1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5double: 1
6float: 1
7float128: 1
8ldouble: 2
9
10Function: "acos_downward":
11double: 1
12float: 1
13float128: 1
14ldouble: 2
15
16Function: "acos_towardzero":
17double: 1
18float: 1
19float128: 1
20ldouble: 2
21
22Function: "acos_upward":
23double: 1
24float: 1
25float128: 1
26ldouble: 2
27
28Function: "acos_vlen16":
29float: 1
30
31Function: "acos_vlen2":
32double: 1
33
34Function: "acos_vlen4":
35double: 1
36float: 2
37
38Function: "acos_vlen4_avx2":
39double: 1
40
41Function: "acos_vlen8":
42double: 1
43float: 2
44
45Function: "acos_vlen8_avx2":
46float: 1
47
48Function: "acosh":
49double: 2
50float: 2
51float128: 4
52ldouble: 3
53
54Function: "acosh_downward":
55double: 2
56float: 2
57float128: 3
58ldouble: 4
59
60Function: "acosh_towardzero":
61double: 2
62float: 2
63float128: 2
64ldouble: 4
65
66Function: "acosh_upward":
67double: 2
68float: 2
69float128: 3
70ldouble: 3
71
72Function: "acosh_vlen16":
73float: 1
74
75Function: "acosh_vlen2":
76double: 2
77
78Function: "acosh_vlen4":
79double: 2
80float: 1
81
82Function: "acosh_vlen4_avx2":
83double: 2
84
85Function: "acosh_vlen8":
86double: 1
87float: 1
88
89Function: "acosh_vlen8_avx2":
90float: 2
91
92Function: "asin":
93double: 1
94float: 1
95float128: 1
96ldouble: 1
97
98Function: "asin_downward":
99double: 1
100float: 1
101float128: 2
102ldouble: 2
103
104Function: "asin_towardzero":
105double: 1
106float: 1
107float128: 1
108ldouble: 1
109
110Function: "asin_upward":
111double: 2
112float: 1
113float128: 2
114ldouble: 1
115
116Function: "asin_vlen16":
117float: 1
118
119Function: "asin_vlen2":
120double: 1
121
122Function: "asin_vlen4":
123double: 1
124float: 1
125
126Function: "asin_vlen4_avx2":
127double: 1
128
129Function: "asin_vlen8":
130double: 1
131float: 1
132
133Function: "asin_vlen8_avx2":
134float: 1
135
136Function: "asinh":
137double: 2
138float: 2
139float128: 4
140ldouble: 3
141
142Function: "asinh_downward":
143double: 3
144float: 3
145float128: 4
146ldouble: 5
147
148Function: "asinh_towardzero":
149double: 2
150float: 2
151float128: 2
152ldouble: 4
153
154Function: "asinh_upward":
155double: 3
156float: 3
157float128: 4
158ldouble: 5
159
160Function: "asinh_vlen2":
161double: 1
162
163Function: "asinh_vlen4":
164double: 1
165float: 1
166
167Function: "asinh_vlen4_avx2":
168double: 1
169
170Function: "asinh_vlen8":
171double: 1
172float: 1
173
174Function: "asinh_vlen8_avx2":
175float: 1
176
177Function: "atan":
178double: 1
179float: 1
180float128: 1
181ldouble: 1
182
183Function: "atan2":
184float: 2
185float128: 2
186ldouble: 1
187
188Function: "atan2_downward":
189double: 1
190float: 2
191float128: 2
192ldouble: 1
193
194Function: "atan2_towardzero":
195double: 1
196float: 2
197float128: 3
198ldouble: 1
199
200Function: "atan2_upward":
201double: 1
202float: 2
203float128: 2
204ldouble: 1
205
206Function: "atan2_vlen16":
207float: 2
208
209Function: "atan2_vlen2":
210double: 2
211
212Function: "atan2_vlen4":
213double: 2
214float: 2
215
216Function: "atan2_vlen4_avx2":
217double: 3
218
219Function: "atan2_vlen8":
220double: 3
221float: 2
222
223Function: "atan2_vlen8_avx2":
224float: 2
225
226Function: "atan_downward":
227double: 1
228float: 2
229float128: 2
230ldouble: 1
231
232Function: "atan_towardzero":
233double: 1
234float: 1
235float128: 1
236ldouble: 1
237
238Function: "atan_upward":
239double: 1
240float: 2
241float128: 2
242ldouble: 1
243
244Function: "atan_vlen16":
245float: 1
246
247Function: "atan_vlen2":
248double: 1
249
250Function: "atan_vlen4":
251double: 1
252float: 1
253
254Function: "atan_vlen4_avx2":
255double: 1
256
257Function: "atan_vlen8":
258double: 1
259float: 1
260
261Function: "atan_vlen8_avx2":
262float: 1
263
264Function: "atanh":
265double: 2
266float: 2
267float128: 4
268ldouble: 3
269
270Function: "atanh_downward":
271double: 3
272float: 3
273float128: 4
274ldouble: 5
275
276Function: "atanh_towardzero":
277double: 2
278float: 2
279float128: 2
280ldouble: 4
281
282Function: "atanh_upward":
283double: 3
284float: 3
285float128: 4
286ldouble: 5
287
288Function: "atanh_vlen16":
289float: 1
290
291Function: "atanh_vlen2":
292double: 1
293
294Function: "atanh_vlen4":
295double: 1
296float: 1
297
298Function: "atanh_vlen4_avx2":
299double: 1
300
301Function: "atanh_vlen8":
302double: 1
303float: 1
304
305Function: "atanh_vlen8_avx2":
306float: 1
307
308Function: "cabs":
309double: 1
310float128: 1
311ldouble: 1
312
313Function: "cabs_downward":
314double: 1
315float128: 1
316ldouble: 1
317
318Function: "cabs_towardzero":
319double: 1
320float128: 1
321ldouble: 1
322
323Function: "cabs_upward":
324double: 1
325float128: 1
326ldouble: 1
327
328Function: Real part of "cacos":
329double: 1
330float: 2
331float128: 2
332ldouble: 1
333
334Function: Imaginary part of "cacos":
335double: 2
336float: 2
337float128: 2
338ldouble: 2
339
340Function: Real part of "cacos_downward":
341double: 3
342float: 2
343float128: 3
344ldouble: 2
345
346Function: Imaginary part of "cacos_downward":
347double: 5
348float: 3
349float128: 6
350ldouble: 6
351
352Function: Real part of "cacos_towardzero":
353double: 3
354float: 2
355float128: 3
356ldouble: 2
357
358Function: Imaginary part of "cacos_towardzero":
359double: 5
360float: 3
361float128: 5
362ldouble: 5
363
364Function: Real part of "cacos_upward":
365double: 2
366float: 2
367float128: 3
368ldouble: 2
369
370Function: Imaginary part of "cacos_upward":
371double: 5
372float: 7
373float128: 7
374ldouble: 7
375
376Function: Real part of "cacosh":
377double: 2
378float: 2
379float128: 2
380ldouble: 2
381
382Function: Imaginary part of "cacosh":
383double: 1
384float: 2
385float128: 2
386ldouble: 1
387
388Function: Real part of "cacosh_downward":
389double: 5
390float: 3
391float128: 5
392ldouble: 5
393
394Function: Imaginary part of "cacosh_downward":
395double: 3
396float: 3
397float128: 4
398ldouble: 3
399
400Function: Real part of "cacosh_towardzero":
401double: 5
402float: 3
403float128: 5
404ldouble: 5
405
406Function: Imaginary part of "cacosh_towardzero":
407double: 3
408float: 2
409float128: 3
410ldouble: 2
411
412Function: Real part of "cacosh_upward":
413double: 4
414float: 4
415float128: 6
416ldouble: 5
417
418Function: Imaginary part of "cacosh_upward":
419double: 3
420float: 2
421float128: 4
422ldouble: 3
423
424Function: "carg":
425float: 1
426float128: 2
427ldouble: 1
428
429Function: "carg_downward":
430double: 1
431float: 2
432float128: 2
433ldouble: 1
434
435Function: "carg_towardzero":
436double: 1
437float: 2
438float128: 3
439ldouble: 1
440
441Function: "carg_upward":
442double: 1
443float: 2
444float128: 2
445ldouble: 1
446
447Function: Real part of "casin":
448double: 1
449float: 1
450float128: 2
451ldouble: 1
452
453Function: Imaginary part of "casin":
454double: 2
455float: 2
456float128: 2
457ldouble: 2
458
459Function: Real part of "casin_downward":
460double: 3
461float: 2
462float128: 3
463ldouble: 3
464
465Function: Imaginary part of "casin_downward":
466double: 5
467float: 3
468float128: 6
469ldouble: 6
470
471Function: Real part of "casin_towardzero":
472double: 3
473float: 1
474float128: 3
475ldouble: 3
476
477Function: Imaginary part of "casin_towardzero":
478double: 5
479float: 3
480float128: 5
481ldouble: 5
482
483Function: Real part of "casin_upward":
484double: 3
485float: 2
486float128: 3
487ldouble: 2
488
489Function: Imaginary part of "casin_upward":
490double: 5
491float: 7
492float128: 7
493ldouble: 7
494
495Function: Real part of "casinh":
496double: 2
497float: 2
498float128: 2
499ldouble: 2
500
501Function: Imaginary part of "casinh":
502double: 1
503float: 1
504float128: 2
505ldouble: 1
506
507Function: Real part of "casinh_downward":
508double: 5
509float: 3
510float128: 6
511ldouble: 6
512
513Function: Imaginary part of "casinh_downward":
514double: 3
515float: 2
516float128: 3
517ldouble: 3
518
519Function: Real part of "casinh_towardzero":
520double: 5
521float: 3
522float128: 5
523ldouble: 5
524
525Function: Imaginary part of "casinh_towardzero":
526double: 3
527float: 1
528float128: 3
529ldouble: 3
530
531Function: Real part of "casinh_upward":
532double: 5
533float: 7
534float128: 7
535ldouble: 7
536
537Function: Imaginary part of "casinh_upward":
538double: 3
539float: 2
540float128: 3
541ldouble: 2
542
543Function: Real part of "catan":
544double: 1
545float: 1
546float128: 1
547ldouble: 1
548
549Function: Imaginary part of "catan":
550double: 1
551float: 1
552float128: 1
553ldouble: 1
554
555Function: Real part of "catan_downward":
556double: 1
557float: 2
558float128: 2
559ldouble: 1
560
561Function: Imaginary part of "catan_downward":
562double: 2
563float: 2
564float128: 2
565ldouble: 4
566
567Function: Real part of "catan_towardzero":
568double: 1
569float: 2
570float128: 2
571ldouble: 1
572
573Function: Imaginary part of "catan_towardzero":
574double: 2
575float: 2
576float128: 2
577ldouble: 4
578
579Function: Real part of "catan_upward":
580double: 1
581float: 1
582float128: 2
583ldouble: 1
584
585Function: Imaginary part of "catan_upward":
586double: 3
587float: 3
588float128: 3
589ldouble: 3
590
591Function: Real part of "catanh":
592double: 1
593float: 1
594float128: 1
595ldouble: 1
596
597Function: Imaginary part of "catanh":
598double: 1
599float: 1
600float128: 1
601ldouble: 1
602
603Function: Real part of "catanh_downward":
604double: 2
605float: 2
606float128: 2
607ldouble: 4
608
609Function: Imaginary part of "catanh_downward":
610double: 1
611float: 2
612float128: 2
613ldouble: 1
614
615Function: Real part of "catanh_towardzero":
616double: 2
617float: 2
618float128: 2
619ldouble: 4
620
621Function: Imaginary part of "catanh_towardzero":
622double: 1
623float: 2
624float128: 2
625ldouble: 1
626
627Function: Real part of "catanh_upward":
628double: 4
629float: 4
630float128: 4
631ldouble: 4
632
633Function: Imaginary part of "catanh_upward":
634double: 1
635float: 1
636float128: 2
637ldouble: 1
638
639Function: "cbrt":
640double: 4
641float: 1
642float128: 1
643ldouble: 1
644
645Function: "cbrt_downward":
646double: 4
647float: 1
648float128: 1
649ldouble: 1
650
651Function: "cbrt_towardzero":
652double: 3
653float: 1
654float128: 1
655ldouble: 1
656
657Function: "cbrt_upward":
658double: 5
659float: 1
660float128: 1
661ldouble: 1
662
663Function: "cbrt_vlen16":
664float: 1
665
666Function: "cbrt_vlen2":
667double: 1
668
669Function: "cbrt_vlen4":
670double: 1
671float: 2
672
673Function: "cbrt_vlen4_avx2":
674double: 1
675
676Function: "cbrt_vlen8":
677double: 1
678float: 2
679
680Function: "cbrt_vlen8_avx2":
681float: 2
682
683Function: Real part of "ccos":
684double: 1
685float: 1
686float128: 1
687ldouble: 1
688
689Function: Imaginary part of "ccos":
690double: 1
691float: 1
692float128: 1
693ldouble: 1
694
695Function: Real part of "ccos_downward":
696double: 1
697float: 1
698float128: 2
699ldouble: 3
700
701Function: Imaginary part of "ccos_downward":
702double: 3
703float: 3
704float128: 2
705ldouble: 3
706
707Function: Real part of "ccos_towardzero":
708double: 1
709float: 2
710float128: 2
711ldouble: 3
712
713Function: Imaginary part of "ccos_towardzero":
714double: 3
715float: 3
716float128: 2
717ldouble: 3
718
719Function: Real part of "ccos_upward":
720double: 1
721float: 2
722float128: 3
723ldouble: 2
724
725Function: Imaginary part of "ccos_upward":
726double: 2
727float: 2
728float128: 2
729ldouble: 2
730
731Function: Real part of "ccosh":
732double: 1
733float: 1
734float128: 1
735ldouble: 1
736
737Function: Imaginary part of "ccosh":
738double: 1
739float: 1
740float128: 1
741ldouble: 1
742
743Function: Real part of "ccosh_downward":
744double: 2
745float: 2
746float128: 2
747ldouble: 3
748
749Function: Imaginary part of "ccosh_downward":
750double: 3
751float: 3
752float128: 2
753ldouble: 3
754
755Function: Real part of "ccosh_towardzero":
756double: 2
757float: 3
758float128: 2
759ldouble: 3
760
761Function: Imaginary part of "ccosh_towardzero":
762double: 3
763float: 3
764float128: 2
765ldouble: 3
766
767Function: Real part of "ccosh_upward":
768double: 1
769float: 2
770float128: 3
771ldouble: 2
772
773Function: Imaginary part of "ccosh_upward":
774double: 2
775float: 2
776float128: 2
777ldouble: 2
778
779Function: Real part of "cexp":
780double: 2
781float: 1
782float128: 1
783ldouble: 1
784
785Function: Imaginary part of "cexp":
786double: 1
787float: 2
788float128: 1
789ldouble: 1
790
791Function: Real part of "cexp_downward":
792double: 2
793float: 2
794float128: 2
795ldouble: 3
796
797Function: Imaginary part of "cexp_downward":
798double: 3
799float: 3
800float128: 2
801ldouble: 3
802
803Function: Real part of "cexp_towardzero":
804double: 2
805float: 2
806float128: 2
807ldouble: 3
808
809Function: Imaginary part of "cexp_towardzero":
810double: 3
811float: 3
812float128: 2
813ldouble: 3
814
815Function: Real part of "cexp_upward":
816double: 1
817float: 2
818float128: 3
819ldouble: 2
820
821Function: Imaginary part of "cexp_upward":
822double: 3
823float: 2
824float128: 3
825ldouble: 3
826
827Function: Real part of "clog":
828double: 3
829float: 3
830float128: 2
831ldouble: 3
832
833Function: Imaginary part of "clog":
834double: 1
835float: 1
836float128: 1
837ldouble: 1
838
839Function: Real part of "clog10":
840double: 3
841float: 4
842float128: 2
843ldouble: 4
844
845Function: Imaginary part of "clog10":
846double: 2
847float: 2
848float128: 2
849ldouble: 2
850
851Function: Real part of "clog10_downward":
852double: 5
853float: 5
854float128: 3
855ldouble: 8
856
857Function: Imaginary part of "clog10_downward":
858double: 2
859float: 4
860float128: 3
861ldouble: 3
862
863Function: Real part of "clog10_towardzero":
864double: 5
865float: 6
866float128: 4
867ldouble: 8
868
869Function: Imaginary part of "clog10_towardzero":
870double: 2
871float: 4
872float128: 3
873ldouble: 3
874
875Function: Real part of "clog10_upward":
876double: 6
877float: 5
878float128: 4
879ldouble: 8
880
881Function: Imaginary part of "clog10_upward":
882double: 2
883float: 4
884float128: 3
885ldouble: 3
886
887Function: Real part of "clog_downward":
888double: 4
889float: 3
890float128: 3
891ldouble: 5
892
893Function: Imaginary part of "clog_downward":
894double: 1
895float: 2
896float128: 2
897ldouble: 1
898
899Function: Real part of "clog_towardzero":
900double: 4
901float: 4
902float128: 3
903ldouble: 5
904
905Function: Imaginary part of "clog_towardzero":
906double: 1
907float: 3
908float128: 2
909ldouble: 1
910
911Function: Real part of "clog_upward":
912double: 4
913float: 3
914float128: 4
915ldouble: 4
916
917Function: Imaginary part of "clog_upward":
918double: 1
919float: 2
920float128: 2
921ldouble: 1
922
923Function: "cos":
924double: 1
925float: 1
926float128: 2
927ldouble: 1
928
929Function: "cos_downward":
930double: 1
931float: 1
932float128: 3
933ldouble: 3
934
935Function: "cos_towardzero":
936double: 1
937float: 1
938float128: 1
939ldouble: 2
940
941Function: "cos_upward":
942double: 1
943float: 1
944float128: 2
945ldouble: 2
946
947Function: "cos_vlen16":
948float: 1
949
950Function: "cos_vlen2":
951double: 2
952
953Function: "cos_vlen4":
954double: 2
955float: 1
956
957Function: "cos_vlen4_avx2":
958double: 2
959
960Function: "cos_vlen8":
961double: 2
962float: 1
963
964Function: "cos_vlen8_avx2":
965float: 1
966
967Function: "cosh":
968double: 2
969float: 2
970float128: 2
971ldouble: 3
972
973Function: "cosh_downward":
974double: 3
975float: 1
976float128: 3
977ldouble: 3
978
979Function: "cosh_towardzero":
980double: 3
981float: 1
982float128: 3
983ldouble: 3
984
985Function: "cosh_upward":
986double: 2
987float: 2
988float128: 3
989ldouble: 3
990
991Function: "cosh_vlen16":
992float: 2
993
994Function: "cosh_vlen2":
995double: 2
996
997Function: "cosh_vlen4":
998double: 2
999float: 2
1000
1001Function: "cosh_vlen4_avx2":
1002double: 2
1003
1004Function: "cosh_vlen8":
1005double: 2
1006float: 2
1007
1008Function: "cosh_vlen8_avx2":
1009float: 2
1010
1011Function: Real part of "cpow":
1012double: 2
1013float: 5
1014float128: 4
1015ldouble: 3
1016
1017Function: Imaginary part of "cpow":
1018float: 2
1019float128: 1
1020ldouble: 4
1021
1022Function: Real part of "cpow_downward":
1023double: 5
1024float: 8
1025float128: 6
1026ldouble: 7
1027
1028Function: Imaginary part of "cpow_downward":
1029double: 1
1030float: 2
1031float128: 2
1032ldouble: 2
1033
1034Function: Real part of "cpow_towardzero":
1035double: 5
1036float: 8
1037float128: 6
1038ldouble: 7
1039
1040Function: Imaginary part of "cpow_towardzero":
1041double: 1
1042float: 2
1043float128: 2
1044ldouble: 1
1045
1046Function: Real part of "cpow_upward":
1047double: 4
1048float: 1
1049float128: 3
1050ldouble: 2
1051
1052Function: Imaginary part of "cpow_upward":
1053double: 1
1054float: 2
1055float128: 2
1056ldouble: 2
1057
1058Function: Real part of "csin":
1059double: 1
1060float: 1
1061float128: 1
1062ldouble: 1
1063
1064Function: Imaginary part of "csin":
1065float128: 1
1066
1067Function: Real part of "csin_downward":
1068double: 3
1069float: 3
1070float128: 2
1071ldouble: 3
1072
1073Function: Imaginary part of "csin_downward":
1074double: 1
1075float: 2
1076float128: 2
1077ldouble: 3
1078
1079Function: Real part of "csin_towardzero":
1080double: 3
1081float: 3
1082float128: 2
1083ldouble: 3
1084
1085Function: Imaginary part of "csin_towardzero":
1086double: 2
1087float: 2
1088float128: 2
1089ldouble: 3
1090
1091Function: Real part of "csin_upward":
1092double: 2
1093float: 3
1094float128: 2
1095ldouble: 3
1096
1097Function: Imaginary part of "csin_upward":
1098double: 1
1099float: 3
1100float128: 3
1101ldouble: 3
1102
1103Function: Real part of "csinh":
1104float: 1
1105float128: 1
1106ldouble: 1
1107
1108Function: Imaginary part of "csinh":
1109double: 1
1110float: 1
1111float128: 1
1112ldouble: 1
1113
1114Function: Real part of "csinh_downward":
1115double: 2
1116float: 2
1117float128: 2
1118ldouble: 3
1119
1120Function: Imaginary part of "csinh_downward":
1121double: 3
1122float: 3
1123float128: 2
1124ldouble: 3
1125
1126Function: Real part of "csinh_towardzero":
1127double: 2
1128float: 2
1129float128: 2
1130ldouble: 3
1131
1132Function: Imaginary part of "csinh_towardzero":
1133double: 3
1134float: 3
1135float128: 2
1136ldouble: 3
1137
1138Function: Real part of "csinh_upward":
1139double: 1
1140float: 3
1141float128: 3
1142ldouble: 3
1143
1144Function: Imaginary part of "csinh_upward":
1145double: 2
1146float: 3
1147float128: 2
1148ldouble: 3
1149
1150Function: Real part of "csqrt":
1151double: 2
1152float: 2
1153float128: 2
1154ldouble: 2
1155
1156Function: Imaginary part of "csqrt":
1157double: 2
1158float: 2
1159float128: 2
1160ldouble: 2
1161
1162Function: Real part of "csqrt_downward":
1163double: 5
1164float: 4
1165float128: 4
1166ldouble: 5
1167
1168Function: Imaginary part of "csqrt_downward":
1169double: 4
1170float: 3
1171float128: 3
1172ldouble: 4
1173
1174Function: Real part of "csqrt_towardzero":
1175double: 4
1176float: 3
1177float128: 3
1178ldouble: 4
1179
1180Function: Imaginary part of "csqrt_towardzero":
1181double: 4
1182float: 3
1183float128: 3
1184ldouble: 4
1185
1186Function: Real part of "csqrt_upward":
1187double: 5
1188float: 4
1189float128: 4
1190ldouble: 5
1191
1192Function: Imaginary part of "csqrt_upward":
1193double: 3
1194float: 3
1195float128: 3
1196ldouble: 4
1197
1198Function: Real part of "ctan":
1199double: 1
1200float: 1
1201float128: 3
1202ldouble: 2
1203
1204Function: Imaginary part of "ctan":
1205double: 2
1206float: 2
1207float128: 3
1208ldouble: 1
1209
1210Function: Real part of "ctan_downward":
1211double: 6
1212float: 5
1213float128: 4
1214ldouble: 5
1215
1216Function: Imaginary part of "ctan_downward":
1217double: 2
1218float: 2
1219float128: 5
1220ldouble: 4
1221
1222Function: Real part of "ctan_towardzero":
1223double: 5
1224float: 3
1225float128: 4
1226ldouble: 5
1227
1228Function: Imaginary part of "ctan_towardzero":
1229double: 2
1230float: 2
1231float128: 5
1232ldouble: 4
1233
1234Function: Real part of "ctan_upward":
1235double: 2
1236float: 4
1237float128: 5
1238ldouble: 3
1239
1240Function: Imaginary part of "ctan_upward":
1241double: 2
1242float: 2
1243float128: 5
1244ldouble: 3
1245
1246Function: Real part of "ctanh":
1247double: 2
1248float: 2
1249float128: 3
1250ldouble: 1
1251
1252Function: Imaginary part of "ctanh":
1253double: 2
1254float: 2
1255float128: 3
1256ldouble: 2
1257
1258Function: Real part of "ctanh_downward":
1259double: 4
1260float: 2
1261float128: 5
1262ldouble: 4
1263
1264Function: Imaginary part of "ctanh_downward":
1265double: 6
1266float: 5
1267float128: 4
1268ldouble: 4
1269
1270Function: Real part of "ctanh_towardzero":
1271double: 2
1272float: 2
1273float128: 5
1274ldouble: 4
1275
1276Function: Imaginary part of "ctanh_towardzero":
1277double: 5
1278float: 3
1279float128: 3
1280ldouble: 3
1281
1282Function: Real part of "ctanh_upward":
1283double: 2
1284float: 2
1285float128: 5
1286ldouble: 3
1287
1288Function: Imaginary part of "ctanh_upward":
1289double: 2
1290float: 3
1291float128: 5
1292ldouble: 3
1293
1294Function: "erf":
1295double: 1
1296float: 1
1297float128: 1
1298ldouble: 1
1299
1300Function: "erf_downward":
1301double: 1
1302float: 1
1303float128: 2
1304ldouble: 1
1305
1306Function: "erf_towardzero":
1307double: 1
1308float: 1
1309float128: 1
1310ldouble: 1
1311
1312Function: "erf_upward":
1313double: 1
1314float: 1
1315float128: 2
1316ldouble: 1
1317
1318Function: "erf_vlen16":
1319float: 1
1320
1321Function: "erf_vlen2":
1322double: 1
1323
1324Function: "erf_vlen4":
1325double: 1
1326float: 2
1327
1328Function: "erf_vlen4_avx2":
1329double: 1
1330
1331Function: "erf_vlen8":
1332double: 1
1333float: 2
1334
1335Function: "erf_vlen8_avx2":
1336float: 2
1337
1338Function: "erfc":
1339double: 5
1340float: 3
1341float128: 4
1342ldouble: 5
1343
1344Function: "erfc_downward":
1345double: 5
1346float: 6
1347float128: 5
1348ldouble: 4
1349
1350Function: "erfc_towardzero":
1351double: 3
1352float: 4
1353float128: 4
1354ldouble: 4
1355
1356Function: "erfc_upward":
1357double: 5
1358float: 6
1359float128: 5
1360ldouble: 5
1361
1362Function: "erfc_vlen16":
1363float: 1
1364
1365Function: "erfc_vlen2":
1366double: 1
1367
1368Function: "erfc_vlen4":
1369double: 1
1370float: 1
1371
1372Function: "erfc_vlen4_avx2":
1373double: 1
1374
1375Function: "erfc_vlen8":
1376double: 1
1377float: 1
1378
1379Function: "erfc_vlen8_avx2":
1380float: 1
1381
1382Function: "exp":
1383double: 1
1384float: 1
1385float128: 1
1386ldouble: 1
1387
1388Function: "exp10":
1389double: 2
1390float: 1
1391float128: 2
1392ldouble: 1
1393
1394Function: "exp10_downward":
1395double: 3
1396float: 1
1397float128: 3
1398ldouble: 2
1399
1400Function: "exp10_towardzero":
1401double: 3
1402float: 1
1403float128: 3
1404ldouble: 2
1405
1406Function: "exp10_upward":
1407double: 2
1408float: 1
1409float128: 3
1410ldouble: 2
1411
1412Function: "exp10_vlen16":
1413float: 3
1414
1415Function: "exp10_vlen2":
1416double: 1
1417
1418Function: "exp10_vlen4":
1419double: 1
1420float: 1
1421
1422Function: "exp10_vlen4_avx2":
1423double: 1
1424
1425Function: "exp10_vlen8":
1426double: 1
1427float: 1
1428
1429Function: "exp10_vlen8_avx2":
1430float: 1
1431
1432Function: "exp2":
1433double: 1
1434float: 1
1435float128: 1
1436ldouble: 1
1437
1438Function: "exp2_downward":
1439double: 1
1440float: 1
1441float128: 1
1442ldouble: 1
1443
1444Function: "exp2_towardzero":
1445double: 1
1446float: 1
1447float128: 1
1448ldouble: 1
1449
1450Function: "exp2_upward":
1451double: 1
1452float: 1
1453float128: 2
1454ldouble: 1
1455
1456Function: "exp2_vlen16":
1457float: 1
1458
1459Function: "exp2_vlen2":
1460double: 1
1461
1462Function: "exp2_vlen4":
1463double: 1
1464float: 1
1465
1466Function: "exp2_vlen4_avx2":
1467double: 1
1468
1469Function: "exp2_vlen8":
1470double: 1
1471float: 1
1472
1473Function: "exp2_vlen8_avx2":
1474float: 1
1475
1476Function: "exp_downward":
1477double: 1
1478float: 1
1479ldouble: 1
1480
1481Function: "exp_towardzero":
1482double: 1
1483float: 1
1484ldouble: 2
1485
1486Function: "exp_upward":
1487double: 1
1488float: 1
1489ldouble: 1
1490
1491Function: "exp_vlen16":
1492float: 1
1493
1494Function: "exp_vlen2":
1495double: 1
1496
1497Function: "exp_vlen4":
1498double: 1
1499float: 1
1500
1501Function: "exp_vlen4_avx2":
1502double: 1
1503
1504Function: "exp_vlen8":
1505double: 1
1506float: 1
1507
1508Function: "exp_vlen8_avx2":
1509float: 1
1510
1511Function: "expm1":
1512double: 1
1513float: 1
1514float128: 2
1515ldouble: 3
1516
1517Function: "expm1_downward":
1518double: 1
1519float: 1
1520float128: 2
1521ldouble: 4
1522
1523Function: "expm1_towardzero":
1524double: 1
1525float: 2
1526float128: 4
1527ldouble: 4
1528
1529Function: "expm1_upward":
1530double: 1
1531float: 1
1532float128: 3
1533ldouble: 4
1534
1535Function: "expm1_vlen16":
1536float: 1
1537
1538Function: "expm1_vlen2":
1539double: 1
1540
1541Function: "expm1_vlen4":
1542double: 1
1543float: 1
1544
1545Function: "expm1_vlen4_avx2":
1546double: 1
1547
1548Function: "expm1_vlen8":
1549double: 1
1550float: 1
1551
1552Function: "expm1_vlen8_avx2":
1553float: 1
1554
1555Function: "gamma":
1556double: 4
1557float: 7
1558ldouble: 4
1559
1560Function: "gamma_downward":
1561double: 5
1562float: 7
1563ldouble: 7
1564
1565Function: "gamma_towardzero":
1566double: 5
1567float: 6
1568ldouble: 7
1569
1570Function: "gamma_upward":
1571double: 5
1572float: 6
1573ldouble: 6
1574
1575Function: "hypot":
1576double: 1
1577float128: 1
1578ldouble: 1
1579
1580Function: "hypot_downward":
1581double: 1
1582float128: 1
1583ldouble: 1
1584
1585Function: "hypot_towardzero":
1586double: 1
1587float128: 1
1588ldouble: 1
1589
1590Function: "hypot_upward":
1591double: 1
1592float128: 1
1593ldouble: 1
1594
1595Function: "hypot_vlen16":
1596float: 1
1597
1598Function: "hypot_vlen2":
1599double: 1
1600
1601Function: "hypot_vlen4":
1602double: 1
1603float: 1
1604
1605Function: "hypot_vlen4_avx2":
1606double: 1
1607
1608Function: "hypot_vlen8":
1609double: 1
1610float: 1
1611
1612Function: "hypot_vlen8_avx2":
1613float: 1
1614
1615Function: "j0":
1616double: 3
1617float: 9
1618float128: 2
1619ldouble: 8
1620
1621Function: "j0_downward":
1622double: 6
1623float: 9
1624float128: 9
1625ldouble: 6
1626
1627Function: "j0_towardzero":
1628double: 7
1629float: 9
1630float128: 9
1631ldouble: 6
1632
1633Function: "j0_upward":
1634double: 9
1635float: 9
1636float128: 7
1637ldouble: 6
1638
1639Function: "j1":
1640double: 4
1641float: 9
1642float128: 4
1643ldouble: 9
1644
1645Function: "j1_downward":
1646double: 6
1647float: 8
1648float128: 6
1649ldouble: 8
1650
1651Function: "j1_towardzero":
1652double: 4
1653float: 9
1654float128: 9
1655ldouble: 4
1656
1657Function: "j1_upward":
1658double: 9
1659float: 9
1660float128: 9
1661ldouble: 3
1662
1663Function: "jn":
1664double: 4
1665float: 4
1666float128: 7
1667ldouble: 4
1668
1669Function: "jn_downward":
1670double: 5
1671float: 5
1672float128: 8
1673ldouble: 4
1674
1675Function: "jn_towardzero":
1676double: 5
1677float: 5
1678float128: 8
1679ldouble: 5
1680
1681Function: "jn_upward":
1682double: 5
1683float: 5
1684float128: 7
1685ldouble: 5
1686
1687Function: "lgamma":
1688double: 4
1689float: 7
1690float128: 5
1691ldouble: 4
1692
1693Function: "lgamma_downward":
1694double: 5
1695float: 7
1696float128: 8
1697ldouble: 7
1698
1699Function: "lgamma_towardzero":
1700double: 5
1701float: 6
1702float128: 5
1703ldouble: 7
1704
1705Function: "lgamma_upward":
1706double: 5
1707float: 6
1708float128: 8
1709ldouble: 6
1710
1711Function: "log":
1712double: 1
1713float: 1
1714float128: 1
1715ldouble: 1
1716
1717Function: "log10":
1718double: 2
1719float: 2
1720float128: 2
1721ldouble: 1
1722
1723Function: "log10_downward":
1724double: 2
1725float: 3
1726float128: 1
1727ldouble: 2
1728
1729Function: "log10_towardzero":
1730double: 2
1731float: 2
1732float128: 1
1733ldouble: 2
1734
1735Function: "log10_upward":
1736double: 2
1737float: 2
1738float128: 1
1739ldouble: 1
1740
1741Function: "log10_vlen16":
1742float: 1
1743
1744Function: "log10_vlen2":
1745double: 1
1746
1747Function: "log10_vlen4":
1748double: 1
1749float: 1
1750
1751Function: "log10_vlen4_avx2":
1752double: 1
1753
1754Function: "log10_vlen8":
1755double: 1
1756float: 1
1757
1758Function: "log10_vlen8_avx2":
1759float: 1
1760
1761Function: "log1p":
1762double: 1
1763float: 1
1764float128: 3
1765ldouble: 2
1766
1767Function: "log1p_downward":
1768double: 2
1769float: 2
1770float128: 3
1771ldouble: 4
1772
1773Function: "log1p_towardzero":
1774double: 2
1775float: 2
1776float128: 3
1777ldouble: 4
1778
1779Function: "log1p_upward":
1780double: 2
1781float: 2
1782float128: 2
1783ldouble: 3
1784
1785Function: "log1p_vlen16":
1786float: 2
1787
1788Function: "log1p_vlen2":
1789double: 1
1790
1791Function: "log1p_vlen4":
1792double: 1
1793float: 2
1794
1795Function: "log1p_vlen4_avx2":
1796double: 1
1797
1798Function: "log1p_vlen8":
1799double: 1
1800float: 2
1801
1802Function: "log1p_vlen8_avx2":
1803float: 2
1804
1805Function: "log2":
1806double: 2
1807float: 1
1808float128: 3
1809ldouble: 1
1810
1811Function: "log2_downward":
1812double: 3
1813float: 3
1814float128: 3
1815ldouble: 1
1816
1817Function: "log2_towardzero":
1818double: 2
1819float: 2
1820float128: 1
1821ldouble: 1
1822
1823Function: "log2_upward":
1824double: 3
1825float: 3
1826float128: 1
1827ldouble: 1
1828
1829Function: "log2_vlen16":
1830float: 1
1831
1832Function: "log2_vlen2":
1833double: 1
1834
1835Function: "log2_vlen4":
1836double: 1
1837float: 1
1838
1839Function: "log2_vlen4_avx2":
1840double: 1
1841
1842Function: "log2_vlen8":
1843double: 1
1844float: 1
1845
1846Function: "log2_vlen8_avx2":
1847float: 1
1848
1849Function: "log_downward":
1850float: 2
1851float128: 1
1852ldouble: 2
1853
1854Function: "log_towardzero":
1855float: 2
1856float128: 2
1857ldouble: 2
1858
1859Function: "log_upward":
1860double: 1
1861float: 2
1862float128: 1
1863ldouble: 1
1864
1865Function: "log_vlen16":
1866float: 3
1867
1868Function: "log_vlen2":
1869double: 1
1870
1871Function: "log_vlen4":
1872double: 1
1873float: 3
1874
1875Function: "log_vlen4_avx2":
1876double: 1
1877
1878Function: "log_vlen8":
1879double: 1
1880float: 3
1881
1882Function: "log_vlen8_avx2":
1883float: 3
1884
1885Function: "pow":
1886double: 1
1887float: 1
1888float128: 2
1889ldouble: 1
1890
1891Function: "pow_downward":
1892double: 1
1893float: 1
1894float128: 2
1895ldouble: 4
1896
1897Function: "pow_towardzero":
1898double: 1
1899float: 1
1900float128: 2
1901ldouble: 4
1902
1903Function: "pow_upward":
1904double: 1
1905float: 1
1906float128: 2
1907ldouble: 4
1908
1909Function: "pow_vlen16":
1910float: 3
1911
1912Function: "pow_vlen2":
1913double: 1
1914
1915Function: "pow_vlen4":
1916double: 1
1917float: 3
1918
1919Function: "pow_vlen4_avx2":
1920double: 1
1921
1922Function: "pow_vlen8":
1923double: 1
1924float: 3
1925
1926Function: "pow_vlen8_avx2":
1927float: 3
1928
1929Function: "sin":
1930double: 1
1931float: 1
1932float128: 2
1933ldouble: 2
1934
1935Function: "sin_downward":
1936double: 1
1937float: 1
1938float128: 3
1939ldouble: 3
1940
1941Function: "sin_towardzero":
1942double: 1
1943float: 1
1944float128: 2
1945ldouble: 2
1946
1947Function: "sin_upward":
1948double: 1
1949float: 1
1950float128: 3
1951ldouble: 3
1952
1953Function: "sin_vlen16":
1954float: 1
1955
1956Function: "sin_vlen2":
1957double: 2
1958
1959Function: "sin_vlen4":
1960double: 2
1961float: 1
1962
1963Function: "sin_vlen4_avx2":
1964double: 2
1965
1966Function: "sin_vlen8":
1967double: 2
1968float: 1
1969
1970Function: "sin_vlen8_avx2":
1971float: 1
1972
1973Function: "sincos":
1974double: 1
1975float128: 1
1976ldouble: 1
1977
1978Function: "sincos_downward":
1979double: 1
1980float: 1
1981float128: 3
1982ldouble: 3
1983
1984Function: "sincos_towardzero":
1985double: 1
1986float: 1
1987float128: 2
1988ldouble: 2
1989
1990Function: "sincos_upward":
1991double: 1
1992float: 1
1993float128: 3
1994ldouble: 3
1995
1996Function: "sincos_vlen16":
1997float: 1
1998
1999Function: "sincos_vlen2":
2000double: 2
2001
2002Function: "sincos_vlen4":
2003double: 2
2004float: 1
2005
2006Function: "sincos_vlen4_avx2":
2007double: 2
2008
2009Function: "sincos_vlen8":
2010double: 2
2011float: 1
2012
2013Function: "sincos_vlen8_avx2":
2014float: 1
2015
2016Function: "sinh":
2017double: 2
2018float: 2
2019float128: 2
2020ldouble: 3
2021
2022Function: "sinh_downward":
2023double: 3
2024float: 3
2025float128: 3
2026ldouble: 5
2027
2028Function: "sinh_towardzero":
2029double: 3
2030float: 2
2031float128: 3
2032ldouble: 4
2033
2034Function: "sinh_upward":
2035double: 3
2036float: 3
2037float128: 4
2038ldouble: 5
2039
2040Function: "sinh_vlen16":
2041float: 1
2042
2043Function: "sinh_vlen2":
2044double: 2
2045
2046Function: "sinh_vlen4":
2047double: 2
2048float: 1
2049
2050Function: "sinh_vlen4_avx2":
2051double: 2
2052
2053Function: "sinh_vlen8":
2054double: 2
2055float: 1
2056
2057Function: "sinh_vlen8_avx2":
2058float: 1
2059
2060Function: "tan":
2061float: 1
2062float128: 1
2063ldouble: 2
2064
2065Function: "tan_downward":
2066double: 1
2067float: 2
2068float128: 1
2069ldouble: 3
2070
2071Function: "tan_towardzero":
2072double: 1
2073float: 1
2074float128: 1
2075ldouble: 3
2076
2077Function: "tan_upward":
2078double: 1
2079float: 1
2080float128: 1
2081ldouble: 2
2082
2083Function: "tan_vlen16":
2084float: 1
2085
2086Function: "tan_vlen2":
2087double: 2
2088
2089Function: "tan_vlen4":
2090double: 2
2091float: 2
2092
2093Function: "tan_vlen4_avx2":
2094double: 1
2095
2096Function: "tan_vlen8":
2097double: 2
2098float: 2
2099
2100Function: "tan_vlen8_avx2":
2101float: 2
2102
2103Function: "tanh":
2104double: 2
2105float: 2
2106float128: 2
2107ldouble: 3
2108
2109Function: "tanh_downward":
2110double: 3
2111float: 3
2112float128: 4
2113ldouble: 4
2114
2115Function: "tanh_towardzero":
2116double: 2
2117float: 2
2118float128: 3
2119ldouble: 3
2120
2121Function: "tanh_upward":
2122double: 3
2123float: 3
2124float128: 3
2125ldouble: 4
2126
2127Function: "tanh_vlen16":
2128float: 1
2129
2130Function: "tanh_vlen2":
2131double: 1
2132
2133Function: "tanh_vlen4":
2134double: 1
2135
2136Function: "tanh_vlen4_avx2":
2137double: 1
2138
2139Function: "tanh_vlen8":
2140double: 1
2141
2142Function: "tgamma":
2143double: 9
2144float: 8
2145float128: 4
2146ldouble: 5
2147
2148Function: "tgamma_downward":
2149double: 9
2150float: 7
2151float128: 5
2152ldouble: 6
2153
2154Function: "tgamma_towardzero":
2155double: 9
2156float: 7
2157float128: 5
2158ldouble: 6
2159
2160Function: "tgamma_upward":
2161double: 9
2162float: 8
2163float128: 4
2164ldouble: 5
2165
2166Function: "y0":
2167double: 3
2168float: 9
2169float128: 3
2170ldouble: 2
2171
2172Function: "y0_downward":
2173double: 4
2174float: 9
2175float128: 7
2176ldouble: 7
2177
2178Function: "y0_towardzero":
2179double: 4
2180float: 9
2181float128: 3
2182ldouble: 8
2183
2184Function: "y0_upward":
2185double: 3
2186float: 9
2187float128: 4
2188ldouble: 7
2189
2190Function: "y1":
2191double: 6
2192float: 9
2193float128: 5
2194ldouble: 3
2195
2196Function: "y1_downward":
2197double: 6
2198float: 9
2199float128: 5
2200ldouble: 7
2201
2202Function: "y1_towardzero":
2203double: 4
2204float: 9
2205float128: 6
2206ldouble: 5
2207
2208Function: "y1_upward":
2209double: 7
2210float: 9
2211float128: 6
2212ldouble: 9
2213
2214Function: "yn":
2215double: 3
2216float: 3
2217float128: 5
2218ldouble: 4
2219
2220Function: "yn_downward":
2221double: 3
2222float: 4
2223float128: 5
2224ldouble: 5
2225
2226Function: "yn_towardzero":
2227double: 3
2228float: 3
2229float128: 5
2230ldouble: 5
2231
2232Function: "yn_upward":
2233double: 4
2234float: 5
2235float128: 5
2236ldouble: 4
2237
2238# end of automatic generation
2239