1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/gfp.h>
35 #include <linux/in.h>
36 #include <net/tcp.h>
37 
38 #include "rds.h"
39 #include "tcp.h"
40 
rds_tcp_keepalive(struct socket * sock)41 void rds_tcp_keepalive(struct socket *sock)
42 {
43 	/* values below based on xs_udp_default_timeout */
44 	int keepidle = 5; /* send a probe 'keepidle' secs after last data */
45 	int keepcnt = 5; /* number of unack'ed probes before declaring dead */
46 
47 	sock_set_keepalive(sock->sk);
48 	tcp_sock_set_keepcnt(sock->sk, keepcnt);
49 	tcp_sock_set_keepidle(sock->sk, keepidle);
50 	/* KEEPINTVL is the interval between successive probes. We follow
51 	 * the model in xs_tcp_finish_connecting() and re-use keepidle.
52 	 */
53 	tcp_sock_set_keepintvl(sock->sk, keepidle);
54 }
55 
56 /* rds_tcp_accept_one_path(): if accepting on cp_index > 0, make sure the
57  * client's ipaddr < server's ipaddr. Otherwise, close the accepted
58  * socket and force a reconneect from smaller -> larger ip addr. The reason
59  * we special case cp_index 0 is to allow the rds probe ping itself to itself
60  * get through efficiently.
61  * Since reconnects are only initiated from the node with the numerically
62  * smaller ip address, we recycle conns in RDS_CONN_ERROR on the passive side
63  * by moving them to CONNECTING in this function.
64  */
65 static
rds_tcp_accept_one_path(struct rds_connection * conn)66 struct rds_tcp_connection *rds_tcp_accept_one_path(struct rds_connection *conn)
67 {
68 	int i;
69 	int npaths = max_t(int, 1, conn->c_npaths);
70 
71 	/* for mprds, all paths MUST be initiated by the peer
72 	 * with the smaller address.
73 	 */
74 	if (rds_addr_cmp(&conn->c_faddr, &conn->c_laddr) >= 0) {
75 		/* Make sure we initiate at least one path if this
76 		 * has not already been done; rds_start_mprds() will
77 		 * take care of additional paths, if necessary.
78 		 */
79 		if (npaths == 1)
80 			rds_conn_path_connect_if_down(&conn->c_path[0]);
81 		return NULL;
82 	}
83 
84 	for (i = 0; i < npaths; i++) {
85 		struct rds_conn_path *cp = &conn->c_path[i];
86 
87 		if (rds_conn_path_transition(cp, RDS_CONN_DOWN,
88 					     RDS_CONN_CONNECTING) ||
89 		    rds_conn_path_transition(cp, RDS_CONN_ERROR,
90 					     RDS_CONN_CONNECTING)) {
91 			return cp->cp_transport_data;
92 		}
93 	}
94 	return NULL;
95 }
96 
rds_tcp_accept_one(struct socket * sock)97 int rds_tcp_accept_one(struct socket *sock)
98 {
99 	struct socket *new_sock = NULL;
100 	struct rds_connection *conn;
101 	int ret;
102 	struct inet_sock *inet;
103 	struct rds_tcp_connection *rs_tcp = NULL;
104 	int conn_state;
105 	struct rds_conn_path *cp;
106 	struct in6_addr *my_addr, *peer_addr;
107 #if !IS_ENABLED(CONFIG_IPV6)
108 	struct in6_addr saddr, daddr;
109 #endif
110 	int dev_if = 0;
111 
112 	if (!sock) /* module unload or netns delete in progress */
113 		return -ENETUNREACH;
114 
115 	ret = sock_create_lite(sock->sk->sk_family,
116 			       sock->sk->sk_type, sock->sk->sk_protocol,
117 			       &new_sock);
118 	if (ret)
119 		goto out;
120 
121 	ret = sock->ops->accept(sock, new_sock, O_NONBLOCK, true);
122 	if (ret < 0)
123 		goto out;
124 
125 	/* sock_create_lite() does not get a hold on the owner module so we
126 	 * need to do it here.  Note that sock_release() uses sock->ops to
127 	 * determine if it needs to decrement the reference count.  So set
128 	 * sock->ops after calling accept() in case that fails.  And there's
129 	 * no need to do try_module_get() as the listener should have a hold
130 	 * already.
131 	 */
132 	new_sock->ops = sock->ops;
133 	__module_get(new_sock->ops->owner);
134 
135 	rds_tcp_keepalive(new_sock);
136 	if (!rds_tcp_tune(new_sock)) {
137 		ret = -EINVAL;
138 		goto out;
139 	}
140 
141 	inet = inet_sk(new_sock->sk);
142 
143 #if IS_ENABLED(CONFIG_IPV6)
144 	my_addr = &new_sock->sk->sk_v6_rcv_saddr;
145 	peer_addr = &new_sock->sk->sk_v6_daddr;
146 #else
147 	ipv6_addr_set_v4mapped(inet->inet_saddr, &saddr);
148 	ipv6_addr_set_v4mapped(inet->inet_daddr, &daddr);
149 	my_addr = &saddr;
150 	peer_addr = &daddr;
151 #endif
152 	rdsdebug("accepted family %d tcp %pI6c:%u -> %pI6c:%u\n",
153 		 sock->sk->sk_family,
154 		 my_addr, ntohs(inet->inet_sport),
155 		 peer_addr, ntohs(inet->inet_dport));
156 
157 #if IS_ENABLED(CONFIG_IPV6)
158 	/* sk_bound_dev_if is not set if the peer address is not link local
159 	 * address.  In this case, it happens that mcast_oif is set.  So
160 	 * just use it.
161 	 */
162 	if ((ipv6_addr_type(my_addr) & IPV6_ADDR_LINKLOCAL) &&
163 	    !(ipv6_addr_type(peer_addr) & IPV6_ADDR_LINKLOCAL)) {
164 		struct ipv6_pinfo *inet6;
165 
166 		inet6 = inet6_sk(new_sock->sk);
167 		dev_if = inet6->mcast_oif;
168 	} else {
169 		dev_if = new_sock->sk->sk_bound_dev_if;
170 	}
171 #endif
172 
173 	if (!rds_tcp_laddr_check(sock_net(sock->sk), peer_addr, dev_if)) {
174 		/* local address connection is only allowed via loopback */
175 		ret = -EOPNOTSUPP;
176 		goto out;
177 	}
178 
179 	conn = rds_conn_create(sock_net(sock->sk),
180 			       my_addr, peer_addr,
181 			       &rds_tcp_transport, 0, GFP_KERNEL, dev_if);
182 
183 	if (IS_ERR(conn)) {
184 		ret = PTR_ERR(conn);
185 		goto out;
186 	}
187 	/* An incoming SYN request came in, and TCP just accepted it.
188 	 *
189 	 * If the client reboots, this conn will need to be cleaned up.
190 	 * rds_tcp_state_change() will do that cleanup
191 	 */
192 	rs_tcp = rds_tcp_accept_one_path(conn);
193 	if (!rs_tcp)
194 		goto rst_nsk;
195 	mutex_lock(&rs_tcp->t_conn_path_lock);
196 	cp = rs_tcp->t_cpath;
197 	conn_state = rds_conn_path_state(cp);
198 	WARN_ON(conn_state == RDS_CONN_UP);
199 	if (conn_state != RDS_CONN_CONNECTING && conn_state != RDS_CONN_ERROR)
200 		goto rst_nsk;
201 	if (rs_tcp->t_sock) {
202 		/* Duelling SYN has been handled in rds_tcp_accept_one() */
203 		rds_tcp_reset_callbacks(new_sock, cp);
204 		/* rds_connect_path_complete() marks RDS_CONN_UP */
205 		rds_connect_path_complete(cp, RDS_CONN_RESETTING);
206 	} else {
207 		rds_tcp_set_callbacks(new_sock, cp);
208 		rds_connect_path_complete(cp, RDS_CONN_CONNECTING);
209 	}
210 	new_sock = NULL;
211 	ret = 0;
212 	if (conn->c_npaths == 0)
213 		rds_send_ping(cp->cp_conn, cp->cp_index);
214 	goto out;
215 rst_nsk:
216 	/* reset the newly returned accept sock and bail.
217 	 * It is safe to set linger on new_sock because the RDS connection
218 	 * has not been brought up on new_sock, so no RDS-level data could
219 	 * be pending on it. By setting linger, we achieve the side-effect
220 	 * of avoiding TIME_WAIT state on new_sock.
221 	 */
222 	sock_no_linger(new_sock->sk);
223 	kernel_sock_shutdown(new_sock, SHUT_RDWR);
224 	ret = 0;
225 out:
226 	if (rs_tcp)
227 		mutex_unlock(&rs_tcp->t_conn_path_lock);
228 	if (new_sock)
229 		sock_release(new_sock);
230 	return ret;
231 }
232 
rds_tcp_listen_data_ready(struct sock * sk)233 void rds_tcp_listen_data_ready(struct sock *sk)
234 {
235 	void (*ready)(struct sock *sk);
236 
237 	rdsdebug("listen data ready sk %p\n", sk);
238 
239 	read_lock_bh(&sk->sk_callback_lock);
240 	ready = sk->sk_user_data;
241 	if (!ready) { /* check for teardown race */
242 		ready = sk->sk_data_ready;
243 		goto out;
244 	}
245 
246 	/*
247 	 * ->sk_data_ready is also called for a newly established child socket
248 	 * before it has been accepted and the accepter has set up their
249 	 * data_ready.. we only want to queue listen work for our listening
250 	 * socket
251 	 *
252 	 * (*ready)() may be null if we are racing with netns delete, and
253 	 * the listen socket is being torn down.
254 	 */
255 	if (sk->sk_state == TCP_LISTEN)
256 		rds_tcp_accept_work(sk);
257 	else
258 		ready = rds_tcp_listen_sock_def_readable(sock_net(sk));
259 
260 out:
261 	read_unlock_bh(&sk->sk_callback_lock);
262 	if (ready)
263 		ready(sk);
264 }
265 
rds_tcp_listen_init(struct net * net,bool isv6)266 struct socket *rds_tcp_listen_init(struct net *net, bool isv6)
267 {
268 	struct socket *sock = NULL;
269 	struct sockaddr_storage ss;
270 	struct sockaddr_in6 *sin6;
271 	struct sockaddr_in *sin;
272 	int addr_len;
273 	int ret;
274 
275 	ret = sock_create_kern(net, isv6 ? PF_INET6 : PF_INET, SOCK_STREAM,
276 			       IPPROTO_TCP, &sock);
277 	if (ret < 0) {
278 		rdsdebug("could not create %s listener socket: %d\n",
279 			 isv6 ? "IPv6" : "IPv4", ret);
280 		goto out;
281 	}
282 
283 	sock->sk->sk_reuse = SK_CAN_REUSE;
284 	tcp_sock_set_nodelay(sock->sk);
285 
286 	write_lock_bh(&sock->sk->sk_callback_lock);
287 	sock->sk->sk_user_data = sock->sk->sk_data_ready;
288 	sock->sk->sk_data_ready = rds_tcp_listen_data_ready;
289 	write_unlock_bh(&sock->sk->sk_callback_lock);
290 
291 	if (isv6) {
292 		sin6 = (struct sockaddr_in6 *)&ss;
293 		sin6->sin6_family = PF_INET6;
294 		sin6->sin6_addr = in6addr_any;
295 		sin6->sin6_port = (__force u16)htons(RDS_TCP_PORT);
296 		sin6->sin6_scope_id = 0;
297 		sin6->sin6_flowinfo = 0;
298 		addr_len = sizeof(*sin6);
299 	} else {
300 		sin = (struct sockaddr_in *)&ss;
301 		sin->sin_family = PF_INET;
302 		sin->sin_addr.s_addr = INADDR_ANY;
303 		sin->sin_port = (__force u16)htons(RDS_TCP_PORT);
304 		addr_len = sizeof(*sin);
305 	}
306 
307 	ret = sock->ops->bind(sock, (struct sockaddr *)&ss, addr_len);
308 	if (ret < 0) {
309 		rdsdebug("could not bind %s listener socket: %d\n",
310 			 isv6 ? "IPv6" : "IPv4", ret);
311 		goto out;
312 	}
313 
314 	ret = sock->ops->listen(sock, 64);
315 	if (ret < 0)
316 		goto out;
317 
318 	return sock;
319 out:
320 	if (sock)
321 		sock_release(sock);
322 	return NULL;
323 }
324 
rds_tcp_listen_stop(struct socket * sock,struct work_struct * acceptor)325 void rds_tcp_listen_stop(struct socket *sock, struct work_struct *acceptor)
326 {
327 	struct sock *sk;
328 
329 	if (!sock)
330 		return;
331 
332 	sk = sock->sk;
333 
334 	/* serialize with and prevent further callbacks */
335 	lock_sock(sk);
336 	write_lock_bh(&sk->sk_callback_lock);
337 	if (sk->sk_user_data) {
338 		sk->sk_data_ready = sk->sk_user_data;
339 		sk->sk_user_data = NULL;
340 	}
341 	write_unlock_bh(&sk->sk_callback_lock);
342 	release_sock(sk);
343 
344 	/* wait for accepts to stop and close the socket */
345 	flush_workqueue(rds_wq);
346 	flush_work(acceptor);
347 	sock_release(sock);
348 }
349