1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5double: 1
6float: 1
7ldouble: 1
8
9Function: "acos_downward":
10double: 1
11float: 1
12ldouble: 1
13
14Function: "acos_towardzero":
15double: 1
16float: 1
17ldouble: 1
18
19Function: "acos_upward":
20double: 1
21float: 1
22ldouble: 1
23
24Function: "acosh":
25double: 2
26float: 2
27ldouble: 4
28
29Function: "acosh_downward":
30double: 2
31float: 2
32ldouble: 3
33
34Function: "acosh_towardzero":
35double: 2
36float: 2
37ldouble: 2
38
39Function: "acosh_upward":
40double: 2
41float: 2
42ldouble: 3
43
44Function: "asin":
45double: 1
46float: 1
47ldouble: 1
48
49Function: "asin_downward":
50double: 1
51float: 1
52ldouble: 2
53
54Function: "asin_towardzero":
55double: 1
56float: 1
57ldouble: 1
58
59Function: "asin_upward":
60double: 2
61float: 1
62ldouble: 2
63
64Function: "asinh":
65double: 2
66float: 2
67ldouble: 4
68
69Function: "asinh_downward":
70double: 3
71float: 3
72ldouble: 4
73
74Function: "asinh_towardzero":
75double: 2
76float: 2
77ldouble: 2
78
79Function: "asinh_upward":
80double: 3
81float: 3
82ldouble: 4
83
84Function: "atan":
85double: 1
86float: 1
87ldouble: 1
88
89Function: "atan2":
90float: 1
91ldouble: 2
92
93Function: "atan2_downward":
94double: 1
95float: 2
96ldouble: 2
97
98Function: "atan2_towardzero":
99double: 1
100float: 2
101ldouble: 3
102
103Function: "atan2_upward":
104double: 1
105float: 1
106ldouble: 2
107
108Function: "atan_downward":
109double: 1
110float: 2
111ldouble: 2
112
113Function: "atan_towardzero":
114double: 1
115float: 1
116ldouble: 1
117
118Function: "atan_upward":
119double: 1
120float: 2
121ldouble: 2
122
123Function: "atanh":
124double: 2
125float: 2
126ldouble: 4
127
128Function: "atanh_downward":
129double: 3
130float: 3
131ldouble: 4
132
133Function: "atanh_towardzero":
134double: 2
135float: 2
136ldouble: 2
137
138Function: "atanh_upward":
139double: 3
140float: 3
141ldouble: 4
142
143Function: "cabs":
144double: 1
145ldouble: 1
146
147Function: "cabs_downward":
148double: 1
149ldouble: 1
150
151Function: "cabs_towardzero":
152double: 1
153ldouble: 1
154
155Function: "cabs_upward":
156double: 1
157ldouble: 1
158
159Function: Real part of "cacos":
160double: 1
161float: 2
162ldouble: 2
163
164Function: Imaginary part of "cacos":
165double: 2
166float: 2
167ldouble: 2
168
169Function: Real part of "cacos_downward":
170double: 3
171float: 2
172ldouble: 3
173
174Function: Imaginary part of "cacos_downward":
175double: 5
176float: 3
177ldouble: 6
178
179Function: Real part of "cacos_towardzero":
180double: 3
181float: 2
182ldouble: 3
183
184Function: Imaginary part of "cacos_towardzero":
185double: 4
186float: 2
187ldouble: 5
188
189Function: Real part of "cacos_upward":
190double: 2
191float: 2
192ldouble: 3
193
194Function: Imaginary part of "cacos_upward":
195double: 5
196float: 5
197ldouble: 7
198
199Function: Real part of "cacosh":
200double: 2
201float: 2
202ldouble: 2
203
204Function: Imaginary part of "cacosh":
205double: 1
206float: 2
207ldouble: 2
208
209Function: Real part of "cacosh_downward":
210double: 4
211float: 2
212ldouble: 5
213
214Function: Imaginary part of "cacosh_downward":
215double: 3
216float: 3
217ldouble: 4
218
219Function: Real part of "cacosh_towardzero":
220double: 4
221float: 2
222ldouble: 5
223
224Function: Imaginary part of "cacosh_towardzero":
225double: 3
226float: 2
227ldouble: 3
228
229Function: Real part of "cacosh_upward":
230double: 4
231float: 3
232ldouble: 6
233
234Function: Imaginary part of "cacosh_upward":
235double: 3
236float: 2
237ldouble: 4
238
239Function: "carg":
240float: 1
241ldouble: 2
242
243Function: "carg_downward":
244double: 1
245float: 2
246ldouble: 2
247
248Function: "carg_towardzero":
249double: 1
250float: 2
251ldouble: 3
252
253Function: "carg_upward":
254double: 1
255float: 1
256ldouble: 2
257
258Function: Real part of "casin":
259double: 1
260float: 1
261ldouble: 2
262
263Function: Imaginary part of "casin":
264double: 2
265float: 2
266ldouble: 2
267
268Function: Real part of "casin_downward":
269double: 3
270float: 2
271ldouble: 3
272
273Function: Imaginary part of "casin_downward":
274double: 5
275float: 3
276ldouble: 6
277
278Function: Real part of "casin_towardzero":
279double: 3
280float: 1
281ldouble: 3
282
283Function: Imaginary part of "casin_towardzero":
284double: 4
285float: 2
286ldouble: 5
287
288Function: Real part of "casin_upward":
289double: 3
290float: 2
291ldouble: 3
292
293Function: Imaginary part of "casin_upward":
294double: 5
295float: 5
296ldouble: 7
297
298Function: Real part of "casinh":
299double: 2
300float: 2
301ldouble: 2
302
303Function: Imaginary part of "casinh":
304double: 1
305float: 1
306ldouble: 2
307
308Function: Real part of "casinh_downward":
309double: 5
310float: 3
311ldouble: 6
312
313Function: Imaginary part of "casinh_downward":
314double: 3
315float: 2
316ldouble: 3
317
318Function: Real part of "casinh_towardzero":
319double: 4
320float: 2
321ldouble: 5
322
323Function: Imaginary part of "casinh_towardzero":
324double: 3
325float: 1
326ldouble: 3
327
328Function: Real part of "casinh_upward":
329double: 5
330float: 5
331ldouble: 7
332
333Function: Imaginary part of "casinh_upward":
334double: 3
335float: 2
336ldouble: 3
337
338Function: Real part of "catan":
339double: 1
340float: 1
341ldouble: 1
342
343Function: Imaginary part of "catan":
344double: 1
345float: 1
346ldouble: 1
347
348Function: Real part of "catan_downward":
349double: 1
350float: 2
351ldouble: 2
352
353Function: Imaginary part of "catan_downward":
354double: 2
355float: 2
356ldouble: 2
357
358Function: Real part of "catan_towardzero":
359double: 1
360float: 2
361ldouble: 2
362
363Function: Imaginary part of "catan_towardzero":
364double: 2
365float: 2
366ldouble: 2
367
368Function: Real part of "catan_upward":
369double: 1
370float: 1
371ldouble: 2
372
373Function: Imaginary part of "catan_upward":
374double: 2
375float: 2
376ldouble: 3
377
378Function: Real part of "catanh":
379double: 1
380float: 1
381ldouble: 1
382
383Function: Imaginary part of "catanh":
384double: 1
385float: 1
386ldouble: 1
387
388Function: Real part of "catanh_downward":
389double: 2
390float: 2
391ldouble: 2
392
393Function: Imaginary part of "catanh_downward":
394double: 1
395float: 2
396ldouble: 2
397
398Function: Real part of "catanh_towardzero":
399double: 2
400float: 2
401ldouble: 2
402
403Function: Imaginary part of "catanh_towardzero":
404double: 1
405float: 2
406ldouble: 2
407
408Function: Real part of "catanh_upward":
409double: 4
410float: 4
411ldouble: 4
412
413Function: Imaginary part of "catanh_upward":
414double: 1
415float: 1
416ldouble: 2
417
418Function: "cbrt":
419double: 4
420float: 1
421ldouble: 1
422
423Function: "cbrt_downward":
424double: 4
425float: 1
426ldouble: 1
427
428Function: "cbrt_towardzero":
429double: 3
430float: 1
431ldouble: 1
432
433Function: "cbrt_upward":
434double: 5
435float: 1
436ldouble: 1
437
438Function: Real part of "ccos":
439double: 1
440float: 1
441ldouble: 1
442
443Function: Imaginary part of "ccos":
444double: 1
445float: 1
446ldouble: 1
447
448Function: Real part of "ccos_downward":
449double: 1
450float: 1
451ldouble: 2
452
453Function: Imaginary part of "ccos_downward":
454double: 3
455float: 3
456ldouble: 2
457
458Function: Real part of "ccos_towardzero":
459double: 1
460float: 2
461ldouble: 2
462
463Function: Imaginary part of "ccos_towardzero":
464double: 3
465float: 3
466ldouble: 2
467
468Function: Real part of "ccos_upward":
469double: 1
470float: 2
471ldouble: 3
472
473Function: Imaginary part of "ccos_upward":
474double: 1
475float: 2
476ldouble: 2
477
478Function: Real part of "ccosh":
479double: 1
480float: 1
481ldouble: 1
482
483Function: Imaginary part of "ccosh":
484double: 1
485float: 1
486ldouble: 1
487
488Function: Real part of "ccosh_downward":
489double: 2
490float: 2
491ldouble: 2
492
493Function: Imaginary part of "ccosh_downward":
494double: 3
495float: 3
496ldouble: 2
497
498Function: Real part of "ccosh_towardzero":
499double: 2
500float: 3
501ldouble: 2
502
503Function: Imaginary part of "ccosh_towardzero":
504double: 3
505float: 3
506ldouble: 2
507
508Function: Real part of "ccosh_upward":
509double: 1
510float: 2
511ldouble: 3
512
513Function: Imaginary part of "ccosh_upward":
514double: 1
515float: 2
516ldouble: 2
517
518Function: Real part of "cexp":
519double: 2
520float: 1
521ldouble: 1
522
523Function: Imaginary part of "cexp":
524double: 1
525float: 2
526ldouble: 1
527
528Function: Real part of "cexp_downward":
529double: 2
530float: 2
531ldouble: 2
532
533Function: Imaginary part of "cexp_downward":
534double: 3
535float: 3
536ldouble: 2
537
538Function: Real part of "cexp_towardzero":
539double: 2
540float: 2
541ldouble: 2
542
543Function: Imaginary part of "cexp_towardzero":
544double: 3
545float: 3
546ldouble: 2
547
548Function: Real part of "cexp_upward":
549double: 1
550float: 2
551ldouble: 3
552
553Function: Imaginary part of "cexp_upward":
554double: 3
555float: 2
556ldouble: 3
557
558Function: Real part of "clog":
559double: 3
560float: 3
561ldouble: 2
562
563Function: Imaginary part of "clog":
564double: 1
565float: 1
566ldouble: 1
567
568Function: Real part of "clog10":
569double: 3
570float: 4
571ldouble: 2
572
573Function: Imaginary part of "clog10":
574double: 2
575float: 2
576ldouble: 2
577
578Function: Real part of "clog10_downward":
579double: 5
580float: 5
581ldouble: 3
582
583Function: Imaginary part of "clog10_downward":
584double: 2
585float: 4
586ldouble: 3
587
588Function: Real part of "clog10_towardzero":
589double: 5
590float: 5
591ldouble: 4
592
593Function: Imaginary part of "clog10_towardzero":
594double: 2
595float: 4
596ldouble: 3
597
598Function: Real part of "clog10_upward":
599double: 6
600float: 5
601ldouble: 4
602
603Function: Imaginary part of "clog10_upward":
604double: 2
605float: 4
606ldouble: 3
607
608Function: Real part of "clog_downward":
609double: 4
610float: 3
611ldouble: 3
612
613Function: Imaginary part of "clog_downward":
614double: 1
615float: 2
616ldouble: 2
617
618Function: Real part of "clog_towardzero":
619double: 4
620float: 4
621ldouble: 3
622
623Function: Imaginary part of "clog_towardzero":
624double: 1
625float: 3
626ldouble: 2
627
628Function: Real part of "clog_upward":
629double: 4
630float: 3
631ldouble: 4
632
633Function: Imaginary part of "clog_upward":
634double: 1
635float: 2
636ldouble: 2
637
638Function: "cos":
639double: 1
640float: 1
641ldouble: 2
642
643Function: "cos_downward":
644double: 1
645float: 1
646ldouble: 3
647
648Function: "cos_towardzero":
649double: 1
650float: 1
651ldouble: 1
652
653Function: "cos_upward":
654double: 1
655float: 1
656ldouble: 2
657
658Function: "cosh":
659double: 2
660float: 2
661ldouble: 2
662
663Function: "cosh_downward":
664double: 3
665float: 1
666ldouble: 3
667
668Function: "cosh_towardzero":
669double: 3
670float: 1
671ldouble: 3
672
673Function: "cosh_upward":
674double: 2
675float: 2
676ldouble: 3
677
678Function: Real part of "cpow":
679double: 2
680float: 5
681ldouble: 4
682
683Function: Imaginary part of "cpow":
684float: 2
685ldouble: 1
686
687Function: Real part of "cpow_downward":
688double: 5
689float: 8
690ldouble: 6
691
692Function: Imaginary part of "cpow_downward":
693double: 1
694float: 2
695ldouble: 2
696
697Function: Real part of "cpow_towardzero":
698double: 5
699float: 8
700ldouble: 6
701
702Function: Imaginary part of "cpow_towardzero":
703double: 1
704float: 2
705ldouble: 2
706
707Function: Real part of "cpow_upward":
708double: 4
709float: 1
710ldouble: 3
711
712Function: Imaginary part of "cpow_upward":
713double: 1
714float: 2
715ldouble: 2
716
717Function: Real part of "csin":
718double: 1
719float: 1
720ldouble: 1
721
722Function: Imaginary part of "csin":
723ldouble: 1
724
725Function: Real part of "csin_downward":
726double: 3
727float: 3
728ldouble: 2
729
730Function: Imaginary part of "csin_downward":
731double: 1
732float: 1
733ldouble: 2
734
735Function: Real part of "csin_towardzero":
736double: 3
737float: 3
738ldouble: 2
739
740Function: Imaginary part of "csin_towardzero":
741double: 1
742float: 1
743ldouble: 2
744
745Function: Real part of "csin_upward":
746double: 1
747float: 2
748ldouble: 2
749
750Function: Imaginary part of "csin_upward":
751double: 1
752float: 2
753ldouble: 3
754
755Function: Real part of "csinh":
756float: 1
757ldouble: 1
758
759Function: Imaginary part of "csinh":
760double: 1
761float: 1
762ldouble: 1
763
764Function: Real part of "csinh_downward":
765double: 2
766float: 1
767ldouble: 2
768
769Function: Imaginary part of "csinh_downward":
770double: 3
771float: 3
772ldouble: 2
773
774Function: Real part of "csinh_towardzero":
775double: 2
776float: 2
777ldouble: 2
778
779Function: Imaginary part of "csinh_towardzero":
780double: 3
781float: 3
782ldouble: 2
783
784Function: Real part of "csinh_upward":
785double: 1
786float: 2
787ldouble: 3
788
789Function: Imaginary part of "csinh_upward":
790double: 1
791float: 2
792ldouble: 2
793
794Function: Real part of "csqrt":
795double: 2
796float: 2
797ldouble: 2
798
799Function: Imaginary part of "csqrt":
800double: 2
801float: 2
802ldouble: 2
803
804Function: Real part of "csqrt_downward":
805double: 5
806float: 4
807ldouble: 4
808
809Function: Imaginary part of "csqrt_downward":
810double: 4
811float: 3
812ldouble: 3
813
814Function: Real part of "csqrt_towardzero":
815double: 4
816float: 3
817ldouble: 3
818
819Function: Imaginary part of "csqrt_towardzero":
820double: 4
821float: 3
822ldouble: 3
823
824Function: Real part of "csqrt_upward":
825double: 5
826float: 4
827ldouble: 4
828
829Function: Imaginary part of "csqrt_upward":
830double: 3
831float: 3
832ldouble: 3
833
834Function: Real part of "ctan":
835double: 1
836float: 1
837ldouble: 3
838
839Function: Imaginary part of "ctan":
840double: 2
841float: 2
842ldouble: 3
843
844Function: Real part of "ctan_downward":
845double: 6
846float: 5
847ldouble: 4
848
849Function: Imaginary part of "ctan_downward":
850double: 2
851float: 2
852ldouble: 5
853
854Function: Real part of "ctan_towardzero":
855double: 5
856float: 3
857ldouble: 4
858
859Function: Imaginary part of "ctan_towardzero":
860double: 2
861float: 2
862ldouble: 5
863
864Function: Real part of "ctan_upward":
865double: 2
866float: 4
867ldouble: 5
868
869Function: Imaginary part of "ctan_upward":
870double: 2
871float: 2
872ldouble: 5
873
874Function: Real part of "ctanh":
875double: 2
876float: 2
877ldouble: 3
878
879Function: Imaginary part of "ctanh":
880double: 2
881float: 1
882ldouble: 3
883
884Function: Real part of "ctanh_downward":
885double: 2
886float: 2
887ldouble: 5
888
889Function: Imaginary part of "ctanh_downward":
890double: 6
891float: 5
892ldouble: 4
893
894Function: Real part of "ctanh_towardzero":
895double: 2
896float: 2
897ldouble: 5
898
899Function: Imaginary part of "ctanh_towardzero":
900double: 5
901float: 2
902ldouble: 3
903
904Function: Real part of "ctanh_upward":
905double: 1
906float: 2
907ldouble: 5
908
909Function: Imaginary part of "ctanh_upward":
910double: 2
911float: 3
912ldouble: 5
913
914Function: "erf":
915double: 1
916float: 1
917ldouble: 1
918
919Function: "erf_downward":
920double: 1
921float: 1
922ldouble: 2
923
924Function: "erf_towardzero":
925double: 1
926float: 1
927ldouble: 1
928
929Function: "erf_upward":
930double: 1
931float: 1
932ldouble: 2
933
934Function: "erfc":
935double: 2
936float: 2
937ldouble: 4
938
939Function: "erfc_downward":
940double: 4
941float: 4
942ldouble: 5
943
944Function: "erfc_towardzero":
945double: 3
946float: 3
947ldouble: 4
948
949Function: "erfc_upward":
950double: 4
951float: 4
952ldouble: 5
953
954Function: "exp":
955double: 1
956float: 1
957ldouble: 1
958
959Function: "exp10":
960double: 2
961float: 1
962ldouble: 2
963
964Function: "exp10_downward":
965double: 3
966float: 1
967ldouble: 3
968
969Function: "exp10_towardzero":
970double: 3
971float: 1
972ldouble: 3
973
974Function: "exp10_upward":
975double: 2
976float: 1
977ldouble: 3
978
979Function: "exp2":
980double: 1
981ldouble: 1
982
983Function: "exp2_downward":
984double: 1
985ldouble: 1
986
987Function: "exp2_towardzero":
988double: 1
989ldouble: 1
990
991Function: "exp2_upward":
992double: 1
993float: 1
994ldouble: 2
995
996Function: "exp_downward":
997double: 1
998float: 1
999
1000Function: "exp_towardzero":
1001double: 1
1002float: 1
1003
1004Function: "exp_upward":
1005double: 1
1006float: 1
1007
1008Function: "expm1":
1009double: 1
1010float: 1
1011ldouble: 2
1012
1013Function: "expm1_downward":
1014double: 1
1015float: 1
1016ldouble: 2
1017
1018Function: "expm1_towardzero":
1019double: 1
1020float: 2
1021ldouble: 4
1022
1023Function: "expm1_upward":
1024double: 1
1025float: 1
1026ldouble: 3
1027
1028Function: "gamma":
1029double: 3
1030float: 3
1031ldouble: 5
1032
1033Function: "gamma_downward":
1034double: 4
1035float: 4
1036ldouble: 8
1037
1038Function: "gamma_towardzero":
1039double: 4
1040float: 3
1041ldouble: 5
1042
1043Function: "gamma_upward":
1044double: 4
1045float: 5
1046ldouble: 8
1047
1048Function: "hypot":
1049double: 1
1050ldouble: 1
1051
1052Function: "hypot_downward":
1053double: 1
1054ldouble: 1
1055
1056Function: "hypot_towardzero":
1057double: 1
1058ldouble: 1
1059
1060Function: "hypot_upward":
1061double: 1
1062ldouble: 1
1063
1064Function: "j0":
1065double: 4
1066float: 9
1067ldouble: 2
1068
1069Function: "j0_downward":
1070double: 6
1071float: 9
1072ldouble: 9
1073
1074Function: "j0_towardzero":
1075double: 7
1076float: 9
1077ldouble: 9
1078
1079Function: "j0_upward":
1080double: 9
1081float: 9
1082ldouble: 7
1083
1084Function: "j1":
1085double: 4
1086float: 9
1087ldouble: 4
1088
1089Function: "j1_downward":
1090double: 9
1091float: 8
1092ldouble: 6
1093
1094Function: "j1_towardzero":
1095double: 5
1096float: 8
1097ldouble: 9
1098
1099Function: "j1_upward":
1100double: 9
1101float: 9
1102ldouble: 9
1103
1104Function: "jn":
1105double: 4
1106float: 4
1107ldouble: 7
1108
1109Function: "jn_downward":
1110double: 4
1111float: 5
1112ldouble: 8
1113
1114Function: "jn_towardzero":
1115double: 4
1116float: 5
1117ldouble: 8
1118
1119Function: "jn_upward":
1120double: 5
1121float: 4
1122ldouble: 7
1123
1124Function: "lgamma":
1125double: 3
1126float: 3
1127ldouble: 5
1128
1129Function: "lgamma_downward":
1130double: 4
1131float: 4
1132ldouble: 8
1133
1134Function: "lgamma_towardzero":
1135double: 4
1136float: 3
1137ldouble: 5
1138
1139Function: "lgamma_upward":
1140double: 4
1141float: 5
1142ldouble: 8
1143
1144Function: "log":
1145double: 1
1146ldouble: 1
1147
1148Function: "log10":
1149double: 2
1150float: 2
1151ldouble: 2
1152
1153Function: "log10_downward":
1154double: 2
1155float: 3
1156ldouble: 1
1157
1158Function: "log10_towardzero":
1159double: 2
1160float: 1
1161ldouble: 1
1162
1163Function: "log10_upward":
1164double: 2
1165float: 2
1166ldouble: 1
1167
1168Function: "log1p":
1169double: 1
1170float: 1
1171ldouble: 3
1172
1173Function: "log1p_downward":
1174double: 1
1175float: 2
1176ldouble: 3
1177
1178Function: "log1p_towardzero":
1179double: 2
1180float: 2
1181ldouble: 3
1182
1183Function: "log1p_upward":
1184double: 2
1185float: 2
1186ldouble: 2
1187
1188Function: "log2":
1189float: 1
1190ldouble: 3
1191
1192Function: "log2_downward":
1193ldouble: 3
1194
1195Function: "log2_towardzero":
1196double: 1
1197ldouble: 1
1198
1199Function: "log2_upward":
1200double: 1
1201ldouble: 1
1202
1203Function: "log_downward":
1204ldouble: 1
1205
1206Function: "log_towardzero":
1207ldouble: 2
1208
1209Function: "log_upward":
1210ldouble: 1
1211
1212Function: "pow":
1213double: 1
1214ldouble: 2
1215
1216Function: "pow_downward":
1217double: 1
1218float: 1
1219ldouble: 2
1220
1221Function: "pow_towardzero":
1222double: 1
1223float: 1
1224ldouble: 2
1225
1226Function: "pow_upward":
1227double: 1
1228float: 1
1229ldouble: 2
1230
1231Function: "sin":
1232double: 1
1233float: 1
1234ldouble: 2
1235
1236Function: "sin_downward":
1237double: 1
1238float: 1
1239ldouble: 3
1240
1241Function: "sin_towardzero":
1242double: 1
1243float: 1
1244ldouble: 2
1245
1246Function: "sin_upward":
1247double: 1
1248float: 1
1249ldouble: 3
1250
1251Function: "sincos":
1252double: 1
1253ldouble: 1
1254
1255Function: "sincos_downward":
1256double: 1
1257float: 1
1258ldouble: 3
1259
1260Function: "sincos_towardzero":
1261double: 1
1262float: 1
1263ldouble: 2
1264
1265Function: "sincos_upward":
1266double: 1
1267float: 1
1268ldouble: 3
1269
1270Function: "sinh":
1271double: 2
1272float: 2
1273ldouble: 2
1274
1275Function: "sinh_downward":
1276double: 3
1277float: 3
1278ldouble: 3
1279
1280Function: "sinh_towardzero":
1281double: 3
1282float: 2
1283ldouble: 3
1284
1285Function: "sinh_upward":
1286double: 3
1287float: 3
1288ldouble: 4
1289
1290Function: "tan":
1291float: 1
1292ldouble: 1
1293
1294Function: "tan_downward":
1295double: 1
1296float: 2
1297ldouble: 1
1298
1299Function: "tan_towardzero":
1300double: 1
1301float: 1
1302ldouble: 1
1303
1304Function: "tan_upward":
1305double: 1
1306float: 1
1307ldouble: 1
1308
1309Function: "tanh":
1310double: 2
1311float: 2
1312ldouble: 2
1313
1314Function: "tanh_downward":
1315double: 3
1316float: 3
1317ldouble: 4
1318
1319Function: "tanh_towardzero":
1320double: 2
1321float: 2
1322ldouble: 3
1323
1324Function: "tanh_upward":
1325double: 3
1326float: 3
1327ldouble: 3
1328
1329Function: "tgamma":
1330double: 9
1331float: 8
1332ldouble: 4
1333
1334Function: "tgamma_downward":
1335double: 9
1336float: 7
1337ldouble: 5
1338
1339Function: "tgamma_towardzero":
1340double: 9
1341float: 7
1342ldouble: 5
1343
1344Function: "tgamma_upward":
1345double: 9
1346float: 8
1347ldouble: 4
1348
1349Function: "y0":
1350double: 2
1351float: 8
1352ldouble: 3
1353
1354Function: "y0_downward":
1355double: 3
1356float: 8
1357ldouble: 7
1358
1359Function: "y0_towardzero":
1360double: 3
1361float: 8
1362ldouble: 3
1363
1364Function: "y0_upward":
1365double: 3
1366float: 8
1367ldouble: 4
1368
1369Function: "y1":
1370double: 3
1371float: 9
1372ldouble: 5
1373
1374Function: "y1_downward":
1375double: 6
1376float: 8
1377ldouble: 5
1378
1379Function: "y1_towardzero":
1380double: 3
1381float: 9
1382ldouble: 2
1383
1384Function: "y1_upward":
1385double: 7
1386float: 9
1387ldouble: 5
1388
1389Function: "yn":
1390double: 3
1391float: 3
1392ldouble: 5
1393
1394Function: "yn_downward":
1395double: 3
1396float: 4
1397ldouble: 5
1398
1399Function: "yn_towardzero":
1400double: 3
1401float: 3
1402ldouble: 5
1403
1404Function: "yn_upward":
1405double: 4
1406float: 5
1407ldouble: 5
1408
1409# end of automatic generation
1410