1/* Function tanf vectorized with SSE4. 2 Copyright (C) 2021-2022 Free Software Foundation, Inc. 3 This file is part of the GNU C Library. 4 5 The GNU C Library is free software; you can redistribute it and/or 6 modify it under the terms of the GNU Lesser General Public 7 License as published by the Free Software Foundation; either 8 version 2.1 of the License, or (at your option) any later version. 9 10 The GNU C Library is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13 Lesser General Public License for more details. 14 15 You should have received a copy of the GNU Lesser General Public 16 License along with the GNU C Library; if not, see 17 https://www.gnu.org/licenses/. */ 18 19/* 20 * ALGORITHM DESCRIPTION: 21 * 22 * 1) Range reduction to [-Pi/4; +Pi/4] interval 23 * a) Grab sign from source argument and save it. 24 * b) Remove sign using AND 0x7fffffff operation 25 * c) Getting octant Y by 2/Pi multiplication 26 * d) Add "Right Shifter" (0x4B000000) value 27 * e) Treat obtained value as integer for destination sign setting. 28 * Shift first bit of this value to the last (sign) position (S << 31) 29 * f) Change destination sign if source sign is negative 30 * using XOR operation. 31 * g) Subtract "Right Shifter" (0x4B000000) value 32 * h) Subtract Y*(PI/2) from X argument, where PI/2 divided to 4 parts: 33 * X = X - Y*PI1 - Y*PI2 - Y*PI3 - Y*PI4; 34 * 2) Rational polynomial approximation ( at [-Pi/4; +Pi/4] interval) 35 * a) Calculate X^2 = X * X 36 * b) Calculate 2 polynomials: 37 * P = X * (P0 + X^2 * P1); 38 * Q = Q0 + X^2 * (Q1 + x^2 * Q2); 39 * c) Swap P and Q if first bit of obtained value after 40 * Right Shifting is set to 1. Using And, Andnot & Or operations. 41 * d) Divide R = P / Q; 42 * 3) Destination sign setting 43 * a) Set shifted destination sign using XOR operation: 44 * R = XOR( R, S ); 45 * 46 */ 47 48/* Offsets for data table __svml_stan_data_internal 49 */ 50#define _sInvPI_uisa 0 51#define _sPI1_uisa 16 52#define _sPI2_uisa 32 53#define _sPI3_uisa 48 54#define _sPI2_ha_uisa 64 55#define _sPI3_ha_uisa 80 56#define Th_tbl_uisa 96 57#define Tl_tbl_uisa 224 58#define _sPC3_uisa 352 59#define _sPC5_uisa 368 60#define _sRangeReductionVal_uisa 384 61#define _sInvPi 400 62#define _sSignMask 416 63#define _sAbsMask 432 64#define _sRangeVal 448 65#define _sRShifter 464 66#define _sOne 480 67#define _sRangeReductionVal 496 68#define _sPI1 512 69#define _sPI2 528 70#define _sPI3 544 71#define _sPI4 560 72#define _sPI1_FMA 576 73#define _sPI2_FMA 592 74#define _sPI3_FMA 608 75#define _sP0 624 76#define _sP1 640 77#define _sQ0 656 78#define _sQ1 672 79#define _sQ2 688 80#define _sTwo 704 81#define _sCoeffs 720 82 83#include <sysdep.h> 84 85 .section .text.sse4, "ax", @progbits 86ENTRY(_ZGVbN4v_tanf_sse4) 87 subq $232, %rsp 88 cfi_def_cfa_offset(240) 89 movaps %xmm0, %xmm13 90 movups _sAbsMask+__svml_stan_data_internal(%rip), %xmm12 91 92 /* 93 * Legacy Code 94 * Here HW FMA can be unavailable 95 */ 96 xorl %eax, %eax 97 movaps %xmm12, %xmm4 98 pxor %xmm10, %xmm10 99 movups _sInvPi+__svml_stan_data_internal(%rip), %xmm2 100 andps %xmm13, %xmm4 101 mulps %xmm4, %xmm2 102 103 /* Range reduction */ 104 movaps %xmm4, %xmm1 105 106 /* 107 * 108 * Main path (_LA_ and _EP_) 109 * 110 * Octant calculation 111 */ 112 movups _sRShifter+__svml_stan_data_internal(%rip), %xmm3 113 114 /* Large values check */ 115 movaps %xmm4, %xmm11 116 movups _sPI1+__svml_stan_data_internal(%rip), %xmm5 117 andnps %xmm13, %xmm12 118 movups _sPI2+__svml_stan_data_internal(%rip), %xmm6 119 addps %xmm3, %xmm2 120 cmpnleps _sRangeReductionVal+__svml_stan_data_internal(%rip), %xmm11 121 movaps %xmm2, %xmm8 122 movups _sPI3+__svml_stan_data_internal(%rip), %xmm7 123 subps %xmm3, %xmm8 124 movmskps %xmm11, %edx 125 movups _sPI4+__svml_stan_data_internal(%rip), %xmm9 126 mulps %xmm8, %xmm5 127 mulps %xmm8, %xmm6 128 mulps %xmm8, %xmm7 129 subps %xmm5, %xmm1 130 mulps %xmm8, %xmm9 131 subps %xmm6, %xmm1 132 movups _sQ2+__svml_stan_data_internal(%rip), %xmm15 133 134 /* Inversion mask and sign calculation */ 135 movaps %xmm2, %xmm5 136 137 /* Rational approximation */ 138 movups _sP1+__svml_stan_data_internal(%rip), %xmm14 139 pslld $30, %xmm2 140 cmpneqps %xmm10, %xmm2 141 subps %xmm7, %xmm1 142 143 /* Exchanged numerator and denominator if necessary */ 144 movaps %xmm2, %xmm0 145 movaps %xmm2, %xmm10 146 pslld $31, %xmm5 147 subps %xmm9, %xmm1 148 movaps %xmm1, %xmm3 149 pxor %xmm12, %xmm5 150 mulps %xmm1, %xmm3 151 mulps %xmm3, %xmm15 152 mulps %xmm3, %xmm14 153 addps _sQ1+__svml_stan_data_internal(%rip), %xmm15 154 addps _sP0+__svml_stan_data_internal(%rip), %xmm14 155 mulps %xmm15, %xmm3 156 mulps %xmm14, %xmm1 157 addps _sQ0+__svml_stan_data_internal(%rip), %xmm3 158 andnps %xmm1, %xmm0 159 andps %xmm3, %xmm10 160 andps %xmm2, %xmm1 161 andnps %xmm3, %xmm2 162 orps %xmm10, %xmm0 163 orps %xmm2, %xmm1 164 165 /* Division */ 166 divps %xmm1, %xmm0 167 168 /* Sign setting */ 169 pxor %xmm5, %xmm0 170 171 /* 172 * 173 * End of main path (_LA_ and _EP_) 174 */ 175 176 testl %edx, %edx 177 178 /* Go to auxilary branch */ 179 jne L(AUX_BRANCH) 180 # LOE rbx rbp r12 r13 r14 r15 eax xmm0 xmm4 xmm11 xmm12 xmm13 181 182 /* Return from auxilary branch 183 * for out of main path inputs 184 */ 185 186L(AUX_BRANCH_RETURN): 187 testl %eax, %eax 188 189 /* Go to special inputs processing branch */ 190 jne L(SPECIAL_VALUES_BRANCH) 191 # LOE rbx rbp r12 r13 r14 r15 eax xmm0 xmm13 192 193 /* Restore registers 194 * and exit the function 195 */ 196 197L(EXIT): 198 addq $232, %rsp 199 cfi_def_cfa_offset(8) 200 ret 201 cfi_def_cfa_offset(240) 202 203 /* Branch to process 204 * special inputs 205 */ 206 207L(SPECIAL_VALUES_BRANCH): 208 movups %xmm13, 32(%rsp) 209 movups %xmm0, 48(%rsp) 210 # LOE rbx rbp r12 r13 r14 r15 eax xmm0 211 212 xorl %edx, %edx 213 movq %r12, 16(%rsp) 214 cfi_offset(12, -224) 215 movl %edx, %r12d 216 movq %r13, 8(%rsp) 217 cfi_offset(13, -232) 218 movl %eax, %r13d 219 movq %r14, (%rsp) 220 cfi_offset(14, -240) 221 # LOE rbx rbp r15 r12d r13d 222 223 /* Range mask 224 * bits check 225 */ 226 227L(RANGEMASK_CHECK): 228 btl %r12d, %r13d 229 230 /* Call scalar math function */ 231 jc L(SCALAR_MATH_CALL) 232 # LOE rbx rbp r15 r12d r13d 233 234 /* Special inputs 235 * processing loop 236 */ 237 238L(SPECIAL_VALUES_LOOP): 239 incl %r12d 240 cmpl $4, %r12d 241 242 /* Check bits in range mask */ 243 jl L(RANGEMASK_CHECK) 244 # LOE rbx rbp r15 r12d r13d 245 246 movq 16(%rsp), %r12 247 cfi_restore(12) 248 movq 8(%rsp), %r13 249 cfi_restore(13) 250 movq (%rsp), %r14 251 cfi_restore(14) 252 movups 48(%rsp), %xmm0 253 254 /* Go to exit */ 255 jmp L(EXIT) 256 cfi_offset(12, -224) 257 cfi_offset(13, -232) 258 cfi_offset(14, -240) 259 # LOE rbx rbp r12 r13 r14 r15 xmm0 260 261 /* Scalar math fucntion call 262 * to process special input 263 */ 264 265L(SCALAR_MATH_CALL): 266 movl %r12d, %r14d 267 movss 32(%rsp, %r14, 4), %xmm0 268 call tanf@PLT 269 # LOE rbx rbp r14 r15 r12d r13d xmm0 270 271 movss %xmm0, 48(%rsp, %r14, 4) 272 273 /* Process special inputs in loop */ 274 jmp L(SPECIAL_VALUES_LOOP) 275 cfi_restore(12) 276 cfi_restore(13) 277 cfi_restore(14) 278 # LOE rbx rbp r15 r12d r13d 279 280 /* Auxilary branch 281 * for out of main path inputs 282 */ 283 284L(AUX_BRANCH): 285 movl $2139095040, %eax 286 287 /* 288 * Get the (2^a / 2pi) mod 1 values from the table. 289 * Because doesn't have I-type gather, we need a trivial cast 290 */ 291 lea __svml_stan_reduction_data_internal(%rip), %r8 292 movups %xmm13, 64(%rsp) 293 294 /* 295 * Also get the significand as an integer 296 * NB: adding in the integer bit is wrong for denorms! 297 * To make this work for denorms we should do something slightly different 298 */ 299 movl $8388607, %r9d 300 movups %xmm12, 80(%rsp) 301 movl $8388608, %r10d 302 movups %xmm11, 96(%rsp) 303 304 /* 305 * Break the P_xxx and m into 16-bit chunks ready for 306 * the long multiplication via 16x16->32 multiplications 307 */ 308 movl $65535, %r11d 309 movd %eax, %xmm3 310 pshufd $0, %xmm3, %xmm2 311 andps %xmm2, %xmm13 312 cmpeqps %xmm2, %xmm13 313 pand %xmm4, %xmm2 314 psrld $23, %xmm2 315 movdqa %xmm2, %xmm12 316 pslld $1, %xmm12 317 paddd %xmm2, %xmm12 318 pslld $2, %xmm12 319 pshufd $1, %xmm12, %xmm10 320 pshufd $2, %xmm12, %xmm11 321 pshufd $3, %xmm12, %xmm14 322 movd %xmm12, %edx 323 movd %xmm10, %ecx 324 movd %xmm11, %esi 325 movd %r9d, %xmm11 326 movd %xmm14, %edi 327 movd 4(%rdx, %r8), %xmm6 328 movd 4(%rcx, %r8), %xmm7 329 movd 4(%rsi, %r8), %xmm3 330 movl $872415232, %r9d 331 movd 4(%rdi, %r8), %xmm5 332 punpckldq %xmm7, %xmm6 333 punpckldq %xmm5, %xmm3 334 movd 8(%rdi, %r8), %xmm10 335 movmskps %xmm13, %eax 336 punpcklqdq %xmm3, %xmm6 337 movd 8(%rdx, %r8), %xmm3 338 movd 8(%rcx, %r8), %xmm2 339 movd 8(%rsi, %r8), %xmm13 340 punpckldq %xmm2, %xmm3 341 punpckldq %xmm10, %xmm13 342 punpcklqdq %xmm13, %xmm3 343 pshufd $0, %xmm11, %xmm13 344 movdqa %xmm3, %xmm2 345 movups %xmm4, 48(%rsp) 346 pand %xmm4, %xmm13 347 movd %r10d, %xmm4 348 psrld $16, %xmm2 349 movd (%rdx, %r8), %xmm9 350 351 /* 352 * We want to incorporate the original sign now too. 353 * Do it here for convenience in getting the right N value, 354 * though we could wait right to the end if we were prepared 355 * to modify the sign of N later too. 356 * So get the appropriate sign mask now (or sooner). 357 */ 358 movl $-2147483648, %edx 359 movd (%rcx, %r8), %xmm8 360 361 /* 362 * Create floating-point high part, implicitly adding integer bit 1 363 * Incorporate overall sign at this stage too. 364 */ 365 movl $1065353216, %ecx 366 movd (%rsi, %r8), %xmm15 367 368 /* 369 * Now round at the 2^-8 bit position for reduction mod pi/2^7 370 * instead of the original 2pi (but still with the same 2pi scaling). 371 * Use a shifter of 2^15 + 2^14. 372 * The N we get is our final version; it has an offset of 373 * 2^8 because of the implicit integer bit, and anyway for negative 374 * starting value it's a 2s complement thing. But we need to mask 375 * off the exponent part anyway so it's fine. 376 */ 377 movl $1195376640, %esi 378 movd (%rdi, %r8), %xmm1 379 movl $511, %r10d 380 movups %xmm0, 112(%rsp) 381 movd %r11d, %xmm0 382 pshufd $0, %xmm4, %xmm12 383 movdqa %xmm2, %xmm4 384 punpckldq %xmm8, %xmm9 385 paddd %xmm12, %xmm13 386 punpckldq %xmm1, %xmm15 387 movdqa %xmm13, %xmm12 388 pshufd $0, %xmm0, %xmm8 389 movdqa %xmm6, %xmm0 390 punpcklqdq %xmm15, %xmm9 391 pand %xmm8, %xmm13 392 movdqa %xmm9, %xmm14 393 pand %xmm8, %xmm9 394 movdqa %xmm13, %xmm10 395 psrld $16, %xmm14 396 movdqu %xmm14, 128(%rsp) 397 398 /* Now do the big multiplication and carry propagation */ 399 movdqa %xmm9, %xmm14 400 psrlq $32, %xmm10 401 psrlq $32, %xmm14 402 movdqa %xmm13, %xmm15 403 movdqa %xmm10, %xmm7 404 pmuludq %xmm9, %xmm15 405 psrld $16, %xmm0 406 pmuludq %xmm14, %xmm7 407 movdqu %xmm9, 144(%rsp) 408 psllq $32, %xmm7 409 movdqu .FLT_16(%rip), %xmm9 410 pand %xmm8, %xmm6 411 pand %xmm9, %xmm15 412 psrld $16, %xmm12 413 movdqa %xmm0, %xmm1 414 por %xmm7, %xmm15 415 movdqa %xmm13, %xmm7 416 pand %xmm8, %xmm3 417 movdqu %xmm0, 160(%rsp) 418 movdqa %xmm12, %xmm11 419 movdqu %xmm15, 208(%rsp) 420 psrlq $32, %xmm1 421 pmuludq %xmm0, %xmm7 422 movdqa %xmm6, %xmm5 423 movdqa %xmm10, %xmm15 424 movdqa %xmm12, %xmm0 425 movdqu %xmm14, 176(%rsp) 426 psrlq $32, %xmm11 427 movdqu %xmm1, 192(%rsp) 428 psrlq $32, %xmm5 429 pmuludq %xmm1, %xmm15 430 movdqa %xmm13, %xmm1 431 pmuludq %xmm3, %xmm0 432 pmuludq %xmm6, %xmm1 433 pmuludq %xmm12, %xmm6 434 movdqa %xmm10, %xmm14 435 psrlq $32, %xmm3 436 pmuludq %xmm5, %xmm14 437 pand %xmm9, %xmm1 438 pmuludq %xmm11, %xmm3 439 pmuludq %xmm11, %xmm5 440 psllq $32, %xmm14 441 pand %xmm9, %xmm0 442 psllq $32, %xmm3 443 psrlq $32, %xmm4 444 por %xmm14, %xmm1 445 por %xmm3, %xmm0 446 movdqa %xmm12, %xmm14 447 movdqa %xmm11, %xmm3 448 pmuludq %xmm2, %xmm14 449 pand %xmm9, %xmm7 450 pmuludq %xmm4, %xmm3 451 pmuludq %xmm13, %xmm2 452 pmuludq %xmm10, %xmm4 453 pand %xmm9, %xmm2 454 psllq $32, %xmm4 455 psllq $32, %xmm15 456 pand %xmm9, %xmm14 457 psllq $32, %xmm3 458 por %xmm4, %xmm2 459 por %xmm15, %xmm7 460 por %xmm3, %xmm14 461 psrld $16, %xmm2 462 pand %xmm9, %xmm6 463 psllq $32, %xmm5 464 movdqa %xmm1, %xmm15 465 paddd %xmm2, %xmm14 466 movdqa %xmm7, %xmm2 467 por %xmm5, %xmm6 468 psrld $16, %xmm1 469 pand %xmm8, %xmm2 470 paddd %xmm1, %xmm6 471 movdqu 160(%rsp), %xmm1 472 paddd %xmm6, %xmm2 473 movdqu 192(%rsp), %xmm6 474 psrld $16, %xmm7 475 pmuludq %xmm12, %xmm1 476 pand %xmm8, %xmm15 477 pmuludq %xmm11, %xmm6 478 pmuludq 144(%rsp), %xmm12 479 pmuludq 176(%rsp), %xmm11 480 pand %xmm9, %xmm1 481 psllq $32, %xmm6 482 por %xmm6, %xmm1 483 psrld $16, %xmm0 484 paddd %xmm7, %xmm1 485 paddd %xmm14, %xmm15 486 movdqu 128(%rsp), %xmm7 487 paddd %xmm15, %xmm0 488 pmuludq %xmm7, %xmm13 489 psrlq $32, %xmm7 490 pmuludq %xmm7, %xmm10 491 movdqa %xmm0, %xmm14 492 pand %xmm9, %xmm13 493 movdqu 208(%rsp), %xmm5 494 psrld $16, %xmm14 495 paddd %xmm2, %xmm14 496 movdqa %xmm5, %xmm15 497 movdqa %xmm14, %xmm3 498 pand %xmm8, %xmm15 499 psrld $16, %xmm3 500 paddd %xmm1, %xmm15 501 psllq $32, %xmm10 502 pand %xmm9, %xmm12 503 psllq $32, %xmm11 504 paddd %xmm15, %xmm3 505 por %xmm10, %xmm13 506 por %xmm11, %xmm12 507 psrld $16, %xmm5 508 movdqa %xmm3, %xmm4 509 pand %xmm8, %xmm13 510 paddd %xmm5, %xmm12 511 psrld $16, %xmm4 512 paddd %xmm12, %xmm13 513 paddd %xmm13, %xmm4 514 pand %xmm8, %xmm3 515 pslld $16, %xmm4 516 movd %edx, %xmm9 517 movups 48(%rsp), %xmm15 518 paddd %xmm3, %xmm4 519 pshufd $0, %xmm9, %xmm7 520 521 /* Assemble reduced argument from the pieces */ 522 pand %xmm8, %xmm0 523 movd %ecx, %xmm8 524 pand %xmm15, %xmm7 525 pshufd $0, %xmm8, %xmm1 526 movdqa %xmm4, %xmm5 527 psrld $9, %xmm5 528 pxor %xmm7, %xmm1 529 por %xmm1, %xmm5 530 movd %esi, %xmm6 531 pshufd $0, %xmm6, %xmm3 532 movdqa %xmm5, %xmm6 533 movl $262143, %r8d 534 535 /* 536 * Create floating-point low and medium parts, respectively 537 * lo_17, ... lo_0, 0, ..., 0 538 * hi_8, ... hi_0, lo_31, ..., lo_18 539 * then subtract off the implicitly added integer bits, 540 * 2^-46 and 2^-23, respectively. 541 * Put the original sign into all of them at this stage. 542 */ 543 movl $679477248, %edi 544 movd %r10d, %xmm13 545 pslld $16, %xmm14 546 pshufd $0, %xmm13, %xmm1 547 paddd %xmm0, %xmm14 548 movd %r9d, %xmm11 549 pand %xmm4, %xmm1 550 movd %r8d, %xmm9 551 movd %edi, %xmm10 552 pshufd $0, %xmm9, %xmm8 553 pslld $14, %xmm1 554 pshufd $0, %xmm10, %xmm0 555 pand %xmm14, %xmm8 556 pshufd $0, %xmm11, %xmm12 557 psrld $18, %xmm14 558 pxor %xmm7, %xmm0 559 pxor %xmm12, %xmm7 560 por %xmm14, %xmm1 561 pslld $5, %xmm8 562 por %xmm7, %xmm1 563 564 /* 565 * Now multiply those numbers all by 2 pi, reasonably accurately. 566 * The top part uses 2pi = s2pi_lead + s2pi_trail, where 567 * s2pi_lead has 12 significant bits. 568 */ 569 movl $1086918619, %r11d 570 571 /* Split RHi into 12-bit leading and trailing parts. */ 572 movl $-4096, %esi 573 por %xmm0, %xmm8 574 movl $1086918656, %edx 575 movl $-1214941318, %ecx 576 577 /* 578 * If the magnitude of the input is <= 2^-20, then 579 * just pass through the input, since no reduction will be needed and 580 * the main path will only work accurately if the reduced argument is 581 * about >= 2^-40 (which it is for all large pi multiples) 582 */ 583 movl $2147483647, %edi 584 addps %xmm3, %xmm6 585 subps %xmm7, %xmm1 586 subps %xmm0, %xmm8 587 movaps %xmm6, %xmm2 588 movd %r11d, %xmm14 589 movd %esi, %xmm4 590 movd %edx, %xmm7 591 movl $897581056, %r8d 592 subps %xmm3, %xmm2 593 594 /* Grab our final N value as an integer, appropriately masked mod 2^8 */ 595 movl $255, %r9d 596 subps %xmm2, %xmm5 597 598 /* Now add them up into 2 reasonably aligned pieces */ 599 movaps %xmm5, %xmm3 600 601 /* 602 * The output is _VRES_R (high) + _VRES_E (low), and the integer part is _VRES_IND 603 * Set sRp2 = _VRES_R^2 and then resume the original code. 604 * Argument reduction is now finished: x = n * pi/128 + r 605 * where n = iIndex and r = sR (high) + sE (low). 606 * But we have n modulo 256, needed for sin/cos with period 2pi 607 * but we want it modulo 128 since tan has period pi. 608 */ 609 movl $127, %r10d 610 pshufd $0, %xmm14, %xmm2 611 addps %xmm1, %xmm3 612 pshufd $0, %xmm4, %xmm14 613 movd %r8d, %xmm4 614 pshufd $0, %xmm4, %xmm9 615 subps %xmm3, %xmm5 616 movdqa %xmm9, %xmm11 617 addps %xmm5, %xmm1 618 movd %ecx, %xmm5 619 addps %xmm1, %xmm8 620 pshufd $0, %xmm7, %xmm1 621 movdqa %xmm14, %xmm7 622 andps %xmm3, %xmm7 623 624 /* 625 * Do the multiplication as exact top part and "naive" low part. 626 * This still maintains a similar level of offset and doesn't drop 627 * the accuracy much below what we already have. 628 */ 629 movdqa %xmm1, %xmm10 630 pshufd $0, %xmm5, %xmm5 631 subps %xmm7, %xmm3 632 mulps %xmm7, %xmm10 633 mulps %xmm5, %xmm7 634 mulps %xmm3, %xmm1 635 mulps %xmm8, %xmm2 636 mulps %xmm3, %xmm5 637 addps %xmm7, %xmm1 638 addps %xmm5, %xmm2 639 movd %edi, %xmm8 640 addps %xmm2, %xmm1 641 642 /* 643 * Do another stage of compensated summation to get full offset 644 * between the pieces sRedHi + sRedLo. 645 * Depending on the later algorithm, we might avoid this stage. 646 */ 647 movaps %xmm1, %xmm0 648 649 /* Load constants (not all needed at once) */ 650 lea _sCoeffs+36+__svml_stan_data_internal(%rip), %rdi 651 pshufd $0, %xmm8, %xmm8 652 addps %xmm10, %xmm0 653 andps %xmm15, %xmm8 654 subps %xmm0, %xmm10 655 cmpltps %xmm8, %xmm11 656 cmpleps %xmm9, %xmm8 657 addps %xmm10, %xmm1 658 andps %xmm15, %xmm8 659 movd %r9d, %xmm15 660 andps %xmm11, %xmm0 661 andps %xmm1, %xmm11 662 pshufd $0, %xmm15, %xmm1 663 movd %r10d, %xmm15 664 pshufd $0, %xmm15, %xmm7 665 pand %xmm1, %xmm6 666 pand %xmm7, %xmm6 667 orps %xmm0, %xmm8 668 movaps %xmm6, %xmm4 669 670 /* 671 * Simply combine the two parts of the reduced argument 672 * since we can afford a few ulps in this case. 673 */ 674 addps %xmm11, %xmm8 675 pslld $2, %xmm4 676 paddd %xmm6, %xmm4 677 pslld $3, %xmm4 678 pshufd $1, %xmm4, %xmm6 679 pshufd $2, %xmm4, %xmm5 680 pshufd $3, %xmm4, %xmm3 681 movd %xmm4, %r11d 682 movd %xmm6, %edx 683 movd %xmm5, %ecx 684 movd %xmm3, %esi 685 movd -32(%r11, %rdi), %xmm15 686 movd -32(%rdx, %rdi), %xmm12 687 movd -32(%rcx, %rdi), %xmm7 688 movd -32(%rsi, %rdi), %xmm13 689 punpckldq %xmm12, %xmm15 690 punpckldq %xmm13, %xmm7 691 movd -28(%rsi, %rdi), %xmm5 692 punpcklqdq %xmm7, %xmm15 693 movd -28(%r11, %rdi), %xmm7 694 movd -28(%rdx, %rdi), %xmm6 695 movd -28(%rcx, %rdi), %xmm4 696 movd -36(%rcx, %rdi), %xmm9 697 movd -36(%r11, %rdi), %xmm1 698 movd -36(%rdx, %rdi), %xmm2 699 movd -24(%rdx, %rdi), %xmm3 700 movd -36(%rsi, %rdi), %xmm10 701 punpckldq %xmm6, %xmm7 702 punpckldq %xmm5, %xmm4 703 movd -24(%r11, %rdi), %xmm6 704 punpckldq %xmm2, %xmm1 705 punpckldq %xmm10, %xmm9 706 punpcklqdq %xmm4, %xmm7 707 movd -16(%r11, %rdi), %xmm4 708 punpckldq %xmm3, %xmm6 709 movd -24(%rcx, %rdi), %xmm10 710 movd -16(%rcx, %rdi), %xmm3 711 movd -24(%rsi, %rdi), %xmm2 712 movd -16(%rsi, %rdi), %xmm13 713 movd -16(%rdx, %rdi), %xmm12 714 punpcklqdq %xmm9, %xmm1 715 movd -20(%rdx, %rdi), %xmm9 716 punpckldq %xmm2, %xmm10 717 movd -20(%r11, %rdi), %xmm5 718 movd -20(%rcx, %rdi), %xmm11 719 movd -20(%rsi, %rdi), %xmm0 720 punpckldq %xmm12, %xmm4 721 punpckldq %xmm13, %xmm3 722 punpcklqdq %xmm10, %xmm6 723 movd -12(%rsi, %rdi), %xmm10 724 punpckldq %xmm9, %xmm5 725 punpckldq %xmm0, %xmm11 726 punpcklqdq %xmm3, %xmm4 727 movd -12(%r11, %rdi), %xmm3 728 movd -12(%rdx, %rdi), %xmm2 729 movd -12(%rcx, %rdi), %xmm9 730 punpcklqdq %xmm11, %xmm5 731 punpckldq %xmm2, %xmm3 732 punpckldq %xmm10, %xmm9 733 movd -8(%rcx, %rdi), %xmm10 734 movd -8(%r11, %rdi), %xmm2 735 movd -8(%rdx, %rdi), %xmm0 736 movd -8(%rsi, %rdi), %xmm11 737 punpckldq %xmm0, %xmm2 738 punpckldq %xmm11, %xmm10 739 movd -4(%rsi, %rdi), %xmm13 740 punpcklqdq %xmm9, %xmm3 741 punpcklqdq %xmm10, %xmm2 742 movd -4(%r11, %rdi), %xmm10 743 movd -4(%rdx, %rdi), %xmm12 744 movd -4(%rcx, %rdi), %xmm9 745 punpckldq %xmm12, %xmm10 746 punpckldq %xmm13, %xmm9 747 punpcklqdq %xmm9, %xmm10 748 749 /* 750 * Compute 2-part reciprocal component 751 * Construct a separate reduced argument modulo pi near pi/2 multiples. 752 * i.e. (pi/2 - x) mod pi, simply by subtracting the reduced argument 753 * from an accurate B_hi + B_lo = (128 - n) pi/128. Force the upper part 754 * of this reduced argument to half-length to simplify accurate 755 * reciprocation later on. 756 */ 757 movdqa %xmm1, %xmm9 758 movd (%r11, %rdi), %xmm13 759 subps %xmm8, %xmm9 760 movd (%rdx, %rdi), %xmm0 761 subps %xmm9, %xmm1 762 punpckldq %xmm0, %xmm13 763 movdqa %xmm14, %xmm0 764 andps %xmm9, %xmm0 765 subps %xmm8, %xmm1 766 subps %xmm0, %xmm9 767 movd (%rcx, %rdi), %xmm12 768 addps %xmm9, %xmm15 769 770 /* 771 * Now compute an approximate reciprocal to mix into the computation 772 * To avoid any danger of nonportability, force it to 12 bits, 773 * though I suspect it always is anyway on current platforms. 774 */ 775 rcpps %xmm0, %xmm9 776 addps %xmm15, %xmm1 777 andps %xmm14, %xmm9 778 mulps %xmm9, %xmm0 779 780 /* 781 * Get a better approximation to 1/sR_hi (not far short of an ulp) 782 * using a third-order polynomial approximation 783 */ 784 movaps %xmm9, %xmm14 785 movd (%rsi, %rdi), %xmm11 786 787 /* 788 * Now compute the error sEr where sRecip_hi = (1/R_hi) * (1 - sEr) 789 * so that we can compensate for it. 790 */ 791 movups _sOne+__svml_stan_data_internal(%rip), %xmm15 792 punpckldq %xmm11, %xmm12 793 movaps %xmm15, %xmm11 794 punpcklqdq %xmm12, %xmm13 795 subps %xmm0, %xmm11 796 mulps %xmm11, %xmm14 797 movups %xmm11, (%rsp) 798 addps %xmm9, %xmm14 799 mulps %xmm11, %xmm11 800 movups %xmm13, 32(%rsp) 801 movups %xmm11, 16(%rsp) 802 movups 112(%rsp), %xmm0 803 movups 96(%rsp), %xmm11 804 movups 80(%rsp), %xmm12 805 movups 64(%rsp), %xmm13 806 # LOE rbx rbp r12 r13 r14 r15 eax xmm0 xmm1 xmm2 xmm3 xmm4 xmm5 xmm6 xmm7 xmm8 xmm9 xmm10 xmm11 xmm12 xmm13 xmm14 xmm15 807 808 /* 809 * Compensated sum of dominant component(s) 810 * Compute C0_hi + C1_hi * Z + Recip_hi + Recip_lo = H4 (hi) + H9 (lo) 811 * H1 = C1_hi * Z (exact since C1_hi is 1 bit) 812 */ 813 mulps %xmm8, %xmm4 814 addps 16(%rsp), %xmm15 815 816 /* Finally, multiplex both parts so they are only used in cotangent path */ 817 mulps %xmm7, %xmm9 818 819 /* 820 * Higher polynomial terms 821 * Stage 1 (with unlimited parallelism) 822 * P3 = C1_lo + C2 * Z 823 */ 824 mulps %xmm8, %xmm2 825 mulps %xmm15, %xmm14 826 addps %xmm2, %xmm3 827 828 /* 829 * Multiply by sRecip_ok to make sR_lo relative to sR_hi 830 * Since sR_lo is shifted off by about 12 bits, this is accurate enough. 831 */ 832 mulps %xmm14, %xmm1 833 834 /* 835 * Now create a low reciprocal using 836 * (Recip_hi + Er * Recip_ok) * (1 + sR_lo^2 - sR_lo) 837 * =~= Recip_hi + Recip_ok * (Er + sR_lo^2 - sR_lo) 838 */ 839 movaps %xmm1, %xmm15 840 mulps %xmm1, %xmm1 841 subps (%rsp), %xmm15 842 843 /* P4 = C3 + C4 * Z */ 844 movups 32(%rsp), %xmm2 845 subps %xmm15, %xmm1 846 mulps %xmm8, %xmm2 847 mulps %xmm1, %xmm14 848 addps %xmm2, %xmm10 849 mulps %xmm14, %xmm7 850 851 /* H2 = high(C0_hi + C1_hi * Z) */ 852 movdqa %xmm6, %xmm14 853 addps %xmm4, %xmm14 854 855 /* H4 = high(H2 + Recip_hi) */ 856 movaps %xmm14, %xmm1 857 858 /* intermediate in compensated sum */ 859 subps %xmm14, %xmm6 860 addps %xmm9, %xmm1 861 862 /* H5 = low(C0_hi + C1_hi * Z) */ 863 addps %xmm6, %xmm4 864 865 /* intermediate in compensated sum */ 866 subps %xmm1, %xmm9 867 868 /* H7 = low(C0_hi + C1_hi * Z) + Recip_lo */ 869 addps %xmm4, %xmm7 870 871 /* H8 = low(H2 + Recip_hi) */ 872 addps %xmm9, %xmm14 873 874 /* Z2 = Z^2 */ 875 movaps %xmm8, %xmm4 876 877 /* Now H4 + H9 should be that part */ 878 addps %xmm14, %xmm7 879 mulps %xmm8, %xmm4 880 881 /* P9 = trail(dominant part) + C0_lo */ 882 addps %xmm7, %xmm5 883 884 /* 885 * Stage 2 (with unlimited parallelism) 886 * P6 = C1_lo + C2 * Z + C3 * Z^2 + C4 * Z^3 887 */ 888 mulps %xmm4, %xmm10 889 addps %xmm10, %xmm3 890 891 /* Final accumulation of low part */ 892 mulps %xmm3, %xmm8 893 894 /* Merge results from main and large paths: */ 895 movaps %xmm11, %xmm3 896 andnps %xmm0, %xmm3 897 addps %xmm8, %xmm5 898 movaps %xmm3, %xmm0 899 900 /* And now the very final summation */ 901 addps %xmm5, %xmm1 902 903 /* 904 * The end of implementation (LA with huge args reduction) 905 * End of large arguments path (_HA_, _LA_ and _EP_) 906 */ 907 908 pxor %xmm12, %xmm1 909 andps %xmm11, %xmm1 910 orps %xmm1, %xmm0 911 912 /* Return to main vector processing path */ 913 jmp L(AUX_BRANCH_RETURN) 914 # LOE rbx rbp r12 r13 r14 r15 eax xmm0 xmm13 915END(_ZGVbN4v_tanf_sse4) 916 917 .section .rodata, "a" 918 .align 16 919 920#ifdef __svml_stan_data_internal_typedef 921typedef unsigned int VUINT32; 922typedef struct { 923 __declspec(align(16)) VUINT32 _sInvPI_uisa[4][1]; 924 __declspec(align(16)) VUINT32 _sPI1_uisa[4][1]; 925 __declspec(align(16)) VUINT32 _sPI2_uisa[4][1]; 926 __declspec(align(16)) VUINT32 _sPI3_uisa[4][1]; 927 __declspec(align(16)) VUINT32 _sPI2_ha_uisa[4][1]; 928 __declspec(align(16)) VUINT32 _sPI3_ha_uisa[4][1]; 929 __declspec(align(16)) VUINT32 Th_tbl_uisa[32][1]; 930 __declspec(align(16)) VUINT32 Tl_tbl_uisa[32][1]; 931 __declspec(align(16)) VUINT32 _sPC3_uisa[4][1]; 932 __declspec(align(16)) VUINT32 _sPC5_uisa[4][1]; 933 __declspec(align(16)) VUINT32 _sRangeReductionVal_uisa[4][1]; 934 __declspec(align(16)) VUINT32 _sInvPi[4][1]; 935 __declspec(align(16)) VUINT32 _sSignMask[4][1]; 936 __declspec(align(16)) VUINT32 _sAbsMask[4][1]; 937 __declspec(align(16)) VUINT32 _sRangeVal[4][1]; 938 __declspec(align(16)) VUINT32 _sRShifter[4][1]; 939 __declspec(align(16)) VUINT32 _sOne[4][1]; 940 __declspec(align(16)) VUINT32 _sRangeReductionVal[4][1]; 941 __declspec(align(16)) VUINT32 _sPI1[4][1]; 942 __declspec(align(16)) VUINT32 _sPI2[4][1]; 943 __declspec(align(16)) VUINT32 _sPI3[4][1]; 944 __declspec(align(16)) VUINT32 _sPI4[4][1]; 945 __declspec(align(16)) VUINT32 _sPI1_FMA[4][1]; 946 __declspec(align(16)) VUINT32 _sPI2_FMA[4][1]; 947 __declspec(align(16)) VUINT32 _sPI3_FMA[4][1]; 948 __declspec(align(16)) VUINT32 _sP0[4][1]; 949 __declspec(align(16)) VUINT32 _sP1[4][1]; 950 __declspec(align(16)) VUINT32 _sQ0[4][1]; 951 __declspec(align(16)) VUINT32 _sQ1[4][1]; 952 __declspec(align(16)) VUINT32 _sQ2[4][1]; 953 __declspec(align(16)) VUINT32 _sTwo[4][1]; 954 __declspec(align(16)) VUINT32 _sCoeffs[128][10][1]; 955} __svml_stan_data_internal; 956#endif 957__svml_stan_data_internal: 958 /* UISA */ 959 .long 0x4122f983, 0x4122f983, 0x4122f983, 0x4122f983 /* _sInvPI_uisa */ 960 .align 16 961 .long 0x3dc90fda, 0x3dc90fda, 0x3dc90fda, 0x3dc90fda /* _sPI1_uisa */ 962 .align 16 963 .long 0x31a22168, 0x31a22168, 0x31a22168, 0x31a22168 /* _sPI2_uisa */ 964 .align 16 965 .long 0x25c234c5, 0x25c234c5, 0x25c234c5, 0x25c234c5 /* _sPI3_uisa */ 966 .align 16 967 .long 0x31a22000, 0x31a22000, 0x31a22000, 0x31a22000 /* _sPI2_ha_uisa */ 968 .align 16 969 .long 0x2a34611a, 0x2a34611a, 0x2a34611a, 0x2a34611a /* _sPI3_ha_uisa */ 970 /* Th_tbl_uisa for i from 0 to 31 do printsingle(tan(i*Pi/32)); */ 971 .align 16 972 .long 0x80000000, 0x3dc9b5dc, 0x3e4bafaf, 0x3e9b5042 973 .long 0x3ed413cd, 0x3f08d5b9, 0x3f2b0dc1, 0x3f521801 974 .long 0x3f800000, 0x3f9bf7ec, 0x3fbf90c7, 0x3fef789e 975 .long 0x401a827a, 0x4052facf, 0x40a0dff7, 0x41227363 976 .long 0xff7fffff, 0xc1227363, 0xc0a0dff7, 0xc052facf 977 .long 0xc01a827a, 0xbfef789e, 0xbfbf90c7, 0xbf9bf7ec 978 .long 0xbf800000, 0xbf521801, 0xbf2b0dc1, 0xbf08d5b9 979 .long 0xbed413cd, 0xbe9b5042, 0xbe4bafaf, 0xbdc9b5dc 980 /* Tl_tbl_uisa for i from 0 to 31 do printsingle(tan(i*Pi/32)-round(tan(i*Pi/32), SG, RN)); */ 981 .align 16 982 .long 0x80000000, 0x3145b2da, 0x2f2a62b0, 0xb22a39c2 983 .long 0xb1c0621a, 0xb25ef963, 0x32ab7f99, 0x32ae4285 984 .long 0x00000000, 0x33587608, 0x32169d18, 0xb30c3ec0 985 .long 0xb3cc0622, 0x3390600e, 0x331091dc, 0xb454a046 986 .long 0xf3800000, 0x3454a046, 0xb31091dc, 0xb390600e 987 .long 0x33cc0622, 0x330c3ec0, 0xb2169d18, 0xb3587608 988 .long 0x00000000, 0xb2ae4285, 0xb2ab7f99, 0x325ef963 989 .long 0x31c0621a, 0x322a39c2, 0xaf2a62b0, 0xb145b2da 990 .align 16 991 .long 0x3eaaaaa6, 0x3eaaaaa6, 0x3eaaaaa6, 0x3eaaaaa6 /* _sPC3_uisa */ 992 .align 16 993 .long 0x3e08b888, 0x3e08b888, 0x3e08b888, 0x3e08b888 /* _sPC5_uisa */ 994 .align 16 995 .long 0x46010000, 0x46010000, 0x46010000, 0x46010000 /* _sRangeReductionVal_uisa */ 996 .align 16 997 .long 0x3F22F983, 0x3F22F983, 0x3F22F983, 0x3F22F983 /* _sInvPi */ 998 .align 16 999 .long 0x80000000, 0x80000000, 0x80000000, 0x80000000 /* _sSignMask */ 1000 .align 16 1001 .long 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF /* _sAbsMask */ 1002 .align 16 1003 .long 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 /* _sRangeVal */ 1004 .align 16 1005 .long 0x4B400000, 0x4B400000, 0x4B400000, 0x4B400000 /* _sRShifter */ 1006 .align 16 1007 .long 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 /* _sOne */ 1008 .align 16 1009 .long 0x46010000, 0x46010000, 0x46010000, 0x46010000 /* _sRangeVal */ 1010 .align 16 1011 .long 0x3FC90000, 0x3FC90000, 0x3FC90000, 0x3FC90000 /* _sPI1 */ 1012 .align 16 1013 .long 0x39FDA000, 0x39FDA000, 0x39FDA000, 0x39FDA000 /* _sPI2 */ 1014 .align 16 1015 .long 0x33A22000, 0x33A22000, 0x33A22000, 0x33A22000 /* _sPI3 */ 1016 .align 16 1017 .long 0x2C34611A, 0x2C34611A, 0x2C34611A, 0x2C34611A /* _sPI4 */ 1018 // PI1, PI2, and PI3 when FMA is available 1019 .align 16 1020 .long 0x3FC90FDB, 0x3FC90FDB, 0x3FC90FDB, 0x3FC90FDB /* _sPI1_FMA */ 1021 .align 16 1022 .long 0xB33BBD2E, 0xB33BBD2E, 0xB33BBD2E, 0xB33BBD2E /* _sPI2_FMA */ 1023 .align 16 1024 .long 0xA6F72CED, 0xA6F72CED, 0xA6F72CED, 0xA6F72CED /* _sPI3_FMA */ 1025 .align 16 1026 .long 0x3F7FFFFC, 0x3F7FFFFC, 0x3F7FFFFC, 0x3F7FFFFC /* _sP0 */ 1027 .align 16 1028 .long 0xBDC433B4, 0xBDC433B4, 0xBDC433B4, 0xBDC433B4 /* _sP1 */ 1029 .align 16 1030 .long 0x3F7FFFFC, 0x3F7FFFFC, 0x3F7FFFFC, 0x3F7FFFFC /* _sQ0 */ 1031 .align 16 1032 .long 0xBEDBB7AB, 0xBEDBB7AB, 0xBEDBB7AB, 0xBEDBB7AB /* _sQ1 */ 1033 .align 16 1034 .long 0x3C1F336B, 0x3C1F336B, 0x3C1F336B, 0x3C1F336B /* _sQ2 */ 1035 .align 16 1036 .long 0x40000000, 0x40000000, 0x40000000, 0x40000000 /* _sTwo */ 1037 // _sCoeffs Breakpoint B = 0 * pi/128, function tan(B + x) 1038 .align 16 1039 .long 0x3FC90FDB // B' = pi/2 - B (high single) 1040 .long 0xB33BBD2E // B' = pi/2 - B (low single) 1041 .long 0x00000000 // tau (1 for cot path) 1042 .long 0x00000000 // c0 (high single) 1043 .long 0x00000000 // c0 (low single) 1044 .long 0x3F800000 // c1 (high 1 bit) 1045 .long 0x00000000 // c1 (low single) 1046 .long 0x00000000 // c2 1047 .long 0x3EAAACDD // c3 1048 .long 0x00000000 // c4 1049 .long 0x3FC5EB9B // B' = pi/2 - B (high single) 1050 .long 0x32DE638C // B' = pi/2 - B (low single) 1051 .long 0x00000000 // tau (1 for cot path) 1052 .long 0x3CC91A31 // c0 (high single) 1053 .long 0x2F8E8D1A // c0 (low single) 1054 .long 0x3F800000 // c1 (high 1 bit) 1055 .long 0x3A1DFA00 // c1 (low single) 1056 .long 0x3CC9392D // c2 1057 .long 0x3EAB1889 // c3 1058 .long 0x3C885D3B // c4 1059 .long 0x3FC2C75C // B' = pi/2 - B (high single) 1060 .long 0xB2CBBE8A // B' = pi/2 - B (low single) 1061 .long 0x00000000 // tau (1 for cot path) 1062 .long 0x3D49393C // c0 (high single) 1063 .long 0x30A39F5B // c0 (low single) 1064 .long 0x3F800000 // c1 (high 1 bit) 1065 .long 0x3B1E2B00 // c1 (low single) 1066 .long 0x3D49B5D4 // c2 1067 .long 0x3EAC4F10 // c3 1068 .long 0x3CFD9425 // c4 1069 .long 0x3FBFA31C // B' = pi/2 - B (high single) 1070 .long 0x33450FB0 // B' = pi/2 - B (low single) 1071 .long 0x00000000 // tau (1 for cot path) 1072 .long 0x3D9711CE // c0 (high single) 1073 .long 0x314FEB28 // c0 (low single) 1074 .long 0x3F800000 // c1 (high 1 bit) 1075 .long 0x3BB24C00 // c1 (low single) 1076 .long 0x3D97E43A // c2 1077 .long 0x3EAE6A89 // c3 1078 .long 0x3D4D07E0 // c4 1079 .long 0x3FBC7EDD // B' = pi/2 - B (high single) 1080 .long 0xB1800ADD // B' = pi/2 - B (low single) 1081 .long 0x00000000 // tau (1 for cot path) 1082 .long 0x3DC9B5DC // c0 (high single) 1083 .long 0x3145AD86 // c0 (low single) 1084 .long 0x3F800000 // c1 (high 1 bit) 1085 .long 0x3C1EEF20 // c1 (low single) 1086 .long 0x3DCBAAEA // c2 1087 .long 0x3EB14E5E // c3 1088 .long 0x3D858BB2 // c4 1089 .long 0x3FB95A9E // B' = pi/2 - B (high single) 1090 .long 0xB3651267 // B' = pi/2 - B (low single) 1091 .long 0x00000000 // tau (1 for cot path) 1092 .long 0x3DFC98C2 // c0 (high single) 1093 .long 0xB0AE525C // c0 (low single) 1094 .long 0x3F800000 // c1 (high 1 bit) 1095 .long 0x3C793D20 // c1 (low single) 1096 .long 0x3E003845 // c2 1097 .long 0x3EB5271F // c3 1098 .long 0x3DAC669E // c4 1099 .long 0x3FB6365E // B' = pi/2 - B (high single) 1100 .long 0x328BB91C // B' = pi/2 - B (low single) 1101 .long 0x00000000 // tau (1 for cot path) 1102 .long 0x3E17E564 // c0 (high single) 1103 .long 0xB1C5A2E4 // c0 (low single) 1104 .long 0x3F800000 // c1 (high 1 bit) 1105 .long 0x3CB440D0 // c1 (low single) 1106 .long 0x3E1B3D00 // c2 1107 .long 0x3EB9F664 // c3 1108 .long 0x3DD647C0 // c4 1109 .long 0x3FB3121F // B' = pi/2 - B (high single) 1110 .long 0xB30F347D // B' = pi/2 - B (low single) 1111 .long 0x00000000 // tau (1 for cot path) 1112 .long 0x3E31AE4D // c0 (high single) 1113 .long 0xB1F32251 // c0 (low single) 1114 .long 0x3F800000 // c1 (high 1 bit) 1115 .long 0x3CF6A500 // c1 (low single) 1116 .long 0x3E3707DA // c2 1117 .long 0x3EBFA489 // c3 1118 .long 0x3DFBD9C7 // c4 1119 .long 0x3FAFEDDF // B' = pi/2 - B (high single) 1120 .long 0x331BBA77 // B' = pi/2 - B (low single) 1121 .long 0x00000000 // tau (1 for cot path) 1122 .long 0x3E4BAFAF // c0 (high single) 1123 .long 0x2F2A29E0 // c0 (low single) 1124 .long 0x3F800000 // c1 (high 1 bit) 1125 .long 0x3D221018 // c1 (low single) 1126 .long 0x3E53BED0 // c2 1127 .long 0x3EC67E26 // c3 1128 .long 0x3E1568E2 // c4 1129 .long 0x3FACC9A0 // B' = pi/2 - B (high single) 1130 .long 0xB2655A50 // B' = pi/2 - B (low single) 1131 .long 0x00000000 // tau (1 for cot path) 1132 .long 0x3E65F267 // c0 (high single) 1133 .long 0x31B4B1DF // c0 (low single) 1134 .long 0x3F800000 // c1 (high 1 bit) 1135 .long 0x3D4E8B90 // c1 (low single) 1136 .long 0x3E718ACA // c2 1137 .long 0x3ECE7164 // c3 1138 .long 0x3E2DC161 // c4 1139 .long 0x3FA9A560 // B' = pi/2 - B (high single) 1140 .long 0x33719861 // B' = pi/2 - B (low single) 1141 .long 0x00000000 // tau (1 for cot path) 1142 .long 0x3E803FD4 // c0 (high single) 1143 .long 0xB2279E66 // c0 (low single) 1144 .long 0x3F800000 // c1 (high 1 bit) 1145 .long 0x3D807FC8 // c1 (low single) 1146 .long 0x3E884BD4 // c2 1147 .long 0x3ED7812D // c3 1148 .long 0x3E4636EB // c4 1149 .long 0x3FA68121 // B' = pi/2 - B (high single) 1150 .long 0x31E43AAC // B' = pi/2 - B (low single) 1151 .long 0x00000000 // tau (1 for cot path) 1152 .long 0x3E8DB082 // c0 (high single) 1153 .long 0xB132A234 // c0 (low single) 1154 .long 0x3F800000 // c1 (high 1 bit) 1155 .long 0x3D9CD7D0 // c1 (low single) 1156 .long 0x3E988A60 // c2 1157 .long 0x3EE203E3 // c3 1158 .long 0x3E63582C // c4 1159 .long 0x3FA35CE2 // B' = pi/2 - B (high single) 1160 .long 0xB33889B6 // B' = pi/2 - B (low single) 1161 .long 0x00000000 // tau (1 for cot path) 1162 .long 0x3E9B5042 // c0 (high single) 1163 .long 0xB22A3AEE // c0 (low single) 1164 .long 0x3F800000 // c1 (high 1 bit) 1165 .long 0x3DBC7490 // c1 (low single) 1166 .long 0x3EA99AF5 // c2 1167 .long 0x3EEDE107 // c3 1168 .long 0x3E80E9AA // c4 1169 .long 0x3FA038A2 // B' = pi/2 - B (high single) 1170 .long 0x32E4CA7E // B' = pi/2 - B (low single) 1171 .long 0x00000000 // tau (1 for cot path) 1172 .long 0x3EA92457 // c0 (high single) 1173 .long 0x30B80830 // c0 (low single) 1174 .long 0x3F800000 // c1 (high 1 bit) 1175 .long 0x3DDF8200 // c1 (low single) 1176 .long 0x3EBB99E9 // c2 1177 .long 0x3EFB4AA8 // c3 1178 .long 0x3E9182BE // c4 1179 .long 0x3F9D1463 // B' = pi/2 - B (high single) 1180 .long 0xB2C55799 // B' = pi/2 - B (low single) 1181 .long 0x00000000 // tau (1 for cot path) 1182 .long 0x3EB73250 // c0 (high single) 1183 .long 0xB2028823 // c0 (low single) 1184 .long 0x3F800000 // c1 (high 1 bit) 1185 .long 0x3E0318F8 // c1 (low single) 1186 .long 0x3ECEA678 // c2 1187 .long 0x3F053C67 // c3 1188 .long 0x3EA41E53 // c4 1189 .long 0x3F99F023 // B' = pi/2 - B (high single) 1190 .long 0x33484328 // B' = pi/2 - B (low single) 1191 .long 0x00000000 // tau (1 for cot path) 1192 .long 0x3EC5800D // c0 (high single) 1193 .long 0xB214C3C1 // c0 (low single) 1194 .long 0x3F800000 // c1 (high 1 bit) 1195 .long 0x3E185E54 // c1 (low single) 1196 .long 0x3EE2E342 // c2 1197 .long 0x3F0DCA73 // c3 1198 .long 0x3EB8CC21 // c4 1199 .long 0x3F96CBE4 // B' = pi/2 - B (high single) 1200 .long 0xB14CDE2E // B' = pi/2 - B (low single) 1201 .long 0x00000000 // tau (1 for cot path) 1202 .long 0x3ED413CD // c0 (high single) 1203 .long 0xB1C06152 // c0 (low single) 1204 .long 0x3F800000 // c1 (high 1 bit) 1205 .long 0x3E2FB0CC // c1 (low single) 1206 .long 0x3EF876CB // c2 1207 .long 0x3F177807 // c3 1208 .long 0x3ED08437 // c4 1209 .long 0x3F93A7A5 // B' = pi/2 - B (high single) 1210 .long 0xB361DEEE // B' = pi/2 - B (low single) 1211 .long 0x00000000 // tau (1 for cot path) 1212 .long 0x3EE2F439 // c0 (high single) 1213 .long 0xB1F4399E // c0 (low single) 1214 .long 0x3F800000 // c1 (high 1 bit) 1215 .long 0x3E49341C // c1 (low single) 1216 .long 0x3F07C61A // c2 1217 .long 0x3F22560F // c3 1218 .long 0x3EEAA81E // c4 1219 .long 0x3F908365 // B' = pi/2 - B (high single) 1220 .long 0x3292200D // B' = pi/2 - B (low single) 1221 .long 0x00000000 // tau (1 for cot path) 1222 .long 0x3EF22870 // c0 (high single) 1223 .long 0x325271F4 // c0 (low single) 1224 .long 0x3F800000 // c1 (high 1 bit) 1225 .long 0x3E65107A // c1 (low single) 1226 .long 0x3F1429F0 // c2 1227 .long 0x3F2E8AFC // c3 1228 .long 0x3F040498 // c4 1229 .long 0x3F8D5F26 // B' = pi/2 - B (high single) 1230 .long 0xB30C0105 // B' = pi/2 - B (low single) 1231 .long 0x00000000 // tau (1 for cot path) 1232 .long 0x3F00DC0D // c0 (high single) 1233 .long 0xB214AF72 // c0 (low single) 1234 .long 0x3F800000 // c1 (high 1 bit) 1235 .long 0x3E81B994 // c1 (low single) 1236 .long 0x3F218233 // c2 1237 .long 0x3F3C4531 // c3 1238 .long 0x3F149688 // c4 1239 .long 0x3F8A3AE6 // B' = pi/2 - B (high single) 1240 .long 0x331EEDF0 // B' = pi/2 - B (low single) 1241 .long 0x00000000 // tau (1 for cot path) 1242 .long 0x3F08D5B9 // c0 (high single) 1243 .long 0xB25EF98E // c0 (low single) 1244 .long 0x3F800000 // c1 (high 1 bit) 1245 .long 0x3E92478D // c1 (low single) 1246 .long 0x3F2FEDC9 // c2 1247 .long 0x3F4BCD58 // c3 1248 .long 0x3F27AE9E // c4 1249 .long 0x3F8716A7 // B' = pi/2 - B (high single) 1250 .long 0xB2588C6D // B' = pi/2 - B (low single) 1251 .long 0x00000000 // tau (1 for cot path) 1252 .long 0x3F1105AF // c0 (high single) 1253 .long 0x32F045B0 // c0 (low single) 1254 .long 0x3F800000 // c1 (high 1 bit) 1255 .long 0x3EA44EE2 // c1 (low single) 1256 .long 0x3F3F8FDB // c2 1257 .long 0x3F5D3FD0 // c3 1258 .long 0x3F3D0A23 // c4 1259 .long 0x3F83F267 // B' = pi/2 - B (high single) 1260 .long 0x3374CBD9 // B' = pi/2 - B (low single) 1261 .long 0x00000000 // tau (1 for cot path) 1262 .long 0x3F1970C4 // c0 (high single) 1263 .long 0x32904848 // c0 (low single) 1264 .long 0x3F800000 // c1 (high 1 bit) 1265 .long 0x3EB7EFF8 // c1 (low single) 1266 .long 0x3F50907C // c2 1267 .long 0x3F710FEA // c3 1268 .long 0x3F561FED // c4 1269 .long 0x3F80CE28 // B' = pi/2 - B (high single) 1270 .long 0x31FDD672 // B' = pi/2 - B (low single) 1271 .long 0x00000000 // tau (1 for cot path) 1272 .long 0x3F221C37 // c0 (high single) 1273 .long 0xB20C61DC // c0 (low single) 1274 .long 0x3F800000 // c1 (high 1 bit) 1275 .long 0x3ECD4F71 // c1 (low single) 1276 .long 0x3F631DAA // c2 1277 .long 0x3F83B471 // c3 1278 .long 0x3F7281EA // c4 1279 .long 0x3F7B53D1 // B' = pi/2 - B (high single) 1280 .long 0x32955386 // B' = pi/2 - B (low single) 1281 .long 0x00000000 // tau (1 for cot path) 1282 .long 0x3F2B0DC1 // c0 (high single) 1283 .long 0x32AB7EBA // c0 (low single) 1284 .long 0x3F800000 // c1 (high 1 bit) 1285 .long 0x3EE496C2 // c1 (low single) 1286 .long 0x3F776C40 // c2 1287 .long 0x3F9065C1 // c3 1288 .long 0x3F89AFB6 // c4 1289 .long 0x3F750B52 // B' = pi/2 - B (high single) 1290 .long 0x32EB316F // B' = pi/2 - B (low single) 1291 .long 0x00000000 // tau (1 for cot path) 1292 .long 0x3F344BA9 // c0 (high single) 1293 .long 0xB2B8B0EA // c0 (low single) 1294 .long 0x3F800000 // c1 (high 1 bit) 1295 .long 0x3EFDF4F7 // c1 (low single) 1296 .long 0x3F86DCA8 // c2 1297 .long 0x3F9ED53B // c3 1298 .long 0x3F9CBEDE // c4 1299 .long 0x3F6EC2D4 // B' = pi/2 - B (high single) 1300 .long 0xB2BEF0A7 // B' = pi/2 - B (low single) 1301 .long 0x00000000 // tau (1 for cot path) 1302 .long 0x3F3DDCCF // c0 (high single) 1303 .long 0x32D29606 // c0 (low single) 1304 .long 0x40000000 // c1 (high 1 bit) 1305 .long 0xBEE6606F // c1 (low single) 1306 .long 0x3F9325D6 // c2 1307 .long 0x3FAF4E69 // c3 1308 .long 0x3FB3080C // c4 1309 .long 0x3F687A55 // B' = pi/2 - B (high single) 1310 .long 0xB252257B // B' = pi/2 - B (low single) 1311 .long 0x00000000 // tau (1 for cot path) 1312 .long 0x3F47C8CC // c0 (high single) 1313 .long 0xB200F51A // c0 (low single) 1314 .long 0x40000000 // c1 (high 1 bit) 1315 .long 0xBEC82C6C // c1 (low single) 1316 .long 0x3FA0BAE9 // c2 1317 .long 0x3FC2252F // c3 1318 .long 0x3FCD24C7 // c4 1319 .long 0x3F6231D6 // B' = pi/2 - B (high single) 1320 .long 0xB119A6A2 // B' = pi/2 - B (low single) 1321 .long 0x00000000 // tau (1 for cot path) 1322 .long 0x3F521801 // c0 (high single) 1323 .long 0x32AE4178 // c0 (low single) 1324 .long 0x40000000 // c1 (high 1 bit) 1325 .long 0xBEA72938 // c1 (low single) 1326 .long 0x3FAFCC22 // c2 1327 .long 0x3FD7BD4A // c3 1328 .long 0x3FEBB01B // c4 1329 .long 0x3F5BE957 // B' = pi/2 - B (high single) 1330 .long 0x3205522A // B' = pi/2 - B (low single) 1331 .long 0x00000000 // tau (1 for cot path) 1332 .long 0x3F5CD3BE // c0 (high single) 1333 .long 0x31460308 // c0 (low single) 1334 .long 0x40000000 // c1 (high 1 bit) 1335 .long 0xBE8306C5 // c1 (low single) 1336 .long 0x3FC09232 // c2 1337 .long 0x3FF09632 // c3 1338 .long 0x4007DB00 // c4 1339 .long 0x3F55A0D8 // B' = pi/2 - B (high single) 1340 .long 0x329886FF // B' = pi/2 - B (low single) 1341 .long 0x00000000 // tau (1 for cot path) 1342 .long 0x3F68065E // c0 (high single) 1343 .long 0x32670D1A // c0 (low single) 1344 .long 0x40000000 // c1 (high 1 bit) 1345 .long 0xBE36D1D6 // c1 (low single) 1346 .long 0x3FD35007 // c2 1347 .long 0x4006A861 // c3 1348 .long 0x401D4BDA // c4 1349 .long 0x3F4F5859 // B' = pi/2 - B (high single) 1350 .long 0x32EE64E8 // B' = pi/2 - B (low single) 1351 .long 0x00000000 // tau (1 for cot path) 1352 .long 0x3F73BB75 // c0 (high single) 1353 .long 0x32FC908D // c0 (low single) 1354 .long 0x40000000 // c1 (high 1 bit) 1355 .long 0xBDBF94B0 // c1 (low single) 1356 .long 0x3FE8550F // c2 1357 .long 0x40174F67 // c3 1358 .long 0x4036C608 // c4 1359 .long 0x3F490FDB // B' = pi/2 - B (high single) 1360 .long 0xB2BBBD2E // B' = pi/2 - B (low single) 1361 .long 0x3F800000 // tau (1 for cot path) 1362 .long 0xBE8BE60E // c0 (high single) 1363 .long 0x320D8D84 // c0 (low single) 1364 .long 0x3F000000 // c1 (high 1 bit) 1365 .long 0xBDF817B1 // c1 (low single) 1366 .long 0xBD8345EB // c2 1367 .long 0x3D1DFDAC // c3 1368 .long 0xBC52CF6F // c4 1369 .long 0x3F42C75C // B' = pi/2 - B (high single) 1370 .long 0xB24BBE8A // B' = pi/2 - B (low single) 1371 .long 0x3F800000 // tau (1 for cot path) 1372 .long 0xBE87283F // c0 (high single) 1373 .long 0xB268B966 // c0 (low single) 1374 .long 0x3F000000 // c1 (high 1 bit) 1375 .long 0xBDFE6529 // c1 (low single) 1376 .long 0xBD7B1953 // c2 1377 .long 0x3D18E109 // c3 1378 .long 0xBC4570B0 // c4 1379 .long 0x3F3C7EDD // B' = pi/2 - B (high single) 1380 .long 0xB1000ADD // B' = pi/2 - B (low single) 1381 .long 0x3F800000 // tau (1 for cot path) 1382 .long 0xBE827420 // c0 (high single) 1383 .long 0x320B8B4D // c0 (low single) 1384 .long 0x3E800000 // c1 (high 1 bit) 1385 .long 0x3DFB9428 // c1 (low single) 1386 .long 0xBD7002B4 // c2 1387 .long 0x3D142A6C // c3 1388 .long 0xBC3A47FF // c4 1389 .long 0x3F36365E // B' = pi/2 - B (high single) 1390 .long 0x320BB91C // B' = pi/2 - B (low single) 1391 .long 0x3F800000 // tau (1 for cot path) 1392 .long 0xBE7B9282 // c0 (high single) 1393 .long 0xB13383D2 // c0 (low single) 1394 .long 0x3E800000 // c1 (high 1 bit) 1395 .long 0x3DF5D211 // c1 (low single) 1396 .long 0xBD6542B3 // c2 1397 .long 0x3D0FE5E5 // c3 1398 .long 0xBC31FB14 // c4 1399 .long 0x3F2FEDDF // B' = pi/2 - B (high single) 1400 .long 0x329BBA77 // B' = pi/2 - B (low single) 1401 .long 0x3F800000 // tau (1 for cot path) 1402 .long 0xBE724E73 // c0 (high single) 1403 .long 0x3120C3E2 // c0 (low single) 1404 .long 0x3E800000 // c1 (high 1 bit) 1405 .long 0x3DF05283 // c1 (low single) 1406 .long 0xBD5AD45E // c2 1407 .long 0x3D0BAFBF // c3 1408 .long 0xBC27B8BB // c4 1409 .long 0x3F29A560 // B' = pi/2 - B (high single) 1410 .long 0x32F19861 // B' = pi/2 - B (low single) 1411 .long 0x3F800000 // tau (1 for cot path) 1412 .long 0xBE691B44 // c0 (high single) 1413 .long 0x31F18936 // c0 (low single) 1414 .long 0x3E800000 // c1 (high 1 bit) 1415 .long 0x3DEB138B // c1 (low single) 1416 .long 0xBD50B2F7 // c2 1417 .long 0x3D07BE3A // c3 1418 .long 0xBC1E46A7 // c4 1419 .long 0x3F235CE2 // B' = pi/2 - B (high single) 1420 .long 0xB2B889B6 // B' = pi/2 - B (low single) 1421 .long 0x3F800000 // tau (1 for cot path) 1422 .long 0xBE5FF82C // c0 (high single) 1423 .long 0xB170723A // c0 (low single) 1424 .long 0x3E800000 // c1 (high 1 bit) 1425 .long 0x3DE61354 // c1 (low single) 1426 .long 0xBD46DA06 // c2 1427 .long 0x3D0401F8 // c3 1428 .long 0xBC14E013 // c4 1429 .long 0x3F1D1463 // B' = pi/2 - B (high single) 1430 .long 0xB2455799 // B' = pi/2 - B (low single) 1431 .long 0x3F800000 // tau (1 for cot path) 1432 .long 0xBE56E46B // c0 (high single) 1433 .long 0x31E3F001 // c0 (low single) 1434 .long 0x3E800000 // c1 (high 1 bit) 1435 .long 0x3DE15025 // c1 (low single) 1436 .long 0xBD3D4550 // c2 1437 .long 0x3D00462D // c3 1438 .long 0xBC092C98 // c4 1439 .long 0x3F16CBE4 // B' = pi/2 - B (high single) 1440 .long 0xB0CCDE2E // B' = pi/2 - B (low single) 1441 .long 0x3F800000 // tau (1 for cot path) 1442 .long 0xBE4DDF41 // c0 (high single) 1443 .long 0xB1AEA094 // c0 (low single) 1444 .long 0x3E800000 // c1 (high 1 bit) 1445 .long 0x3DDCC85C // c1 (low single) 1446 .long 0xBD33F0BE // c2 1447 .long 0x3CFA23B0 // c3 1448 .long 0xBC01FCF7 // c4 1449 .long 0x3F108365 // B' = pi/2 - B (high single) 1450 .long 0x3212200D // B' = pi/2 - B (low single) 1451 .long 0x3F800000 // tau (1 for cot path) 1452 .long 0xBE44E7F8 // c0 (high single) 1453 .long 0xB1CAA3CB // c0 (low single) 1454 .long 0x3E800000 // c1 (high 1 bit) 1455 .long 0x3DD87A74 // c1 (low single) 1456 .long 0xBD2AD885 // c2 1457 .long 0x3CF3C785 // c3 1458 .long 0xBBF1E348 // c4 1459 .long 0x3F0A3AE6 // B' = pi/2 - B (high single) 1460 .long 0x329EEDF0 // B' = pi/2 - B (low single) 1461 .long 0x3F800000 // tau (1 for cot path) 1462 .long 0xBE3BFDDC // c0 (high single) 1463 .long 0xB132521A // c0 (low single) 1464 .long 0x3E800000 // c1 (high 1 bit) 1465 .long 0x3DD464FC // c1 (low single) 1466 .long 0xBD21F8F1 // c2 1467 .long 0x3CEE3076 // c3 1468 .long 0xBBE6D263 // c4 1469 .long 0x3F03F267 // B' = pi/2 - B (high single) 1470 .long 0x32F4CBD9 // B' = pi/2 - B (low single) 1471 .long 0x3F800000 // tau (1 for cot path) 1472 .long 0xBE33203E // c0 (high single) 1473 .long 0x31FEF5BE // c0 (low single) 1474 .long 0x3E800000 // c1 (high 1 bit) 1475 .long 0x3DD0869C // c1 (low single) 1476 .long 0xBD194E8C // c2 1477 .long 0x3CE8DCA9 // c3 1478 .long 0xBBDADA55 // c4 1479 .long 0x3EFB53D1 // B' = pi/2 - B (high single) 1480 .long 0x32155386 // B' = pi/2 - B (low single) 1481 .long 0x3F800000 // tau (1 for cot path) 1482 .long 0xBE2A4E71 // c0 (high single) 1483 .long 0xB19CFCEC // c0 (low single) 1484 .long 0x3E800000 // c1 (high 1 bit) 1485 .long 0x3DCCDE11 // c1 (low single) 1486 .long 0xBD10D605 // c2 1487 .long 0x3CE382A7 // c3 1488 .long 0xBBC8BD97 // c4 1489 .long 0x3EEEC2D4 // B' = pi/2 - B (high single) 1490 .long 0xB23EF0A7 // B' = pi/2 - B (low single) 1491 .long 0x3F800000 // tau (1 for cot path) 1492 .long 0xBE2187D0 // c0 (high single) 1493 .long 0xB1B7C7F7 // c0 (low single) 1494 .long 0x3E800000 // c1 (high 1 bit) 1495 .long 0x3DC96A2B // c1 (low single) 1496 .long 0xBD088C22 // c2 1497 .long 0x3CDE950E // c3 1498 .long 0xBBB89AD1 // c4 1499 .long 0x3EE231D6 // B' = pi/2 - B (high single) 1500 .long 0xB099A6A2 // B' = pi/2 - B (low single) 1501 .long 0x3F800000 // tau (1 for cot path) 1502 .long 0xBE18CBB7 // c0 (high single) 1503 .long 0xAFE28430 // c0 (low single) 1504 .long 0x3E800000 // c1 (high 1 bit) 1505 .long 0x3DC629CE // c1 (low single) 1506 .long 0xBD006DCD // c2 1507 .long 0x3CDA5A2C // c3 1508 .long 0xBBB0B3D2 // c4 1509 .long 0x3ED5A0D8 // B' = pi/2 - B (high single) 1510 .long 0x321886FF // B' = pi/2 - B (low single) 1511 .long 0x3F800000 // tau (1 for cot path) 1512 .long 0xBE101985 // c0 (high single) 1513 .long 0xB02FB2B8 // c0 (low single) 1514 .long 0x3E800000 // c1 (high 1 bit) 1515 .long 0x3DC31BF3 // c1 (low single) 1516 .long 0xBCF0F04D // c2 1517 .long 0x3CD60BC7 // c3 1518 .long 0xBBA138BA // c4 1519 .long 0x3EC90FDB // B' = pi/2 - B (high single) 1520 .long 0xB23BBD2E // B' = pi/2 - B (low single) 1521 .long 0x3F800000 // tau (1 for cot path) 1522 .long 0xBE07709D // c0 (high single) 1523 .long 0xB18A2A83 // c0 (low single) 1524 .long 0x3E800000 // c1 (high 1 bit) 1525 .long 0x3DC03FA2 // c1 (low single) 1526 .long 0xBCE15096 // c2 1527 .long 0x3CD26472 // c3 1528 .long 0xBB9A1270 // c4 1529 .long 0x3EBC7EDD // B' = pi/2 - B (high single) 1530 .long 0xB0800ADD // B' = pi/2 - B (low single) 1531 .long 0x3F800000 // tau (1 for cot path) 1532 .long 0xBDFDA0CB // c0 (high single) 1533 .long 0x2F14FCA0 // c0 (low single) 1534 .long 0x3E800000 // c1 (high 1 bit) 1535 .long 0x3DBD93F7 // c1 (low single) 1536 .long 0xBCD1F71B // c2 1537 .long 0x3CCEDD2B // c3 1538 .long 0xBB905946 // c4 1539 .long 0x3EAFEDDF // B' = pi/2 - B (high single) 1540 .long 0x321BBA77 // B' = pi/2 - B (low single) 1541 .long 0x3F800000 // tau (1 for cot path) 1542 .long 0xBDEC708C // c0 (high single) 1543 .long 0xB14895C4 // c0 (low single) 1544 .long 0x3E800000 // c1 (high 1 bit) 1545 .long 0x3DBB181E // c1 (low single) 1546 .long 0xBCC2DEA6 // c2 1547 .long 0x3CCB5027 // c3 1548 .long 0xBB7F3969 // c4 1549 .long 0x3EA35CE2 // B' = pi/2 - B (high single) 1550 .long 0xB23889B6 // B' = pi/2 - B (low single) 1551 .long 0x3F800000 // tau (1 for cot path) 1552 .long 0xBDDB4F55 // c0 (high single) 1553 .long 0x30F6437E // c0 (low single) 1554 .long 0x3E800000 // c1 (high 1 bit) 1555 .long 0x3DB8CB52 // c1 (low single) 1556 .long 0xBCB40210 // c2 1557 .long 0x3CC82D45 // c3 1558 .long 0xBB643075 // c4 1559 .long 0x3E96CBE4 // B' = pi/2 - B (high single) 1560 .long 0xB04CDE2E // B' = pi/2 - B (low single) 1561 .long 0x3F800000 // tau (1 for cot path) 1562 .long 0xBDCA3BFF // c0 (high single) 1563 .long 0x311C95EA // c0 (low single) 1564 .long 0x3E800000 // c1 (high 1 bit) 1565 .long 0x3DB6ACDE // c1 (low single) 1566 .long 0xBCA55C5B // c2 1567 .long 0x3CC5BC04 // c3 1568 .long 0xBB63A969 // c4 1569 .long 0x3E8A3AE6 // B' = pi/2 - B (high single) 1570 .long 0x321EEDF0 // B' = pi/2 - B (low single) 1571 .long 0x3F800000 // tau (1 for cot path) 1572 .long 0xBDB93569 // c0 (high single) 1573 .long 0xAFB9ED00 // c0 (low single) 1574 .long 0x3E800000 // c1 (high 1 bit) 1575 .long 0x3DB4BC1F // c1 (low single) 1576 .long 0xBC96E905 // c2 1577 .long 0x3CC2E6F5 // c3 1578 .long 0xBB3E10A6 // c4 1579 .long 0x3E7B53D1 // B' = pi/2 - B (high single) 1580 .long 0x31955386 // B' = pi/2 - B (low single) 1581 .long 0x3F800000 // tau (1 for cot path) 1582 .long 0xBDA83A77 // c0 (high single) 1583 .long 0x316D967A // c0 (low single) 1584 .long 0x3E800000 // c1 (high 1 bit) 1585 .long 0x3DB2F87C // c1 (low single) 1586 .long 0xBC88A31F // c2 1587 .long 0x3CC0E763 // c3 1588 .long 0xBB3F1666 // c4 1589 .long 0x3E6231D6 // B' = pi/2 - B (high single) 1590 .long 0xB019A6A2 // B' = pi/2 - B (low single) 1591 .long 0x3F800000 // tau (1 for cot path) 1592 .long 0xBD974A0D // c0 (high single) 1593 .long 0xB14F365B // c0 (low single) 1594 .long 0x3E800000 // c1 (high 1 bit) 1595 .long 0x3DB1616F // c1 (low single) 1596 .long 0xBC750CD8 // c2 1597 .long 0x3CBEB595 // c3 1598 .long 0xBB22B883 // c4 1599 .long 0x3E490FDB // B' = pi/2 - B (high single) 1600 .long 0xB1BBBD2E // B' = pi/2 - B (low single) 1601 .long 0x3F800000 // tau (1 for cot path) 1602 .long 0xBD866317 // c0 (high single) 1603 .long 0xAFF02140 // c0 (low single) 1604 .long 0x3E800000 // c1 (high 1 bit) 1605 .long 0x3DAFF67D // c1 (low single) 1606 .long 0xBC591CD0 // c2 1607 .long 0x3CBCBEAD // c3 1608 .long 0xBB04BBEC // c4 1609 .long 0x3E2FEDDF // B' = pi/2 - B (high single) 1610 .long 0x319BBA77 // B' = pi/2 - B (low single) 1611 .long 0x3F800000 // tau (1 for cot path) 1612 .long 0xBD6B08FF // c0 (high single) 1613 .long 0xB0EED236 // c0 (low single) 1614 .long 0x3E800000 // c1 (high 1 bit) 1615 .long 0x3DAEB739 // c1 (low single) 1616 .long 0xBC3D6D51 // c2 1617 .long 0x3CBB485D // c3 1618 .long 0xBAFFF5BA // c4 1619 .long 0x3E16CBE4 // B' = pi/2 - B (high single) 1620 .long 0xAFCCDE2E // B' = pi/2 - B (low single) 1621 .long 0x3F800000 // tau (1 for cot path) 1622 .long 0xBD495A6C // c0 (high single) 1623 .long 0xB0A427BD // c0 (low single) 1624 .long 0x3E800000 // c1 (high 1 bit) 1625 .long 0x3DADA345 // c1 (low single) 1626 .long 0xBC21F648 // c2 1627 .long 0x3CB9D1B4 // c3 1628 .long 0xBACB5567 // c4 1629 .long 0x3DFB53D1 // B' = pi/2 - B (high single) 1630 .long 0x31155386 // B' = pi/2 - B (low single) 1631 .long 0x3F800000 // tau (1 for cot path) 1632 .long 0xBD27B856 // c0 (high single) 1633 .long 0xB0F7EE91 // c0 (low single) 1634 .long 0x3E800000 // c1 (high 1 bit) 1635 .long 0x3DACBA4E // c1 (low single) 1636 .long 0xBC06AEE3 // c2 1637 .long 0x3CB8E5DC // c3 1638 .long 0xBAEC00EE // c4 1639 .long 0x3DC90FDB // B' = pi/2 - B (high single) 1640 .long 0xB13BBD2E // B' = pi/2 - B (low single) 1641 .long 0x3F800000 // tau (1 for cot path) 1642 .long 0xBD0620A3 // c0 (high single) 1643 .long 0xB0ECAB40 // c0 (low single) 1644 .long 0x3E800000 // c1 (high 1 bit) 1645 .long 0x3DABFC11 // c1 (low single) 1646 .long 0xBBD7200F // c2 1647 .long 0x3CB79475 // c3 1648 .long 0xBA2B0ADC // c4 1649 .long 0x3D96CBE4 // B' = pi/2 - B (high single) 1650 .long 0xAF4CDE2E // B' = pi/2 - B (low single) 1651 .long 0x3F800000 // tau (1 for cot path) 1652 .long 0xBCC92278 // c0 (high single) 1653 .long 0x302F2E68 // c0 (low single) 1654 .long 0x3E800000 // c1 (high 1 bit) 1655 .long 0x3DAB6854 // c1 (low single) 1656 .long 0xBBA1214F // c2 1657 .long 0x3CB6C1E9 // c3 1658 .long 0x3843C2F3 // c4 1659 .long 0x3D490FDB // B' = pi/2 - B (high single) 1660 .long 0xB0BBBD2E // B' = pi/2 - B (low single) 1661 .long 0x3F800000 // tau (1 for cot path) 1662 .long 0xBC861015 // c0 (high single) 1663 .long 0xAFD68E2E // c0 (low single) 1664 .long 0x3E800000 // c1 (high 1 bit) 1665 .long 0x3DAAFEEB // c1 (low single) 1666 .long 0xBB569F3F // c2 1667 .long 0x3CB6A84E // c3 1668 .long 0xBAC64194 // c4 1669 .long 0x3CC90FDB // B' = pi/2 - B (high single) 1670 .long 0xB03BBD2E // B' = pi/2 - B (low single) 1671 .long 0x3F800000 // tau (1 for cot path) 1672 .long 0xBC060BF3 // c0 (high single) 1673 .long 0x2FE251AE // c0 (low single) 1674 .long 0x3E800000 // c1 (high 1 bit) 1675 .long 0x3DAABFB9 // c1 (low single) 1676 .long 0xBAD67C60 // c2 1677 .long 0x3CB64CA5 // c3 1678 .long 0xBACDE881 // c4 1679 .long 0x00000000 // B' = pi/2 - B (high single) 1680 .long 0x00000000 // B' = pi/2 - B (low single) 1681 .long 0x3F800000 // tau (1 for cot path) 1682 .long 0x00000000 // c0 (high single) 1683 .long 0x00000000 // c0 (low single) 1684 .long 0x3E800000 // c1 (high 1 bit) 1685 .long 0x3DAAAAAB // c1 (low single) 1686 .long 0x00000000 // c2 1687 .long 0x3CB5E28B // c3 1688 .long 0x00000000 // c4 1689 .long 0xBCC90FDB // B' = pi/2 - B (high single) 1690 .long 0x303BBD2E // B' = pi/2 - B (low single) 1691 .long 0x3F800000 // tau (1 for cot path) 1692 .long 0x3C060BF3 // c0 (high single) 1693 .long 0xAFE251AE // c0 (low single) 1694 .long 0x3E800000 // c1 (high 1 bit) 1695 .long 0x3DAABFB9 // c1 (low single) 1696 .long 0x3AD67C60 // c2 1697 .long 0x3CB64CA5 // c3 1698 .long 0x3ACDE881 // c4 1699 .long 0xBD490FDB // B' = pi/2 - B (high single) 1700 .long 0x30BBBD2E // B' = pi/2 - B (low single) 1701 .long 0x3F800000 // tau (1 for cot path) 1702 .long 0x3C861015 // c0 (high single) 1703 .long 0x2FD68E2E // c0 (low single) 1704 .long 0x3E800000 // c1 (high 1 bit) 1705 .long 0x3DAAFEEB // c1 (low single) 1706 .long 0x3B569F3F // c2 1707 .long 0x3CB6A84E // c3 1708 .long 0x3AC64194 // c4 1709 .long 0xBD96CBE4 // B' = pi/2 - B (high single) 1710 .long 0x2F4CDE2E // B' = pi/2 - B (low single) 1711 .long 0x3F800000 // tau (1 for cot path) 1712 .long 0x3CC92278 // c0 (high single) 1713 .long 0xB02F2E68 // c0 (low single) 1714 .long 0x3E800000 // c1 (high 1 bit) 1715 .long 0x3DAB6854 // c1 (low single) 1716 .long 0x3BA1214F // c2 1717 .long 0x3CB6C1E9 // c3 1718 .long 0xB843C2F2 // c4 1719 .long 0xBDC90FDB // B' = pi/2 - B (high single) 1720 .long 0x313BBD2E // B' = pi/2 - B (low single) 1721 .long 0x3F800000 // tau (1 for cot path) 1722 .long 0x3D0620A3 // c0 (high single) 1723 .long 0x30ECAB40 // c0 (low single) 1724 .long 0x3E800000 // c1 (high 1 bit) 1725 .long 0x3DABFC11 // c1 (low single) 1726 .long 0x3BD7200F // c2 1727 .long 0x3CB79475 // c3 1728 .long 0x3A2B0ADC // c4 1729 .long 0xBDFB53D1 // B' = pi/2 - B (high single) 1730 .long 0xB1155386 // B' = pi/2 - B (low single) 1731 .long 0x3F800000 // tau (1 for cot path) 1732 .long 0x3D27B856 // c0 (high single) 1733 .long 0x30F7EE91 // c0 (low single) 1734 .long 0x3E800000 // c1 (high 1 bit) 1735 .long 0x3DACBA4E // c1 (low single) 1736 .long 0x3C06AEE3 // c2 1737 .long 0x3CB8E5DC // c3 1738 .long 0x3AEC00EE // c4 1739 .long 0xBE16CBE4 // B' = pi/2 - B (high single) 1740 .long 0x2FCCDE2E // B' = pi/2 - B (low single) 1741 .long 0x3F800000 // tau (1 for cot path) 1742 .long 0x3D495A6C // c0 (high single) 1743 .long 0x30A427BD // c0 (low single) 1744 .long 0x3E800000 // c1 (high 1 bit) 1745 .long 0x3DADA345 // c1 (low single) 1746 .long 0x3C21F648 // c2 1747 .long 0x3CB9D1B4 // c3 1748 .long 0x3ACB5567 // c4 1749 .long 0xBE2FEDDF // B' = pi/2 - B (high single) 1750 .long 0xB19BBA77 // B' = pi/2 - B (low single) 1751 .long 0x3F800000 // tau (1 for cot path) 1752 .long 0x3D6B08FF // c0 (high single) 1753 .long 0x30EED236 // c0 (low single) 1754 .long 0x3E800000 // c1 (high 1 bit) 1755 .long 0x3DAEB739 // c1 (low single) 1756 .long 0x3C3D6D51 // c2 1757 .long 0x3CBB485D // c3 1758 .long 0x3AFFF5BA // c4 1759 .long 0xBE490FDB // B' = pi/2 - B (high single) 1760 .long 0x31BBBD2E // B' = pi/2 - B (low single) 1761 .long 0x3F800000 // tau (1 for cot path) 1762 .long 0x3D866317 // c0 (high single) 1763 .long 0x2FF02140 // c0 (low single) 1764 .long 0x3E800000 // c1 (high 1 bit) 1765 .long 0x3DAFF67D // c1 (low single) 1766 .long 0x3C591CD0 // c2 1767 .long 0x3CBCBEAD // c3 1768 .long 0x3B04BBEC // c4 1769 .long 0xBE6231D6 // B' = pi/2 - B (high single) 1770 .long 0x3019A6A2 // B' = pi/2 - B (low single) 1771 .long 0x3F800000 // tau (1 for cot path) 1772 .long 0x3D974A0D // c0 (high single) 1773 .long 0x314F365B // c0 (low single) 1774 .long 0x3E800000 // c1 (high 1 bit) 1775 .long 0x3DB1616F // c1 (low single) 1776 .long 0x3C750CD8 // c2 1777 .long 0x3CBEB595 // c3 1778 .long 0x3B22B883 // c4 1779 .long 0xBE7B53D1 // B' = pi/2 - B (high single) 1780 .long 0xB1955386 // B' = pi/2 - B (low single) 1781 .long 0x3F800000 // tau (1 for cot path) 1782 .long 0x3DA83A77 // c0 (high single) 1783 .long 0xB16D967A // c0 (low single) 1784 .long 0x3E800000 // c1 (high 1 bit) 1785 .long 0x3DB2F87C // c1 (low single) 1786 .long 0x3C88A31F // c2 1787 .long 0x3CC0E763 // c3 1788 .long 0x3B3F1666 // c4 1789 .long 0xBE8A3AE6 // B' = pi/2 - B (high single) 1790 .long 0xB21EEDF0 // B' = pi/2 - B (low single) 1791 .long 0x3F800000 // tau (1 for cot path) 1792 .long 0x3DB93569 // c0 (high single) 1793 .long 0x2FB9ED00 // c0 (low single) 1794 .long 0x3E800000 // c1 (high 1 bit) 1795 .long 0x3DB4BC1F // c1 (low single) 1796 .long 0x3C96E905 // c2 1797 .long 0x3CC2E6F5 // c3 1798 .long 0x3B3E10A6 // c4 1799 .long 0xBE96CBE4 // B' = pi/2 - B (high single) 1800 .long 0x304CDE2E // B' = pi/2 - B (low single) 1801 .long 0x3F800000 // tau (1 for cot path) 1802 .long 0x3DCA3BFF // c0 (high single) 1803 .long 0xB11C95EA // c0 (low single) 1804 .long 0x3E800000 // c1 (high 1 bit) 1805 .long 0x3DB6ACDE // c1 (low single) 1806 .long 0x3CA55C5B // c2 1807 .long 0x3CC5BC04 // c3 1808 .long 0x3B63A969 // c4 1809 .long 0xBEA35CE2 // B' = pi/2 - B (high single) 1810 .long 0x323889B6 // B' = pi/2 - B (low single) 1811 .long 0x3F800000 // tau (1 for cot path) 1812 .long 0x3DDB4F55 // c0 (high single) 1813 .long 0xB0F6437E // c0 (low single) 1814 .long 0x3E800000 // c1 (high 1 bit) 1815 .long 0x3DB8CB52 // c1 (low single) 1816 .long 0x3CB40210 // c2 1817 .long 0x3CC82D45 // c3 1818 .long 0x3B643075 // c4 1819 .long 0xBEAFEDDF // B' = pi/2 - B (high single) 1820 .long 0xB21BBA77 // B' = pi/2 - B (low single) 1821 .long 0x3F800000 // tau (1 for cot path) 1822 .long 0x3DEC708C // c0 (high single) 1823 .long 0x314895C4 // c0 (low single) 1824 .long 0x3E800000 // c1 (high 1 bit) 1825 .long 0x3DBB181E // c1 (low single) 1826 .long 0x3CC2DEA6 // c2 1827 .long 0x3CCB5027 // c3 1828 .long 0x3B7F3969 // c4 1829 .long 0xBEBC7EDD // B' = pi/2 - B (high single) 1830 .long 0x30800ADD // B' = pi/2 - B (low single) 1831 .long 0x3F800000 // tau (1 for cot path) 1832 .long 0x3DFDA0CB // c0 (high single) 1833 .long 0xAF14FCA0 // c0 (low single) 1834 .long 0x3E800000 // c1 (high 1 bit) 1835 .long 0x3DBD93F7 // c1 (low single) 1836 .long 0x3CD1F71B // c2 1837 .long 0x3CCEDD2B // c3 1838 .long 0x3B905946 // c4 1839 .long 0xBEC90FDB // B' = pi/2 - B (high single) 1840 .long 0x323BBD2E // B' = pi/2 - B (low single) 1841 .long 0x3F800000 // tau (1 for cot path) 1842 .long 0x3E07709D // c0 (high single) 1843 .long 0x318A2A83 // c0 (low single) 1844 .long 0x3E800000 // c1 (high 1 bit) 1845 .long 0x3DC03FA2 // c1 (low single) 1846 .long 0x3CE15096 // c2 1847 .long 0x3CD26472 // c3 1848 .long 0x3B9A1270 // c4 1849 .long 0xBED5A0D8 // B' = pi/2 - B (high single) 1850 .long 0xB21886FF // B' = pi/2 - B (low single) 1851 .long 0x3F800000 // tau (1 for cot path) 1852 .long 0x3E101985 // c0 (high single) 1853 .long 0x302FB2B8 // c0 (low single) 1854 .long 0x3E800000 // c1 (high 1 bit) 1855 .long 0x3DC31BF3 // c1 (low single) 1856 .long 0x3CF0F04D // c2 1857 .long 0x3CD60BC7 // c3 1858 .long 0x3BA138BA // c4 1859 .long 0xBEE231D6 // B' = pi/2 - B (high single) 1860 .long 0x3099A6A2 // B' = pi/2 - B (low single) 1861 .long 0x3F800000 // tau (1 for cot path) 1862 .long 0x3E18CBB7 // c0 (high single) 1863 .long 0x2FE28430 // c0 (low single) 1864 .long 0x3E800000 // c1 (high 1 bit) 1865 .long 0x3DC629CE // c1 (low single) 1866 .long 0x3D006DCD // c2 1867 .long 0x3CDA5A2C // c3 1868 .long 0x3BB0B3D2 // c4 1869 .long 0xBEEEC2D4 // B' = pi/2 - B (high single) 1870 .long 0x323EF0A7 // B' = pi/2 - B (low single) 1871 .long 0x3F800000 // tau (1 for cot path) 1872 .long 0x3E2187D0 // c0 (high single) 1873 .long 0x31B7C7F7 // c0 (low single) 1874 .long 0x3E800000 // c1 (high 1 bit) 1875 .long 0x3DC96A2B // c1 (low single) 1876 .long 0x3D088C22 // c2 1877 .long 0x3CDE950E // c3 1878 .long 0x3BB89AD1 // c4 1879 .long 0xBEFB53D1 // B' = pi/2 - B (high single) 1880 .long 0xB2155386 // B' = pi/2 - B (low single) 1881 .long 0x3F800000 // tau (1 for cot path) 1882 .long 0x3E2A4E71 // c0 (high single) 1883 .long 0x319CFCEC // c0 (low single) 1884 .long 0x3E800000 // c1 (high 1 bit) 1885 .long 0x3DCCDE11 // c1 (low single) 1886 .long 0x3D10D605 // c2 1887 .long 0x3CE382A7 // c3 1888 .long 0x3BC8BD97 // c4 1889 .long 0xBF03F267 // B' = pi/2 - B (high single) 1890 .long 0xB2F4CBD9 // B' = pi/2 - B (low single) 1891 .long 0x3F800000 // tau (1 for cot path) 1892 .long 0x3E33203E // c0 (high single) 1893 .long 0xB1FEF5BE // c0 (low single) 1894 .long 0x3E800000 // c1 (high 1 bit) 1895 .long 0x3DD0869C // c1 (low single) 1896 .long 0x3D194E8C // c2 1897 .long 0x3CE8DCA9 // c3 1898 .long 0x3BDADA55 // c4 1899 .long 0xBF0A3AE6 // B' = pi/2 - B (high single) 1900 .long 0xB29EEDF0 // B' = pi/2 - B (low single) 1901 .long 0x3F800000 // tau (1 for cot path) 1902 .long 0x3E3BFDDC // c0 (high single) 1903 .long 0x3132521A // c0 (low single) 1904 .long 0x3E800000 // c1 (high 1 bit) 1905 .long 0x3DD464FC // c1 (low single) 1906 .long 0x3D21F8F1 // c2 1907 .long 0x3CEE3076 // c3 1908 .long 0x3BE6D263 // c4 1909 .long 0xBF108365 // B' = pi/2 - B (high single) 1910 .long 0xB212200D // B' = pi/2 - B (low single) 1911 .long 0x3F800000 // tau (1 for cot path) 1912 .long 0x3E44E7F8 // c0 (high single) 1913 .long 0x31CAA3CB // c0 (low single) 1914 .long 0x3E800000 // c1 (high 1 bit) 1915 .long 0x3DD87A74 // c1 (low single) 1916 .long 0x3D2AD885 // c2 1917 .long 0x3CF3C785 // c3 1918 .long 0x3BF1E348 // c4 1919 .long 0xBF16CBE4 // B' = pi/2 - B (high single) 1920 .long 0x30CCDE2E // B' = pi/2 - B (low single) 1921 .long 0x3F800000 // tau (1 for cot path) 1922 .long 0x3E4DDF41 // c0 (high single) 1923 .long 0x31AEA094 // c0 (low single) 1924 .long 0x3E800000 // c1 (high 1 bit) 1925 .long 0x3DDCC85C // c1 (low single) 1926 .long 0x3D33F0BE // c2 1927 .long 0x3CFA23B0 // c3 1928 .long 0x3C01FCF7 // c4 1929 .long 0xBF1D1463 // B' = pi/2 - B (high single) 1930 .long 0x32455799 // B' = pi/2 - B (low single) 1931 .long 0x3F800000 // tau (1 for cot path) 1932 .long 0x3E56E46B // c0 (high single) 1933 .long 0xB1E3F001 // c0 (low single) 1934 .long 0x3E800000 // c1 (high 1 bit) 1935 .long 0x3DE15025 // c1 (low single) 1936 .long 0x3D3D4550 // c2 1937 .long 0x3D00462D // c3 1938 .long 0x3C092C98 // c4 1939 .long 0xBF235CE2 // B' = pi/2 - B (high single) 1940 .long 0x32B889B6 // B' = pi/2 - B (low single) 1941 .long 0x3F800000 // tau (1 for cot path) 1942 .long 0x3E5FF82C // c0 (high single) 1943 .long 0x3170723A // c0 (low single) 1944 .long 0x3E800000 // c1 (high 1 bit) 1945 .long 0x3DE61354 // c1 (low single) 1946 .long 0x3D46DA06 // c2 1947 .long 0x3D0401F8 // c3 1948 .long 0x3C14E013 // c4 1949 .long 0xBF29A560 // B' = pi/2 - B (high single) 1950 .long 0xB2F19861 // B' = pi/2 - B (low single) 1951 .long 0x3F800000 // tau (1 for cot path) 1952 .long 0x3E691B44 // c0 (high single) 1953 .long 0xB1F18936 // c0 (low single) 1954 .long 0x3E800000 // c1 (high 1 bit) 1955 .long 0x3DEB138B // c1 (low single) 1956 .long 0x3D50B2F7 // c2 1957 .long 0x3D07BE3A // c3 1958 .long 0x3C1E46A7 // c4 1959 .long 0xBF2FEDDF // B' = pi/2 - B (high single) 1960 .long 0xB29BBA77 // B' = pi/2 - B (low single) 1961 .long 0x3F800000 // tau (1 for cot path) 1962 .long 0x3E724E73 // c0 (high single) 1963 .long 0xB120C3E2 // c0 (low single) 1964 .long 0x3E800000 // c1 (high 1 bit) 1965 .long 0x3DF05283 // c1 (low single) 1966 .long 0x3D5AD45E // c2 1967 .long 0x3D0BAFBF // c3 1968 .long 0x3C27B8BB // c4 1969 .long 0xBF36365E // B' = pi/2 - B (high single) 1970 .long 0xB20BB91C // B' = pi/2 - B (low single) 1971 .long 0x3F800000 // tau (1 for cot path) 1972 .long 0x3E7B9282 // c0 (high single) 1973 .long 0x313383D2 // c0 (low single) 1974 .long 0x3E800000 // c1 (high 1 bit) 1975 .long 0x3DF5D211 // c1 (low single) 1976 .long 0x3D6542B3 // c2 1977 .long 0x3D0FE5E5 // c3 1978 .long 0x3C31FB14 // c4 1979 .long 0xBF3C7EDD // B' = pi/2 - B (high single) 1980 .long 0x31000ADD // B' = pi/2 - B (low single) 1981 .long 0x3F800000 // tau (1 for cot path) 1982 .long 0x3E827420 // c0 (high single) 1983 .long 0xB20B8B4D // c0 (low single) 1984 .long 0x3E800000 // c1 (high 1 bit) 1985 .long 0x3DFB9428 // c1 (low single) 1986 .long 0x3D7002B4 // c2 1987 .long 0x3D142A6C // c3 1988 .long 0x3C3A47FF // c4 1989 .long 0xBF42C75C // B' = pi/2 - B (high single) 1990 .long 0x324BBE8A // B' = pi/2 - B (low single) 1991 .long 0x3F800000 // tau (1 for cot path) 1992 .long 0x3E87283F // c0 (high single) 1993 .long 0x3268B966 // c0 (low single) 1994 .long 0x3F000000 // c1 (high 1 bit) 1995 .long 0xBDFE6529 // c1 (low single) 1996 .long 0x3D7B1953 // c2 1997 .long 0x3D18E109 // c3 1998 .long 0x3C4570B0 // c4 1999 .long 0xBF490FDB // B' = pi/2 - B (high single) 2000 .long 0x32BBBD2E // B' = pi/2 - B (low single) 2001 .long 0x00000000 // tau (1 for cot path) 2002 .long 0xBF800000 // c0 (high single) 2003 .long 0x2B410000 // c0 (low single) 2004 .long 0x40000000 // c1 (high 1 bit) 2005 .long 0xB3000000 // c1 (low single) 2006 .long 0xC0000000 // c2 2007 .long 0x402AB7C8 // c3 2008 .long 0xC05561DB // c4 2009 .long 0xBF4F5859 // B' = pi/2 - B (high single) 2010 .long 0xB2EE64E8 // B' = pi/2 - B (low single) 2011 .long 0x00000000 // tau (1 for cot path) 2012 .long 0xBF73BB75 // c0 (high single) 2013 .long 0xB2FC908D // c0 (low single) 2014 .long 0x40000000 // c1 (high 1 bit) 2015 .long 0xBDBF94B0 // c1 (low single) 2016 .long 0xBFE8550F // c2 2017 .long 0x40174F67 // c3 2018 .long 0xC036C608 // c4 2019 .long 0xBF55A0D8 // B' = pi/2 - B (high single) 2020 .long 0xB29886FF // B' = pi/2 - B (low single) 2021 .long 0x00000000 // tau (1 for cot path) 2022 .long 0xBF68065E // c0 (high single) 2023 .long 0xB2670D1A // c0 (low single) 2024 .long 0x40000000 // c1 (high 1 bit) 2025 .long 0xBE36D1D6 // c1 (low single) 2026 .long 0xBFD35007 // c2 2027 .long 0x4006A861 // c3 2028 .long 0xC01D4BDA // c4 2029 .long 0xBF5BE957 // B' = pi/2 - B (high single) 2030 .long 0xB205522A // B' = pi/2 - B (low single) 2031 .long 0x00000000 // tau (1 for cot path) 2032 .long 0xBF5CD3BE // c0 (high single) 2033 .long 0xB1460308 // c0 (low single) 2034 .long 0x40000000 // c1 (high 1 bit) 2035 .long 0xBE8306C5 // c1 (low single) 2036 .long 0xBFC09232 // c2 2037 .long 0x3FF09632 // c3 2038 .long 0xC007DB00 // c4 2039 .long 0xBF6231D6 // B' = pi/2 - B (high single) 2040 .long 0x3119A6A2 // B' = pi/2 - B (low single) 2041 .long 0x00000000 // tau (1 for cot path) 2042 .long 0xBF521801 // c0 (high single) 2043 .long 0xB2AE4178 // c0 (low single) 2044 .long 0x40000000 // c1 (high 1 bit) 2045 .long 0xBEA72938 // c1 (low single) 2046 .long 0xBFAFCC22 // c2 2047 .long 0x3FD7BD4A // c3 2048 .long 0xBFEBB01B // c4 2049 .long 0xBF687A55 // B' = pi/2 - B (high single) 2050 .long 0x3252257B // B' = pi/2 - B (low single) 2051 .long 0x00000000 // tau (1 for cot path) 2052 .long 0xBF47C8CC // c0 (high single) 2053 .long 0x3200F51A // c0 (low single) 2054 .long 0x40000000 // c1 (high 1 bit) 2055 .long 0xBEC82C6C // c1 (low single) 2056 .long 0xBFA0BAE9 // c2 2057 .long 0x3FC2252F // c3 2058 .long 0xBFCD24C7 // c4 2059 .long 0xBF6EC2D4 // B' = pi/2 - B (high single) 2060 .long 0x32BEF0A7 // B' = pi/2 - B (low single) 2061 .long 0x00000000 // tau (1 for cot path) 2062 .long 0xBF3DDCCF // c0 (high single) 2063 .long 0xB2D29606 // c0 (low single) 2064 .long 0x40000000 // c1 (high 1 bit) 2065 .long 0xBEE6606F // c1 (low single) 2066 .long 0xBF9325D6 // c2 2067 .long 0x3FAF4E69 // c3 2068 .long 0xBFB3080C // c4 2069 .long 0xBF750B52 // B' = pi/2 - B (high single) 2070 .long 0xB2EB316F // B' = pi/2 - B (low single) 2071 .long 0x00000000 // tau (1 for cot path) 2072 .long 0xBF344BA9 // c0 (high single) 2073 .long 0x32B8B0EA // c0 (low single) 2074 .long 0x3F800000 // c1 (high 1 bit) 2075 .long 0x3EFDF4F7 // c1 (low single) 2076 .long 0xBF86DCA8 // c2 2077 .long 0x3F9ED53B // c3 2078 .long 0xBF9CBEDE // c4 2079 .long 0xBF7B53D1 // B' = pi/2 - B (high single) 2080 .long 0xB2955386 // B' = pi/2 - B (low single) 2081 .long 0x00000000 // tau (1 for cot path) 2082 .long 0xBF2B0DC1 // c0 (high single) 2083 .long 0xB2AB7EBA // c0 (low single) 2084 .long 0x3F800000 // c1 (high 1 bit) 2085 .long 0x3EE496C2 // c1 (low single) 2086 .long 0xBF776C40 // c2 2087 .long 0x3F9065C1 // c3 2088 .long 0xBF89AFB6 // c4 2089 .long 0xBF80CE28 // B' = pi/2 - B (high single) 2090 .long 0xB1FDD672 // B' = pi/2 - B (low single) 2091 .long 0x00000000 // tau (1 for cot path) 2092 .long 0xBF221C37 // c0 (high single) 2093 .long 0x320C61DC // c0 (low single) 2094 .long 0x3F800000 // c1 (high 1 bit) 2095 .long 0x3ECD4F71 // c1 (low single) 2096 .long 0xBF631DAA // c2 2097 .long 0x3F83B471 // c3 2098 .long 0xBF7281EA // c4 2099 .long 0xBF83F267 // B' = pi/2 - B (high single) 2100 .long 0xB374CBD9 // B' = pi/2 - B (low single) 2101 .long 0x00000000 // tau (1 for cot path) 2102 .long 0xBF1970C4 // c0 (high single) 2103 .long 0xB2904848 // c0 (low single) 2104 .long 0x3F800000 // c1 (high 1 bit) 2105 .long 0x3EB7EFF8 // c1 (low single) 2106 .long 0xBF50907C // c2 2107 .long 0x3F710FEA // c3 2108 .long 0xBF561FED // c4 2109 .long 0xBF8716A7 // B' = pi/2 - B (high single) 2110 .long 0x32588C6D // B' = pi/2 - B (low single) 2111 .long 0x00000000 // tau (1 for cot path) 2112 .long 0xBF1105AF // c0 (high single) 2113 .long 0xB2F045B0 // c0 (low single) 2114 .long 0x3F800000 // c1 (high 1 bit) 2115 .long 0x3EA44EE2 // c1 (low single) 2116 .long 0xBF3F8FDB // c2 2117 .long 0x3F5D3FD0 // c3 2118 .long 0xBF3D0A23 // c4 2119 .long 0xBF8A3AE6 // B' = pi/2 - B (high single) 2120 .long 0xB31EEDF0 // B' = pi/2 - B (low single) 2121 .long 0x00000000 // tau (1 for cot path) 2122 .long 0xBF08D5B9 // c0 (high single) 2123 .long 0x325EF98E // c0 (low single) 2124 .long 0x3F800000 // c1 (high 1 bit) 2125 .long 0x3E92478D // c1 (low single) 2126 .long 0xBF2FEDC9 // c2 2127 .long 0x3F4BCD58 // c3 2128 .long 0xBF27AE9E // c4 2129 .long 0xBF8D5F26 // B' = pi/2 - B (high single) 2130 .long 0x330C0105 // B' = pi/2 - B (low single) 2131 .long 0x00000000 // tau (1 for cot path) 2132 .long 0xBF00DC0D // c0 (high single) 2133 .long 0x3214AF72 // c0 (low single) 2134 .long 0x3F800000 // c1 (high 1 bit) 2135 .long 0x3E81B994 // c1 (low single) 2136 .long 0xBF218233 // c2 2137 .long 0x3F3C4531 // c3 2138 .long 0xBF149688 // c4 2139 .long 0xBF908365 // B' = pi/2 - B (high single) 2140 .long 0xB292200D // B' = pi/2 - B (low single) 2141 .long 0x00000000 // tau (1 for cot path) 2142 .long 0xBEF22870 // c0 (high single) 2143 .long 0xB25271F4 // c0 (low single) 2144 .long 0x3F800000 // c1 (high 1 bit) 2145 .long 0x3E65107A // c1 (low single) 2146 .long 0xBF1429F0 // c2 2147 .long 0x3F2E8AFC // c3 2148 .long 0xBF040498 // c4 2149 .long 0xBF93A7A5 // B' = pi/2 - B (high single) 2150 .long 0x3361DEEE // B' = pi/2 - B (low single) 2151 .long 0x00000000 // tau (1 for cot path) 2152 .long 0xBEE2F439 // c0 (high single) 2153 .long 0x31F4399E // c0 (low single) 2154 .long 0x3F800000 // c1 (high 1 bit) 2155 .long 0x3E49341C // c1 (low single) 2156 .long 0xBF07C61A // c2 2157 .long 0x3F22560F // c3 2158 .long 0xBEEAA81E // c4 2159 .long 0xBF96CBE4 // B' = pi/2 - B (high single) 2160 .long 0x314CDE2E // B' = pi/2 - B (low single) 2161 .long 0x00000000 // tau (1 for cot path) 2162 .long 0xBED413CD // c0 (high single) 2163 .long 0x31C06152 // c0 (low single) 2164 .long 0x3F800000 // c1 (high 1 bit) 2165 .long 0x3E2FB0CC // c1 (low single) 2166 .long 0xBEF876CB // c2 2167 .long 0x3F177807 // c3 2168 .long 0xBED08437 // c4 2169 .long 0xBF99F023 // B' = pi/2 - B (high single) 2170 .long 0xB3484328 // B' = pi/2 - B (low single) 2171 .long 0x00000000 // tau (1 for cot path) 2172 .long 0xBEC5800D // c0 (high single) 2173 .long 0x3214C3C1 // c0 (low single) 2174 .long 0x3F800000 // c1 (high 1 bit) 2175 .long 0x3E185E54 // c1 (low single) 2176 .long 0xBEE2E342 // c2 2177 .long 0x3F0DCA73 // c3 2178 .long 0xBEB8CC21 // c4 2179 .long 0xBF9D1463 // B' = pi/2 - B (high single) 2180 .long 0x32C55799 // B' = pi/2 - B (low single) 2181 .long 0x00000000 // tau (1 for cot path) 2182 .long 0xBEB73250 // c0 (high single) 2183 .long 0x32028823 // c0 (low single) 2184 .long 0x3F800000 // c1 (high 1 bit) 2185 .long 0x3E0318F8 // c1 (low single) 2186 .long 0xBECEA678 // c2 2187 .long 0x3F053C67 // c3 2188 .long 0xBEA41E53 // c4 2189 .long 0xBFA038A2 // B' = pi/2 - B (high single) 2190 .long 0xB2E4CA7E // B' = pi/2 - B (low single) 2191 .long 0x00000000 // tau (1 for cot path) 2192 .long 0xBEA92457 // c0 (high single) 2193 .long 0xB0B80830 // c0 (low single) 2194 .long 0x3F800000 // c1 (high 1 bit) 2195 .long 0x3DDF8200 // c1 (low single) 2196 .long 0xBEBB99E9 // c2 2197 .long 0x3EFB4AA8 // c3 2198 .long 0xBE9182BE // c4 2199 .long 0xBFA35CE2 // B' = pi/2 - B (high single) 2200 .long 0x333889B6 // B' = pi/2 - B (low single) 2201 .long 0x00000000 // tau (1 for cot path) 2202 .long 0xBE9B5042 // c0 (high single) 2203 .long 0x322A3AEE // c0 (low single) 2204 .long 0x3F800000 // c1 (high 1 bit) 2205 .long 0x3DBC7490 // c1 (low single) 2206 .long 0xBEA99AF5 // c2 2207 .long 0x3EEDE107 // c3 2208 .long 0xBE80E9AA // c4 2209 .long 0xBFA68121 // B' = pi/2 - B (high single) 2210 .long 0xB1E43AAC // B' = pi/2 - B (low single) 2211 .long 0x00000000 // tau (1 for cot path) 2212 .long 0xBE8DB082 // c0 (high single) 2213 .long 0x3132A234 // c0 (low single) 2214 .long 0x3F800000 // c1 (high 1 bit) 2215 .long 0x3D9CD7D0 // c1 (low single) 2216 .long 0xBE988A60 // c2 2217 .long 0x3EE203E3 // c3 2218 .long 0xBE63582C // c4 2219 .long 0xBFA9A560 // B' = pi/2 - B (high single) 2220 .long 0xB3719861 // B' = pi/2 - B (low single) 2221 .long 0x00000000 // tau (1 for cot path) 2222 .long 0xBE803FD4 // c0 (high single) 2223 .long 0x32279E66 // c0 (low single) 2224 .long 0x3F800000 // c1 (high 1 bit) 2225 .long 0x3D807FC8 // c1 (low single) 2226 .long 0xBE884BD4 // c2 2227 .long 0x3ED7812D // c3 2228 .long 0xBE4636EB // c4 2229 .long 0xBFACC9A0 // B' = pi/2 - B (high single) 2230 .long 0x32655A50 // B' = pi/2 - B (low single) 2231 .long 0x00000000 // tau (1 for cot path) 2232 .long 0xBE65F267 // c0 (high single) 2233 .long 0xB1B4B1DF // c0 (low single) 2234 .long 0x3F800000 // c1 (high 1 bit) 2235 .long 0x3D4E8B90 // c1 (low single) 2236 .long 0xBE718ACA // c2 2237 .long 0x3ECE7164 // c3 2238 .long 0xBE2DC161 // c4 2239 .long 0xBFAFEDDF // B' = pi/2 - B (high single) 2240 .long 0xB31BBA77 // B' = pi/2 - B (low single) 2241 .long 0x00000000 // tau (1 for cot path) 2242 .long 0xBE4BAFAF // c0 (high single) 2243 .long 0xAF2A29E0 // c0 (low single) 2244 .long 0x3F800000 // c1 (high 1 bit) 2245 .long 0x3D221018 // c1 (low single) 2246 .long 0xBE53BED0 // c2 2247 .long 0x3EC67E26 // c3 2248 .long 0xBE1568E2 // c4 2249 .long 0xBFB3121F // B' = pi/2 - B (high single) 2250 .long 0x330F347D // B' = pi/2 - B (low single) 2251 .long 0x00000000 // tau (1 for cot path) 2252 .long 0xBE31AE4D // c0 (high single) 2253 .long 0x31F32251 // c0 (low single) 2254 .long 0x3F800000 // c1 (high 1 bit) 2255 .long 0x3CF6A500 // c1 (low single) 2256 .long 0xBE3707DA // c2 2257 .long 0x3EBFA489 // c3 2258 .long 0xBDFBD9C7 // c4 2259 .long 0xBFB6365E // B' = pi/2 - B (high single) 2260 .long 0xB28BB91C // B' = pi/2 - B (low single) 2261 .long 0x00000000 // tau (1 for cot path) 2262 .long 0xBE17E564 // c0 (high single) 2263 .long 0x31C5A2E4 // c0 (low single) 2264 .long 0x3F800000 // c1 (high 1 bit) 2265 .long 0x3CB440D0 // c1 (low single) 2266 .long 0xBE1B3D00 // c2 2267 .long 0x3EB9F664 // c3 2268 .long 0xBDD647C0 // c4 2269 .long 0xBFB95A9E // B' = pi/2 - B (high single) 2270 .long 0x33651267 // B' = pi/2 - B (low single) 2271 .long 0x00000000 // tau (1 for cot path) 2272 .long 0xBDFC98C2 // c0 (high single) 2273 .long 0x30AE525C // c0 (low single) 2274 .long 0x3F800000 // c1 (high 1 bit) 2275 .long 0x3C793D20 // c1 (low single) 2276 .long 0xBE003845 // c2 2277 .long 0x3EB5271F // c3 2278 .long 0xBDAC669E // c4 2279 .long 0xBFBC7EDD // B' = pi/2 - B (high single) 2280 .long 0x31800ADD // B' = pi/2 - B (low single) 2281 .long 0x00000000 // tau (1 for cot path) 2282 .long 0xBDC9B5DC // c0 (high single) 2283 .long 0xB145AD86 // c0 (low single) 2284 .long 0x3F800000 // c1 (high 1 bit) 2285 .long 0x3C1EEF20 // c1 (low single) 2286 .long 0xBDCBAAEA // c2 2287 .long 0x3EB14E5E // c3 2288 .long 0xBD858BB2 // c4 2289 .long 0xBFBFA31C // B' = pi/2 - B (high single) 2290 .long 0xB3450FB0 // B' = pi/2 - B (low single) 2291 .long 0x00000000 // tau (1 for cot path) 2292 .long 0xBD9711CE // c0 (high single) 2293 .long 0xB14FEB28 // c0 (low single) 2294 .long 0x3F800000 // c1 (high 1 bit) 2295 .long 0x3BB24C00 // c1 (low single) 2296 .long 0xBD97E43A // c2 2297 .long 0x3EAE6A89 // c3 2298 .long 0xBD4D07E0 // c4 2299 .long 0xBFC2C75C // B' = pi/2 - B (high single) 2300 .long 0x32CBBE8A // B' = pi/2 - B (low single) 2301 .long 0x00000000 // tau (1 for cot path) 2302 .long 0xBD49393C // c0 (high single) 2303 .long 0xB0A39F5B // c0 (low single) 2304 .long 0x3F800000 // c1 (high 1 bit) 2305 .long 0x3B1E2B00 // c1 (low single) 2306 .long 0xBD49B5D4 // c2 2307 .long 0x3EAC4F10 // c3 2308 .long 0xBCFD9425 // c4 2309 .long 0xBFC5EB9B // B' = pi/2 - B (high single) 2310 .long 0xB2DE638C // B' = pi/2 - B (low single) 2311 .long 0x00000000 // tau (1 for cot path) 2312 .long 0xBCC91A31 // c0 (high single) 2313 .long 0xAF8E8D1A // c0 (low single) 2314 .long 0x3F800000 // c1 (high 1 bit) 2315 .long 0x3A1DFA00 // c1 (low single) 2316 .long 0xBCC9392D // c2 2317 .long 0x3EAB1889 // c3 2318 .long 0xBC885D3B // c4 2319 .align 16 2320 .type __svml_stan_data_internal, @object 2321 .size __svml_stan_data_internal, .-__svml_stan_data_internal 2322 .space 16, 0x00 2323 .align 16 2324 2325#ifdef __svml_stan_reduction_data_internal_typedef 2326typedef unsigned int VUINT32; 2327typedef struct { 2328 __declspec(align(16)) VUINT32 _sPtable[256][3][1]; 2329} __svml_stan_reduction_data_internal; 2330#endif 2331__svml_stan_reduction_data_internal: 2332 /* P_hi P_med P_lo */ 2333 .long 0x00000000, 0x00000000, 0x00000000 /* 0 */ 2334 .long 0x00000000, 0x00000000, 0x00000000 /* 1 */ 2335 .long 0x00000000, 0x00000000, 0x00000000 /* 2 */ 2336 .long 0x00000000, 0x00000000, 0x00000000 /* 3 */ 2337 .long 0x00000000, 0x00000000, 0x00000000 /* 4 */ 2338 .long 0x00000000, 0x00000000, 0x00000000 /* 5 */ 2339 .long 0x00000000, 0x00000000, 0x00000000 /* 6 */ 2340 .long 0x00000000, 0x00000000, 0x00000000 /* 7 */ 2341 .long 0x00000000, 0x00000000, 0x00000000 /* 8 */ 2342 .long 0x00000000, 0x00000000, 0x00000000 /* 9 */ 2343 .long 0x00000000, 0x00000000, 0x00000000 /* 10 */ 2344 .long 0x00000000, 0x00000000, 0x00000000 /* 11 */ 2345 .long 0x00000000, 0x00000000, 0x00000000 /* 12 */ 2346 .long 0x00000000, 0x00000000, 0x00000000 /* 13 */ 2347 .long 0x00000000, 0x00000000, 0x00000000 /* 14 */ 2348 .long 0x00000000, 0x00000000, 0x00000000 /* 15 */ 2349 .long 0x00000000, 0x00000000, 0x00000000 /* 16 */ 2350 .long 0x00000000, 0x00000000, 0x00000000 /* 17 */ 2351 .long 0x00000000, 0x00000000, 0x00000000 /* 18 */ 2352 .long 0x00000000, 0x00000000, 0x00000000 /* 19 */ 2353 .long 0x00000000, 0x00000000, 0x00000000 /* 20 */ 2354 .long 0x00000000, 0x00000000, 0x00000000 /* 21 */ 2355 .long 0x00000000, 0x00000000, 0x00000000 /* 22 */ 2356 .long 0x00000000, 0x00000000, 0x00000000 /* 23 */ 2357 .long 0x00000000, 0x00000000, 0x00000000 /* 24 */ 2358 .long 0x00000000, 0x00000000, 0x00000000 /* 25 */ 2359 .long 0x00000000, 0x00000000, 0x00000000 /* 26 */ 2360 .long 0x00000000, 0x00000000, 0x00000000 /* 27 */ 2361 .long 0x00000000, 0x00000000, 0x00000000 /* 28 */ 2362 .long 0x00000000, 0x00000000, 0x00000000 /* 29 */ 2363 .long 0x00000000, 0x00000000, 0x00000000 /* 30 */ 2364 .long 0x00000000, 0x00000000, 0x00000000 /* 31 */ 2365 .long 0x00000000, 0x00000000, 0x00000000 /* 32 */ 2366 .long 0x00000000, 0x00000000, 0x00000000 /* 33 */ 2367 .long 0x00000000, 0x00000000, 0x00000000 /* 34 */ 2368 .long 0x00000000, 0x00000000, 0x00000000 /* 35 */ 2369 .long 0x00000000, 0x00000000, 0x00000000 /* 36 */ 2370 .long 0x00000000, 0x00000000, 0x00000000 /* 37 */ 2371 .long 0x00000000, 0x00000000, 0x00000000 /* 38 */ 2372 .long 0x00000000, 0x00000000, 0x00000000 /* 39 */ 2373 .long 0x00000000, 0x00000000, 0x00000000 /* 40 */ 2374 .long 0x00000000, 0x00000000, 0x00000000 /* 41 */ 2375 .long 0x00000000, 0x00000000, 0x00000000 /* 42 */ 2376 .long 0x00000000, 0x00000000, 0x00000000 /* 43 */ 2377 .long 0x00000000, 0x00000000, 0x00000000 /* 44 */ 2378 .long 0x00000000, 0x00000000, 0x00000000 /* 45 */ 2379 .long 0x00000000, 0x00000000, 0x00000000 /* 46 */ 2380 .long 0x00000000, 0x00000000, 0x00000000 /* 47 */ 2381 .long 0x00000000, 0x00000000, 0x00000000 /* 48 */ 2382 .long 0x00000000, 0x00000000, 0x00000000 /* 49 */ 2383 .long 0x00000000, 0x00000000, 0x00000000 /* 50 */ 2384 .long 0x00000000, 0x00000000, 0x00000000 /* 51 */ 2385 .long 0x00000000, 0x00000000, 0x00000000 /* 52 */ 2386 .long 0x00000000, 0x00000000, 0x00000000 /* 53 */ 2387 .long 0x00000000, 0x00000000, 0x00000000 /* 54 */ 2388 .long 0x00000000, 0x00000000, 0x00000000 /* 55 */ 2389 .long 0x00000000, 0x00000000, 0x00000000 /* 56 */ 2390 .long 0x00000000, 0x00000000, 0x00000001 /* 57 */ 2391 .long 0x00000000, 0x00000000, 0x00000002 /* 58 */ 2392 .long 0x00000000, 0x00000000, 0x00000005 /* 59 */ 2393 .long 0x00000000, 0x00000000, 0x0000000A /* 60 */ 2394 .long 0x00000000, 0x00000000, 0x00000014 /* 61 */ 2395 .long 0x00000000, 0x00000000, 0x00000028 /* 62 */ 2396 .long 0x00000000, 0x00000000, 0x00000051 /* 63 */ 2397 .long 0x00000000, 0x00000000, 0x000000A2 /* 64 */ 2398 .long 0x00000000, 0x00000000, 0x00000145 /* 65 */ 2399 .long 0x00000000, 0x00000000, 0x0000028B /* 66 */ 2400 .long 0x00000000, 0x00000000, 0x00000517 /* 67 */ 2401 .long 0x00000000, 0x00000000, 0x00000A2F /* 68 */ 2402 .long 0x00000000, 0x00000000, 0x0000145F /* 69 */ 2403 .long 0x00000000, 0x00000000, 0x000028BE /* 70 */ 2404 .long 0x00000000, 0x00000000, 0x0000517C /* 71 */ 2405 .long 0x00000000, 0x00000000, 0x0000A2F9 /* 72 */ 2406 .long 0x00000000, 0x00000000, 0x000145F3 /* 73 */ 2407 .long 0x00000000, 0x00000000, 0x00028BE6 /* 74 */ 2408 .long 0x00000000, 0x00000000, 0x000517CC /* 75 */ 2409 .long 0x00000000, 0x00000000, 0x000A2F98 /* 76 */ 2410 .long 0x00000000, 0x00000000, 0x00145F30 /* 77 */ 2411 .long 0x00000000, 0x00000000, 0x0028BE60 /* 78 */ 2412 .long 0x00000000, 0x00000000, 0x00517CC1 /* 79 */ 2413 .long 0x00000000, 0x00000000, 0x00A2F983 /* 80 */ 2414 .long 0x00000000, 0x00000000, 0x0145F306 /* 81 */ 2415 .long 0x00000000, 0x00000000, 0x028BE60D /* 82 */ 2416 .long 0x00000000, 0x00000000, 0x0517CC1B /* 83 */ 2417 .long 0x00000000, 0x00000000, 0x0A2F9836 /* 84 */ 2418 .long 0x00000000, 0x00000000, 0x145F306D /* 85 */ 2419 .long 0x00000000, 0x00000000, 0x28BE60DB /* 86 */ 2420 .long 0x00000000, 0x00000000, 0x517CC1B7 /* 87 */ 2421 .long 0x00000000, 0x00000000, 0xA2F9836E /* 88 */ 2422 .long 0x00000000, 0x00000001, 0x45F306DC /* 89 */ 2423 .long 0x00000000, 0x00000002, 0x8BE60DB9 /* 90 */ 2424 .long 0x00000000, 0x00000005, 0x17CC1B72 /* 91 */ 2425 .long 0x00000000, 0x0000000A, 0x2F9836E4 /* 92 */ 2426 .long 0x00000000, 0x00000014, 0x5F306DC9 /* 93 */ 2427 .long 0x00000000, 0x00000028, 0xBE60DB93 /* 94 */ 2428 .long 0x00000000, 0x00000051, 0x7CC1B727 /* 95 */ 2429 .long 0x00000000, 0x000000A2, 0xF9836E4E /* 96 */ 2430 .long 0x00000000, 0x00000145, 0xF306DC9C /* 97 */ 2431 .long 0x00000000, 0x0000028B, 0xE60DB939 /* 98 */ 2432 .long 0x00000000, 0x00000517, 0xCC1B7272 /* 99 */ 2433 .long 0x00000000, 0x00000A2F, 0x9836E4E4 /* 100 */ 2434 .long 0x00000000, 0x0000145F, 0x306DC9C8 /* 101 */ 2435 .long 0x00000000, 0x000028BE, 0x60DB9391 /* 102 */ 2436 .long 0x00000000, 0x0000517C, 0xC1B72722 /* 103 */ 2437 .long 0x00000000, 0x0000A2F9, 0x836E4E44 /* 104 */ 2438 .long 0x00000000, 0x000145F3, 0x06DC9C88 /* 105 */ 2439 .long 0x00000000, 0x00028BE6, 0x0DB93910 /* 106 */ 2440 .long 0x00000000, 0x000517CC, 0x1B727220 /* 107 */ 2441 .long 0x00000000, 0x000A2F98, 0x36E4E441 /* 108 */ 2442 .long 0x00000000, 0x00145F30, 0x6DC9C882 /* 109 */ 2443 .long 0x00000000, 0x0028BE60, 0xDB939105 /* 110 */ 2444 .long 0x00000000, 0x00517CC1, 0xB727220A /* 111 */ 2445 .long 0x00000000, 0x00A2F983, 0x6E4E4415 /* 112 */ 2446 .long 0x00000000, 0x0145F306, 0xDC9C882A /* 113 */ 2447 .long 0x00000000, 0x028BE60D, 0xB9391054 /* 114 */ 2448 .long 0x00000000, 0x0517CC1B, 0x727220A9 /* 115 */ 2449 .long 0x00000000, 0x0A2F9836, 0xE4E44152 /* 116 */ 2450 .long 0x00000000, 0x145F306D, 0xC9C882A5 /* 117 */ 2451 .long 0x00000000, 0x28BE60DB, 0x9391054A /* 118 */ 2452 .long 0x00000000, 0x517CC1B7, 0x27220A94 /* 119 */ 2453 .long 0x00000000, 0xA2F9836E, 0x4E441529 /* 120 */ 2454 .long 0x00000001, 0x45F306DC, 0x9C882A53 /* 121 */ 2455 .long 0x00000002, 0x8BE60DB9, 0x391054A7 /* 122 */ 2456 .long 0x00000005, 0x17CC1B72, 0x7220A94F /* 123 */ 2457 .long 0x0000000A, 0x2F9836E4, 0xE441529F /* 124 */ 2458 .long 0x00000014, 0x5F306DC9, 0xC882A53F /* 125 */ 2459 .long 0x00000028, 0xBE60DB93, 0x91054A7F /* 126 */ 2460 .long 0x00000051, 0x7CC1B727, 0x220A94FE /* 127 */ 2461 .long 0x000000A2, 0xF9836E4E, 0x441529FC /* 128 */ 2462 .long 0x00000145, 0xF306DC9C, 0x882A53F8 /* 129 */ 2463 .long 0x0000028B, 0xE60DB939, 0x1054A7F0 /* 130 */ 2464 .long 0x00000517, 0xCC1B7272, 0x20A94FE1 /* 131 */ 2465 .long 0x00000A2F, 0x9836E4E4, 0x41529FC2 /* 132 */ 2466 .long 0x0000145F, 0x306DC9C8, 0x82A53F84 /* 133 */ 2467 .long 0x000028BE, 0x60DB9391, 0x054A7F09 /* 134 */ 2468 .long 0x0000517C, 0xC1B72722, 0x0A94FE13 /* 135 */ 2469 .long 0x0000A2F9, 0x836E4E44, 0x1529FC27 /* 136 */ 2470 .long 0x000145F3, 0x06DC9C88, 0x2A53F84E /* 137 */ 2471 .long 0x00028BE6, 0x0DB93910, 0x54A7F09D /* 138 */ 2472 .long 0x000517CC, 0x1B727220, 0xA94FE13A /* 139 */ 2473 .long 0x000A2F98, 0x36E4E441, 0x529FC275 /* 140 */ 2474 .long 0x00145F30, 0x6DC9C882, 0xA53F84EA /* 141 */ 2475 .long 0x0028BE60, 0xDB939105, 0x4A7F09D5 /* 142 */ 2476 .long 0x00517CC1, 0xB727220A, 0x94FE13AB /* 143 */ 2477 .long 0x00A2F983, 0x6E4E4415, 0x29FC2757 /* 144 */ 2478 .long 0x0145F306, 0xDC9C882A, 0x53F84EAF /* 145 */ 2479 .long 0x028BE60D, 0xB9391054, 0xA7F09D5F /* 146 */ 2480 .long 0x0517CC1B, 0x727220A9, 0x4FE13ABE /* 147 */ 2481 .long 0x0A2F9836, 0xE4E44152, 0x9FC2757D /* 148 */ 2482 .long 0x145F306D, 0xC9C882A5, 0x3F84EAFA /* 149 */ 2483 .long 0x28BE60DB, 0x9391054A, 0x7F09D5F4 /* 150 */ 2484 .long 0x517CC1B7, 0x27220A94, 0xFE13ABE8 /* 151 */ 2485 .long 0xA2F9836E, 0x4E441529, 0xFC2757D1 /* 152 */ 2486 .long 0x45F306DC, 0x9C882A53, 0xF84EAFA3 /* 153 */ 2487 .long 0x8BE60DB9, 0x391054A7, 0xF09D5F47 /* 154 */ 2488 .long 0x17CC1B72, 0x7220A94F, 0xE13ABE8F /* 155 */ 2489 .long 0x2F9836E4, 0xE441529F, 0xC2757D1F /* 156 */ 2490 .long 0x5F306DC9, 0xC882A53F, 0x84EAFA3E /* 157 */ 2491 .long 0xBE60DB93, 0x91054A7F, 0x09D5F47D /* 158 */ 2492 .long 0x7CC1B727, 0x220A94FE, 0x13ABE8FA /* 159 */ 2493 .long 0xF9836E4E, 0x441529FC, 0x2757D1F5 /* 160 */ 2494 .long 0xF306DC9C, 0x882A53F8, 0x4EAFA3EA /* 161 */ 2495 .long 0xE60DB939, 0x1054A7F0, 0x9D5F47D4 /* 162 */ 2496 .long 0xCC1B7272, 0x20A94FE1, 0x3ABE8FA9 /* 163 */ 2497 .long 0x9836E4E4, 0x41529FC2, 0x757D1F53 /* 164 */ 2498 .long 0x306DC9C8, 0x82A53F84, 0xEAFA3EA6 /* 165 */ 2499 .long 0x60DB9391, 0x054A7F09, 0xD5F47D4D /* 166 */ 2500 .long 0xC1B72722, 0x0A94FE13, 0xABE8FA9A /* 167 */ 2501 .long 0x836E4E44, 0x1529FC27, 0x57D1F534 /* 168 */ 2502 .long 0x06DC9C88, 0x2A53F84E, 0xAFA3EA69 /* 169 */ 2503 .long 0x0DB93910, 0x54A7F09D, 0x5F47D4D3 /* 170 */ 2504 .long 0x1B727220, 0xA94FE13A, 0xBE8FA9A6 /* 171 */ 2505 .long 0x36E4E441, 0x529FC275, 0x7D1F534D /* 172 */ 2506 .long 0x6DC9C882, 0xA53F84EA, 0xFA3EA69B /* 173 */ 2507 .long 0xDB939105, 0x4A7F09D5, 0xF47D4D37 /* 174 */ 2508 .long 0xB727220A, 0x94FE13AB, 0xE8FA9A6E /* 175 */ 2509 .long 0x6E4E4415, 0x29FC2757, 0xD1F534DD /* 176 */ 2510 .long 0xDC9C882A, 0x53F84EAF, 0xA3EA69BB /* 177 */ 2511 .long 0xB9391054, 0xA7F09D5F, 0x47D4D377 /* 178 */ 2512 .long 0x727220A9, 0x4FE13ABE, 0x8FA9A6EE /* 179 */ 2513 .long 0xE4E44152, 0x9FC2757D, 0x1F534DDC /* 180 */ 2514 .long 0xC9C882A5, 0x3F84EAFA, 0x3EA69BB8 /* 181 */ 2515 .long 0x9391054A, 0x7F09D5F4, 0x7D4D3770 /* 182 */ 2516 .long 0x27220A94, 0xFE13ABE8, 0xFA9A6EE0 /* 183 */ 2517 .long 0x4E441529, 0xFC2757D1, 0xF534DDC0 /* 184 */ 2518 .long 0x9C882A53, 0xF84EAFA3, 0xEA69BB81 /* 185 */ 2519 .long 0x391054A7, 0xF09D5F47, 0xD4D37703 /* 186 */ 2520 .long 0x7220A94F, 0xE13ABE8F, 0xA9A6EE06 /* 187 */ 2521 .long 0xE441529F, 0xC2757D1F, 0x534DDC0D /* 188 */ 2522 .long 0xC882A53F, 0x84EAFA3E, 0xA69BB81B /* 189 */ 2523 .long 0x91054A7F, 0x09D5F47D, 0x4D377036 /* 190 */ 2524 .long 0x220A94FE, 0x13ABE8FA, 0x9A6EE06D /* 191 */ 2525 .long 0x441529FC, 0x2757D1F5, 0x34DDC0DB /* 192 */ 2526 .long 0x882A53F8, 0x4EAFA3EA, 0x69BB81B6 /* 193 */ 2527 .long 0x1054A7F0, 0x9D5F47D4, 0xD377036D /* 194 */ 2528 .long 0x20A94FE1, 0x3ABE8FA9, 0xA6EE06DB /* 195 */ 2529 .long 0x41529FC2, 0x757D1F53, 0x4DDC0DB6 /* 196 */ 2530 .long 0x82A53F84, 0xEAFA3EA6, 0x9BB81B6C /* 197 */ 2531 .long 0x054A7F09, 0xD5F47D4D, 0x377036D8 /* 198 */ 2532 .long 0x0A94FE13, 0xABE8FA9A, 0x6EE06DB1 /* 199 */ 2533 .long 0x1529FC27, 0x57D1F534, 0xDDC0DB62 /* 200 */ 2534 .long 0x2A53F84E, 0xAFA3EA69, 0xBB81B6C5 /* 201 */ 2535 .long 0x54A7F09D, 0x5F47D4D3, 0x77036D8A /* 202 */ 2536 .long 0xA94FE13A, 0xBE8FA9A6, 0xEE06DB14 /* 203 */ 2537 .long 0x529FC275, 0x7D1F534D, 0xDC0DB629 /* 204 */ 2538 .long 0xA53F84EA, 0xFA3EA69B, 0xB81B6C52 /* 205 */ 2539 .long 0x4A7F09D5, 0xF47D4D37, 0x7036D8A5 /* 206 */ 2540 .long 0x94FE13AB, 0xE8FA9A6E, 0xE06DB14A /* 207 */ 2541 .long 0x29FC2757, 0xD1F534DD, 0xC0DB6295 /* 208 */ 2542 .long 0x53F84EAF, 0xA3EA69BB, 0x81B6C52B /* 209 */ 2543 .long 0xA7F09D5F, 0x47D4D377, 0x036D8A56 /* 210 */ 2544 .long 0x4FE13ABE, 0x8FA9A6EE, 0x06DB14AC /* 211 */ 2545 .long 0x9FC2757D, 0x1F534DDC, 0x0DB62959 /* 212 */ 2546 .long 0x3F84EAFA, 0x3EA69BB8, 0x1B6C52B3 /* 213 */ 2547 .long 0x7F09D5F4, 0x7D4D3770, 0x36D8A566 /* 214 */ 2548 .long 0xFE13ABE8, 0xFA9A6EE0, 0x6DB14ACC /* 215 */ 2549 .long 0xFC2757D1, 0xF534DDC0, 0xDB629599 /* 216 */ 2550 .long 0xF84EAFA3, 0xEA69BB81, 0xB6C52B32 /* 217 */ 2551 .long 0xF09D5F47, 0xD4D37703, 0x6D8A5664 /* 218 */ 2552 .long 0xE13ABE8F, 0xA9A6EE06, 0xDB14ACC9 /* 219 */ 2553 .long 0xC2757D1F, 0x534DDC0D, 0xB6295993 /* 220 */ 2554 .long 0x84EAFA3E, 0xA69BB81B, 0x6C52B327 /* 221 */ 2555 .long 0x09D5F47D, 0x4D377036, 0xD8A5664F /* 222 */ 2556 .long 0x13ABE8FA, 0x9A6EE06D, 0xB14ACC9E /* 223 */ 2557 .long 0x2757D1F5, 0x34DDC0DB, 0x6295993C /* 224 */ 2558 .long 0x4EAFA3EA, 0x69BB81B6, 0xC52B3278 /* 225 */ 2559 .long 0x9D5F47D4, 0xD377036D, 0x8A5664F1 /* 226 */ 2560 .long 0x3ABE8FA9, 0xA6EE06DB, 0x14ACC9E2 /* 227 */ 2561 .long 0x757D1F53, 0x4DDC0DB6, 0x295993C4 /* 228 */ 2562 .long 0xEAFA3EA6, 0x9BB81B6C, 0x52B32788 /* 229 */ 2563 .long 0xD5F47D4D, 0x377036D8, 0xA5664F10 /* 230 */ 2564 .long 0xABE8FA9A, 0x6EE06DB1, 0x4ACC9E21 /* 231 */ 2565 .long 0x57D1F534, 0xDDC0DB62, 0x95993C43 /* 232 */ 2566 .long 0xAFA3EA69, 0xBB81B6C5, 0x2B327887 /* 233 */ 2567 .long 0x5F47D4D3, 0x77036D8A, 0x5664F10E /* 234 */ 2568 .long 0xBE8FA9A6, 0xEE06DB14, 0xACC9E21C /* 235 */ 2569 .long 0x7D1F534D, 0xDC0DB629, 0x5993C439 /* 236 */ 2570 .long 0xFA3EA69B, 0xB81B6C52, 0xB3278872 /* 237 */ 2571 .long 0xF47D4D37, 0x7036D8A5, 0x664F10E4 /* 238 */ 2572 .long 0xE8FA9A6E, 0xE06DB14A, 0xCC9E21C8 /* 239 */ 2573 .long 0xD1F534DD, 0xC0DB6295, 0x993C4390 /* 240 */ 2574 .long 0xA3EA69BB, 0x81B6C52B, 0x32788720 /* 241 */ 2575 .long 0x47D4D377, 0x036D8A56, 0x64F10E41 /* 242 */ 2576 .long 0x8FA9A6EE, 0x06DB14AC, 0xC9E21C82 /* 243 */ 2577 .long 0x1F534DDC, 0x0DB62959, 0x93C43904 /* 244 */ 2578 .long 0x3EA69BB8, 0x1B6C52B3, 0x27887208 /* 245 */ 2579 .long 0x7D4D3770, 0x36D8A566, 0x4F10E410 /* 246 */ 2580 .long 0xFA9A6EE0, 0x6DB14ACC, 0x9E21C820 /* 247 */ 2581 .long 0xF534DDC0, 0xDB629599, 0x3C439041 /* 248 */ 2582 .long 0xEA69BB81, 0xB6C52B32, 0x78872083 /* 249 */ 2583 .long 0xD4D37703, 0x6D8A5664, 0xF10E4107 /* 250 */ 2584 .long 0xA9A6EE06, 0xDB14ACC9, 0xE21C820F /* 251 */ 2585 .long 0x534DDC0D, 0xB6295993, 0xC439041F /* 252 */ 2586 .long 0xA69BB81B, 0x6C52B327, 0x8872083F /* 253 */ 2587 .long 0x4D377036, 0xD8A5664F, 0x10E4107F /* 254 */ 2588 .long 0x9A6EE06D, 0xB14ACC9E, 0x21C820FF /* 255 */ 2589 .align 16 2590 .type __svml_stan_reduction_data_internal, @object 2591 .size __svml_stan_reduction_data_internal, .-__svml_stan_reduction_data_internal 2592 .align 16 2593 2594.FLT_16: 2595 .long 0xffffffff, 0x00000000, 0xffffffff, 0x00000000 2596 .type .FLT_16, @object 2597 .size .FLT_16, 16 2598