1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acos": 5double: 1 6float: 1 7ldouble: 1 8 9Function: "acos_downward": 10double: 1 11float: 1 12ldouble: 1 13 14Function: "acos_towardzero": 15double: 1 16float: 1 17ldouble: 1 18 19Function: "acos_upward": 20double: 1 21float: 1 22ldouble: 1 23 24Function: "acosh": 25double: 2 26float: 2 27ldouble: 4 28 29Function: "acosh_downward": 30double: 2 31float: 2 32ldouble: 3 33 34Function: "acosh_towardzero": 35double: 2 36float: 2 37ldouble: 2 38 39Function: "acosh_upward": 40double: 2 41float: 2 42ldouble: 3 43 44Function: "asin": 45double: 1 46float: 1 47ldouble: 1 48 49Function: "asin_downward": 50double: 1 51float: 1 52ldouble: 2 53 54Function: "asin_towardzero": 55double: 1 56float: 1 57ldouble: 1 58 59Function: "asin_upward": 60double: 2 61float: 1 62ldouble: 2 63 64Function: "asinh": 65double: 2 66float: 2 67ldouble: 4 68 69Function: "asinh_downward": 70double: 3 71float: 3 72ldouble: 4 73 74Function: "asinh_towardzero": 75double: 2 76float: 2 77ldouble: 2 78 79Function: "asinh_upward": 80double: 3 81float: 3 82ldouble: 4 83 84Function: "atan": 85double: 1 86float: 1 87ldouble: 1 88 89Function: "atan2": 90float: 1 91ldouble: 2 92 93Function: "atan2_downward": 94double: 1 95float: 2 96ldouble: 2 97 98Function: "atan2_towardzero": 99double: 1 100float: 2 101ldouble: 3 102 103Function: "atan2_upward": 104double: 1 105float: 1 106ldouble: 2 107 108Function: "atan_downward": 109double: 1 110float: 2 111ldouble: 2 112 113Function: "atan_towardzero": 114double: 1 115float: 1 116ldouble: 1 117 118Function: "atan_upward": 119double: 1 120float: 2 121ldouble: 2 122 123Function: "atanh": 124double: 2 125float: 2 126ldouble: 4 127 128Function: "atanh_downward": 129double: 3 130float: 3 131ldouble: 4 132 133Function: "atanh_towardzero": 134double: 2 135float: 2 136ldouble: 2 137 138Function: "atanh_upward": 139double: 3 140float: 3 141ldouble: 4 142 143Function: "cabs": 144double: 1 145ldouble: 1 146 147Function: "cabs_downward": 148double: 1 149ldouble: 1 150 151Function: "cabs_towardzero": 152double: 1 153ldouble: 1 154 155Function: "cabs_upward": 156double: 1 157ldouble: 1 158 159Function: Real part of "cacos": 160double: 1 161float: 2 162ldouble: 2 163 164Function: Imaginary part of "cacos": 165double: 2 166float: 2 167ldouble: 2 168 169Function: Real part of "cacos_downward": 170double: 3 171float: 2 172ldouble: 3 173 174Function: Imaginary part of "cacos_downward": 175double: 5 176float: 3 177ldouble: 6 178 179Function: Real part of "cacos_towardzero": 180double: 3 181float: 2 182ldouble: 3 183 184Function: Imaginary part of "cacos_towardzero": 185double: 4 186float: 2 187ldouble: 5 188 189Function: Real part of "cacos_upward": 190double: 2 191float: 2 192ldouble: 3 193 194Function: Imaginary part of "cacos_upward": 195double: 5 196float: 5 197ldouble: 7 198 199Function: Real part of "cacosh": 200double: 2 201float: 2 202ldouble: 2 203 204Function: Imaginary part of "cacosh": 205double: 1 206float: 2 207ldouble: 2 208 209Function: Real part of "cacosh_downward": 210double: 4 211float: 2 212ldouble: 5 213 214Function: Imaginary part of "cacosh_downward": 215double: 3 216float: 3 217ldouble: 4 218 219Function: Real part of "cacosh_towardzero": 220double: 4 221float: 2 222ldouble: 5 223 224Function: Imaginary part of "cacosh_towardzero": 225double: 3 226float: 2 227ldouble: 3 228 229Function: Real part of "cacosh_upward": 230double: 4 231float: 3 232ldouble: 6 233 234Function: Imaginary part of "cacosh_upward": 235double: 3 236float: 2 237ldouble: 4 238 239Function: "carg": 240float: 1 241ldouble: 2 242 243Function: "carg_downward": 244double: 1 245float: 2 246ldouble: 2 247 248Function: "carg_towardzero": 249double: 1 250float: 2 251ldouble: 3 252 253Function: "carg_upward": 254double: 1 255float: 1 256ldouble: 2 257 258Function: Real part of "casin": 259double: 1 260float: 1 261ldouble: 2 262 263Function: Imaginary part of "casin": 264double: 2 265float: 2 266ldouble: 2 267 268Function: Real part of "casin_downward": 269double: 3 270float: 2 271ldouble: 3 272 273Function: Imaginary part of "casin_downward": 274double: 5 275float: 3 276ldouble: 6 277 278Function: Real part of "casin_towardzero": 279double: 3 280float: 1 281ldouble: 3 282 283Function: Imaginary part of "casin_towardzero": 284double: 4 285float: 2 286ldouble: 5 287 288Function: Real part of "casin_upward": 289double: 3 290float: 2 291ldouble: 3 292 293Function: Imaginary part of "casin_upward": 294double: 5 295float: 5 296ldouble: 7 297 298Function: Real part of "casinh": 299double: 2 300float: 2 301ldouble: 2 302 303Function: Imaginary part of "casinh": 304double: 1 305float: 1 306ldouble: 2 307 308Function: Real part of "casinh_downward": 309double: 5 310float: 3 311ldouble: 6 312 313Function: Imaginary part of "casinh_downward": 314double: 3 315float: 2 316ldouble: 3 317 318Function: Real part of "casinh_towardzero": 319double: 4 320float: 2 321ldouble: 5 322 323Function: Imaginary part of "casinh_towardzero": 324double: 3 325float: 1 326ldouble: 3 327 328Function: Real part of "casinh_upward": 329double: 5 330float: 5 331ldouble: 7 332 333Function: Imaginary part of "casinh_upward": 334double: 3 335float: 2 336ldouble: 3 337 338Function: Real part of "catan": 339double: 1 340float: 1 341ldouble: 1 342 343Function: Imaginary part of "catan": 344double: 1 345float: 1 346ldouble: 1 347 348Function: Real part of "catan_downward": 349double: 1 350float: 2 351ldouble: 2 352 353Function: Imaginary part of "catan_downward": 354double: 2 355float: 2 356ldouble: 2 357 358Function: Real part of "catan_towardzero": 359double: 1 360float: 2 361ldouble: 2 362 363Function: Imaginary part of "catan_towardzero": 364double: 2 365float: 2 366ldouble: 2 367 368Function: Real part of "catan_upward": 369double: 1 370float: 1 371ldouble: 2 372 373Function: Imaginary part of "catan_upward": 374double: 2 375float: 2 376ldouble: 3 377 378Function: Real part of "catanh": 379double: 1 380float: 1 381ldouble: 1 382 383Function: Imaginary part of "catanh": 384double: 1 385float: 1 386ldouble: 1 387 388Function: Real part of "catanh_downward": 389double: 2 390float: 2 391ldouble: 2 392 393Function: Imaginary part of "catanh_downward": 394double: 1 395float: 2 396ldouble: 2 397 398Function: Real part of "catanh_towardzero": 399double: 2 400float: 2 401ldouble: 2 402 403Function: Imaginary part of "catanh_towardzero": 404double: 1 405float: 2 406ldouble: 2 407 408Function: Real part of "catanh_upward": 409double: 4 410float: 4 411ldouble: 4 412 413Function: Imaginary part of "catanh_upward": 414double: 1 415float: 1 416ldouble: 2 417 418Function: "cbrt": 419double: 4 420float: 1 421ldouble: 1 422 423Function: "cbrt_downward": 424double: 4 425float: 1 426ldouble: 1 427 428Function: "cbrt_towardzero": 429double: 3 430float: 1 431ldouble: 1 432 433Function: "cbrt_upward": 434double: 5 435float: 1 436ldouble: 1 437 438Function: Real part of "ccos": 439double: 1 440float: 1 441ldouble: 1 442 443Function: Imaginary part of "ccos": 444double: 1 445float: 1 446ldouble: 1 447 448Function: Real part of "ccos_downward": 449double: 1 450float: 1 451ldouble: 2 452 453Function: Imaginary part of "ccos_downward": 454double: 3 455float: 3 456ldouble: 2 457 458Function: Real part of "ccos_towardzero": 459double: 1 460float: 2 461ldouble: 2 462 463Function: Imaginary part of "ccos_towardzero": 464double: 3 465float: 3 466ldouble: 2 467 468Function: Real part of "ccos_upward": 469double: 1 470float: 2 471ldouble: 3 472 473Function: Imaginary part of "ccos_upward": 474double: 1 475float: 2 476ldouble: 2 477 478Function: Real part of "ccosh": 479double: 1 480float: 1 481ldouble: 1 482 483Function: Imaginary part of "ccosh": 484double: 1 485float: 1 486ldouble: 1 487 488Function: Real part of "ccosh_downward": 489double: 2 490float: 2 491ldouble: 2 492 493Function: Imaginary part of "ccosh_downward": 494double: 3 495float: 3 496ldouble: 2 497 498Function: Real part of "ccosh_towardzero": 499double: 2 500float: 3 501ldouble: 2 502 503Function: Imaginary part of "ccosh_towardzero": 504double: 3 505float: 3 506ldouble: 2 507 508Function: Real part of "ccosh_upward": 509double: 1 510float: 2 511ldouble: 3 512 513Function: Imaginary part of "ccosh_upward": 514double: 1 515float: 2 516ldouble: 2 517 518Function: Real part of "cexp": 519double: 2 520float: 1 521ldouble: 1 522 523Function: Imaginary part of "cexp": 524double: 1 525float: 2 526ldouble: 1 527 528Function: Real part of "cexp_downward": 529double: 2 530float: 2 531ldouble: 2 532 533Function: Imaginary part of "cexp_downward": 534double: 3 535float: 3 536ldouble: 2 537 538Function: Real part of "cexp_towardzero": 539double: 2 540float: 2 541ldouble: 2 542 543Function: Imaginary part of "cexp_towardzero": 544double: 3 545float: 3 546ldouble: 2 547 548Function: Real part of "cexp_upward": 549double: 1 550float: 2 551ldouble: 3 552 553Function: Imaginary part of "cexp_upward": 554double: 3 555float: 2 556ldouble: 3 557 558Function: Real part of "clog": 559double: 3 560float: 3 561ldouble: 2 562 563Function: Imaginary part of "clog": 564double: 1 565float: 1 566ldouble: 1 567 568Function: Real part of "clog10": 569double: 3 570float: 4 571ldouble: 2 572 573Function: Imaginary part of "clog10": 574double: 2 575float: 2 576ldouble: 2 577 578Function: Real part of "clog10_downward": 579double: 5 580float: 5 581ldouble: 3 582 583Function: Imaginary part of "clog10_downward": 584double: 2 585float: 4 586ldouble: 3 587 588Function: Real part of "clog10_towardzero": 589double: 5 590float: 5 591ldouble: 4 592 593Function: Imaginary part of "clog10_towardzero": 594double: 2 595float: 4 596ldouble: 3 597 598Function: Real part of "clog10_upward": 599double: 6 600float: 5 601ldouble: 4 602 603Function: Imaginary part of "clog10_upward": 604double: 2 605float: 4 606ldouble: 3 607 608Function: Real part of "clog_downward": 609double: 4 610float: 3 611ldouble: 3 612 613Function: Imaginary part of "clog_downward": 614double: 1 615float: 2 616ldouble: 2 617 618Function: Real part of "clog_towardzero": 619double: 4 620float: 4 621ldouble: 3 622 623Function: Imaginary part of "clog_towardzero": 624double: 1 625float: 3 626ldouble: 2 627 628Function: Real part of "clog_upward": 629double: 4 630float: 3 631ldouble: 4 632 633Function: Imaginary part of "clog_upward": 634double: 1 635float: 2 636ldouble: 2 637 638Function: "cos": 639double: 1 640float: 1 641ldouble: 2 642 643Function: "cos_downward": 644double: 1 645float: 1 646ldouble: 3 647 648Function: "cos_towardzero": 649double: 1 650float: 1 651ldouble: 1 652 653Function: "cos_upward": 654double: 1 655float: 1 656ldouble: 2 657 658Function: "cosh": 659double: 2 660float: 2 661ldouble: 2 662 663Function: "cosh_downward": 664double: 3 665float: 1 666ldouble: 3 667 668Function: "cosh_towardzero": 669double: 3 670float: 1 671ldouble: 3 672 673Function: "cosh_upward": 674double: 2 675float: 2 676ldouble: 3 677 678Function: Real part of "cpow": 679double: 2 680float: 5 681ldouble: 4 682 683Function: Imaginary part of "cpow": 684float: 2 685ldouble: 1 686 687Function: Real part of "cpow_downward": 688double: 5 689float: 8 690ldouble: 6 691 692Function: Imaginary part of "cpow_downward": 693double: 1 694float: 2 695ldouble: 2 696 697Function: Real part of "cpow_towardzero": 698double: 5 699float: 8 700ldouble: 6 701 702Function: Imaginary part of "cpow_towardzero": 703double: 1 704float: 2 705ldouble: 2 706 707Function: Real part of "cpow_upward": 708double: 4 709float: 1 710ldouble: 3 711 712Function: Imaginary part of "cpow_upward": 713double: 1 714float: 2 715ldouble: 2 716 717Function: Real part of "csin": 718double: 1 719float: 1 720ldouble: 1 721 722Function: Imaginary part of "csin": 723ldouble: 1 724 725Function: Real part of "csin_downward": 726double: 3 727float: 3 728ldouble: 2 729 730Function: Imaginary part of "csin_downward": 731double: 1 732float: 1 733ldouble: 2 734 735Function: Real part of "csin_towardzero": 736double: 3 737float: 3 738ldouble: 2 739 740Function: Imaginary part of "csin_towardzero": 741double: 1 742float: 1 743ldouble: 2 744 745Function: Real part of "csin_upward": 746double: 1 747float: 2 748ldouble: 2 749 750Function: Imaginary part of "csin_upward": 751double: 1 752float: 2 753ldouble: 3 754 755Function: Real part of "csinh": 756float: 1 757ldouble: 1 758 759Function: Imaginary part of "csinh": 760double: 1 761float: 1 762ldouble: 1 763 764Function: Real part of "csinh_downward": 765double: 2 766float: 1 767ldouble: 2 768 769Function: Imaginary part of "csinh_downward": 770double: 3 771float: 3 772ldouble: 2 773 774Function: Real part of "csinh_towardzero": 775double: 2 776float: 2 777ldouble: 2 778 779Function: Imaginary part of "csinh_towardzero": 780double: 3 781float: 3 782ldouble: 2 783 784Function: Real part of "csinh_upward": 785double: 1 786float: 2 787ldouble: 3 788 789Function: Imaginary part of "csinh_upward": 790double: 1 791float: 2 792ldouble: 2 793 794Function: Real part of "csqrt": 795double: 2 796float: 2 797ldouble: 2 798 799Function: Imaginary part of "csqrt": 800double: 2 801float: 2 802ldouble: 2 803 804Function: Real part of "csqrt_downward": 805double: 5 806float: 4 807ldouble: 4 808 809Function: Imaginary part of "csqrt_downward": 810double: 4 811float: 3 812ldouble: 3 813 814Function: Real part of "csqrt_towardzero": 815double: 4 816float: 3 817ldouble: 3 818 819Function: Imaginary part of "csqrt_towardzero": 820double: 4 821float: 3 822ldouble: 3 823 824Function: Real part of "csqrt_upward": 825double: 5 826float: 4 827ldouble: 4 828 829Function: Imaginary part of "csqrt_upward": 830double: 3 831float: 3 832ldouble: 3 833 834Function: Real part of "ctan": 835double: 1 836float: 1 837ldouble: 3 838 839Function: Imaginary part of "ctan": 840double: 2 841float: 2 842ldouble: 3 843 844Function: Real part of "ctan_downward": 845double: 6 846float: 5 847ldouble: 4 848 849Function: Imaginary part of "ctan_downward": 850double: 2 851float: 2 852ldouble: 5 853 854Function: Real part of "ctan_towardzero": 855double: 5 856float: 3 857ldouble: 4 858 859Function: Imaginary part of "ctan_towardzero": 860double: 2 861float: 2 862ldouble: 5 863 864Function: Real part of "ctan_upward": 865double: 2 866float: 4 867ldouble: 5 868 869Function: Imaginary part of "ctan_upward": 870double: 2 871float: 2 872ldouble: 5 873 874Function: Real part of "ctanh": 875double: 2 876float: 2 877ldouble: 3 878 879Function: Imaginary part of "ctanh": 880double: 2 881float: 1 882ldouble: 3 883 884Function: Real part of "ctanh_downward": 885double: 2 886float: 2 887ldouble: 5 888 889Function: Imaginary part of "ctanh_downward": 890double: 6 891float: 5 892ldouble: 4 893 894Function: Real part of "ctanh_towardzero": 895double: 2 896float: 2 897ldouble: 5 898 899Function: Imaginary part of "ctanh_towardzero": 900double: 5 901float: 2 902ldouble: 3 903 904Function: Real part of "ctanh_upward": 905double: 1 906float: 2 907ldouble: 5 908 909Function: Imaginary part of "ctanh_upward": 910double: 2 911float: 3 912ldouble: 5 913 914Function: "erf": 915double: 1 916float: 1 917ldouble: 1 918 919Function: "erf_downward": 920double: 1 921float: 1 922ldouble: 2 923 924Function: "erf_towardzero": 925double: 1 926float: 1 927ldouble: 1 928 929Function: "erf_upward": 930double: 1 931float: 1 932ldouble: 2 933 934Function: "erfc": 935double: 2 936float: 2 937ldouble: 4 938 939Function: "erfc_downward": 940double: 4 941float: 4 942ldouble: 5 943 944Function: "erfc_towardzero": 945double: 3 946float: 3 947ldouble: 4 948 949Function: "erfc_upward": 950double: 4 951float: 4 952ldouble: 5 953 954Function: "exp": 955double: 1 956float: 1 957ldouble: 1 958 959Function: "exp10": 960double: 2 961float: 1 962ldouble: 2 963 964Function: "exp10_downward": 965double: 3 966float: 1 967ldouble: 3 968 969Function: "exp10_towardzero": 970double: 3 971float: 1 972ldouble: 3 973 974Function: "exp10_upward": 975double: 2 976float: 1 977ldouble: 3 978 979Function: "exp2": 980double: 1 981ldouble: 1 982 983Function: "exp2_downward": 984double: 1 985ldouble: 1 986 987Function: "exp2_towardzero": 988double: 1 989ldouble: 1 990 991Function: "exp2_upward": 992double: 1 993float: 1 994ldouble: 2 995 996Function: "exp_downward": 997double: 1 998float: 1 999 1000Function: "exp_towardzero": 1001double: 1 1002float: 1 1003 1004Function: "exp_upward": 1005double: 1 1006float: 1 1007 1008Function: "expm1": 1009double: 1 1010float: 1 1011ldouble: 2 1012 1013Function: "expm1_downward": 1014double: 1 1015float: 1 1016ldouble: 2 1017 1018Function: "expm1_towardzero": 1019double: 1 1020float: 2 1021ldouble: 4 1022 1023Function: "expm1_upward": 1024double: 1 1025float: 1 1026ldouble: 3 1027 1028Function: "gamma": 1029double: 3 1030float: 3 1031ldouble: 5 1032 1033Function: "gamma_downward": 1034double: 4 1035float: 4 1036ldouble: 8 1037 1038Function: "gamma_towardzero": 1039double: 4 1040float: 3 1041ldouble: 5 1042 1043Function: "gamma_upward": 1044double: 4 1045float: 5 1046ldouble: 8 1047 1048Function: "hypot": 1049double: 1 1050ldouble: 1 1051 1052Function: "hypot_downward": 1053double: 1 1054ldouble: 1 1055 1056Function: "hypot_towardzero": 1057double: 1 1058ldouble: 1 1059 1060Function: "hypot_upward": 1061double: 1 1062ldouble: 1 1063 1064Function: "j0": 1065double: 4 1066float: 9 1067ldouble: 2 1068 1069Function: "j0_downward": 1070double: 6 1071float: 9 1072ldouble: 9 1073 1074Function: "j0_towardzero": 1075double: 7 1076float: 9 1077ldouble: 9 1078 1079Function: "j0_upward": 1080double: 9 1081float: 9 1082ldouble: 7 1083 1084Function: "j1": 1085double: 4 1086float: 9 1087ldouble: 4 1088 1089Function: "j1_downward": 1090double: 9 1091float: 8 1092ldouble: 6 1093 1094Function: "j1_towardzero": 1095double: 5 1096float: 8 1097ldouble: 9 1098 1099Function: "j1_upward": 1100double: 9 1101float: 9 1102ldouble: 9 1103 1104Function: "jn": 1105double: 4 1106float: 4 1107ldouble: 7 1108 1109Function: "jn_downward": 1110double: 4 1111float: 5 1112ldouble: 8 1113 1114Function: "jn_towardzero": 1115double: 4 1116float: 5 1117ldouble: 8 1118 1119Function: "jn_upward": 1120double: 5 1121float: 4 1122ldouble: 7 1123 1124Function: "lgamma": 1125double: 3 1126float: 3 1127ldouble: 5 1128 1129Function: "lgamma_downward": 1130double: 4 1131float: 4 1132ldouble: 8 1133 1134Function: "lgamma_towardzero": 1135double: 4 1136float: 3 1137ldouble: 5 1138 1139Function: "lgamma_upward": 1140double: 4 1141float: 5 1142ldouble: 8 1143 1144Function: "log": 1145double: 1 1146ldouble: 1 1147 1148Function: "log10": 1149double: 2 1150float: 2 1151ldouble: 2 1152 1153Function: "log10_downward": 1154double: 2 1155float: 3 1156ldouble: 1 1157 1158Function: "log10_towardzero": 1159double: 2 1160float: 1 1161ldouble: 1 1162 1163Function: "log10_upward": 1164double: 2 1165float: 2 1166ldouble: 1 1167 1168Function: "log1p": 1169double: 1 1170float: 1 1171ldouble: 3 1172 1173Function: "log1p_downward": 1174double: 1 1175float: 2 1176ldouble: 3 1177 1178Function: "log1p_towardzero": 1179double: 2 1180float: 2 1181ldouble: 3 1182 1183Function: "log1p_upward": 1184double: 2 1185float: 2 1186ldouble: 2 1187 1188Function: "log2": 1189float: 1 1190ldouble: 3 1191 1192Function: "log2_downward": 1193ldouble: 3 1194 1195Function: "log2_towardzero": 1196double: 1 1197ldouble: 1 1198 1199Function: "log2_upward": 1200double: 1 1201ldouble: 1 1202 1203Function: "log_downward": 1204ldouble: 1 1205 1206Function: "log_towardzero": 1207ldouble: 2 1208 1209Function: "log_upward": 1210ldouble: 1 1211 1212Function: "pow": 1213double: 1 1214ldouble: 2 1215 1216Function: "pow_downward": 1217double: 1 1218float: 1 1219ldouble: 2 1220 1221Function: "pow_towardzero": 1222double: 1 1223float: 1 1224ldouble: 2 1225 1226Function: "pow_upward": 1227double: 1 1228float: 1 1229ldouble: 2 1230 1231Function: "sin": 1232double: 1 1233float: 1 1234ldouble: 2 1235 1236Function: "sin_downward": 1237double: 1 1238float: 1 1239ldouble: 3 1240 1241Function: "sin_towardzero": 1242double: 1 1243float: 1 1244ldouble: 2 1245 1246Function: "sin_upward": 1247double: 1 1248float: 1 1249ldouble: 3 1250 1251Function: "sincos": 1252double: 1 1253ldouble: 1 1254 1255Function: "sincos_downward": 1256double: 1 1257float: 1 1258ldouble: 3 1259 1260Function: "sincos_towardzero": 1261double: 1 1262float: 1 1263ldouble: 2 1264 1265Function: "sincos_upward": 1266double: 1 1267float: 1 1268ldouble: 3 1269 1270Function: "sinh": 1271double: 2 1272float: 2 1273ldouble: 2 1274 1275Function: "sinh_downward": 1276double: 3 1277float: 3 1278ldouble: 3 1279 1280Function: "sinh_towardzero": 1281double: 3 1282float: 2 1283ldouble: 3 1284 1285Function: "sinh_upward": 1286double: 3 1287float: 3 1288ldouble: 4 1289 1290Function: "tan": 1291float: 1 1292ldouble: 1 1293 1294Function: "tan_downward": 1295double: 1 1296float: 2 1297ldouble: 1 1298 1299Function: "tan_towardzero": 1300double: 1 1301float: 1 1302ldouble: 1 1303 1304Function: "tan_upward": 1305double: 1 1306float: 1 1307ldouble: 1 1308 1309Function: "tanh": 1310double: 2 1311float: 2 1312ldouble: 2 1313 1314Function: "tanh_downward": 1315double: 3 1316float: 3 1317ldouble: 4 1318 1319Function: "tanh_towardzero": 1320double: 2 1321float: 2 1322ldouble: 3 1323 1324Function: "tanh_upward": 1325double: 3 1326float: 3 1327ldouble: 3 1328 1329Function: "tgamma": 1330double: 9 1331float: 8 1332ldouble: 4 1333 1334Function: "tgamma_downward": 1335double: 9 1336float: 7 1337ldouble: 5 1338 1339Function: "tgamma_towardzero": 1340double: 9 1341float: 7 1342ldouble: 5 1343 1344Function: "tgamma_upward": 1345double: 9 1346float: 8 1347ldouble: 4 1348 1349Function: "y0": 1350double: 2 1351float: 8 1352ldouble: 3 1353 1354Function: "y0_downward": 1355double: 3 1356float: 8 1357ldouble: 7 1358 1359Function: "y0_towardzero": 1360double: 3 1361float: 8 1362ldouble: 3 1363 1364Function: "y0_upward": 1365double: 3 1366float: 8 1367ldouble: 4 1368 1369Function: "y1": 1370double: 3 1371float: 9 1372ldouble: 5 1373 1374Function: "y1_downward": 1375double: 6 1376float: 8 1377ldouble: 5 1378 1379Function: "y1_towardzero": 1380double: 3 1381float: 9 1382ldouble: 2 1383 1384Function: "y1_upward": 1385double: 7 1386float: 9 1387ldouble: 5 1388 1389Function: "yn": 1390double: 3 1391float: 3 1392ldouble: 5 1393 1394Function: "yn_downward": 1395double: 3 1396float: 4 1397ldouble: 5 1398 1399Function: "yn_towardzero": 1400double: 3 1401float: 3 1402ldouble: 5 1403 1404Function: "yn_upward": 1405double: 4 1406float: 5 1407ldouble: 5 1408 1409# end of automatic generation 1410