are copying into, and path is a scratch
296  * path for use in this function (it should be released on entry and
297  * will be released on exit).
298  *
299  * If the key is already in the destination tree the existing item is
300  * overwritten.  If the existing item isn't big enough, it is extended.
301  * If it is too large, it is truncated.
302  *
303  * If the key isn't in the destination yet, a new item is inserted.
304  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 				   struct btrfs_root *root,
307 				   struct btrfs_path *path,
308 				   struct extent_buffer *eb, int slot,
309 				   struct btrfs_key *key)
310 {
311 	int ret;
312 	u32 item_size;
313 	u64 saved_i_size = 0;
314 	int save_old_i_size = 0;
315 	unsigned long src_ptr;
316 	unsigned long dst_ptr;
317 	int overwrite_root = 0;
318 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
319 
320 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
321 		overwrite_root = 1;
322 
323 	item_size = btrfs_item_size_nr(eb, slot);
324 	src_ptr = btrfs_item_ptr_offset(eb, slot);
325 
326 	/* look for the key in the destination tree */
327 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
328 	if (ret < 0)
329 		return ret;
330 
331 	if (ret == 0) {
332 		char *src_copy;
333 		char *dst_copy;
334 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
335 						  path->slots[0]);
336 		if (dst_size != item_size)
337 			goto insert;
338 
339 		if (item_size == 0) {
340 			btrfs_release_path(path);
341 			return 0;
342 		}
343 		dst_copy = kmalloc(item_size, GFP_NOFS);
344 		src_copy = kmalloc(item_size, GFP_NOFS);
345 		if (!dst_copy || !src_copy) {
346 			btrfs_release_path(path);
347 			kfree(dst_copy);
348 			kfree(src_copy);
349 			return -ENOMEM;
350 		}
351 
352 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
353 
354 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
355 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
356 				   item_size);
357 		ret = memcmp(dst_copy, src_copy, item_size);
358 
359 		kfree(dst_copy);
360 		kfree(src_copy);
361 		/*
362 		 * they have the same contents, just return, this saves
363 		 * us from cowing blocks in the destination tree and doing
364 		 * extra writes that may not have been done by a previous
365 		 * sync
366 		 */
367 		if (ret == 0) {
368 			btrfs_release_path(path);
369 			return 0;
370 		}
371 
372 		/*
373 		 * We need to load the old nbytes into the inode so when we
374 		 * replay the extents we've logged we get the right nbytes.
375 		 */
376 		if (inode_item) {
377 			struct btrfs_inode_item *item;
378 			u64 nbytes;
379 
380 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
381 					      struct btrfs_inode_item);
382 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
383 			item = btrfs_item_ptr(eb, slot,
384 					      struct btrfs_inode_item);
385 			btrfs_set_inode_nbytes(eb, item, nbytes);
386 		}
387 	} else if (inode_item) {
388 		struct btrfs_inode_item *item;
389 
390 		/*
391 		 * New inode, set nbytes to 0 so that the nbytes comes out
392 		 * properly when we replay the extents.
393 		 */
394 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
395 		btrfs_set_inode_nbytes(eb, item, 0);
396 	}
397 insert:
398 	btrfs_release_path(path);
399 	/* try to insert the key into the destination tree */
400 	ret = btrfs_insert_empty_item(trans, root, path,
401 				      key, item_size);
402 
403 	/* make sure any existing item is the correct size */
404 	if (ret == -EEXIST) {
405 		u32 found_size;
406 		found_size = btrfs_item_size_nr(path->nodes[0],
407 						path->slots[0]);
408 		if (found_size > item_size)
409 			btrfs_truncate_item(trans, root, path, item_size, 1);
410 		else if (found_size < item_size)
411 			btrfs_extend_item(trans, root, path,
412 					  item_size - found_size);
413 	} else if (ret) {
414 		return ret;
415 	}
416 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
417 					path->slots[0]);
418 
419 	/* don't overwrite an existing inode if the generation number
420 	 * was logged as zero.  This is done when the tree logging code
421 	 * is just logging an inode to make sure it exists after recovery.
422 	 *
423 	 * Also, don't overwrite i_size on directories during replay.
424 	 * log replay inserts and removes directory items based on the
425 	 * state of the tree found in the subvolume, and i_size is modified
426 	 * as it goes
427 	 */
428 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
429 		struct btrfs_inode_item *src_item;
430 		struct btrfs_inode_item *dst_item;
431 
432 		src_item = (struct btrfs_inode_item *)src_ptr;
433 		dst_item = (struct btrfs_inode_item *)dst_ptr;
434 
435 		if (btrfs_inode_generation(eb, src_item) == 0)
436 			goto no_copy;
437 
438 		if (overwrite_root &&
439 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
440 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
441 			save_old_i_size = 1;
442 			saved_i_size = btrfs_inode_size(path->nodes[0],
443 							dst_item);
444 		}
445 	}
446 
447 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
448 			   src_ptr, item_size);
449 
450 	if (save_old_i_size) {
451 		struct btrfs_inode_item *dst_item;
452 		dst_item = (struct btrfs_inode_item *)dst_ptr;
453 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
454 	}
455 
456 	/* make sure the generation is filled in */
457 	if (key->type == BTRFS_INODE_ITEM_KEY) {
458 		struct btrfs_inode_item *dst_item;
459 		dst_item = (struct btrfs_inode_item *)dst_ptr;
460 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
461 			btrfs_set_inode_generation(path->nodes[0], dst_item,
462 						   trans->transid);
463 		}
464 	}
465 no_copy:
466 	btrfs_mark_buffer_dirty(path->nodes[0]);
467 	btrfs_release_path(path);
468 	return 0;
469 }
470 
471 /*
472  * simple helper to read an inode off the disk from a given root
473  * This can only be called for subvolume roots and not for the log
474  */
read_one_inode(struct btrfs_root * root,u64 objectid)475 static noinline struct inode *read_one_inode(struct btrfs_root *root,
476 					     u64 objectid)
477 {
478 	struct btrfs_key key;
479 	struct inode *inode;
480 
481 	key.objectid = objectid;
482 	key.type = BTRFS_INODE_ITEM_KEY;
483 	key.offset = 0;
484 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
485 	if (IS_ERR(inode)) {
486 		inode = NULL;
487 	} else if (is_bad_inode(inode)) {
488 		iput(inode);
489 		inode = NULL;
490 	}
491 	return inode;
492 }
493 
494 /* replays a single extent in 'eb' at 'slot' with 'key' into the
495  * subvolume 'root'.  path is released on entry and should be released
496  * on exit.
497  *
498  * extents in the log tree have not been allocated out of the extent
499  * tree yet.  So, this completes the allocation, taking a reference
500  * as required if the extent already exists or creating a new extent
501  * if it isn't in the extent allocation tree yet.
502  *
503  * The extent is inserted into the file, dropping any existing extents
504  * from the file that overlap the new one.
505  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)506 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
507 				      struct btrfs_root *root,
508 				      struct btrfs_path *path,
509 				      struct extent_buffer *eb, int slot,
510 				      struct btrfs_key *key)
511 {
512 	int found_type;
513 	u64 mask = root->sectorsize - 1;
514 	u64 extent_end;
515 	u64 alloc_hint;
516 	u64 start = key->offset;
517 	u64 nbytes = 0;
518 	struct btrfs_file_extent_item *item;
519 	struct inode *inode = NULL;
520 	unsigned long size;
521 	int ret = 0;
522 
523 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
524 	found_type = btrfs_file_extent_type(eb, item);
525 
526 	if (found_type == BTRFS_FILE_EXTENT_REG ||
527 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
528 		nbytes = btrfs_file_extent_num_bytes(eb, item);
529 		extent_end = start + nbytes;
530 
531 		/*
532 		 * We don't add to the inodes nbytes if we are prealloc or a
533 		 * hole.
534 		 */
535 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
536 			nbytes = 0;
537 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
538 		size = btrfs_file_extent_inline_len(eb, item);
539 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
540 		extent_end = (start + size + mask) & ~mask;
541 	} else {
542 		ret = 0;
543 		goto out;
544 	}
545 
546 	inode = read_one_inode(root, key->objectid);
547 	if (!inode) {
548 		ret = -EIO;
549 		goto out;
550 	}
551 
552 	/*
553 	 * first check to see if we already have this extent in the
554 	 * file.  This must be done before the btrfs_drop_extents run
555 	 * so we don't try to drop this extent.
556 	 */
557 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
558 				       start, 0);
559 
560 	if (ret == 0 &&
561 	    (found_type == BTRFS_FILE_EXTENT_REG ||
562 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
563 		struct btrfs_file_extent_item cmp1;
564 		struct btrfs_file_extent_item cmp2;
565 		struct btrfs_file_extent_item *existing;
566 		struct extent_buffer *leaf;
567 
568 		leaf = path->nodes[0];
569 		existing = btrfs_item_ptr(leaf, path->slots[0],
570 					  struct btrfs_file_extent_item);
571 
572 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
573 				   sizeof(cmp1));
574 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
575 				   sizeof(cmp2));
576 
577 		/*
578 		 * we already have a pointer to this exact extent,
579 		 * we don't have to do anything
580 		 */
581 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
582 			btrfs_release_path(path);
583 			goto out;
584 		}
585 	}
586 	btrfs_release_path(path);
587 
588 	/* drop any overlapping extents */
589 	ret = btrfs_drop_extents(trans, inode, start, extent_end,
590 				 &alloc_hint, 1);
591 	BUG_ON(ret);
592 
593 	if (found_type == BTRFS_FILE_EXTENT_REG ||
594 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
595 		u64 offset;
596 		unsigned long dest_offset;
597 		struct btrfs_key ins;
598 
599 		ret = btrfs_insert_empty_item(trans, root, path, key,
600 					      sizeof(*item));
601 		BUG_ON(ret);
602 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
603 						    path->slots[0]);
604 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
605 				(unsigned long)item,  sizeof(*item));
606 
607 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
608 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
609 		ins.type = BTRFS_EXTENT_ITEM_KEY;
610 		offset = key->offset - btrfs_file_extent_offset(eb, item);
611 
612 		if (ins.objectid > 0) {
613 			u64 csum_start;
614 			u64 csum_end;
615 			LIST_HEAD(ordered_sums);
616 			/*
617 			 * is this extent already allocated in the extent
618 			 * allocation tree?  If so, just add a reference
619 			 */
620 			ret = btrfs_lookup_extent(root, ins.objectid,
621 						ins.offset);
622 			if (ret == 0) {
623 				ret = btrfs_inc_extent_ref(trans, root,
624 						ins.objectid, ins.offset,
625 						0, root->root_key.objectid,
626 						key->objectid, offset, 0);
627 				BUG_ON(ret);
628 			} else {
629 				/*
630 				 * insert the extent pointer in the extent
631 				 * allocation tree
632 				 */
633 				ret = btrfs_alloc_logged_file_extent(trans,
634 						root, root->root_key.objectid,
635 						key->objectid, offset, &ins);
636 				BUG_ON(ret);
637 			}
638 			btrfs_release_path(path);
639 
640 			if (btrfs_file_extent_compression(eb, item)) {
641 				csum_start = ins.objectid;
642 				csum_end = csum_start + ins.offset;
643 			} else {
644 				csum_start = ins.objectid +
645 					btrfs_file_extent_offset(eb, item);
646 				csum_end = csum_start +
647 					btrfs_file_extent_num_bytes(eb, item);
648 			}
649 
650 			ret = btrfs_lookup_csums_range(root->log_root,
651 						csum_start, csum_end - 1,
652 						&ordered_sums, 0);
653 			BUG_ON(ret);
654 			while (!list_empty(&ordered_sums)) {
655 				struct btrfs_ordered_sum *sums;
656 				sums = list_entry(ordered_sums.next,
657 						struct btrfs_ordered_sum,
658 						list);
659 				ret = btrfs_csum_file_blocks(trans,
660 						root->fs_info->csum_root,
661 						sums);
662 				BUG_ON(ret);
663 				list_del(&sums->list);
664 				kfree(sums);
665 			}
666 		} else {
667 			btrfs_release_path(path);
668 		}
669 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
670 		/* inline extents are easy, we just overwrite them */
671 		ret = overwrite_item(trans, root, path, eb, slot, key);
672 		BUG_ON(ret);
673 	}
674 
675 	inode_add_bytes(inode, nbytes);
676 	btrfs_update_inode(trans, root, inode);
677 out:
678 	if (inode)
679 		iput(inode);
680 	return ret;
681 }
682 
683 /*
684  * when cleaning up conflicts between the directory names in the
685  * subvolume, directory names in the log and directory names in the
686  * inode back references, we may have to unlink inodes from directories.
687  *
688  * This is a helper function to do the unlink of a specific directory
689  * item
690  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct inode * dir,struct btrfs_dir_item * di)691 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
692 				      struct btrfs_root *root,
693 				      struct btrfs_path *path,
694 				      struct inode *dir,
695 				      struct btrfs_dir_item *di)
696 {
697 	struct inode *inode;
698 	char *name;
699 	int name_len;
700 	struct extent_buffer *leaf;
701 	struct btrfs_key location;
702 	int ret;
703 
704 	leaf = path->nodes[0];
705 
706 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
707 	name_len = btrfs_dir_name_len(leaf, di);
708 	name = kmalloc(name_len, GFP_NOFS);
709 	if (!name)
710 		return -ENOMEM;
711 
712 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
713 	btrfs_release_path(path);
714 
715 	inode = read_one_inode(root, location.objectid);
716 	if (!inode) {
717 		kfree(name);
718 		return -EIO;
719 	}
720 
721 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
722 	BUG_ON(ret);
723 
724 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
725 	BUG_ON(ret);
726 	kfree(name);
727 
728 	iput(inode);
729 
730 	btrfs_run_delayed_items(trans, root);
731 	return ret;
732 }
733 
734 /*
735  * helper function to see if a given name and sequence number found
736  * in an inode back reference are already in a directory and correctly
737  * point to this inode
738  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)739 static noinline int inode_in_dir(struct btrfs_root *root,
740 				 struct btrfs_path *path,
741 				 u64 dirid, u64 objectid, u64 index,
742 				 const char *name, int name_len)
743 {
744 	struct btrfs_dir_item *di;
745 	struct btrfs_key location;
746 	int match = 0;
747 
748 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
749 					 index, name, name_len, 0);
750 	if (di && !IS_ERR(di)) {
751 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
752 		if (location.objectid != objectid)
753 			goto out;
754 	} else
755 		goto out;
756 	btrfs_release_path(path);
757 
758 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
759 	if (di && !IS_ERR(di)) {
760 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
761 		if (location.objectid != objectid)
762 			goto out;
763 	} else
764 		goto out;
765 	match = 1;
766 out:
767 	btrfs_release_path(path);
768 	return match;
769 }
770 
771 /*
772  * helper function to check a log tree for a named back reference in
773  * an inode.  This is used to decide if a back reference that is
774  * found in the subvolume conflicts with what we find in the log.
775  *
776  * inode backreferences may have multiple refs in a single item,
777  * during replay we process one reference at a time, and we don't
778  * want to delete valid links to a file from the subvolume if that
779  * link is also in the log.
780  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,char * name,int namelen)781 static noinline int backref_in_log(struct btrfs_root *log,
782 				   struct btrfs_key *key,
783 				   char *name, int namelen)
784 {
785 	struct btrfs_path *path;
786 	struct btrfs_inode_ref *ref;
787 	unsigned long ptr;
788 	unsigned long ptr_end;
789 	unsigned long name_ptr;
790 	int found_name_len;
791 	int item_size;
792 	int ret;
793 	int match = 0;
794 
795 	path = btrfs_alloc_path();
796 	if (!path)
797 		return -ENOMEM;
798 
799 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
800 	if (ret != 0)
801 		goto out;
802 
803 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
804 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
805 	ptr_end = ptr + item_size;
806 	while (ptr < ptr_end) {
807 		ref = (struct btrfs_inode_ref *)ptr;
808 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
809 		if (found_name_len == namelen) {
810 			name_ptr = (unsigned long)(ref + 1);
811 			ret = memcmp_extent_buffer(path->nodes[0], name,
812 						   name_ptr, namelen);
813 			if (ret == 0) {
814 				match = 1;
815 				goto out;
816 			}
817 		}
818 		ptr = (unsigned long)(ref + 1) + found_name_len;
819 	}
820 out:
821 	btrfs_free_path(path);
822 	return match;
823 }
824 
825 
826 /*
827  * replay one inode back reference item found in the log tree.
828  * eb, slot and key refer to the buffer and key found in the log tree.
829  * root is the destination we are replaying into, and path is for temp
830  * use by this function.  (it should be released on return).
831  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)832 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
833 				  struct btrfs_root *root,
834 				  struct btrfs_root *log,
835 				  struct btrfs_path *path,
836 				  struct extent_buffer *eb, int slot,
837 				  struct btrfs_key *key)
838 {
839 	struct btrfs_inode_ref *ref;
840 	struct btrfs_dir_item *di;
841 	struct inode *dir;
842 	struct inode *inode;
843 	unsigned long ref_ptr;
844 	unsigned long ref_end;
845 	char *name;
846 	int namelen;
847 	int ret;
848 	int search_done = 0;
849 
850 	/*
851 	 * it is possible that we didn't log all the parent directories
852 	 * for a given inode.  If we don't find the dir, just don't
853 	 * copy the back ref in.  The link count fixup code will take
854 	 * care of the rest
855 	 */
856 	dir = read_one_inode(root, key->offset);
857 	if (!dir)
858 		return -ENOENT;
859 
860 	inode = read_one_inode(root, key->objectid);
861 	if (!inode) {
862 		iput(dir);
863 		return -EIO;
864 	}
865 
866 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
867 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
868 
869 again:
870 	ref = (struct btrfs_inode_ref *)ref_ptr;
871 
872 	namelen = btrfs_inode_ref_name_len(eb, ref);
873 	name = kmalloc(namelen, GFP_NOFS);
874 	BUG_ON(!name);
875 
876 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
877 
878 	/* if we already have a perfect match, we're done */
879 	if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
880 			 btrfs_inode_ref_index(eb, ref),
881 			 name, namelen)) {
882 		goto out;
883 	}
884 
885 	/*
886 	 * look for a conflicting back reference in the metadata.
887 	 * if we find one we have to unlink that name of the file
888 	 * before we add our new link.  Later on, we overwrite any
889 	 * existing back reference, and we don't want to create
890 	 * dangling pointers in the directory.
891 	 */
892 
893 	if (search_done)
894 		goto insert;
895 
896 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
897 	if (ret == 0) {
898 		char *victim_name;
899 		int victim_name_len;
900 		struct btrfs_inode_ref *victim_ref;
901 		unsigned long ptr;
902 		unsigned long ptr_end;
903 		struct extent_buffer *leaf = path->nodes[0];
904 
905 		/* are we trying to overwrite a back ref for the root directory
906 		 * if so, just jump out, we're done
907 		 */
908 		if (key->objectid == key->offset)
909 			goto out_nowrite;
910 
911 		/* check all the names in this back reference to see
912 		 * if they are in the log.  if so, we allow them to stay
913 		 * otherwise they must be unlinked as a conflict
914 		 */
915 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
916 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
917 		while (ptr < ptr_end) {
918 			victim_ref = (struct btrfs_inode_ref *)ptr;
919 			victim_name_len = btrfs_inode_ref_name_len(leaf,
920 								   victim_ref);
921 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
922 			BUG_ON(!victim_name);
923 
924 			read_extent_buffer(leaf, victim_name,
925 					   (unsigned long)(victim_ref + 1),
926 					   victim_name_len);
927 
928 			if (!backref_in_log(log, key, victim_name,
929 					    victim_name_len)) {
930 				btrfs_inc_nlink(inode);
931 				btrfs_release_path(path);
932 
933 				ret = btrfs_unlink_inode(trans, root, dir,
934 							 inode, victim_name,
935 							 victim_name_len);
936 				btrfs_run_delayed_items(trans, root);
937 			}
938 			kfree(victim_name);
939 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
940 		}
941 		BUG_ON(ret);
942 
943 		/*
944 		 * NOTE: we have searched root tree and checked the
945 		 * coresponding ref, it does not need to check again.
946 		 */
947 		search_done = 1;
948 	}
949 	btrfs_release_path(path);
950 
951 	/* look for a conflicting sequence number */
952 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
953 					 btrfs_inode_ref_index(eb, ref),
954 					 name, namelen, 0);
955 	if (di && !IS_ERR(di)) {
956 		ret = drop_one_dir_item(trans, root, path, dir, di);
957 		BUG_ON(ret);
958 	}
959 	btrfs_release_path(path);
960 
961 	/* look for a conflicing name */
962 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
963 				   name, namelen, 0);
964 	if (di && !IS_ERR(di)) {
965 		ret = drop_one_dir_item(trans, root, path, dir, di);
966 		BUG_ON(ret);
967 	}
968 	btrfs_release_path(path);
969 
970 insert:
971 	/* insert our name */
972 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
973 			     btrfs_inode_ref_index(eb, ref));
974 	BUG_ON(ret);
975 
976 	btrfs_update_inode(trans, root, inode);
977 
978 out:
979 	ref_ptr = (unsigned long)(ref + 1) + namelen;
980 	kfree(name);
981 	if (ref_ptr < ref_end)
982 		goto again;
983 
984 	/* finally write the back reference in the inode */
985 	ret = overwrite_item(trans, root, path, eb, slot, key);
986 	BUG_ON(ret);
987 
988 out_nowrite:
989 	btrfs_release_path(path);
990 	iput(dir);
991 	iput(inode);
992 	return 0;
993 }
994 
insert_orphan_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 offset)995 static int insert_orphan_item(struct btrfs_trans_handle *trans,
996 			      struct btrfs_root *root, u64 offset)
997 {
998 	int ret;
999 	ret = btrfs_find_orphan_item(root, offset);
1000 	if (ret > 0)
1001 		ret = btrfs_insert_orphan_item(trans, root, offset);
1002 	return ret;
1003 }
1004 
1005 
1006 /*
1007  * There are a few corners where the link count of the file can't
1008  * be properly maintained during replay.  So, instead of adding
1009  * lots of complexity to the log code, we just scan the backrefs
1010  * for any file that has been through replay.
1011  *
1012  * The scan will update the link count on the inode to reflect the
1013  * number of back refs found.  If it goes down to zero, the iput
1014  * will free the inode.
1015  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1016 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1017 					   struct btrfs_root *root,
1018 					   struct inode *inode)
1019 {
1020 	struct btrfs_path *path;
1021 	int ret;
1022 	struct btrfs_key key;
1023 	u64 nlink = 0;
1024 	unsigned long ptr;
1025 	unsigned long ptr_end;
1026 	int name_len;
1027 	u64 ino = btrfs_ino(inode);
1028 
1029 	key.objectid = ino;
1030 	key.type = BTRFS_INODE_REF_KEY;
1031 	key.offset = (u64)-1;
1032 
1033 	path = btrfs_alloc_path();
1034 	if (!path)
1035 		return -ENOMEM;
1036 
1037 	while (1) {
1038 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1039 		if (ret < 0)
1040 			break;
1041 		if (ret > 0) {
1042 			if (path->slots[0] == 0)
1043 				break;
1044 			path->slots[0]--;
1045 		}
1046 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1047 				      path->slots[0]);
1048 		if (key.objectid != ino ||
1049 		    key.type != BTRFS_INODE_REF_KEY)
1050 			break;
1051 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1052 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1053 						   path->slots[0]);
1054 		while (ptr < ptr_end) {
1055 			struct btrfs_inode_ref *ref;
1056 
1057 			ref = (struct btrfs_inode_ref *)ptr;
1058 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1059 							    ref);
1060 			ptr = (unsigned long)(ref + 1) + name_len;
1061 			nlink++;
1062 		}
1063 
1064 		if (key.offset == 0)
1065 			break;
1066 		key.offset--;
1067 		btrfs_release_path(path);
1068 	}
1069 	btrfs_release_path(path);
1070 	if (nlink != inode->i_nlink) {
1071 		set_nlink(inode, nlink);
1072 		btrfs_update_inode(trans, root, inode);
1073 	}
1074 	BTRFS_I(inode)->index_cnt = (u64)-1;
1075 
1076 	if (inode->i_nlink == 0) {
1077 		if (S_ISDIR(inode->i_mode)) {
1078 			ret = replay_dir_deletes(trans, root, NULL, path,
1079 						 ino, 1);
1080 			BUG_ON(ret);
1081 		}
1082 		ret = insert_orphan_item(trans, root, ino);
1083 		BUG_ON(ret);
1084 	}
1085 	btrfs_free_path(path);
1086 
1087 	return 0;
1088 }
1089 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1090 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1091 					    struct btrfs_root *root,
1092 					    struct btrfs_path *path)
1093 {
1094 	int ret;
1095 	struct btrfs_key key;
1096 	struct inode *inode;
1097 
1098 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1099 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1100 	key.offset = (u64)-1;
1101 	while (1) {
1102 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1103 		if (ret < 0)
1104 			break;
1105 
1106 		if (ret == 1) {
1107 			if (path->slots[0] == 0)
1108 				break;
1109 			path->slots[0]--;
1110 		}
1111 
1112 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1113 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1114 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1115 			break;
1116 
1117 		ret = btrfs_del_item(trans, root, path);
1118 		if (ret)
1119 			goto out;
1120 
1121 		btrfs_release_path(path);
1122 		inode = read_one_inode(root, key.offset);
1123 		if (!inode)
1124 			return -EIO;
1125 
1126 		ret = fixup_inode_link_count(trans, root, inode);
1127 		BUG_ON(ret);
1128 
1129 		iput(inode);
1130 
1131 		/*
1132 		 * fixup on a directory may create new entries,
1133 		 * make sure we always look for the highset possible
1134 		 * offset
1135 		 */
1136 		key.offset = (u64)-1;
1137 	}
1138 	ret = 0;
1139 out:
1140 	btrfs_release_path(path);
1141 	return ret;
1142 }
1143 
1144 
1145 /*
1146  * record a given inode in the fixup dir so we can check its link
1147  * count when replay is done.  The link count is incremented here
1148  * so the inode won't go away until we check it
1149  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1150 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1151 				      struct btrfs_root *root,
1152 				      struct btrfs_path *path,
1153 				      u64 objectid)
1154 {
1155 	struct btrfs_key key;
1156 	int ret = 0;
1157 	struct inode *inode;
1158 
1159 	inode = read_one_inode(root, objectid);
1160 	if (!inode)
1161 		return -EIO;
1162 
1163 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1164 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1165 	key.offset = objectid;
1166 
1167 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1168 
1169 	btrfs_release_path(path);
1170 	if (ret == 0) {
1171 		btrfs_inc_nlink(inode);
1172 		btrfs_update_inode(trans, root, inode);
1173 	} else if (ret == -EEXIST) {
1174 		ret = 0;
1175 	} else {
1176 		BUG();
1177 	}
1178 	iput(inode);
1179 
1180 	return ret;
1181 }
1182 
1183 /*
1184  * when replaying the log for a directory, we only insert names
1185  * for inodes that actually exist.  This means an fsync on a directory
1186  * does not implicitly fsync all the new files in it
1187  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 index,char * name,int name_len,u8 type,struct btrfs_key * location)1188 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1189 				    struct btrfs_root *root,
1190 				    struct btrfs_path *path,
1191 				    u64 dirid, u64 index,
1192 				    char *name, int name_len, u8 type,
1193 				    struct btrfs_key *location)
1194 {
1195 	struct inode *inode;
1196 	struct inode *dir;
1197 	int ret;
1198 
1199 	inode = read_one_inode(root, location->objectid);
1200 	if (!inode)
1201 		return -ENOENT;
1202 
1203 	dir = read_one_inode(root, dirid);
1204 	if (!dir) {
1205 		iput(inode);
1206 		return -EIO;
1207 	}
1208 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1209 
1210 	/* FIXME, put inode into FIXUP list */
1211 
1212 	iput(inode);
1213 	iput(dir);
1214 	return ret;
1215 }
1216 
1217 /*
1218  * take a single entry in a log directory item and replay it into
1219  * the subvolume.
1220  *
1221  * if a conflicting item exists in the subdirectory already,
1222  * the inode it points to is unlinked and put into the link count
1223  * fix up tree.
1224  *
1225  * If a name from the log points to a file or directory that does
1226  * not exist in the FS, it is skipped.  fsyncs on directories
1227  * do not force down inodes inside that directory, just changes to the
1228  * names or unlinks in a directory.
1229  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1230 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1231 				    struct btrfs_root *root,
1232 				    struct btrfs_path *path,
1233 				    struct extent_buffer *eb,
1234 				    struct btrfs_dir_item *di,
1235 				    struct btrfs_key *key)
1236 {
1237 	char *name;
1238 	int name_len;
1239 	struct btrfs_dir_item *dst_di;
1240 	struct btrfs_key found_key;
1241 	struct btrfs_key log_key;
1242 	struct inode *dir;
1243 	u8 log_type;
1244 	int exists;
1245 	int ret;
1246 
1247 	dir = read_one_inode(root, key->objectid);
1248 	if (!dir)
1249 		return -EIO;
1250 
1251 	name_len = btrfs_dir_name_len(eb, di);
1252 	name = kmalloc(name_len, GFP_NOFS);
1253 	if (!name)
1254 		return -ENOMEM;
1255 
1256 	log_type = btrfs_dir_type(eb, di);
1257 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1258 		   name_len);
1259 
1260 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1261 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1262 	if (exists == 0)
1263 		exists = 1;
1264 	else
1265 		exists = 0;
1266 	btrfs_release_path(path);
1267 
1268 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1269 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1270 				       name, name_len, 1);
1271 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1272 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1273 						     key->objectid,
1274 						     key->offset, name,
1275 						     name_len, 1);
1276 	} else {
1277 		BUG();
1278 	}
1279 	if (IS_ERR_OR_NULL(dst_di)) {
1280 		/* we need a sequence number to insert, so we only
1281 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1282 		 */
1283 		if (key->type != BTRFS_DIR_INDEX_KEY)
1284 			goto out;
1285 		goto insert;
1286 	}
1287 
1288 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1289 	/* the existing item matches the logged item */
1290 	if (found_key.objectid == log_key.objectid &&
1291 	    found_key.type == log_key.type &&
1292 	    found_key.offset == log_key.offset &&
1293 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1294 		goto out;
1295 	}
1296 
1297 	/*
1298 	 * don't drop the conflicting directory entry if the inode
1299 	 * for the new entry doesn't exist
1300 	 */
1301 	if (!exists)
1302 		goto out;
1303 
1304 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1305 	BUG_ON(ret);
1306 
1307 	if (key->type == BTRFS_DIR_INDEX_KEY)
1308 		goto insert;
1309 out:
1310 	btrfs_release_path(path);
1311 	kfree(name);
1312 	iput(dir);
1313 	return 0;
1314 
1315 insert:
1316 	btrfs_release_path(path);
1317 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1318 			      name, name_len, log_type, &log_key);
1319 
1320 	BUG_ON(ret && ret != -ENOENT);
1321 	goto out;
1322 }
1323 
1324 /*
1325  * find all the names in a directory item and reconcile them into
1326  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1327  * one name in a directory item, but the same code gets used for
1328  * both directory index types
1329  */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1330 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1331 					struct btrfs_root *root,
1332 					struct btrfs_path *path,
1333 					struct extent_buffer *eb, int slot,
1334 					struct btrfs_key *key)
1335 {
1336 	int ret;
1337 	u32 item_size = btrfs_item_size_nr(eb, slot);
1338 	struct btrfs_dir_item *di;
1339 	int name_len;
1340 	unsigned long ptr;
1341 	unsigned long ptr_end;
1342 
1343 	ptr = btrfs_item_ptr_offset(eb, slot);
1344 	ptr_end = ptr + item_size;
1345 	while (ptr < ptr_end) {
1346 		di = (struct btrfs_dir_item *)ptr;
1347 		if (verify_dir_item(root, eb, di))
1348 			return -EIO;
1349 		name_len = btrfs_dir_name_len(eb, di);
1350 		ret = replay_one_name(trans, root, path, eb, di, key);
1351 		BUG_ON(ret);
1352 		ptr = (unsigned long)(di + 1);
1353 		ptr += name_len;
1354 	}
1355 	return 0;
1356 }
1357 
1358 /*
1359  * directory replay has two parts.  There are the standard directory
1360  * items in the log copied from the subvolume, and range items
1361  * created in the log while the subvolume was logged.
1362  *
1363  * The range items tell us which parts of the key space the log
1364  * is authoritative for.  During replay, if a key in the subvolume
1365  * directory is in a logged range item, but not actually in the log
1366  * that means it was deleted from the directory before the fsync
1367  * and should be removed.
1368  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)1369 static noinline int find_dir_range(struct btrfs_root *root,
1370 				   struct btrfs_path *path,
1371 				   u64 dirid, int key_type,
1372 				   u64 *start_ret, u64 *end_ret)
1373 {
1374 	struct btrfs_key key;
1375 	u64 found_end;
1376 	struct btrfs_dir_log_item *item;
1377 	int ret;
1378 	int nritems;
1379 
1380 	if (*start_ret == (u64)-1)
1381 		return 1;
1382 
1383 	key.objectid = dirid;
1384 	key.type = key_type;
1385 	key.offset = *start_ret;
1386 
1387 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1388 	if (ret < 0)
1389 		goto out;
1390 	if (ret > 0) {
1391 		if (path->slots[0] == 0)
1392 			goto out;
1393 		path->slots[0]--;
1394 	}
1395 	if (ret != 0)
1396 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1397 
1398 	if (key.type != key_type || key.objectid != dirid) {
1399 		ret = 1;
1400 		goto next;
1401 	}
1402 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1403 			      struct btrfs_dir_log_item);
1404 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1405 
1406 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1407 		ret = 0;
1408 		*start_ret = key.offset;
1409 		*end_ret = found_end;
1410 		goto out;
1411 	}
1412 	ret = 1;
1413 next:
1414 	/* check the next slot in the tree to see if it is a valid item */
1415 	nritems = btrfs_header_nritems(path->nodes[0]);
1416 	if (path->slots[0] >= nritems) {
1417 		ret = btrfs_next_leaf(root, path);
1418 		if (ret)
1419 			goto out;
1420 	} else {
1421 		path->slots[0]++;
1422 	}
1423 
1424 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1425 
1426 	if (key.type != key_type || key.objectid != dirid) {
1427 		ret = 1;
1428 		goto out;
1429 	}
1430 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1431 			      struct btrfs_dir_log_item);
1432 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1433 	*start_ret = key.offset;
1434 	*end_ret = found_end;
1435 	ret = 0;
1436 out:
1437 	btrfs_release_path(path);
1438 	return ret;
1439 }
1440 
1441 /*
1442  * this looks for a given directory item in the log.  If the directory
1443  * item is not in the log, the item is removed and the inode it points
1444  * to is unlinked
1445  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)1446 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1447 				      struct btrfs_root *root,
1448 				      struct btrfs_root *log,
1449 				      struct btrfs_path *path,
1450 				      struct btrfs_path *log_path,
1451 				      struct inode *dir,
1452 				      struct btrfs_key *dir_key)
1453 {
1454 	int ret;
1455 	struct extent_buffer *eb;
1456 	int slot;
1457 	u32 item_size;
1458 	struct btrfs_dir_item *di;
1459 	struct btrfs_dir_item *log_di;
1460 	int name_len;
1461 	unsigned long ptr;
1462 	unsigned long ptr_end;
1463 	char *name;
1464 	struct inode *inode;
1465 	struct btrfs_key location;
1466 
1467 again:
1468 	eb = path->nodes[0];
1469 	slot = path->slots[0];
1470 	item_size = btrfs_item_size_nr(eb, slot);
1471 	ptr = btrfs_item_ptr_offset(eb, slot);
1472 	ptr_end = ptr + item_size;
1473 	while (ptr < ptr_end) {
1474 		di = (struct btrfs_dir_item *)ptr;
1475 		if (verify_dir_item(root, eb, di)) {
1476 			ret = -EIO;
1477 			goto out;
1478 		}
1479 
1480 		name_len = btrfs_dir_name_len(eb, di);
1481 		name = kmalloc(name_len, GFP_NOFS);
1482 		if (!name) {
1483 			ret = -ENOMEM;
1484 			goto out;
1485 		}
1486 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1487 				  name_len);
1488 		log_di = NULL;
1489 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1490 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1491 						       dir_key->objectid,
1492 						       name, name_len, 0);
1493 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1494 			log_di = btrfs_lookup_dir_index_item(trans, log,
1495 						     log_path,
1496 						     dir_key->objectid,
1497 						     dir_key->offset,
1498 						     name, name_len, 0);
1499 		}
1500 		if (IS_ERR_OR_NULL(log_di)) {
1501 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1502 			btrfs_release_path(path);
1503 			btrfs_release_path(log_path);
1504 			inode = read_one_inode(root, location.objectid);
1505 			if (!inode) {
1506 				kfree(name);
1507 				return -EIO;
1508 			}
1509 
1510 			ret = link_to_fixup_dir(trans, root,
1511 						path, location.objectid);
1512 			BUG_ON(ret);
1513 			btrfs_inc_nlink(inode);
1514 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1515 						 name, name_len);
1516 			BUG_ON(ret);
1517 
1518 			btrfs_run_delayed_items(trans, root);
1519 
1520 			kfree(name);
1521 			iput(inode);
1522 
1523 			/* there might still be more names under this key
1524 			 * check and repeat if required
1525 			 */
1526 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1527 						0, 0);
1528 			if (ret == 0)
1529 				goto again;
1530 			ret = 0;
1531 			goto out;
1532 		}
1533 		btrfs_release_path(log_path);
1534 		kfree(name);
1535 
1536 		ptr = (unsigned long)(di + 1);
1537 		ptr += name_len;
1538 	}
1539 	ret = 0;
1540 out:
1541 	btrfs_release_path(path);
1542 	btrfs_release_path(log_path);
1543 	return ret;
1544 }
1545 
1546 /*
1547  * deletion replay happens before we copy any new directory items
1548  * out of the log or out of backreferences from inodes.  It
1549  * scans the log to find ranges of keys that log is authoritative for,
1550  * and then scans the directory to find items in those ranges that are
1551  * not present in the log.
1552  *
1553  * Anything we don't find in the log is unlinked and removed from the
1554  * directory.
1555  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)1556 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1557 				       struct btrfs_root *root,
1558 				       struct btrfs_root *log,
1559 				       struct btrfs_path *path,
1560 				       u64 dirid, int del_all)
1561 {
1562 	u64 range_start;
1563 	u64 range_end;
1564 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1565 	int ret = 0;
1566 	struct btrfs_key dir_key;
1567 	struct btrfs_key found_key;
1568 	struct btrfs_path *log_path;
1569 	struct inode *dir;
1570 
1571 	dir_key.objectid = dirid;
1572 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1573 	log_path = btrfs_alloc_path();
1574 	if (!log_path)
1575 		return -ENOMEM;
1576 
1577 	dir = read_one_inode(root, dirid);
1578 	/* it isn't an error if the inode isn't there, that can happen
1579 	 * because we replay the deletes before we copy in the inode item
1580 	 * from the log
1581 	 */
1582 	if (!dir) {
1583 		btrfs_free_path(log_path);
1584 		return 0;
1585 	}
1586 again:
1587 	range_start = 0;
1588 	range_end = 0;
1589 	while (1) {
1590 		if (del_all)
1591 			range_end = (u64)-1;
1592 		else {
1593 			ret = find_dir_range(log, path, dirid, key_type,
1594 					     &range_start, &range_end);
1595 			if (ret != 0)
1596 				break;
1597 		}
1598 
1599 		dir_key.offset = range_start;
1600 		while (1) {
1601 			int nritems;
1602 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1603 						0, 0);
1604 			if (ret < 0)
1605 				goto out;
1606 
1607 			nritems = btrfs_header_nritems(path->nodes[0]);
1608 			if (path->slots[0] >= nritems) {
1609 				ret = btrfs_next_leaf(root, path);
1610 				if (ret)
1611 					break;
1612 			}
1613 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1614 					      path->slots[0]);
1615 			if (found_key.objectid != dirid ||
1616 			    found_key.type != dir_key.type)
1617 				goto next_type;
1618 
1619 			if (found_key.offset > range_end)
1620 				break;
1621 
1622 			ret = check_item_in_log(trans, root, log, path,
1623 						log_path, dir,
1624 						&found_key);
1625 			BUG_ON(ret);
1626 			if (found_key.offset == (u64)-1)
1627 				break;
1628 			dir_key.offset = found_key.offset + 1;
1629 		}
1630 		btrfs_release_path(path);
1631 		if (range_end == (u64)-1)
1632 			break;
1633 		range_start = range_end + 1;
1634 	}
1635 
1636 next_type:
1637 	ret = 0;
1638 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1639 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1640 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1641 		btrfs_release_path(path);
1642 		goto again;
1643 	}
1644 out:
1645 	btrfs_release_path(path);
1646 	btrfs_free_path(log_path);
1647 	iput(dir);
1648 	return ret;
1649 }
1650 
1651 /*
1652  * the process_func used to replay items from the log tree.  This
1653  * gets called in two different stages.  The first stage just looks
1654  * for inodes and makes sure they are all copied into the subvolume.
1655  *
1656  * The second stage copies all the other item types from the log into
1657  * the subvolume.  The two stage approach is slower, but gets rid of
1658  * lots of complexity around inodes referencing other inodes that exist
1659  * only in the log (references come from either directory items or inode
1660  * back refs).
1661  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)1662 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1663 			     struct walk_control *wc, u64 gen)
1664 {
1665 	int nritems;
1666 	struct btrfs_path *path;
1667 	struct btrfs_root *root = wc->replay_dest;
1668 	struct btrfs_key key;
1669 	int level;
1670 	int i;
1671 	int ret;
1672 
1673 	btrfs_read_buffer(eb, gen);
1674 
1675 	level = btrfs_header_level(eb);
1676 
1677 	if (level != 0)
1678 		return 0;
1679 
1680 	path = btrfs_alloc_path();
1681 	if (!path)
1682 		return -ENOMEM;
1683 
1684 	nritems = btrfs_header_nritems(eb);
1685 	for (i = 0; i < nritems; i++) {
1686 		btrfs_item_key_to_cpu(eb, &key, i);
1687 
1688 		/* inode keys are done during the first stage */
1689 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1690 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1691 			struct btrfs_inode_item *inode_item;
1692 			u32 mode;
1693 
1694 			inode_item = btrfs_item_ptr(eb, i,
1695 					    struct btrfs_inode_item);
1696 			mode = btrfs_inode_mode(eb, inode_item);
1697 			if (S_ISDIR(mode)) {
1698 				ret = replay_dir_deletes(wc->trans,
1699 					 root, log, path, key.objectid, 0);
1700 				BUG_ON(ret);
1701 			}
1702 			ret = overwrite_item(wc->trans, root, path,
1703 					     eb, i, &key);
1704 			BUG_ON(ret);
1705 
1706 			/* for regular files, make sure corresponding
1707 			 * orhpan item exist. extents past the new EOF
1708 			 * will be truncated later by orphan cleanup.
1709 			 */
1710 			if (S_ISREG(mode)) {
1711 				ret = insert_orphan_item(wc->trans, root,
1712 							 key.objectid);
1713 				BUG_ON(ret);
1714 			}
1715 
1716 			ret = link_to_fixup_dir(wc->trans, root,
1717 						path, key.objectid);
1718 			BUG_ON(ret);
1719 		}
1720 		if (wc->stage < LOG_WALK_REPLAY_ALL)
1721 			continue;
1722 
1723 		/* these keys are simply copied */
1724 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1725 			ret = overwrite_item(wc->trans, root, path,
1726 					     eb, i, &key);
1727 			BUG_ON(ret);
1728 		} else if (key.type == BTRFS_INODE_REF_KEY) {
1729 			ret = add_inode_ref(wc->trans, root, log, path,
1730 					    eb, i, &key);
1731 			BUG_ON(ret && ret != -ENOENT);
1732 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1733 			ret = replay_one_extent(wc->trans, root, path,
1734 						eb, i, &key);
1735 			BUG_ON(ret);
1736 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1737 			   key.type == BTRFS_DIR_INDEX_KEY) {
1738 			ret = replay_one_dir_item(wc->trans, root, path,
1739 						  eb, i, &key);
1740 			BUG_ON(ret);
1741 		}
1742 	}
1743 	btrfs_free_path(path);
1744 	return 0;
1745 }
1746 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)1747 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1748 				   struct btrfs_root *root,
1749 				   struct btrfs_path *path, int *level,
1750 				   struct walk_control *wc)
1751 {
1752 	u64 root_owner;
1753 	u64 bytenr;
1754 	u64 ptr_gen;
1755 	struct extent_buffer *next;
1756 	struct extent_buffer *cur;
1757 	struct extent_buffer *parent;
1758 	u32 blocksize;
1759 	int ret = 0;
1760 
1761 	WARN_ON(*level < 0);
1762 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1763 
1764 	while (*level > 0) {
1765 		WARN_ON(*level < 0);
1766 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1767 		cur = path->nodes[*level];
1768 
1769 		if (btrfs_header_level(cur) != *level)
1770 			WARN_ON(1);
1771 
1772 		if (path->slots[*level] >=
1773 		    btrfs_header_nritems(cur))
1774 			break;
1775 
1776 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1777 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1778 		blocksize = btrfs_level_size(root, *level - 1);
1779 
1780 		parent = path->nodes[*level];
1781 		root_owner = btrfs_header_owner(parent);
1782 
1783 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1784 		if (!next)
1785 			return -ENOMEM;
1786 
1787 		if (*level == 1) {
1788 			ret = wc->process_func(root, next, wc, ptr_gen);
1789 			if (ret)
1790 				return ret;
1791 
1792 			path->slots[*level]++;
1793 			if (wc->free) {
1794 				btrfs_read_buffer(next, ptr_gen);
1795 
1796 				btrfs_tree_lock(next);
1797 				btrfs_set_lock_blocking(next);
1798 				clean_tree_block(trans, root, next);
1799 				btrfs_wait_tree_block_writeback(next);
1800 				btrfs_tree_unlock(next);
1801 
1802 				WARN_ON(root_owner !=
1803 					BTRFS_TREE_LOG_OBJECTID);
1804 				ret = btrfs_free_and_pin_reserved_extent(root,
1805 							 bytenr, blocksize);
1806 				BUG_ON(ret); /* -ENOMEM or logic errors */
1807 			}
1808 			free_extent_buffer(next);
1809 			continue;
1810 		}
1811 		btrfs_read_buffer(next, ptr_gen);
1812 
1813 		WARN_ON(*level <= 0);
1814 		if (path->nodes[*level-1])
1815 			free_extent_buffer(path->nodes[*level-1]);
1816 		path->nodes[*level-1] = next;
1817 		*level = btrfs_header_level(next);
1818 		path->slots[*level] = 0;
1819 		cond_resched();
1820 	}
1821 	WARN_ON(*level < 0);
1822 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1823 
1824 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1825 
1826 	cond_resched();
1827 	return 0;
1828 }
1829 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)1830 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1831 				 struct btrfs_root *root,
1832 				 struct btrfs_path *path, int *level,
1833 				 struct walk_control *wc)
1834 {
1835 	u64 root_owner;
1836 	int i;
1837 	int slot;
1838 	int ret;
1839 
1840 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1841 		slot = path->slots[i];
1842 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1843 			path->slots[i]++;
1844 			*level = i;
1845 			WARN_ON(*level == 0);
1846 			return 0;
1847 		} else {
1848 			struct extent_buffer *parent;
1849 			if (path->nodes[*level] == root->node)
1850 				parent = path->nodes[*level];
1851 			else
1852 				parent = path->nodes[*level + 1];
1853 
1854 			root_owner = btrfs_header_owner(parent);
1855 			ret = wc->process_func(root, path->nodes[*level], wc,
1856 				 btrfs_header_generation(path->nodes[*level]));
1857 			if (ret)
1858 				return ret;
1859 
1860 			if (wc->free) {
1861 				struct extent_buffer *next;
1862 
1863 				next = path->nodes[*level];
1864 
1865 				btrfs_tree_lock(next);
1866 				btrfs_set_lock_blocking(next);
1867 				clean_tree_block(trans, root, next);
1868 				btrfs_wait_tree_block_writeback(next);
1869 				btrfs_tree_unlock(next);
1870 
1871 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1872 				ret = btrfs_free_and_pin_reserved_extent(root,
1873 						path->nodes[*level]->start,
1874 						path->nodes[*level]->len);
1875 				BUG_ON(ret);
1876 			}
1877 			free_extent_buffer(path->nodes[*level]);
1878 			path->nodes[*level] = NULL;
1879 			*level = i + 1;
1880 		}
1881 	}
1882 	return 1;
1883 }
1884 
1885 /*
1886  * drop the reference count on the tree rooted at 'snap'.  This traverses
1887  * the tree freeing any blocks that have a ref count of zero after being
1888  * decremented.
1889  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)1890 static int walk_log_tree(struct btrfs_trans_handle *trans,
1891 			 struct btrfs_root *log, struct walk_control *wc)
1892 {
1893 	int ret = 0;
1894 	int wret;
1895 	int level;
1896 	struct btrfs_path *path;
1897 	int i;
1898 	int orig_level;
1899 
1900 	path = btrfs_alloc_path();
1901 	if (!path)
1902 		return -ENOMEM;
1903 
1904 	level = btrfs_header_level(log->node);
1905 	orig_level = level;
1906 	path->nodes[level] = log->node;
1907 	extent_buffer_get(log->node);
1908 	path->slots[level] = 0;
1909 
1910 	while (1) {
1911 		wret = walk_down_log_tree(trans, log, path, &level, wc);
1912 		if (wret > 0)
1913 			break;
1914 		if (wret < 0) {
1915 			ret = wret;
1916 			goto out;
1917 		}
1918 
1919 		wret = walk_up_log_tree(trans, log, path, &level, wc);
1920 		if (wret > 0)
1921 			break;
1922 		if (wret < 0) {
1923 			ret = wret;
1924 			goto out;
1925 		}
1926 	}
1927 
1928 	/* was the root node processed? if not, catch it here */
1929 	if (path->nodes[orig_level]) {
1930 		ret = wc->process_func(log, path->nodes[orig_level], wc,
1931 			 btrfs_header_generation(path->nodes[orig_level]));
1932 		if (ret)
1933 			goto out;
1934 		if (wc->free) {
1935 			struct extent_buffer *next;
1936 
1937 			next = path->nodes[orig_level];
1938 
1939 			btrfs_tree_lock(next);
1940 			btrfs_set_lock_blocking(next);
1941 			clean_tree_block(trans, log, next);
1942 			btrfs_wait_tree_block_writeback(next);
1943 			btrfs_tree_unlock(next);
1944 
1945 			WARN_ON(log->root_key.objectid !=
1946 				BTRFS_TREE_LOG_OBJECTID);
1947 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
1948 							 next->len);
1949 			BUG_ON(ret); /* -ENOMEM or logic errors */
1950 		}
1951 	}
1952 
1953 out:
1954 	for (i = 0; i <= orig_level; i++) {
1955 		if (path->nodes[i]) {
1956 			free_extent_buffer(path->nodes[i]);
1957 			path->nodes[i] = NULL;
1958 		}
1959 	}
1960 	btrfs_free_path(path);
1961 	return ret;
1962 }
1963 
1964 /*
1965  * helper function to update the item for a given subvolumes log root
1966  * in the tree of log roots
1967  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log)1968 static int update_log_root(struct btrfs_trans_handle *trans,
1969 			   struct btrfs_root *log)
1970 {
1971 	int ret;
1972 
1973 	if (log->log_transid == 1) {
1974 		/* insert root item on the first sync */
1975 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1976 				&log->root_key, &log->root_item);
1977 	} else {
1978 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1979 				&log->root_key, &log->root_item);
1980 	}
1981 	return ret;
1982 }
1983 
wait_log_commit(struct btrfs_trans_handle * trans,struct btrfs_root * root,unsigned long transid)1984 static int wait_log_commit(struct btrfs_trans_handle *trans,
1985 			   struct btrfs_root *root, unsigned long transid)
1986 {
1987 	DEFINE_WAIT(wait);
1988 	int index = transid % 2;
1989 
1990 	/*
1991 	 * we only allow two pending log transactions at a time,
1992 	 * so we know that if ours is more than 2 older than the
1993 	 * current transaction, we're done
1994 	 */
1995 	do {
1996 		prepare_to_wait(&root->log_commit_wait[index],
1997 				&wait, TASK_UNINTERRUPTIBLE);
1998 		mutex_unlock(&root->log_mutex);
1999 
2000 		if (root->fs_info->last_trans_log_full_commit !=
2001 		    trans->transid && root->log_transid < transid + 2 &&
2002 		    atomic_read(&root->log_commit[index]))
2003 			schedule();
2004 
2005 		finish_wait(&root->log_commit_wait[index], &wait);
2006 		mutex_lock(&root->log_mutex);
2007 	} while (root->fs_info->last_trans_log_full_commit !=
2008 		 trans->transid && root->log_transid < transid + 2 &&
2009 		 atomic_read(&root->log_commit[index]));
2010 	return 0;
2011 }
2012 
wait_for_writer(struct btrfs_trans_handle * trans,struct btrfs_root * root)2013 static void wait_for_writer(struct btrfs_trans_handle *trans,
2014 			    struct btrfs_root *root)
2015 {
2016 	DEFINE_WAIT(wait);
2017 	while (root->fs_info->last_trans_log_full_commit !=
2018 	       trans->transid && atomic_read(&root->log_writers)) {
2019 		prepare_to_wait(&root->log_writer_wait,
2020 				&wait, TASK_UNINTERRUPTIBLE);
2021 		mutex_unlock(&root->log_mutex);
2022 		if (root->fs_info->last_trans_log_full_commit !=
2023 		    trans->transid && atomic_read(&root->log_writers))
2024 			schedule();
2025 		mutex_lock(&root->log_mutex);
2026 		finish_wait(&root->log_writer_wait, &wait);
2027 	}
2028 }
2029 
2030 /*
2031  * btrfs_sync_log does sends a given tree log down to the disk and
2032  * updates the super blocks to record it.  When this call is done,
2033  * you know that any inodes previously logged are safely on disk only
2034  * if it returns 0.
2035  *
2036  * Any other return value means you need to call btrfs_commit_transaction.
2037  * Some of the edge cases for fsyncing directories that have had unlinks
2038  * or renames done in the past mean that sometimes the only safe
2039  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2040  * that has happened.
2041  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)2042 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2043 		   struct btrfs_root *root)
2044 {
2045 	int index1;
2046 	int index2;
2047 	int mark;
2048 	int ret;
2049 	struct btrfs_root *log = root->log_root;
2050 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2051 	unsigned long log_transid = 0;
2052 
2053 	mutex_lock(&root->log_mutex);
2054 	index1 = root->log_transid % 2;
2055 	if (atomic_read(&root->log_commit[index1])) {
2056 		wait_log_commit(trans, root, root->log_transid);
2057 		mutex_unlock(&root->log_mutex);
2058 		return 0;
2059 	}
2060 	atomic_set(&root->log_commit[index1], 1);
2061 
2062 	/* wait for previous tree log sync to complete */
2063 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2064 		wait_log_commit(trans, root, root->log_transid - 1);
2065 	while (1) {
2066 		unsigned long batch = root->log_batch;
2067 		/* when we're on an ssd, just kick the log commit out */
2068 		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2069 			mutex_unlock(&root->log_mutex);
2070 			schedule_timeout_uninterruptible(1);
2071 			mutex_lock(&root->log_mutex);
2072 		}
2073 		wait_for_writer(trans, root);
2074 		if (batch == root->log_batch)
2075 			break;
2076 	}
2077 
2078 	/* bail out if we need to do a full commit */
2079 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2080 		ret = -EAGAIN;
2081 		mutex_unlock(&root->log_mutex);
2082 		goto out;
2083 	}
2084 
2085 	log_transid = root->log_transid;
2086 	if (log_transid % 2 == 0)
2087 		mark = EXTENT_DIRTY;
2088 	else
2089 		mark = EXTENT_NEW;
2090 
2091 	/* we start IO on  all the marked extents here, but we don't actually
2092 	 * wait for them until later.
2093 	 */
2094 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2095 	if (ret) {
2096 		btrfs_abort_transaction(trans, root, ret);
2097 		mutex_unlock(&root->log_mutex);
2098 		goto out;
2099 	}
2100 
2101 	btrfs_set_root_node(&log->root_item, log->node);
2102 
2103 	root->log_batch = 0;
2104 	root->log_transid++;
2105 	log->log_transid = root->log_transid;
2106 	root->log_start_pid = 0;
2107 	smp_mb();
2108 	/*
2109 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2110 	 * in their headers. new modifications of the log will be written to
2111 	 * new positions. so it's safe to allow log writers to go in.
2112 	 */
2113 	mutex_unlock(&root->log_mutex);
2114 
2115 	mutex_lock(&log_root_tree->log_mutex);
2116 	log_root_tree->log_batch++;
2117 	atomic_inc(&log_root_tree->log_writers);
2118 	mutex_unlock(&log_root_tree->log_mutex);
2119 
2120 	ret = update_log_root(trans, log);
2121 
2122 	mutex_lock(&log_root_tree->log_mutex);
2123 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2124 		smp_mb();
2125 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2126 			wake_up(&log_root_tree->log_writer_wait);
2127 	}
2128 
2129 	if (ret) {
2130 		if (ret != -ENOSPC) {
2131 			btrfs_abort_transaction(trans, root, ret);
2132 			mutex_unlock(&log_root_tree->log_mutex);
2133 			goto out;
2134 		}
2135 		root->fs_info->last_trans_log_full_commit = trans->transid;
2136 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2137 		mutex_unlock(&log_root_tree->log_mutex);
2138 		ret = -EAGAIN;
2139 		goto out;
2140 	}
2141 
2142 	index2 = log_root_tree->log_transid % 2;
2143 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2144 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2145 		wait_log_commit(trans, log_root_tree,
2146 				log_root_tree->log_transid);
2147 		mutex_unlock(&log_root_tree->log_mutex);
2148 		ret = 0;
2149 		goto out;
2150 	}
2151 	atomic_set(&log_root_tree->log_commit[index2], 1);
2152 
2153 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2154 		wait_log_commit(trans, log_root_tree,
2155 				log_root_tree->log_transid - 1);
2156 	}
2157 
2158 	wait_for_writer(trans, log_root_tree);
2159 
2160 	/*
2161 	 * now that we've moved on to the tree of log tree roots,
2162 	 * check the full commit flag again
2163 	 */
2164 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2165 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2166 		mutex_unlock(&log_root_tree->log_mutex);
2167 		ret = -EAGAIN;
2168 		goto out_wake_log_root;
2169 	}
2170 
2171 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2172 				&log_root_tree->dirty_log_pages,
2173 				EXTENT_DIRTY | EXTENT_NEW);
2174 	if (ret) {
2175 		btrfs_abort_transaction(trans, root, ret);
2176 		mutex_unlock(&log_root_tree->log_mutex);
2177 		goto out_wake_log_root;
2178 	}
2179 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2180 
2181 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2182 				log_root_tree->node->start);
2183 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2184 				btrfs_header_level(log_root_tree->node));
2185 
2186 	log_root_tree->log_batch = 0;
2187 	log_root_tree->log_transid++;
2188 	smp_mb();
2189 
2190 	mutex_unlock(&log_root_tree->log_mutex);
2191 
2192 	/*
2193 	 * nobody else is going to jump in and write the the ctree
2194 	 * super here because the log_commit atomic below is protecting
2195 	 * us.  We must be called with a transaction handle pinning
2196 	 * the running transaction open, so a full commit can't hop
2197 	 * in and cause problems either.
2198 	 */
2199 	btrfs_scrub_pause_super(root);
2200 	write_ctree_super(trans, root->fs_info->tree_root, 1);
2201 	btrfs_scrub_continue_super(root);
2202 	ret = 0;
2203 
2204 	mutex_lock(&root->log_mutex);
2205 	if (root->last_log_commit < log_transid)
2206 		root->last_log_commit = log_transid;
2207 	mutex_unlock(&root->log_mutex);
2208 
2209 out_wake_log_root:
2210 	atomic_set(&log_root_tree->log_commit[index2], 0);
2211 	smp_mb();
2212 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2213 		wake_up(&log_root_tree->log_commit_wait[index2]);
2214 out:
2215 	atomic_set(&root->log_commit[index1], 0);
2216 	smp_mb();
2217 	if (waitqueue_active(&root->log_commit_wait[index1]))
2218 		wake_up(&root->log_commit_wait[index1]);
2219 	return ret;
2220 }
2221 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)2222 static void free_log_tree(struct btrfs_trans_handle *trans,
2223 			  struct btrfs_root *log)
2224 {
2225 	int ret;
2226 	u64 start;
2227 	u64 end;
2228 	struct walk_control wc = {
2229 		.free = 1,
2230 		.process_func = process_one_buffer
2231 	};
2232 
2233 	ret = walk_log_tree(trans, log, &wc);
2234 	BUG_ON(ret);
2235 
2236 	while (1) {
2237 		ret = find_first_extent_bit(&log->dirty_log_pages,
2238 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2239 		if (ret)
2240 			break;
2241 
2242 		clear_extent_bits(&log->dirty_log_pages, start, end,
2243 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2244 	}
2245 
2246 	free_extent_buffer(log->node);
2247 	kfree(log);
2248 }
2249 
2250 /*
2251  * free all the extents used by the tree log.  This should be called
2252  * at commit time of the full transaction
2253  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)2254 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2255 {
2256 	if (root->log_root) {
2257 		free_log_tree(trans, root->log_root);
2258 		root->log_root = NULL;
2259 	}
2260 	return 0;
2261 }
2262 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2263 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2264 			     struct btrfs_fs_info *fs_info)
2265 {
2266 	if (fs_info->log_root_tree) {
2267 		free_log_tree(trans, fs_info->log_root_tree);
2268 		fs_info->log_root_tree = NULL;
2269 	}
2270 	return 0;
2271 }
2272 
2273 /*
2274  * If both a file and directory are logged, and unlinks or renames are
2275  * mixed in, we have a few interesting corners:
2276  *
2277  * create file X in dir Y
2278  * link file X to X.link in dir Y
2279  * fsync file X
2280  * unlink file X but leave X.link
2281  * fsync dir Y
2282  *
2283  * After a crash we would expect only X.link to exist.  But file X
2284  * didn't get fsync'd again so the log has back refs for X and X.link.
2285  *
2286  * We solve this by removing directory entries and inode backrefs from the
2287  * log when a file that was logged in the current transaction is
2288  * unlinked.  Any later fsync will include the updated log entries, and
2289  * we'll be able to reconstruct the proper directory items from backrefs.
2290  *
2291  * This optimizations allows us to avoid relogging the entire inode
2292  * or the entire directory.
2293  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * dir,u64 index)2294 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2295 				 struct btrfs_root *root,
2296 				 const char *name, int name_len,
2297 				 struct inode *dir, u64 index)
2298 {
2299 	struct btrfs_root *log;
2300 	struct btrfs_dir_item *di;
2301 	struct btrfs_path *path;
2302 	int ret;
2303 	int err = 0;
2304 	int bytes_del = 0;
2305 	u64 dir_ino = btrfs_ino(dir);
2306 
2307 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2308 		return 0;
2309 
2310 	ret = join_running_log_trans(root);
2311 	if (ret)
2312 		return 0;
2313 
2314 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2315 
2316 	log = root->log_root;
2317 	path = btrfs_alloc_path();
2318 	if (!path) {
2319 		err = -ENOMEM;
2320 		goto out_unlock;
2321 	}
2322 
2323 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2324 				   name, name_len, -1);
2325 	if (IS_ERR(di)) {
2326 		err = PTR_ERR(di);
2327 		goto fail;
2328 	}
2329 	if (di) {
2330 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2331 		bytes_del += name_len;
2332 		BUG_ON(ret);
2333 	}
2334 	btrfs_release_path(path);
2335 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2336 					 index, name, name_len, -1);
2337 	if (IS_ERR(di)) {
2338 		err = PTR_ERR(di);
2339 		goto fail;
2340 	}
2341 	if (di) {
2342 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2343 		bytes_del += name_len;
2344 		BUG_ON(ret);
2345 	}
2346 
2347 	/* update the directory size in the log to reflect the names
2348 	 * we have removed
2349 	 */
2350 	if (bytes_del) {
2351 		struct btrfs_key key;
2352 
2353 		key.objectid = dir_ino;
2354 		key.offset = 0;
2355 		key.type = BTRFS_INODE_ITEM_KEY;
2356 		btrfs_release_path(path);
2357 
2358 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2359 		if (ret < 0) {
2360 			err = ret;
2361 			goto fail;
2362 		}
2363 		if (ret == 0) {
2364 			struct btrfs_inode_item *item;
2365 			u64 i_size;
2366 
2367 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2368 					      struct btrfs_inode_item);
2369 			i_size = btrfs_inode_size(path->nodes[0], item);
2370 			if (i_size > bytes_del)
2371 				i_size -= bytes_del;
2372 			else
2373 				i_size = 0;
2374 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2375 			btrfs_mark_buffer_dirty(path->nodes[0]);
2376 		} else
2377 			ret = 0;
2378 		btrfs_release_path(path);
2379 	}
2380 fail:
2381 	btrfs_free_path(path);
2382 out_unlock:
2383 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2384 	if (ret == -ENOSPC) {
2385 		root->fs_info->last_trans_log_full_commit = trans->transid;
2386 		ret = 0;
2387 	} else if (ret < 0)
2388 		btrfs_abort_transaction(trans, root, ret);
2389 
2390 	btrfs_end_log_trans(root);
2391 
2392 	return err;
2393 }
2394 
2395 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * inode,u64 dirid)2396 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2397 			       struct btrfs_root *root,
2398 			       const char *name, int name_len,
2399 			       struct inode *inode, u64 dirid)
2400 {
2401 	struct btrfs_root *log;
2402 	u64 index;
2403 	int ret;
2404 
2405 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2406 		return 0;
2407 
2408 	ret = join_running_log_trans(root);
2409 	if (ret)
2410 		return 0;
2411 	log = root->log_root;
2412 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2413 
2414 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2415 				  dirid, &index);
2416 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2417 	if (ret == -ENOSPC) {
2418 		root->fs_info->last_trans_log_full_commit = trans->transid;
2419 		ret = 0;
2420 	} else if (ret < 0 && ret != -ENOENT)
2421 		btrfs_abort_transaction(trans, root, ret);
2422 	btrfs_end_log_trans(root);
2423 
2424 	return ret;
2425 }
2426 
2427 /*
2428  * creates a range item in the log for 'dirid'.  first_offset and
2429  * last_offset tell us which parts of the key space the log should
2430  * be considered authoritative for.
2431  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)2432 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2433 				       struct btrfs_root *log,
2434 				       struct btrfs_path *path,
2435 				       int key_type, u64 dirid,
2436 				       u64 first_offset, u64 last_offset)
2437 {
2438 	int ret;
2439 	struct btrfs_key key;
2440 	struct btrfs_dir_log_item *item;
2441 
2442 	key.objectid = dirid;
2443 	key.offset = first_offset;
2444 	if (key_type == BTRFS_DIR_ITEM_KEY)
2445 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2446 	else
2447 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2448 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2449 	if (ret)
2450 		return ret;
2451 
2452 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2453 			      struct btrfs_dir_log_item);
2454 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2455 	btrfs_mark_buffer_dirty(path->nodes[0]);
2456 	btrfs_release_path(path);
2457 	return 0;
2458 }
2459 
2460 /*
2461  * log all the items included in the current transaction for a given
2462  * directory.  This also creates the range items in the log tree required
2463  * to replay anything deleted before the fsync
2464  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,u64 min_offset,u64 * last_offset_ret)2465 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2466 			  struct btrfs_root *root, struct inode *inode,
2467 			  struct btrfs_path *path,
2468 			  struct btrfs_path *dst_path, int key_type,
2469 			  u64 min_offset, u64 *last_offset_ret)
2470 {
2471 	struct btrfs_key min_key;
2472 	struct btrfs_key max_key;
2473 	struct btrfs_root *log = root->log_root;
2474 	struct extent_buffer *src;
2475 	int err = 0;
2476 	int ret;
2477 	int i;
2478 	int nritems;
2479 	u64 first_offset = min_offset;
2480 	u64 last_offset = (u64)-1;
2481 	u64 ino = btrfs_ino(inode);
2482 
2483 	log = root->log_root;
2484 	max_key.objectid = ino;
2485 	max_key.offset = (u64)-1;
2486 	max_key.type = key_type;
2487 
2488 	min_key.objectid = ino;
2489 	min_key.type = key_type;
2490 	min_key.offset = min_offset;
2491 
2492 	path->keep_locks = 1;
2493 
2494 	ret = btrfs_search_forward(root, &min_key, &max_key,
2495 				   path, 0, trans->transid);
2496 
2497 	/*
2498 	 * we didn't find anything from this transaction, see if there
2499 	 * is anything at all
2500 	 */
2501 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2502 		min_key.objectid = ino;
2503 		min_key.type = key_type;
2504 		min_key.offset = (u64)-1;
2505 		btrfs_release_path(path);
2506 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2507 		if (ret < 0) {
2508 			btrfs_release_path(path);
2509 			return ret;
2510 		}
2511 		ret = btrfs_previous_item(root, path, ino, key_type);
2512 
2513 		/* if ret == 0 there are items for this type,
2514 		 * create a range to tell us the last key of this type.
2515 		 * otherwise, there are no items in this directory after
2516 		 * *min_offset, and we create a range to indicate that.
2517 		 */
2518 		if (ret == 0) {
2519 			struct btrfs_key tmp;
2520 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2521 					      path->slots[0]);
2522 			if (key_type == tmp.type)
2523 				first_offset = max(min_offset, tmp.offset) + 1;
2524 		}
2525 		goto done;
2526 	}
2527 
2528 	/* go backward to find any previous key */
2529 	ret = btrfs_previous_item(root, path, ino, key_type);
2530 	if (ret == 0) {
2531 		struct btrfs_key tmp;
2532 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2533 		if (key_type == tmp.type) {
2534 			first_offset = tmp.offset;
2535 			ret = overwrite_item(trans, log, dst_path,
2536 					     path->nodes[0], path->slots[0],
2537 					     &tmp);
2538 			if (ret) {
2539 				err = ret;
2540 				goto done;
2541 			}
2542 		}
2543 	}
2544 	btrfs_release_path(path);
2545 
2546 	/* find the first key from this transaction again */
2547 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2548 	if (ret != 0) {
2549 		WARN_ON(1);
2550 		goto done;
2551 	}
2552 
2553 	/*
2554 	 * we have a block from this transaction, log every item in it
2555 	 * from our directory
2556 	 */
2557 	while (1) {
2558 		struct btrfs_key tmp;
2559 		src = path->nodes[0];
2560 		nritems = btrfs_header_nritems(src);
2561 		for (i = path->slots[0]; i < nritems; i++) {
2562 			btrfs_item_key_to_cpu(src, &min_key, i);
2563 
2564 			if (min_key.objectid != ino || min_key.type != key_type)
2565 				goto done;
2566 			ret = overwrite_item(trans, log, dst_path, src, i,
2567 					     &min_key);
2568 			if (ret) {
2569 				err = ret;
2570 				goto done;
2571 			}
2572 		}
2573 		path->slots[0] = nritems;
2574 
2575 		/*
2576 		 * look ahead to the next item and see if it is also
2577 		 * from this directory and from this transaction
2578 		 */
2579 		ret = btrfs_next_leaf(root, path);
2580 		if (ret == 1) {
2581 			last_offset = (u64)-1;
2582 			goto done;
2583 		}
2584 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2585 		if (tmp.objectid != ino || tmp.type != key_type) {
2586 			last_offset = (u64)-1;
2587 			goto done;
2588 		}
2589 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2590 			ret = overwrite_item(trans, log, dst_path,
2591 					     path->nodes[0], path->slots[0],
2592 					     &tmp);
2593 			if (ret)
2594 				err = ret;
2595 			else
2596 				last_offset = tmp.offset;
2597 			goto done;
2598 		}
2599 	}
2600 done:
2601 	btrfs_release_path(path);
2602 	btrfs_release_path(dst_path);
2603 
2604 	if (err == 0) {
2605 		*last_offset_ret = last_offset;
2606 		/*
2607 		 * insert the log range keys to indicate where the log
2608 		 * is valid
2609 		 */
2610 		ret = insert_dir_log_key(trans, log, path, key_type,
2611 					 ino, first_offset, last_offset);
2612 		if (ret)
2613 			err = ret;
2614 	}
2615 	return err;
2616 }
2617 
2618 /*
2619  * logging directories is very similar to logging inodes, We find all the items
2620  * from the current transaction and write them to the log.
2621  *
2622  * The recovery code scans the directory in the subvolume, and if it finds a
2623  * key in the range logged that is not present in the log tree, then it means
2624  * that dir entry was unlinked during the transaction.
2625  *
2626  * In order for that scan to work, we must include one key smaller than
2627  * the smallest logged by this transaction and one key larger than the largest
2628  * key logged by this transaction.
2629  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)2630 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2631 			  struct btrfs_root *root, struct inode *inode,
2632 			  struct btrfs_path *path,
2633 			  struct btrfs_path *dst_path)
2634 {
2635 	u64 min_key;
2636 	u64 max_key;
2637 	int ret;
2638 	int key_type = BTRFS_DIR_ITEM_KEY;
2639 
2640 again:
2641 	min_key = 0;
2642 	max_key = 0;
2643 	while (1) {
2644 		ret = log_dir_items(trans, root, inode, path,
2645 				    dst_path, key_type, min_key,
2646 				    &max_key);
2647 		if (ret)
2648 			return ret;
2649 		if (max_key == (u64)-1)
2650 			break;
2651 		min_key = max_key + 1;
2652 	}
2653 
2654 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2655 		key_type = BTRFS_DIR_INDEX_KEY;
2656 		goto again;
2657 	}
2658 	return 0;
2659 }
2660 
2661 /*
2662  * a helper function to drop items from the log before we relog an
2663  * inode.  max_key_type indicates the highest item type to remove.
2664  * This cannot be run for file data extents because it does not
2665  * free the extents they point to.
2666  */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)2667 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2668 				  struct btrfs_root *log,
2669 				  struct btrfs_path *path,
2670 				  u64 objectid, int max_key_type)
2671 {
2672 	int ret;
2673 	struct btrfs_key key;
2674 	struct btrfs_key found_key;
2675 
2676 	key.objectid = objectid;
2677 	key.type = max_key_type;
2678 	key.offset = (u64)-1;
2679 
2680 	while (1) {
2681 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2682 		BUG_ON(ret == 0);
2683 		if (ret < 0)
2684 			break;
2685 
2686 		if (path->slots[0] == 0)
2687 			break;
2688 
2689 		path->slots[0]--;
2690 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2691 				      path->slots[0]);
2692 
2693 		if (found_key.objectid != objectid)
2694 			break;
2695 
2696 		ret = btrfs_del_item(trans, log, path);
2697 		if (ret)
2698 			break;
2699 		btrfs_release_path(path);
2700 	}
2701 	btrfs_release_path(path);
2702 	return ret;
2703 }
2704 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * dst_path,struct extent_buffer * src,int start_slot,int nr,int inode_only)2705 static noinline int copy_items(struct btrfs_trans_handle *trans,
2706 			       struct btrfs_root *log,
2707 			       struct btrfs_path *dst_path,
2708 			       struct extent_buffer *src,
2709 			       int start_slot, int nr, int inode_only)
2710 {
2711 	unsigned long src_offset;
2712 	unsigned long dst_offset;
2713 	struct btrfs_file_extent_item *extent;
2714 	struct btrfs_inode_item *inode_item;
2715 	int ret;
2716 	struct btrfs_key *ins_keys;
2717 	u32 *ins_sizes;
2718 	char *ins_data;
2719 	int i;
2720 	struct list_head ordered_sums;
2721 
2722 	INIT_LIST_HEAD(&ordered_sums);
2723 
2724 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2725 			   nr * sizeof(u32), GFP_NOFS);
2726 	if (!ins_data)
2727 		return -ENOMEM;
2728 
2729 	ins_sizes = (u32 *)ins_data;
2730 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2731 
2732 	for (i = 0; i < nr; i++) {
2733 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2734 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2735 	}
2736 	ret = btrfs_insert_empty_items(trans, log, dst_path,
2737 				       ins_keys, ins_sizes, nr);
2738 	if (ret) {
2739 		kfree(ins_data);
2740 		return ret;
2741 	}
2742 
2743 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2744 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2745 						   dst_path->slots[0]);
2746 
2747 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2748 
2749 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2750 				   src_offset, ins_sizes[i]);
2751 
2752 		if (inode_only == LOG_INODE_EXISTS &&
2753 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2754 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2755 						    dst_path->slots[0],
2756 						    struct btrfs_inode_item);
2757 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2758 
2759 			/* set the generation to zero so the recover code
2760 			 * can tell the difference between an logging
2761 			 * just to say 'this inode exists' and a logging
2762 			 * to say 'update this inode with these values'
2763 			 */
2764 			btrfs_set_inode_generation(dst_path->nodes[0],
2765 						   inode_item, 0);
2766 		}
2767 		/* take a reference on file data extents so that truncates
2768 		 * or deletes of this inode don't have to relog the inode
2769 		 * again
2770 		 */
2771 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2772 			int found_type;
2773 			extent = btrfs_item_ptr(src, start_slot + i,
2774 						struct btrfs_file_extent_item);
2775 
2776 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
2777 				continue;
2778 
2779 			found_type = btrfs_file_extent_type(src, extent);
2780 			if (found_type == BTRFS_FILE_EXTENT_REG ||
2781 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2782 				u64 ds, dl, cs, cl;
2783 				ds = btrfs_file_extent_disk_bytenr(src,
2784 								extent);
2785 				/* ds == 0 is a hole */
2786 				if (ds == 0)
2787 					continue;
2788 
2789 				dl = btrfs_file_extent_disk_num_bytes(src,
2790 								extent);
2791 				cs = btrfs_file_extent_offset(src, extent);
2792 				cl = btrfs_file_extent_num_bytes(src,
2793 								extent);
2794 				if (btrfs_file_extent_compression(src,
2795 								  extent)) {
2796 					cs = 0;
2797 					cl = dl;
2798 				}
2799 
2800 				ret = btrfs_lookup_csums_range(
2801 						log->fs_info->csum_root,
2802 						ds + cs, ds + cs + cl - 1,
2803 						&ordered_sums, 0);
2804 				BUG_ON(ret);
2805 			}
2806 		}
2807 	}
2808 
2809 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2810 	btrfs_release_path(dst_path);
2811 	kfree(ins_data);
2812 
2813 	/*
2814 	 * we have to do this after the loop above to avoid changing the
2815 	 * log tree while trying to change the log tree.
2816 	 */
2817 	ret = 0;
2818 	while (!list_empty(&ordered_sums)) {
2819 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2820 						   struct btrfs_ordered_sum,
2821 						   list);
2822 		if (!ret)
2823 			ret = btrfs_csum_file_blocks(trans, log, sums);
2824 		list_del(&sums->list);
2825 		kfree(sums);
2826 	}
2827 	return ret;
2828 }
2829 
2830 /* log a single inode in the tree log.
2831  * At least one parent directory for this inode must exist in the tree
2832  * or be logged already.
2833  *
2834  * Any items from this inode changed by the current transaction are copied
2835  * to the log tree.  An extra reference is taken on any extents in this
2836  * file, allowing us to avoid a whole pile of corner cases around logging
2837  * blocks that have been removed from the tree.
2838  *
2839  * See LOG_INODE_ALL and related defines for a description of what inode_only
2840  * does.
2841  *
2842  * This handles both files and directories.
2843  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,int inode_only)2844 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2845 			     struct btrfs_root *root, struct inode *inode,
2846 			     int inode_only)
2847 {
2848 	struct btrfs_path *path;
2849 	struct btrfs_path *dst_path;
2850 	struct btrfs_key min_key;
2851 	struct btrfs_key max_key;
2852 	struct btrfs_root *log = root->log_root;
2853 	struct extent_buffer *src = NULL;
2854 	int err = 0;
2855 	int ret;
2856 	int nritems;
2857 	int ins_start_slot = 0;
2858 	int ins_nr;
2859 	u64 ino = btrfs_ino(inode);
2860 
2861 	log = root->log_root;
2862 
2863 	path = btrfs_alloc_path();
2864 	if (!path)
2865 		return -ENOMEM;
2866 	dst_path = btrfs_alloc_path();
2867 	if (!dst_path) {
2868 		btrfs_free_path(path);
2869 		return -ENOMEM;
2870 	}
2871 
2872 	min_key.objectid = ino;
2873 	min_key.type = BTRFS_INODE_ITEM_KEY;
2874 	min_key.offset = 0;
2875 
2876 	max_key.objectid = ino;
2877 
2878 	/* today the code can only do partial logging of directories */
2879 	if (!S_ISDIR(inode->i_mode))
2880 	    inode_only = LOG_INODE_ALL;
2881 
2882 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2883 		max_key.type = BTRFS_XATTR_ITEM_KEY;
2884 	else
2885 		max_key.type = (u8)-1;
2886 	max_key.offset = (u64)-1;
2887 
2888 	ret = btrfs_commit_inode_delayed_items(trans, inode);
2889 	if (ret) {
2890 		btrfs_free_path(path);
2891 		btrfs_free_path(dst_path);
2892 		return ret;
2893 	}
2894 
2895 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2896 
2897 	/*
2898 	 * a brute force approach to making sure we get the most uptodate
2899 	 * copies of everything.
2900 	 */
2901 	if (S_ISDIR(inode->i_mode)) {
2902 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2903 
2904 		if (inode_only == LOG_INODE_EXISTS)
2905 			max_key_type = BTRFS_XATTR_ITEM_KEY;
2906 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2907 	} else {
2908 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2909 	}
2910 	if (ret) {
2911 		err = ret;
2912 		goto out_unlock;
2913 	}
2914 	path->keep_locks = 1;
2915 
2916 	while (1) {
2917 		ins_nr = 0;
2918 		ret = btrfs_search_forward(root, &min_key, &max_key,
2919 					   path, 0, trans->transid);
2920 		if (ret != 0)
2921 			break;
2922 again:
2923 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2924 		if (min_key.objectid != ino)
2925 			break;
2926 		if (min_key.type > max_key.type)
2927 			break;
2928 
2929 		src = path->nodes[0];
2930 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2931 			ins_nr++;
2932 			goto next_slot;
2933 		} else if (!ins_nr) {
2934 			ins_start_slot = path->slots[0];
2935 			ins_nr = 1;
2936 			goto next_slot;
2937 		}
2938 
2939 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2940 				 ins_nr, inode_only);
2941 		if (ret) {
2942 			err = ret;
2943 			goto out_unlock;
2944 		}
2945 		ins_nr = 1;
2946 		ins_start_slot = path->slots[0];
2947 next_slot:
2948 
2949 		nritems = btrfs_header_nritems(path->nodes[0]);
2950 		path->slots[0]++;
2951 		if (path->slots[0] < nritems) {
2952 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2953 					      path->slots[0]);
2954 			goto again;
2955 		}
2956 		if (ins_nr) {
2957 			ret = copy_items(trans, log, dst_path, src,
2958 					 ins_start_slot,
2959 					 ins_nr, inode_only);
2960 			if (ret) {
2961 				err = ret;
2962 				goto out_unlock;
2963 			}
2964 			ins_nr = 0;
2965 		}
2966 		btrfs_release_path(path);
2967 
2968 		if (min_key.offset < (u64)-1)
2969 			min_key.offset++;
2970 		else if (min_key.type < (u8)-1)
2971 			min_key.type++;
2972 		else if (min_key.objectid < (u64)-1)
2973 			min_key.objectid++;
2974 		else
2975 			break;
2976 	}
2977 	if (ins_nr) {
2978 		ret = copy_items(trans, log, dst_path, src,
2979 				 ins_start_slot,
2980 				 ins_nr, inode_only);
2981 		if (ret) {
2982 			err = ret;
2983 			goto out_unlock;
2984 		}
2985 		ins_nr = 0;
2986 	}
2987 	WARN_ON(ins_nr);
2988 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2989 		btrfs_release_path(path);
2990 		btrfs_release_path(dst_path);
2991 		ret = log_directory_changes(trans, root, inode, path, dst_path);
2992 		if (ret) {
2993 			err = ret;
2994 			goto out_unlock;
2995 		}
2996 	}
2997 	BTRFS_I(inode)->logged_trans = trans->transid;
2998 out_unlock:
2999 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3000 
3001 	btrfs_free_path(path);
3002 	btrfs_free_path(dst_path);
3003 	return err;
3004 }
3005 
3006 /*
3007  * follow the dentry parent pointers up the chain and see if any
3008  * of the directories in it require a full commit before they can
3009  * be logged.  Returns zero if nothing special needs to be done or 1 if
3010  * a full commit is required.
3011  */
check_parent_dirs_for_sync(struct btrfs_trans_handle * trans,struct inode * inode,struct dentry * parent,struct super_block * sb,u64 last_committed)3012 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3013 					       struct inode *inode,
3014 					       struct dentry *parent,
3015 					       struct super_block *sb,
3016 					       u64 last_committed)
3017 {
3018 	int ret = 0;
3019 	struct btrfs_root *root;
3020 	struct dentry *old_parent = NULL;
3021 
3022 	/*
3023 	 * for regular files, if its inode is already on disk, we don't
3024 	 * have to worry about the parents at all.  This is because
3025 	 * we can use the last_unlink_trans field to record renames
3026 	 * and other fun in this file.
3027 	 */
3028 	if (S_ISREG(inode->i_mode) &&
3029 	    BTRFS_I(inode)->generation <= last_committed &&
3030 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
3031 			goto out;
3032 
3033 	if (!S_ISDIR(inode->i_mode)) {
3034 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3035 			goto out;
3036 		inode = parent->d_inode;
3037 	}
3038 
3039 	while (1) {
3040 		BTRFS_I(inode)->logged_trans = trans->transid;
3041 		smp_mb();
3042 
3043 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3044 			root = BTRFS_I(inode)->root;
3045 
3046 			/*
3047 			 * make sure any commits to the log are forced
3048 			 * to be full commits
3049 			 */
3050 			root->fs_info->last_trans_log_full_commit =
3051 				trans->transid;
3052 			ret = 1;
3053 			break;
3054 		}
3055 
3056 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3057 			break;
3058 
3059 		if (IS_ROOT(parent))
3060 			break;
3061 
3062 		parent = dget_parent(parent);
3063 		dput(old_parent);
3064 		old_parent = parent;
3065 		inode = parent->d_inode;
3066 
3067 	}
3068 	dput(old_parent);
3069 out:
3070 	return ret;
3071 }
3072 
inode_in_log(struct btrfs_trans_handle * trans,struct inode * inode)3073 static int inode_in_log(struct btrfs_trans_handle *trans,
3074 		 struct inode *inode)
3075 {
3076 	struct btrfs_root *root = BTRFS_I(inode)->root;
3077 	int ret = 0;
3078 
3079 	mutex_lock(&root->log_mutex);
3080 	if (BTRFS_I(inode)->logged_trans == trans->transid &&
3081 	    BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
3082 		ret = 1;
3083 	mutex_unlock(&root->log_mutex);
3084 	return ret;
3085 }
3086 
3087 
3088 /*
3089  * helper function around btrfs_log_inode to make sure newly created
3090  * parent directories also end up in the log.  A minimal inode and backref
3091  * only logging is done of any parent directories that are older than
3092  * the last committed transaction
3093  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct dentry * parent,int exists_only)3094 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3095 		    struct btrfs_root *root, struct inode *inode,
3096 		    struct dentry *parent, int exists_only)
3097 {
3098 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3099 	struct super_block *sb;
3100 	struct dentry *old_parent = NULL;
3101 	int ret = 0;
3102 	u64 last_committed = root->fs_info->last_trans_committed;
3103 
3104 	sb = inode->i_sb;
3105 
3106 	if (btrfs_test_opt(root, NOTREELOG)) {
3107 		ret = 1;
3108 		goto end_no_trans;
3109 	}
3110 
3111 	if (root->fs_info->last_trans_log_full_commit >
3112 	    root->fs_info->last_trans_committed) {
3113 		ret = 1;
3114 		goto end_no_trans;
3115 	}
3116 
3117 	if (root != BTRFS_I(inode)->root ||
3118 	    btrfs_root_refs(&root->root_item) == 0) {
3119 		ret = 1;
3120 		goto end_no_trans;
3121 	}
3122 
3123 	ret = check_parent_dirs_for_sync(trans, inode, parent,
3124 					 sb, last_committed);
3125 	if (ret)
3126 		goto end_no_trans;
3127 
3128 	if (inode_in_log(trans, inode)) {
3129 		ret = BTRFS_NO_LOG_SYNC;
3130 		goto end_no_trans;
3131 	}
3132 
3133 	ret = start_log_trans(trans, root);
3134 	if (ret)
3135 		goto end_trans;
3136 
3137 	ret = btrfs_log_inode(trans, root, inode, inode_only);
3138 	if (ret)
3139 		goto end_trans;
3140 
3141 	/*
3142 	 * for regular files, if its inode is already on disk, we don't
3143 	 * have to worry about the parents at all.  This is because
3144 	 * we can use the last_unlink_trans field to record renames
3145 	 * and other fun in this file.
3146 	 */
3147 	if (S_ISREG(inode->i_mode) &&
3148 	    BTRFS_I(inode)->generation <= last_committed &&
3149 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3150 		ret = 0;
3151 		goto end_trans;
3152 	}
3153 
3154 	inode_only = LOG_INODE_EXISTS;
3155 	while (1) {
3156 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3157 			break;
3158 
3159 		inode = parent->d_inode;
3160 		if (root != BTRFS_I(inode)->root)
3161 			break;
3162 
3163 		if (BTRFS_I(inode)->generation >
3164 		    root->fs_info->last_trans_committed) {
3165 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3166 			if (ret)
3167 				goto end_trans;
3168 		}
3169 		if (IS_ROOT(parent))
3170 			break;
3171 
3172 		parent = dget_parent(parent);
3173 		dput(old_parent);
3174 		old_parent = parent;
3175 	}
3176 	ret = 0;
3177 end_trans:
3178 	dput(old_parent);
3179 	if (ret < 0) {
3180 		BUG_ON(ret != -ENOSPC);
3181 		root->fs_info->last_trans_log_full_commit = trans->transid;
3182 		ret = 1;
3183 	}
3184 	btrfs_end_log_trans(root);
3185 end_no_trans:
3186 	return ret;
3187 }
3188 
3189 /*
3190  * it is not safe to log dentry if the chunk root has added new
3191  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3192  * If this returns 1, you must commit the transaction to safely get your
3193  * data on disk.
3194  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct dentry * dentry)3195 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3196 			  struct btrfs_root *root, struct dentry *dentry)
3197 {
3198 	struct dentry *parent = dget_parent(dentry);
3199 	int ret;
3200 
3201 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3202 	dput(parent);
3203 
3204 	return ret;
3205 }
3206 
3207 /*
3208  * should be called during mount to recover any replay any log trees
3209  * from the FS
3210  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)3211 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3212 {
3213 	int ret;
3214 	struct btrfs_path *path;
3215 	struct btrfs_trans_handle *trans;
3216 	struct btrfs_key key;
3217 	struct btrfs_key found_key;
3218 	struct btrfs_key tmp_key;
3219 	struct btrfs_root *log;
3220 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3221 	struct walk_control wc = {
3222 		.process_func = process_one_buffer,
3223 		.stage = 0,
3224 	};
3225 
3226 	path = btrfs_alloc_path();
3227 	if (!path)
3228 		return -ENOMEM;
3229 
3230 	fs_info->log_root_recovering = 1;
3231 
3232 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3233 	if (IS_ERR(trans)) {
3234 		ret = PTR_ERR(trans);
3235 		goto error;
3236 	}
3237 
3238 	wc.trans = trans;
3239 	wc.pin = 1;
3240 
3241 	ret = walk_log_tree(trans, log_root_tree, &wc);
3242 	if (ret) {
3243 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
3244 			    "recovering log root tree.");
3245 		goto error;
3246 	}
3247 
3248 again:
3249 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3250 	key.offset = (u64)-1;
3251 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3252 
3253 	while (1) {
3254 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3255 
3256 		if (ret < 0) {
3257 			btrfs_error(fs_info, ret,
3258 				    "Couldn't find tree log root.");
3259 			goto error;
3260 		}
3261 		if (ret > 0) {
3262 			if (path->slots[0] == 0)
3263 				break;
3264 			path->slots[0]--;
3265 		}
3266 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3267 				      path->slots[0]);
3268 		btrfs_release_path(path);
3269 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3270 			break;
3271 
3272 		log = btrfs_read_fs_root_no_radix(log_root_tree,
3273 						  &found_key);
3274 		if (IS_ERR(log)) {
3275 			ret = PTR_ERR(log);
3276 			btrfs_error(fs_info, ret,
3277 				    "Couldn't read tree log root.");
3278 			goto error;
3279 		}
3280 
3281 		tmp_key.objectid = found_key.offset;
3282 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3283 		tmp_key.offset = (u64)-1;
3284 
3285 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3286 		if (IS_ERR(wc.replay_dest)) {
3287 			ret = PTR_ERR(wc.replay_dest);
3288 			btrfs_error(fs_info, ret, "Couldn't read target root "
3289 				    "for tree log recovery.");
3290 			goto error;
3291 		}
3292 
3293 		wc.replay_dest->log_root = log;
3294 		btrfs_record_root_in_trans(trans, wc.replay_dest);
3295 		ret = walk_log_tree(trans, log, &wc);
3296 		BUG_ON(ret);
3297 
3298 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3299 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3300 						      path);
3301 			BUG_ON(ret);
3302 		}
3303 
3304 		key.offset = found_key.offset - 1;
3305 		wc.replay_dest->log_root = NULL;
3306 		free_extent_buffer(log->node);
3307 		free_extent_buffer(log->commit_root);
3308 		kfree(log);
3309 
3310 		if (found_key.offset == 0)
3311 			break;
3312 	}
3313 	btrfs_release_path(path);
3314 
3315 	/* step one is to pin it all, step two is to replay just inodes */
3316 	if (wc.pin) {
3317 		wc.pin = 0;
3318 		wc.process_func = replay_one_buffer;
3319 		wc.stage = LOG_WALK_REPLAY_INODES;
3320 		goto again;
3321 	}
3322 	/* step three is to replay everything */
3323 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3324 		wc.stage++;
3325 		goto again;
3326 	}
3327 
3328 	btrfs_free_path(path);
3329 
3330 	free_extent_buffer(log_root_tree->node);
3331 	log_root_tree->log_root = NULL;
3332 	fs_info->log_root_recovering = 0;
3333 
3334 	/* step 4: commit the transaction, which also unpins the blocks */
3335 	btrfs_commit_transaction(trans, fs_info->tree_root);
3336 
3337 	kfree(log_root_tree);
3338 	return 0;
3339 
3340 error:
3341 	btrfs_free_path(path);
3342 	return ret;
3343 }
3344 
3345 /*
3346  * there are some corner cases where we want to force a full
3347  * commit instead of allowing a directory to be logged.
3348  *
3349  * They revolve around files there were unlinked from the directory, and
3350  * this function updates the parent directory so that a full commit is
3351  * properly done if it is fsync'd later after the unlinks are done.
3352  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct inode * dir,struct inode * inode,int for_rename)3353 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3354 			     struct inode *dir, struct inode *inode,
3355 			     int for_rename)
3356 {
3357 	/*
3358 	 * when we're logging a file, if it hasn't been renamed
3359 	 * or unlinked, and its inode is fully committed on disk,
3360 	 * we don't have to worry about walking up the directory chain
3361 	 * to log its parents.
3362 	 *
3363 	 * So, we use the last_unlink_trans field to put this transid
3364 	 * into the file.  When the file is logged we check it and
3365 	 * don't log the parents if the file is fully on disk.
3366 	 */
3367 	if (S_ISREG(inode->i_mode))
3368 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3369 
3370 	/*
3371 	 * if this directory was already logged any new
3372 	 * names for this file/dir will get recorded
3373 	 */
3374 	smp_mb();
3375 	if (BTRFS_I(dir)->logged_trans == trans->transid)
3376 		return;
3377 
3378 	/*
3379 	 * if the inode we're about to unlink was logged,
3380 	 * the log will be properly updated for any new names
3381 	 */
3382 	if (BTRFS_I(inode)->logged_trans == trans->transid)
3383 		return;
3384 
3385 	/*
3386 	 * when renaming files across directories, if the directory
3387 	 * there we're unlinking from gets fsync'd later on, there's
3388 	 * no way to find the destination directory later and fsync it
3389 	 * properly.  So, we have to be conservative and force commits
3390 	 * so the new name gets discovered.
3391 	 */
3392 	if (for_rename)
3393 		goto record;
3394 
3395 	/* we can safely do the unlink without any special recording */
3396 	return;
3397 
3398 record:
3399 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
3400 }
3401 
3402 /*
3403  * Call this after adding a new name for a file and it will properly
3404  * update the log to reflect the new name.
3405  *
3406  * It will return zero if all goes well, and it will return 1 if a
3407  * full transaction commit is required.
3408  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * old_dir,struct dentry * parent)3409 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3410 			struct inode *inode, struct inode *old_dir,
3411 			struct dentry *parent)
3412 {
3413 	struct btrfs_root * root = BTRFS_I(inode)->root;
3414 
3415 	/*
3416 	 * this will force the logging code to walk the dentry chain
3417 	 * up for the file
3418 	 */
3419 	if (S_ISREG(inode->i_mode))
3420 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3421 
3422 	/*
3423 	 * if this inode hasn't been logged and directory we're renaming it
3424 	 * from hasn't been logged, we don't need to log it
3425 	 */
3426 	if (BTRFS_I(inode)->logged_trans <=
3427 	    root->fs_info->last_trans_committed &&
3428 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3429 		    root->fs_info->last_trans_committed))
3430 		return 0;
3431 
3432 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3433 }
3434 
3435