1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acos": 5double: 1 6float: 1 7float128: 1 8ldouble: 2 9 10Function: "acos_downward": 11double: 1 12float: 1 13float128: 1 14ldouble: 2 15 16Function: "acos_towardzero": 17double: 1 18float: 1 19float128: 1 20ldouble: 2 21 22Function: "acos_upward": 23double: 1 24float: 1 25float128: 1 26ldouble: 2 27 28Function: "acos_vlen16": 29float: 1 30 31Function: "acos_vlen2": 32double: 1 33 34Function: "acos_vlen4": 35double: 1 36float: 2 37 38Function: "acos_vlen4_avx2": 39double: 1 40 41Function: "acos_vlen8": 42double: 1 43float: 2 44 45Function: "acos_vlen8_avx2": 46float: 1 47 48Function: "acosh": 49double: 2 50float: 2 51float128: 4 52ldouble: 3 53 54Function: "acosh_downward": 55double: 2 56float: 2 57float128: 3 58ldouble: 4 59 60Function: "acosh_towardzero": 61double: 2 62float: 2 63float128: 2 64ldouble: 4 65 66Function: "acosh_upward": 67double: 2 68float: 2 69float128: 3 70ldouble: 3 71 72Function: "acosh_vlen16": 73float: 1 74 75Function: "acosh_vlen2": 76double: 2 77 78Function: "acosh_vlen4": 79double: 2 80float: 1 81 82Function: "acosh_vlen4_avx2": 83double: 2 84 85Function: "acosh_vlen8": 86double: 1 87float: 1 88 89Function: "acosh_vlen8_avx2": 90float: 2 91 92Function: "asin": 93double: 1 94float: 1 95float128: 1 96ldouble: 1 97 98Function: "asin_downward": 99double: 1 100float: 1 101float128: 2 102ldouble: 2 103 104Function: "asin_towardzero": 105double: 1 106float: 1 107float128: 1 108ldouble: 1 109 110Function: "asin_upward": 111double: 2 112float: 1 113float128: 2 114ldouble: 1 115 116Function: "asin_vlen16": 117float: 1 118 119Function: "asin_vlen2": 120double: 1 121 122Function: "asin_vlen4": 123double: 1 124float: 1 125 126Function: "asin_vlen4_avx2": 127double: 1 128 129Function: "asin_vlen8": 130double: 1 131float: 1 132 133Function: "asin_vlen8_avx2": 134float: 1 135 136Function: "asinh": 137double: 2 138float: 2 139float128: 4 140ldouble: 3 141 142Function: "asinh_downward": 143double: 3 144float: 3 145float128: 4 146ldouble: 5 147 148Function: "asinh_towardzero": 149double: 2 150float: 2 151float128: 2 152ldouble: 4 153 154Function: "asinh_upward": 155double: 3 156float: 3 157float128: 4 158ldouble: 5 159 160Function: "asinh_vlen2": 161double: 1 162 163Function: "asinh_vlen4": 164double: 1 165float: 1 166 167Function: "asinh_vlen4_avx2": 168double: 1 169 170Function: "asinh_vlen8": 171double: 1 172float: 1 173 174Function: "asinh_vlen8_avx2": 175float: 1 176 177Function: "atan": 178double: 1 179float: 1 180float128: 1 181ldouble: 1 182 183Function: "atan2": 184float: 2 185float128: 2 186ldouble: 1 187 188Function: "atan2_downward": 189double: 1 190float: 2 191float128: 2 192ldouble: 1 193 194Function: "atan2_towardzero": 195double: 1 196float: 2 197float128: 3 198ldouble: 1 199 200Function: "atan2_upward": 201double: 1 202float: 2 203float128: 2 204ldouble: 1 205 206Function: "atan2_vlen16": 207float: 2 208 209Function: "atan2_vlen2": 210double: 2 211 212Function: "atan2_vlen4": 213double: 2 214float: 2 215 216Function: "atan2_vlen4_avx2": 217double: 3 218 219Function: "atan2_vlen8": 220double: 3 221float: 2 222 223Function: "atan2_vlen8_avx2": 224float: 2 225 226Function: "atan_downward": 227double: 1 228float: 2 229float128: 2 230ldouble: 1 231 232Function: "atan_towardzero": 233double: 1 234float: 1 235float128: 1 236ldouble: 1 237 238Function: "atan_upward": 239double: 1 240float: 2 241float128: 2 242ldouble: 1 243 244Function: "atan_vlen16": 245float: 1 246 247Function: "atan_vlen2": 248double: 1 249 250Function: "atan_vlen4": 251double: 1 252float: 1 253 254Function: "atan_vlen4_avx2": 255double: 1 256 257Function: "atan_vlen8": 258double: 1 259float: 1 260 261Function: "atan_vlen8_avx2": 262float: 1 263 264Function: "atanh": 265double: 2 266float: 2 267float128: 4 268ldouble: 3 269 270Function: "atanh_downward": 271double: 3 272float: 3 273float128: 4 274ldouble: 5 275 276Function: "atanh_towardzero": 277double: 2 278float: 2 279float128: 2 280ldouble: 4 281 282Function: "atanh_upward": 283double: 3 284float: 3 285float128: 4 286ldouble: 5 287 288Function: "atanh_vlen16": 289float: 1 290 291Function: "atanh_vlen2": 292double: 1 293 294Function: "atanh_vlen4": 295double: 1 296float: 1 297 298Function: "atanh_vlen4_avx2": 299double: 1 300 301Function: "atanh_vlen8": 302double: 1 303float: 1 304 305Function: "atanh_vlen8_avx2": 306float: 1 307 308Function: "cabs": 309double: 1 310float128: 1 311ldouble: 1 312 313Function: "cabs_downward": 314double: 1 315float128: 1 316ldouble: 1 317 318Function: "cabs_towardzero": 319double: 1 320float128: 1 321ldouble: 1 322 323Function: "cabs_upward": 324double: 1 325float128: 1 326ldouble: 1 327 328Function: Real part of "cacos": 329double: 1 330float: 2 331float128: 2 332ldouble: 1 333 334Function: Imaginary part of "cacos": 335double: 2 336float: 2 337float128: 2 338ldouble: 2 339 340Function: Real part of "cacos_downward": 341double: 3 342float: 2 343float128: 3 344ldouble: 2 345 346Function: Imaginary part of "cacos_downward": 347double: 5 348float: 3 349float128: 6 350ldouble: 6 351 352Function: Real part of "cacos_towardzero": 353double: 3 354float: 2 355float128: 3 356ldouble: 2 357 358Function: Imaginary part of "cacos_towardzero": 359double: 5 360float: 3 361float128: 5 362ldouble: 5 363 364Function: Real part of "cacos_upward": 365double: 2 366float: 2 367float128: 3 368ldouble: 2 369 370Function: Imaginary part of "cacos_upward": 371double: 5 372float: 7 373float128: 7 374ldouble: 7 375 376Function: Real part of "cacosh": 377double: 2 378float: 2 379float128: 2 380ldouble: 2 381 382Function: Imaginary part of "cacosh": 383double: 1 384float: 2 385float128: 2 386ldouble: 1 387 388Function: Real part of "cacosh_downward": 389double: 5 390float: 3 391float128: 5 392ldouble: 5 393 394Function: Imaginary part of "cacosh_downward": 395double: 3 396float: 3 397float128: 4 398ldouble: 3 399 400Function: Real part of "cacosh_towardzero": 401double: 5 402float: 3 403float128: 5 404ldouble: 5 405 406Function: Imaginary part of "cacosh_towardzero": 407double: 3 408float: 2 409float128: 3 410ldouble: 2 411 412Function: Real part of "cacosh_upward": 413double: 4 414float: 4 415float128: 6 416ldouble: 5 417 418Function: Imaginary part of "cacosh_upward": 419double: 3 420float: 2 421float128: 4 422ldouble: 3 423 424Function: "carg": 425float: 1 426float128: 2 427ldouble: 1 428 429Function: "carg_downward": 430double: 1 431float: 2 432float128: 2 433ldouble: 1 434 435Function: "carg_towardzero": 436double: 1 437float: 2 438float128: 3 439ldouble: 1 440 441Function: "carg_upward": 442double: 1 443float: 2 444float128: 2 445ldouble: 1 446 447Function: Real part of "casin": 448double: 1 449float: 1 450float128: 2 451ldouble: 1 452 453Function: Imaginary part of "casin": 454double: 2 455float: 2 456float128: 2 457ldouble: 2 458 459Function: Real part of "casin_downward": 460double: 3 461float: 2 462float128: 3 463ldouble: 3 464 465Function: Imaginary part of "casin_downward": 466double: 5 467float: 3 468float128: 6 469ldouble: 6 470 471Function: Real part of "casin_towardzero": 472double: 3 473float: 1 474float128: 3 475ldouble: 3 476 477Function: Imaginary part of "casin_towardzero": 478double: 5 479float: 3 480float128: 5 481ldouble: 5 482 483Function: Real part of "casin_upward": 484double: 3 485float: 2 486float128: 3 487ldouble: 2 488 489Function: Imaginary part of "casin_upward": 490double: 5 491float: 7 492float128: 7 493ldouble: 7 494 495Function: Real part of "casinh": 496double: 2 497float: 2 498float128: 2 499ldouble: 2 500 501Function: Imaginary part of "casinh": 502double: 1 503float: 1 504float128: 2 505ldouble: 1 506 507Function: Real part of "casinh_downward": 508double: 5 509float: 3 510float128: 6 511ldouble: 6 512 513Function: Imaginary part of "casinh_downward": 514double: 3 515float: 2 516float128: 3 517ldouble: 3 518 519Function: Real part of "casinh_towardzero": 520double: 5 521float: 3 522float128: 5 523ldouble: 5 524 525Function: Imaginary part of "casinh_towardzero": 526double: 3 527float: 1 528float128: 3 529ldouble: 3 530 531Function: Real part of "casinh_upward": 532double: 5 533float: 7 534float128: 7 535ldouble: 7 536 537Function: Imaginary part of "casinh_upward": 538double: 3 539float: 2 540float128: 3 541ldouble: 2 542 543Function: Real part of "catan": 544double: 1 545float: 1 546float128: 1 547ldouble: 1 548 549Function: Imaginary part of "catan": 550double: 1 551float: 1 552float128: 1 553ldouble: 1 554 555Function: Real part of "catan_downward": 556double: 1 557float: 2 558float128: 2 559ldouble: 1 560 561Function: Imaginary part of "catan_downward": 562double: 2 563float: 2 564float128: 2 565ldouble: 4 566 567Function: Real part of "catan_towardzero": 568double: 1 569float: 2 570float128: 2 571ldouble: 1 572 573Function: Imaginary part of "catan_towardzero": 574double: 2 575float: 2 576float128: 2 577ldouble: 4 578 579Function: Real part of "catan_upward": 580double: 1 581float: 1 582float128: 2 583ldouble: 1 584 585Function: Imaginary part of "catan_upward": 586double: 3 587float: 3 588float128: 3 589ldouble: 3 590 591Function: Real part of "catanh": 592double: 1 593float: 1 594float128: 1 595ldouble: 1 596 597Function: Imaginary part of "catanh": 598double: 1 599float: 1 600float128: 1 601ldouble: 1 602 603Function: Real part of "catanh_downward": 604double: 2 605float: 2 606float128: 2 607ldouble: 4 608 609Function: Imaginary part of "catanh_downward": 610double: 1 611float: 2 612float128: 2 613ldouble: 1 614 615Function: Real part of "catanh_towardzero": 616double: 2 617float: 2 618float128: 2 619ldouble: 4 620 621Function: Imaginary part of "catanh_towardzero": 622double: 1 623float: 2 624float128: 2 625ldouble: 1 626 627Function: Real part of "catanh_upward": 628double: 4 629float: 4 630float128: 4 631ldouble: 4 632 633Function: Imaginary part of "catanh_upward": 634double: 1 635float: 1 636float128: 2 637ldouble: 1 638 639Function: "cbrt": 640double: 4 641float: 1 642float128: 1 643ldouble: 1 644 645Function: "cbrt_downward": 646double: 4 647float: 1 648float128: 1 649ldouble: 1 650 651Function: "cbrt_towardzero": 652double: 3 653float: 1 654float128: 1 655ldouble: 1 656 657Function: "cbrt_upward": 658double: 5 659float: 1 660float128: 1 661ldouble: 1 662 663Function: "cbrt_vlen16": 664float: 1 665 666Function: "cbrt_vlen2": 667double: 1 668 669Function: "cbrt_vlen4": 670double: 1 671float: 2 672 673Function: "cbrt_vlen4_avx2": 674double: 1 675 676Function: "cbrt_vlen8": 677double: 1 678float: 2 679 680Function: "cbrt_vlen8_avx2": 681float: 2 682 683Function: Real part of "ccos": 684double: 1 685float: 1 686float128: 1 687ldouble: 1 688 689Function: Imaginary part of "ccos": 690double: 1 691float: 1 692float128: 1 693ldouble: 1 694 695Function: Real part of "ccos_downward": 696double: 1 697float: 1 698float128: 2 699ldouble: 3 700 701Function: Imaginary part of "ccos_downward": 702double: 3 703float: 3 704float128: 2 705ldouble: 3 706 707Function: Real part of "ccos_towardzero": 708double: 1 709float: 2 710float128: 2 711ldouble: 3 712 713Function: Imaginary part of "ccos_towardzero": 714double: 3 715float: 3 716float128: 2 717ldouble: 3 718 719Function: Real part of "ccos_upward": 720double: 1 721float: 2 722float128: 3 723ldouble: 2 724 725Function: Imaginary part of "ccos_upward": 726double: 2 727float: 2 728float128: 2 729ldouble: 2 730 731Function: Real part of "ccosh": 732double: 1 733float: 1 734float128: 1 735ldouble: 1 736 737Function: Imaginary part of "ccosh": 738double: 1 739float: 1 740float128: 1 741ldouble: 1 742 743Function: Real part of "ccosh_downward": 744double: 2 745float: 2 746float128: 2 747ldouble: 3 748 749Function: Imaginary part of "ccosh_downward": 750double: 3 751float: 3 752float128: 2 753ldouble: 3 754 755Function: Real part of "ccosh_towardzero": 756double: 2 757float: 3 758float128: 2 759ldouble: 3 760 761Function: Imaginary part of "ccosh_towardzero": 762double: 3 763float: 3 764float128: 2 765ldouble: 3 766 767Function: Real part of "ccosh_upward": 768double: 1 769float: 2 770float128: 3 771ldouble: 2 772 773Function: Imaginary part of "ccosh_upward": 774double: 2 775float: 2 776float128: 2 777ldouble: 2 778 779Function: Real part of "cexp": 780double: 2 781float: 1 782float128: 1 783ldouble: 1 784 785Function: Imaginary part of "cexp": 786double: 1 787float: 2 788float128: 1 789ldouble: 1 790 791Function: Real part of "cexp_downward": 792double: 2 793float: 2 794float128: 2 795ldouble: 3 796 797Function: Imaginary part of "cexp_downward": 798double: 3 799float: 3 800float128: 2 801ldouble: 3 802 803Function: Real part of "cexp_towardzero": 804double: 2 805float: 2 806float128: 2 807ldouble: 3 808 809Function: Imaginary part of "cexp_towardzero": 810double: 3 811float: 3 812float128: 2 813ldouble: 3 814 815Function: Real part of "cexp_upward": 816double: 1 817float: 2 818float128: 3 819ldouble: 2 820 821Function: Imaginary part of "cexp_upward": 822double: 3 823float: 2 824float128: 3 825ldouble: 3 826 827Function: Real part of "clog": 828double: 3 829float: 3 830float128: 2 831ldouble: 3 832 833Function: Imaginary part of "clog": 834double: 1 835float: 1 836float128: 1 837ldouble: 1 838 839Function: Real part of "clog10": 840double: 3 841float: 4 842float128: 2 843ldouble: 4 844 845Function: Imaginary part of "clog10": 846double: 2 847float: 2 848float128: 2 849ldouble: 2 850 851Function: Real part of "clog10_downward": 852double: 5 853float: 5 854float128: 3 855ldouble: 8 856 857Function: Imaginary part of "clog10_downward": 858double: 2 859float: 4 860float128: 3 861ldouble: 3 862 863Function: Real part of "clog10_towardzero": 864double: 5 865float: 6 866float128: 4 867ldouble: 8 868 869Function: Imaginary part of "clog10_towardzero": 870double: 2 871float: 4 872float128: 3 873ldouble: 3 874 875Function: Real part of "clog10_upward": 876double: 6 877float: 5 878float128: 4 879ldouble: 8 880 881Function: Imaginary part of "clog10_upward": 882double: 2 883float: 4 884float128: 3 885ldouble: 3 886 887Function: Real part of "clog_downward": 888double: 4 889float: 3 890float128: 3 891ldouble: 5 892 893Function: Imaginary part of "clog_downward": 894double: 1 895float: 2 896float128: 2 897ldouble: 1 898 899Function: Real part of "clog_towardzero": 900double: 4 901float: 4 902float128: 3 903ldouble: 5 904 905Function: Imaginary part of "clog_towardzero": 906double: 1 907float: 3 908float128: 2 909ldouble: 1 910 911Function: Real part of "clog_upward": 912double: 4 913float: 3 914float128: 4 915ldouble: 4 916 917Function: Imaginary part of "clog_upward": 918double: 1 919float: 2 920float128: 2 921ldouble: 1 922 923Function: "cos": 924double: 1 925float: 1 926float128: 2 927ldouble: 1 928 929Function: "cos_downward": 930double: 1 931float: 1 932float128: 3 933ldouble: 3 934 935Function: "cos_towardzero": 936double: 1 937float: 1 938float128: 1 939ldouble: 2 940 941Function: "cos_upward": 942double: 1 943float: 1 944float128: 2 945ldouble: 2 946 947Function: "cos_vlen16": 948float: 1 949 950Function: "cos_vlen2": 951double: 2 952 953Function: "cos_vlen4": 954double: 2 955float: 1 956 957Function: "cos_vlen4_avx2": 958double: 2 959 960Function: "cos_vlen8": 961double: 2 962float: 1 963 964Function: "cos_vlen8_avx2": 965float: 1 966 967Function: "cosh": 968double: 2 969float: 2 970float128: 2 971ldouble: 3 972 973Function: "cosh_downward": 974double: 3 975float: 1 976float128: 3 977ldouble: 3 978 979Function: "cosh_towardzero": 980double: 3 981float: 1 982float128: 3 983ldouble: 3 984 985Function: "cosh_upward": 986double: 2 987float: 2 988float128: 3 989ldouble: 3 990 991Function: "cosh_vlen16": 992float: 2 993 994Function: "cosh_vlen2": 995double: 2 996 997Function: "cosh_vlen4": 998double: 2 999float: 2 1000 1001Function: "cosh_vlen4_avx2": 1002double: 2 1003 1004Function: "cosh_vlen8": 1005double: 2 1006float: 2 1007 1008Function: "cosh_vlen8_avx2": 1009float: 2 1010 1011Function: Real part of "cpow": 1012double: 2 1013float: 5 1014float128: 4 1015ldouble: 3 1016 1017Function: Imaginary part of "cpow": 1018float: 2 1019float128: 1 1020ldouble: 4 1021 1022Function: Real part of "cpow_downward": 1023double: 5 1024float: 8 1025float128: 6 1026ldouble: 7 1027 1028Function: Imaginary part of "cpow_downward": 1029double: 1 1030float: 2 1031float128: 2 1032ldouble: 2 1033 1034Function: Real part of "cpow_towardzero": 1035double: 5 1036float: 8 1037float128: 6 1038ldouble: 7 1039 1040Function: Imaginary part of "cpow_towardzero": 1041double: 1 1042float: 2 1043float128: 2 1044ldouble: 1 1045 1046Function: Real part of "cpow_upward": 1047double: 4 1048float: 1 1049float128: 3 1050ldouble: 2 1051 1052Function: Imaginary part of "cpow_upward": 1053double: 1 1054float: 2 1055float128: 2 1056ldouble: 2 1057 1058Function: Real part of "csin": 1059double: 1 1060float: 1 1061float128: 1 1062ldouble: 1 1063 1064Function: Imaginary part of "csin": 1065float128: 1 1066 1067Function: Real part of "csin_downward": 1068double: 3 1069float: 3 1070float128: 2 1071ldouble: 3 1072 1073Function: Imaginary part of "csin_downward": 1074double: 1 1075float: 2 1076float128: 2 1077ldouble: 3 1078 1079Function: Real part of "csin_towardzero": 1080double: 3 1081float: 3 1082float128: 2 1083ldouble: 3 1084 1085Function: Imaginary part of "csin_towardzero": 1086double: 2 1087float: 2 1088float128: 2 1089ldouble: 3 1090 1091Function: Real part of "csin_upward": 1092double: 2 1093float: 3 1094float128: 2 1095ldouble: 3 1096 1097Function: Imaginary part of "csin_upward": 1098double: 1 1099float: 3 1100float128: 3 1101ldouble: 3 1102 1103Function: Real part of "csinh": 1104float: 1 1105float128: 1 1106ldouble: 1 1107 1108Function: Imaginary part of "csinh": 1109double: 1 1110float: 1 1111float128: 1 1112ldouble: 1 1113 1114Function: Real part of "csinh_downward": 1115double: 2 1116float: 2 1117float128: 2 1118ldouble: 3 1119 1120Function: Imaginary part of "csinh_downward": 1121double: 3 1122float: 3 1123float128: 2 1124ldouble: 3 1125 1126Function: Real part of "csinh_towardzero": 1127double: 2 1128float: 2 1129float128: 2 1130ldouble: 3 1131 1132Function: Imaginary part of "csinh_towardzero": 1133double: 3 1134float: 3 1135float128: 2 1136ldouble: 3 1137 1138Function: Real part of "csinh_upward": 1139double: 1 1140float: 3 1141float128: 3 1142ldouble: 3 1143 1144Function: Imaginary part of "csinh_upward": 1145double: 2 1146float: 3 1147float128: 2 1148ldouble: 3 1149 1150Function: Real part of "csqrt": 1151double: 2 1152float: 2 1153float128: 2 1154ldouble: 2 1155 1156Function: Imaginary part of "csqrt": 1157double: 2 1158float: 2 1159float128: 2 1160ldouble: 2 1161 1162Function: Real part of "csqrt_downward": 1163double: 5 1164float: 4 1165float128: 4 1166ldouble: 5 1167 1168Function: Imaginary part of "csqrt_downward": 1169double: 4 1170float: 3 1171float128: 3 1172ldouble: 4 1173 1174Function: Real part of "csqrt_towardzero": 1175double: 4 1176float: 3 1177float128: 3 1178ldouble: 4 1179 1180Function: Imaginary part of "csqrt_towardzero": 1181double: 4 1182float: 3 1183float128: 3 1184ldouble: 4 1185 1186Function: Real part of "csqrt_upward": 1187double: 5 1188float: 4 1189float128: 4 1190ldouble: 5 1191 1192Function: Imaginary part of "csqrt_upward": 1193double: 3 1194float: 3 1195float128: 3 1196ldouble: 4 1197 1198Function: Real part of "ctan": 1199double: 1 1200float: 1 1201float128: 3 1202ldouble: 2 1203 1204Function: Imaginary part of "ctan": 1205double: 2 1206float: 2 1207float128: 3 1208ldouble: 1 1209 1210Function: Real part of "ctan_downward": 1211double: 6 1212float: 5 1213float128: 4 1214ldouble: 5 1215 1216Function: Imaginary part of "ctan_downward": 1217double: 2 1218float: 2 1219float128: 5 1220ldouble: 4 1221 1222Function: Real part of "ctan_towardzero": 1223double: 5 1224float: 3 1225float128: 4 1226ldouble: 5 1227 1228Function: Imaginary part of "ctan_towardzero": 1229double: 2 1230float: 2 1231float128: 5 1232ldouble: 4 1233 1234Function: Real part of "ctan_upward": 1235double: 2 1236float: 4 1237float128: 5 1238ldouble: 3 1239 1240Function: Imaginary part of "ctan_upward": 1241double: 2 1242float: 2 1243float128: 5 1244ldouble: 3 1245 1246Function: Real part of "ctanh": 1247double: 2 1248float: 2 1249float128: 3 1250ldouble: 1 1251 1252Function: Imaginary part of "ctanh": 1253double: 2 1254float: 2 1255float128: 3 1256ldouble: 2 1257 1258Function: Real part of "ctanh_downward": 1259double: 4 1260float: 2 1261float128: 5 1262ldouble: 4 1263 1264Function: Imaginary part of "ctanh_downward": 1265double: 6 1266float: 5 1267float128: 4 1268ldouble: 4 1269 1270Function: Real part of "ctanh_towardzero": 1271double: 2 1272float: 2 1273float128: 5 1274ldouble: 4 1275 1276Function: Imaginary part of "ctanh_towardzero": 1277double: 5 1278float: 3 1279float128: 3 1280ldouble: 3 1281 1282Function: Real part of "ctanh_upward": 1283double: 2 1284float: 2 1285float128: 5 1286ldouble: 3 1287 1288Function: Imaginary part of "ctanh_upward": 1289double: 2 1290float: 3 1291float128: 5 1292ldouble: 3 1293 1294Function: "erf": 1295double: 1 1296float: 1 1297float128: 1 1298ldouble: 1 1299 1300Function: "erf_downward": 1301double: 1 1302float: 1 1303float128: 2 1304ldouble: 1 1305 1306Function: "erf_towardzero": 1307double: 1 1308float: 1 1309float128: 1 1310ldouble: 1 1311 1312Function: "erf_upward": 1313double: 1 1314float: 1 1315float128: 2 1316ldouble: 1 1317 1318Function: "erf_vlen16": 1319float: 1 1320 1321Function: "erf_vlen2": 1322double: 1 1323 1324Function: "erf_vlen4": 1325double: 1 1326float: 2 1327 1328Function: "erf_vlen4_avx2": 1329double: 1 1330 1331Function: "erf_vlen8": 1332double: 1 1333float: 2 1334 1335Function: "erf_vlen8_avx2": 1336float: 2 1337 1338Function: "erfc": 1339double: 5 1340float: 3 1341float128: 4 1342ldouble: 5 1343 1344Function: "erfc_downward": 1345double: 5 1346float: 6 1347float128: 5 1348ldouble: 4 1349 1350Function: "erfc_towardzero": 1351double: 3 1352float: 4 1353float128: 4 1354ldouble: 4 1355 1356Function: "erfc_upward": 1357double: 5 1358float: 6 1359float128: 5 1360ldouble: 5 1361 1362Function: "erfc_vlen16": 1363float: 1 1364 1365Function: "erfc_vlen2": 1366double: 1 1367 1368Function: "erfc_vlen4": 1369double: 1 1370float: 1 1371 1372Function: "erfc_vlen4_avx2": 1373double: 1 1374 1375Function: "erfc_vlen8": 1376double: 1 1377float: 1 1378 1379Function: "erfc_vlen8_avx2": 1380float: 1 1381 1382Function: "exp": 1383double: 1 1384float: 1 1385float128: 1 1386ldouble: 1 1387 1388Function: "exp10": 1389double: 2 1390float: 1 1391float128: 2 1392ldouble: 1 1393 1394Function: "exp10_downward": 1395double: 3 1396float: 1 1397float128: 3 1398ldouble: 2 1399 1400Function: "exp10_towardzero": 1401double: 3 1402float: 1 1403float128: 3 1404ldouble: 2 1405 1406Function: "exp10_upward": 1407double: 2 1408float: 1 1409float128: 3 1410ldouble: 2 1411 1412Function: "exp10_vlen16": 1413float: 3 1414 1415Function: "exp10_vlen2": 1416double: 1 1417 1418Function: "exp10_vlen4": 1419double: 1 1420float: 1 1421 1422Function: "exp10_vlen4_avx2": 1423double: 1 1424 1425Function: "exp10_vlen8": 1426double: 1 1427float: 1 1428 1429Function: "exp10_vlen8_avx2": 1430float: 1 1431 1432Function: "exp2": 1433double: 1 1434float: 1 1435float128: 1 1436ldouble: 1 1437 1438Function: "exp2_downward": 1439double: 1 1440float: 1 1441float128: 1 1442ldouble: 1 1443 1444Function: "exp2_towardzero": 1445double: 1 1446float: 1 1447float128: 1 1448ldouble: 1 1449 1450Function: "exp2_upward": 1451double: 1 1452float: 1 1453float128: 2 1454ldouble: 1 1455 1456Function: "exp2_vlen16": 1457float: 1 1458 1459Function: "exp2_vlen2": 1460double: 1 1461 1462Function: "exp2_vlen4": 1463double: 1 1464float: 1 1465 1466Function: "exp2_vlen4_avx2": 1467double: 1 1468 1469Function: "exp2_vlen8": 1470double: 1 1471float: 1 1472 1473Function: "exp2_vlen8_avx2": 1474float: 1 1475 1476Function: "exp_downward": 1477double: 1 1478float: 1 1479ldouble: 1 1480 1481Function: "exp_towardzero": 1482double: 1 1483float: 1 1484ldouble: 2 1485 1486Function: "exp_upward": 1487double: 1 1488float: 1 1489ldouble: 1 1490 1491Function: "exp_vlen16": 1492float: 1 1493 1494Function: "exp_vlen2": 1495double: 1 1496 1497Function: "exp_vlen4": 1498double: 1 1499float: 1 1500 1501Function: "exp_vlen4_avx2": 1502double: 1 1503 1504Function: "exp_vlen8": 1505double: 1 1506float: 1 1507 1508Function: "exp_vlen8_avx2": 1509float: 1 1510 1511Function: "expm1": 1512double: 1 1513float: 1 1514float128: 2 1515ldouble: 3 1516 1517Function: "expm1_downward": 1518double: 1 1519float: 1 1520float128: 2 1521ldouble: 4 1522 1523Function: "expm1_towardzero": 1524double: 1 1525float: 2 1526float128: 4 1527ldouble: 4 1528 1529Function: "expm1_upward": 1530double: 1 1531float: 1 1532float128: 3 1533ldouble: 4 1534 1535Function: "expm1_vlen16": 1536float: 1 1537 1538Function: "expm1_vlen2": 1539double: 1 1540 1541Function: "expm1_vlen4": 1542double: 1 1543float: 1 1544 1545Function: "expm1_vlen4_avx2": 1546double: 1 1547 1548Function: "expm1_vlen8": 1549double: 1 1550float: 1 1551 1552Function: "expm1_vlen8_avx2": 1553float: 1 1554 1555Function: "gamma": 1556double: 4 1557float: 7 1558ldouble: 4 1559 1560Function: "gamma_downward": 1561double: 5 1562float: 7 1563ldouble: 7 1564 1565Function: "gamma_towardzero": 1566double: 5 1567float: 6 1568ldouble: 7 1569 1570Function: "gamma_upward": 1571double: 5 1572float: 6 1573ldouble: 6 1574 1575Function: "hypot": 1576double: 1 1577float128: 1 1578ldouble: 1 1579 1580Function: "hypot_downward": 1581double: 1 1582float128: 1 1583ldouble: 1 1584 1585Function: "hypot_towardzero": 1586double: 1 1587float128: 1 1588ldouble: 1 1589 1590Function: "hypot_upward": 1591double: 1 1592float128: 1 1593ldouble: 1 1594 1595Function: "hypot_vlen16": 1596float: 1 1597 1598Function: "hypot_vlen2": 1599double: 1 1600 1601Function: "hypot_vlen4": 1602double: 1 1603float: 1 1604 1605Function: "hypot_vlen4_avx2": 1606double: 1 1607 1608Function: "hypot_vlen8": 1609double: 1 1610float: 1 1611 1612Function: "hypot_vlen8_avx2": 1613float: 1 1614 1615Function: "j0": 1616double: 3 1617float: 9 1618float128: 2 1619ldouble: 8 1620 1621Function: "j0_downward": 1622double: 6 1623float: 9 1624float128: 9 1625ldouble: 6 1626 1627Function: "j0_towardzero": 1628double: 7 1629float: 9 1630float128: 9 1631ldouble: 6 1632 1633Function: "j0_upward": 1634double: 9 1635float: 9 1636float128: 7 1637ldouble: 6 1638 1639Function: "j1": 1640double: 4 1641float: 9 1642float128: 4 1643ldouble: 9 1644 1645Function: "j1_downward": 1646double: 6 1647float: 8 1648float128: 6 1649ldouble: 8 1650 1651Function: "j1_towardzero": 1652double: 4 1653float: 9 1654float128: 9 1655ldouble: 4 1656 1657Function: "j1_upward": 1658double: 9 1659float: 9 1660float128: 9 1661ldouble: 3 1662 1663Function: "jn": 1664double: 4 1665float: 4 1666float128: 7 1667ldouble: 4 1668 1669Function: "jn_downward": 1670double: 5 1671float: 5 1672float128: 8 1673ldouble: 4 1674 1675Function: "jn_towardzero": 1676double: 5 1677float: 5 1678float128: 8 1679ldouble: 5 1680 1681Function: "jn_upward": 1682double: 5 1683float: 5 1684float128: 7 1685ldouble: 5 1686 1687Function: "lgamma": 1688double: 4 1689float: 7 1690float128: 5 1691ldouble: 4 1692 1693Function: "lgamma_downward": 1694double: 5 1695float: 7 1696float128: 8 1697ldouble: 7 1698 1699Function: "lgamma_towardzero": 1700double: 5 1701float: 6 1702float128: 5 1703ldouble: 7 1704 1705Function: "lgamma_upward": 1706double: 5 1707float: 6 1708float128: 8 1709ldouble: 6 1710 1711Function: "log": 1712double: 1 1713float: 1 1714float128: 1 1715ldouble: 1 1716 1717Function: "log10": 1718double: 2 1719float: 2 1720float128: 2 1721ldouble: 1 1722 1723Function: "log10_downward": 1724double: 2 1725float: 3 1726float128: 1 1727ldouble: 2 1728 1729Function: "log10_towardzero": 1730double: 2 1731float: 2 1732float128: 1 1733ldouble: 2 1734 1735Function: "log10_upward": 1736double: 2 1737float: 2 1738float128: 1 1739ldouble: 1 1740 1741Function: "log10_vlen16": 1742float: 1 1743 1744Function: "log10_vlen2": 1745double: 1 1746 1747Function: "log10_vlen4": 1748double: 1 1749float: 1 1750 1751Function: "log10_vlen4_avx2": 1752double: 1 1753 1754Function: "log10_vlen8": 1755double: 1 1756float: 1 1757 1758Function: "log10_vlen8_avx2": 1759float: 1 1760 1761Function: "log1p": 1762double: 1 1763float: 1 1764float128: 3 1765ldouble: 2 1766 1767Function: "log1p_downward": 1768double: 2 1769float: 2 1770float128: 3 1771ldouble: 4 1772 1773Function: "log1p_towardzero": 1774double: 2 1775float: 2 1776float128: 3 1777ldouble: 4 1778 1779Function: "log1p_upward": 1780double: 2 1781float: 2 1782float128: 2 1783ldouble: 3 1784 1785Function: "log1p_vlen16": 1786float: 2 1787 1788Function: "log1p_vlen2": 1789double: 1 1790 1791Function: "log1p_vlen4": 1792double: 1 1793float: 2 1794 1795Function: "log1p_vlen4_avx2": 1796double: 1 1797 1798Function: "log1p_vlen8": 1799double: 1 1800float: 2 1801 1802Function: "log1p_vlen8_avx2": 1803float: 2 1804 1805Function: "log2": 1806double: 2 1807float: 1 1808float128: 3 1809ldouble: 1 1810 1811Function: "log2_downward": 1812double: 3 1813float: 3 1814float128: 3 1815ldouble: 1 1816 1817Function: "log2_towardzero": 1818double: 2 1819float: 2 1820float128: 1 1821ldouble: 1 1822 1823Function: "log2_upward": 1824double: 3 1825float: 3 1826float128: 1 1827ldouble: 1 1828 1829Function: "log2_vlen16": 1830float: 1 1831 1832Function: "log2_vlen2": 1833double: 1 1834 1835Function: "log2_vlen4": 1836double: 1 1837float: 1 1838 1839Function: "log2_vlen4_avx2": 1840double: 1 1841 1842Function: "log2_vlen8": 1843double: 1 1844float: 1 1845 1846Function: "log2_vlen8_avx2": 1847float: 1 1848 1849Function: "log_downward": 1850float: 2 1851float128: 1 1852ldouble: 2 1853 1854Function: "log_towardzero": 1855float: 2 1856float128: 2 1857ldouble: 2 1858 1859Function: "log_upward": 1860double: 1 1861float: 2 1862float128: 1 1863ldouble: 1 1864 1865Function: "log_vlen16": 1866float: 3 1867 1868Function: "log_vlen2": 1869double: 1 1870 1871Function: "log_vlen4": 1872double: 1 1873float: 3 1874 1875Function: "log_vlen4_avx2": 1876double: 1 1877 1878Function: "log_vlen8": 1879double: 1 1880float: 3 1881 1882Function: "log_vlen8_avx2": 1883float: 3 1884 1885Function: "pow": 1886double: 1 1887float: 1 1888float128: 2 1889ldouble: 1 1890 1891Function: "pow_downward": 1892double: 1 1893float: 1 1894float128: 2 1895ldouble: 4 1896 1897Function: "pow_towardzero": 1898double: 1 1899float: 1 1900float128: 2 1901ldouble: 4 1902 1903Function: "pow_upward": 1904double: 1 1905float: 1 1906float128: 2 1907ldouble: 4 1908 1909Function: "pow_vlen16": 1910float: 3 1911 1912Function: "pow_vlen2": 1913double: 1 1914 1915Function: "pow_vlen4": 1916double: 1 1917float: 3 1918 1919Function: "pow_vlen4_avx2": 1920double: 1 1921 1922Function: "pow_vlen8": 1923double: 1 1924float: 3 1925 1926Function: "pow_vlen8_avx2": 1927float: 3 1928 1929Function: "sin": 1930double: 1 1931float: 1 1932float128: 2 1933ldouble: 2 1934 1935Function: "sin_downward": 1936double: 1 1937float: 1 1938float128: 3 1939ldouble: 3 1940 1941Function: "sin_towardzero": 1942double: 1 1943float: 1 1944float128: 2 1945ldouble: 2 1946 1947Function: "sin_upward": 1948double: 1 1949float: 1 1950float128: 3 1951ldouble: 3 1952 1953Function: "sin_vlen16": 1954float: 1 1955 1956Function: "sin_vlen2": 1957double: 2 1958 1959Function: "sin_vlen4": 1960double: 2 1961float: 1 1962 1963Function: "sin_vlen4_avx2": 1964double: 2 1965 1966Function: "sin_vlen8": 1967double: 2 1968float: 1 1969 1970Function: "sin_vlen8_avx2": 1971float: 1 1972 1973Function: "sincos": 1974double: 1 1975float128: 1 1976ldouble: 1 1977 1978Function: "sincos_downward": 1979double: 1 1980float: 1 1981float128: 3 1982ldouble: 3 1983 1984Function: "sincos_towardzero": 1985double: 1 1986float: 1 1987float128: 2 1988ldouble: 2 1989 1990Function: "sincos_upward": 1991double: 1 1992float: 1 1993float128: 3 1994ldouble: 3 1995 1996Function: "sincos_vlen16": 1997float: 1 1998 1999Function: "sincos_vlen2": 2000double: 2 2001 2002Function: "sincos_vlen4": 2003double: 2 2004float: 1 2005 2006Function: "sincos_vlen4_avx2": 2007double: 2 2008 2009Function: "sincos_vlen8": 2010double: 2 2011float: 1 2012 2013Function: "sincos_vlen8_avx2": 2014float: 1 2015 2016Function: "sinh": 2017double: 2 2018float: 2 2019float128: 2 2020ldouble: 3 2021 2022Function: "sinh_downward": 2023double: 3 2024float: 3 2025float128: 3 2026ldouble: 5 2027 2028Function: "sinh_towardzero": 2029double: 3 2030float: 2 2031float128: 3 2032ldouble: 4 2033 2034Function: "sinh_upward": 2035double: 3 2036float: 3 2037float128: 4 2038ldouble: 5 2039 2040Function: "sinh_vlen16": 2041float: 1 2042 2043Function: "sinh_vlen2": 2044double: 2 2045 2046Function: "sinh_vlen4": 2047double: 2 2048float: 1 2049 2050Function: "sinh_vlen4_avx2": 2051double: 2 2052 2053Function: "sinh_vlen8": 2054double: 2 2055float: 1 2056 2057Function: "sinh_vlen8_avx2": 2058float: 1 2059 2060Function: "tan": 2061float: 1 2062float128: 1 2063ldouble: 2 2064 2065Function: "tan_downward": 2066double: 1 2067float: 2 2068float128: 1 2069ldouble: 3 2070 2071Function: "tan_towardzero": 2072double: 1 2073float: 1 2074float128: 1 2075ldouble: 3 2076 2077Function: "tan_upward": 2078double: 1 2079float: 1 2080float128: 1 2081ldouble: 2 2082 2083Function: "tan_vlen16": 2084float: 1 2085 2086Function: "tan_vlen2": 2087double: 2 2088 2089Function: "tan_vlen4": 2090double: 2 2091float: 2 2092 2093Function: "tan_vlen4_avx2": 2094double: 1 2095 2096Function: "tan_vlen8": 2097double: 2 2098float: 2 2099 2100Function: "tan_vlen8_avx2": 2101float: 2 2102 2103Function: "tanh": 2104double: 2 2105float: 2 2106float128: 2 2107ldouble: 3 2108 2109Function: "tanh_downward": 2110double: 3 2111float: 3 2112float128: 4 2113ldouble: 4 2114 2115Function: "tanh_towardzero": 2116double: 2 2117float: 2 2118float128: 3 2119ldouble: 3 2120 2121Function: "tanh_upward": 2122double: 3 2123float: 3 2124float128: 3 2125ldouble: 4 2126 2127Function: "tanh_vlen16": 2128float: 1 2129 2130Function: "tanh_vlen2": 2131double: 1 2132 2133Function: "tanh_vlen4": 2134double: 1 2135 2136Function: "tanh_vlen4_avx2": 2137double: 1 2138 2139Function: "tanh_vlen8": 2140double: 1 2141 2142Function: "tgamma": 2143double: 9 2144float: 8 2145float128: 4 2146ldouble: 5 2147 2148Function: "tgamma_downward": 2149double: 9 2150float: 7 2151float128: 5 2152ldouble: 6 2153 2154Function: "tgamma_towardzero": 2155double: 9 2156float: 7 2157float128: 5 2158ldouble: 6 2159 2160Function: "tgamma_upward": 2161double: 9 2162float: 8 2163float128: 4 2164ldouble: 5 2165 2166Function: "y0": 2167double: 3 2168float: 9 2169float128: 3 2170ldouble: 2 2171 2172Function: "y0_downward": 2173double: 4 2174float: 9 2175float128: 7 2176ldouble: 7 2177 2178Function: "y0_towardzero": 2179double: 4 2180float: 9 2181float128: 3 2182ldouble: 8 2183 2184Function: "y0_upward": 2185double: 3 2186float: 9 2187float128: 4 2188ldouble: 7 2189 2190Function: "y1": 2191double: 6 2192float: 9 2193float128: 5 2194ldouble: 3 2195 2196Function: "y1_downward": 2197double: 6 2198float: 9 2199float128: 5 2200ldouble: 7 2201 2202Function: "y1_towardzero": 2203double: 4 2204float: 9 2205float128: 6 2206ldouble: 5 2207 2208Function: "y1_upward": 2209double: 7 2210float: 9 2211float128: 6 2212ldouble: 9 2213 2214Function: "yn": 2215double: 3 2216float: 3 2217float128: 5 2218ldouble: 4 2219 2220Function: "yn_downward": 2221double: 3 2222float: 4 2223float128: 5 2224ldouble: 5 2225 2226Function: "yn_towardzero": 2227double: 3 2228float: 3 2229float128: 5 2230ldouble: 5 2231 2232Function: "yn_upward": 2233double: 4 2234float: 5 2235float128: 5 2236ldouble: 4 2237 2238# end of automatic generation 2239