1/* 2 * Public domain. 3 * 4 */ 5 6/* 7 * The 8087 method for the exponential function is to calculate 8 * exp(x) = 2^(x log2(e)) 9 * after separating integer and fractional parts 10 * x log2(e) = i + f, |f| <= .5 11 * 2^i is immediate but f needs to be precise for long double accuracy. 12 * Suppress range reduction error in computing f by the following. 13 * Separate x into integer and fractional parts 14 * x = xi + xf, |xf| <= .5 15 * Separate log2(e) into the sum of an exact number c0 and small part c1. 16 * c0 + c1 = log2(e) to extra precision 17 * Then 18 * f = (c0 xi - i) + c0 xf + c1 x 19 * where c0 xi is exact and so also is (c0 xi - i). 20 * -- moshier@na-net.ornl.gov 21 */ 22 23#include <libm-alias-ldouble.h> 24#include <machine/asm.h> 25#include <x86_64-math-asm.h> 26#include <libm-alias-finite.h> 27 28#ifdef USE_AS_EXP10L 29# define IEEE754_EXPL __ieee754_exp10l 30# define EXPL_FINITE __exp10l_finite 31# define FLDLOG fldl2t 32#elif defined USE_AS_EXPM1L 33# define IEEE754_EXPL __expm1l 34# undef EXPL_FINITE 35# define FLDLOG fldl2e 36#else 37# define IEEE754_EXPL __ieee754_expl 38# define EXPL_FINITE __expl_finite 39# define FLDLOG fldl2e 40#endif 41 42 .section .rodata.cst16,"aM",@progbits,16 43 44 .p2align 4 45#ifdef USE_AS_EXP10L 46 .type c0,@object 47c0: .byte 0, 0, 0, 0, 0, 0, 0x9a, 0xd4, 0x00, 0x40 48 .byte 0, 0, 0, 0, 0, 0 49 ASM_SIZE_DIRECTIVE(c0) 50 .type c1,@object 51c1: .byte 0x58, 0x92, 0xfc, 0x15, 0x37, 0x9a, 0x97, 0xf0, 0xef, 0x3f 52 .byte 0, 0, 0, 0, 0, 0 53 ASM_SIZE_DIRECTIVE(c1) 54#else 55 .type c0,@object 56c0: .byte 0, 0, 0, 0, 0, 0, 0xaa, 0xb8, 0xff, 0x3f 57 .byte 0, 0, 0, 0, 0, 0 58 ASM_SIZE_DIRECTIVE(c0) 59 .type c1,@object 60c1: .byte 0x20, 0xfa, 0xee, 0xc2, 0x5f, 0x70, 0xa5, 0xec, 0xed, 0x3f 61 .byte 0, 0, 0, 0, 0, 0 62 ASM_SIZE_DIRECTIVE(c1) 63#endif 64#ifndef USE_AS_EXPM1L 65 .type csat,@object 66csat: .byte 0, 0, 0, 0, 0, 0, 0, 0x80, 0x0e, 0x40 67 .byte 0, 0, 0, 0, 0, 0 68 ASM_SIZE_DIRECTIVE(csat) 69DEFINE_LDBL_MIN 70#endif 71 72#ifdef PIC 73# define MO(op) op##(%rip) 74#else 75# define MO(op) op 76#endif 77 78 .text 79ENTRY(IEEE754_EXPL) 80#ifdef USE_AS_EXPM1L 81 movzwl 8+8(%rsp), %eax 82 xorb $0x80, %ah // invert sign bit (now 1 is "positive") 83 cmpl $0xc006, %eax // is num positive and exp >= 6 (number is >= 128.0)? 84 jae HIDDEN_JUMPTARGET (__expl) // (if num is denormal, it is at least >= 64.0) 85#endif 86 fldt 8(%rsp) 87/* I added the following ugly construct because expl(+-Inf) resulted 88 in NaN. The ugliness results from the bright minds at Intel. 89 For the i686 the code can be written better. 90 -- drepper@cygnus.com. */ 91 fxam /* Is NaN or +-Inf? */ 92#ifdef USE_AS_EXPM1L 93 xorb $0x80, %ah 94 cmpl $0xc006, %eax 95 fstsw %ax 96 movb $0x45, %dh 97 jb 4f 98 99 /* Below -64.0 (may be -NaN or -Inf). */ 100 andb %ah, %dh 101 cmpb $0x01, %dh 102 je 6f /* Is +-NaN, jump. */ 103 jmp 1f /* -large, possibly -Inf. */ 104 1054: /* In range -64.0 to 64.0 (may be +-0 but not NaN or +-Inf). */ 106 /* Test for +-0 as argument. */ 107 andb %ah, %dh 108 cmpb $0x40, %dh 109 je 2f 110 111 /* Test for arguments that are small but not subnormal. */ 112 movzwl 8+8(%rsp), %eax 113 andl $0x7fff, %eax 114 cmpl $0x3fbf, %eax 115 jge 3f 116 /* Argument's exponent below -64; avoid spurious underflow if 117 normal. */ 118 cmpl $0x0001, %eax 119 jge 2f 120 /* Force underflow and return the argument, to avoid wrong signs 121 of zero results from the code below in some rounding modes. */ 122 fld %st 123 fmul %st 124 fstp %st 125 jmp 2f 126#else 127 movzwl 8+8(%rsp), %eax 128 andl $0x7fff, %eax 129 cmpl $0x400d, %eax 130 jg 5f 131 cmpl $0x3fbc, %eax 132 jge 3f 133 /* Argument's exponent below -67, result rounds to 1. */ 134 fld1 135 faddp 136 jmp 2f 1375: /* Overflow, underflow or infinity or NaN as argument. */ 138 fstsw %ax 139 movb $0x45, %dh 140 andb %ah, %dh 141 cmpb $0x05, %dh 142 je 1f /* Is +-Inf, jump. */ 143 cmpb $0x01, %dh 144 je 6f /* Is +-NaN, jump. */ 145 /* Overflow or underflow; saturate. */ 146 fstp %st 147 fldt MO(csat) 148 andb $2, %ah 149 jz 3f 150 fchs 151#endif 1523: FLDLOG /* 1 log2(base) */ 153 fmul %st(1), %st /* 1 x log2(base) */ 154 /* Set round-to-nearest temporarily. */ 155 fstcw -4(%rsp) 156 movl $0xf3ff, %edx 157 andl -4(%rsp), %edx 158 movl %edx, -8(%rsp) 159 fldcw -8(%rsp) 160 frndint /* 1 i */ 161 fld %st(1) /* 2 x */ 162 frndint /* 2 xi */ 163 fldcw -4(%rsp) 164 fld %st(1) /* 3 i */ 165 fldt MO(c0) /* 4 c0 */ 166 fld %st(2) /* 5 xi */ 167 fmul %st(1), %st /* 5 c0 xi */ 168 fsubp %st, %st(2) /* 4 f = c0 xi - i */ 169 fld %st(4) /* 5 x */ 170 fsub %st(3), %st /* 5 xf = x - xi */ 171 fmulp %st, %st(1) /* 4 c0 xf */ 172 faddp %st, %st(1) /* 3 f = f + c0 xf */ 173 fldt MO(c1) /* 4 */ 174 fmul %st(4), %st /* 4 c1 * x */ 175 faddp %st, %st(1) /* 3 f = f + c1 * x */ 176 f2xm1 /* 3 2^(fract(x * log2(base))) - 1 */ 177#ifdef USE_AS_EXPM1L 178 fstp %st(1) /* 2 */ 179 fscale /* 2 scale factor is st(1); base^x - 2^i */ 180 fxch /* 2 i */ 181 fld1 /* 3 1.0 */ 182 fscale /* 3 2^i */ 183 fld1 /* 4 1.0 */ 184 fsubrp %st, %st(1) /* 3 2^i - 1.0 */ 185 fstp %st(1) /* 2 */ 186 faddp %st, %st(1) /* 1 base^x - 1.0 */ 187#else 188 fld1 /* 4 1.0 */ 189 faddp /* 3 2^(fract(x * log2(base))) */ 190 fstp %st(1) /* 2 */ 191 fscale /* 2 scale factor is st(1); base^x */ 192 fstp %st(1) /* 1 */ 193 LDBL_CHECK_FORCE_UFLOW_NONNEG 194#endif 195 fstp %st(1) /* 0 */ 196 jmp 2f 1971: 198#ifdef USE_AS_EXPM1L 199 /* For expm1l, only negative sign gets here. */ 200 fstp %st 201 fld1 202 fchs 203#else 204 testl $0x200, %eax /* Test sign. */ 205 jz 2f /* If positive, jump. */ 206 fstp %st 207 fldz /* Set result to 0. */ 208#endif 2092: ret 2106: /* NaN argument. */ 211 fadd %st 212 ret 213END(IEEE754_EXPL) 214 215#ifdef USE_AS_EXPM1L 216libm_hidden_def (__expm1l) 217libm_alias_ldouble (__expm1, expm1) 218#elif defined USE_AS_EXP10L 219libm_alias_finite (__ieee754_exp10l, __exp10l) 220#else 221libm_alias_finite (__ieee754_expl, __expl) 222#endif 223