1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5double: 1
6float: 1
7ldouble: 1
8
9Function: "acos_downward":
10double: 1
11float: 1
12ldouble: 1
13
14Function: "acos_towardzero":
15double: 1
16float: 1
17ldouble: 1
18
19Function: "acos_upward":
20double: 1
21float: 1
22ldouble: 1
23
24Function: "acosh":
25double: 2
26float: 2
27ldouble: 4
28
29Function: "acosh_downward":
30double: 2
31float: 2
32ldouble: 3
33
34Function: "acosh_towardzero":
35double: 2
36float: 2
37ldouble: 2
38
39Function: "acosh_upward":
40double: 2
41float: 2
42ldouble: 2
43
44Function: "asin":
45double: 1
46float: 1
47ldouble: 1
48
49Function: "asin_downward":
50double: 1
51float: 1
52ldouble: 2
53
54Function: "asin_towardzero":
55double: 1
56float: 1
57ldouble: 1
58
59Function: "asin_upward":
60double: 1
61float: 1
62ldouble: 2
63
64Function: "asinh":
65double: 2
66float: 2
67ldouble: 4
68
69Function: "asinh_downward":
70double: 3
71float: 3
72ldouble: 4
73
74Function: "asinh_towardzero":
75double: 2
76float: 2
77ldouble: 2
78
79Function: "asinh_upward":
80double: 3
81float: 3
82ldouble: 4
83
84Function: "atan":
85double: 1
86float: 1
87ldouble: 1
88
89Function: "atan2":
90float: 2
91ldouble: 2
92
93Function: "atan2_downward":
94double: 1
95float: 2
96ldouble: 2
97
98Function: "atan2_towardzero":
99double: 1
100float: 2
101ldouble: 3
102
103Function: "atan2_upward":
104double: 1
105float: 1
106ldouble: 2
107
108Function: "atan_downward":
109double: 1
110float: 2
111ldouble: 2
112
113Function: "atan_towardzero":
114double: 1
115float: 1
116ldouble: 1
117
118Function: "atan_upward":
119double: 1
120float: 2
121ldouble: 2
122
123Function: "atanh":
124double: 2
125float: 2
126ldouble: 4
127
128Function: "atanh_downward":
129double: 3
130float: 3
131ldouble: 4
132
133Function: "atanh_towardzero":
134double: 2
135float: 2
136ldouble: 2
137
138Function: "atanh_upward":
139double: 3
140float: 3
141ldouble: 4
142
143Function: "cabs":
144double: 1
145ldouble: 1
146
147Function: "cabs_downward":
148double: 1
149ldouble: 1
150
151Function: "cabs_towardzero":
152double: 1
153ldouble: 1
154
155Function: "cabs_upward":
156double: 1
157ldouble: 1
158
159Function: Real part of "cacos":
160double: 1
161float: 2
162ldouble: 2
163
164Function: Imaginary part of "cacos":
165double: 2
166float: 2
167ldouble: 2
168
169Function: Real part of "cacos_downward":
170double: 3
171float: 2
172ldouble: 3
173
174Function: Imaginary part of "cacos_downward":
175double: 5
176float: 3
177ldouble: 6
178
179Function: Real part of "cacos_towardzero":
180double: 3
181float: 2
182ldouble: 3
183
184Function: Imaginary part of "cacos_towardzero":
185double: 4
186float: 2
187ldouble: 5
188
189Function: Real part of "cacos_upward":
190double: 2
191float: 2
192ldouble: 3
193
194Function: Imaginary part of "cacos_upward":
195double: 5
196float: 5
197ldouble: 7
198
199Function: Real part of "cacosh":
200double: 2
201float: 2
202ldouble: 2
203
204Function: Imaginary part of "cacosh":
205double: 1
206float: 2
207ldouble: 2
208
209Function: Real part of "cacosh_downward":
210double: 4
211float: 2
212ldouble: 5
213
214Function: Imaginary part of "cacosh_downward":
215double: 3
216float: 3
217ldouble: 4
218
219Function: Real part of "cacosh_towardzero":
220double: 4
221float: 2
222ldouble: 5
223
224Function: Imaginary part of "cacosh_towardzero":
225double: 3
226float: 2
227ldouble: 3
228
229Function: Real part of "cacosh_upward":
230double: 4
231float: 3
232ldouble: 6
233
234Function: Imaginary part of "cacosh_upward":
235double: 3
236float: 2
237ldouble: 4
238
239Function: "carg":
240float: 1
241ldouble: 2
242
243Function: "carg_downward":
244double: 1
245float: 2
246ldouble: 2
247
248Function: "carg_towardzero":
249double: 1
250float: 2
251ldouble: 3
252
253Function: "carg_upward":
254double: 1
255float: 1
256ldouble: 2
257
258Function: Real part of "casin":
259double: 1
260float: 1
261ldouble: 2
262
263Function: Imaginary part of "casin":
264double: 2
265float: 2
266ldouble: 2
267
268Function: Real part of "casin_downward":
269double: 3
270float: 2
271ldouble: 3
272
273Function: Imaginary part of "casin_downward":
274double: 5
275float: 3
276ldouble: 6
277
278Function: Real part of "casin_towardzero":
279double: 3
280float: 1
281ldouble: 3
282
283Function: Imaginary part of "casin_towardzero":
284double: 4
285float: 2
286ldouble: 5
287
288Function: Real part of "casin_upward":
289double: 3
290float: 2
291ldouble: 3
292
293Function: Imaginary part of "casin_upward":
294double: 5
295float: 5
296ldouble: 7
297
298Function: Real part of "casinh":
299double: 2
300float: 2
301ldouble: 2
302
303Function: Imaginary part of "casinh":
304double: 1
305float: 1
306ldouble: 2
307
308Function: Real part of "casinh_downward":
309double: 5
310float: 3
311ldouble: 6
312
313Function: Imaginary part of "casinh_downward":
314double: 3
315float: 2
316ldouble: 3
317
318Function: Real part of "casinh_towardzero":
319double: 4
320float: 2
321ldouble: 5
322
323Function: Imaginary part of "casinh_towardzero":
324double: 3
325float: 1
326ldouble: 3
327
328Function: Real part of "casinh_upward":
329double: 5
330float: 5
331ldouble: 7
332
333Function: Imaginary part of "casinh_upward":
334double: 3
335float: 2
336ldouble: 3
337
338Function: Real part of "catan":
339double: 1
340float: 1
341ldouble: 1
342
343Function: Imaginary part of "catan":
344double: 1
345float: 1
346ldouble: 1
347
348Function: Real part of "catan_downward":
349double: 1
350float: 2
351ldouble: 2
352
353Function: Imaginary part of "catan_downward":
354double: 2
355float: 2
356ldouble: 2
357
358Function: Real part of "catan_towardzero":
359double: 1
360float: 2
361ldouble: 2
362
363Function: Imaginary part of "catan_towardzero":
364double: 2
365float: 2
366ldouble: 2
367
368Function: Real part of "catan_upward":
369double: 1
370float: 1
371ldouble: 2
372
373Function: Imaginary part of "catan_upward":
374double: 2
375float: 2
376ldouble: 3
377
378Function: Real part of "catanh":
379double: 1
380float: 1
381ldouble: 1
382
383Function: Imaginary part of "catanh":
384double: 1
385float: 1
386ldouble: 1
387
388Function: Real part of "catanh_downward":
389double: 2
390float: 2
391ldouble: 2
392
393Function: Imaginary part of "catanh_downward":
394double: 1
395float: 2
396ldouble: 2
397
398Function: Real part of "catanh_towardzero":
399double: 2
400float: 2
401ldouble: 2
402
403Function: Imaginary part of "catanh_towardzero":
404double: 1
405float: 2
406ldouble: 2
407
408Function: Real part of "catanh_upward":
409double: 4
410float: 4
411ldouble: 4
412
413Function: Imaginary part of "catanh_upward":
414double: 1
415float: 1
416ldouble: 2
417
418Function: "cbrt":
419double: 4
420float: 1
421ldouble: 1
422
423Function: "cbrt_downward":
424double: 4
425float: 1
426ldouble: 1
427
428Function: "cbrt_towardzero":
429double: 3
430float: 1
431ldouble: 1
432
433Function: "cbrt_upward":
434double: 5
435float: 1
436ldouble: 1
437
438Function: Real part of "ccos":
439double: 1
440float: 1
441ldouble: 1
442
443Function: Imaginary part of "ccos":
444double: 1
445float: 1
446ldouble: 1
447
448Function: Real part of "ccos_downward":
449double: 1
450float: 1
451ldouble: 2
452
453Function: Imaginary part of "ccos_downward":
454double: 2
455float: 3
456ldouble: 2
457
458Function: Real part of "ccos_towardzero":
459double: 1
460float: 2
461ldouble: 2
462
463Function: Imaginary part of "ccos_towardzero":
464double: 2
465float: 3
466ldouble: 2
467
468Function: Real part of "ccos_upward":
469double: 1
470float: 2
471ldouble: 3
472
473Function: Imaginary part of "ccos_upward":
474double: 2
475float: 2
476ldouble: 2
477
478Function: Real part of "ccosh":
479double: 1
480float: 1
481ldouble: 1
482
483Function: Imaginary part of "ccosh":
484double: 1
485float: 1
486ldouble: 1
487
488Function: Real part of "ccosh_downward":
489double: 1
490float: 2
491ldouble: 2
492
493Function: Imaginary part of "ccosh_downward":
494double: 2
495float: 3
496ldouble: 2
497
498Function: Real part of "ccosh_towardzero":
499double: 1
500float: 3
501ldouble: 2
502
503Function: Imaginary part of "ccosh_towardzero":
504double: 2
505float: 3
506ldouble: 2
507
508Function: Real part of "ccosh_upward":
509double: 1
510float: 2
511ldouble: 3
512
513Function: Imaginary part of "ccosh_upward":
514double: 2
515float: 2
516ldouble: 2
517
518Function: Real part of "cexp":
519double: 2
520float: 1
521ldouble: 1
522
523Function: Imaginary part of "cexp":
524double: 1
525float: 2
526ldouble: 1
527
528Function: Real part of "cexp_downward":
529double: 1
530float: 2
531ldouble: 2
532
533Function: Imaginary part of "cexp_downward":
534double: 1
535float: 3
536ldouble: 2
537
538Function: Real part of "cexp_towardzero":
539double: 1
540float: 2
541ldouble: 2
542
543Function: Imaginary part of "cexp_towardzero":
544double: 1
545float: 3
546ldouble: 2
547
548Function: Real part of "cexp_upward":
549double: 1
550float: 2
551ldouble: 3
552
553Function: Imaginary part of "cexp_upward":
554double: 1
555float: 2
556ldouble: 3
557
558Function: Real part of "clog":
559double: 3
560float: 3
561ldouble: 2
562
563Function: Imaginary part of "clog":
564double: 1
565float: 1
566ldouble: 1
567
568Function: Real part of "clog10":
569double: 3
570float: 4
571ldouble: 2
572
573Function: Imaginary part of "clog10":
574double: 2
575float: 2
576ldouble: 2
577
578Function: Real part of "clog10_downward":
579double: 5
580float: 5
581ldouble: 3
582
583Function: Imaginary part of "clog10_downward":
584double: 2
585float: 4
586ldouble: 3
587
588Function: Real part of "clog10_towardzero":
589double: 5
590float: 5
591ldouble: 4
592
593Function: Imaginary part of "clog10_towardzero":
594double: 2
595float: 4
596ldouble: 3
597
598Function: Real part of "clog10_upward":
599double: 6
600float: 5
601ldouble: 4
602
603Function: Imaginary part of "clog10_upward":
604double: 2
605float: 4
606ldouble: 3
607
608Function: Real part of "clog_downward":
609double: 4
610float: 3
611ldouble: 3
612
613Function: Imaginary part of "clog_downward":
614double: 1
615float: 2
616ldouble: 2
617
618Function: Real part of "clog_towardzero":
619double: 4
620float: 4
621ldouble: 3
622
623Function: Imaginary part of "clog_towardzero":
624double: 1
625float: 3
626ldouble: 2
627
628Function: Real part of "clog_upward":
629double: 4
630float: 3
631ldouble: 4
632
633Function: Imaginary part of "clog_upward":
634double: 1
635float: 2
636ldouble: 2
637
638Function: "cos":
639double: 1
640float: 1
641ldouble: 2
642
643Function: "cos_downward":
644double: 1
645ldouble: 3
646
647Function: "cos_towardzero":
648double: 1
649ldouble: 1
650
651Function: "cos_upward":
652double: 1
653ldouble: 2
654
655Function: "cosh":
656double: 2
657float: 2
658ldouble: 2
659
660Function: "cosh_downward":
661double: 1
662float: 1
663ldouble: 2
664
665Function: "cosh_towardzero":
666double: 1
667float: 1
668ldouble: 2
669
670Function: "cosh_upward":
671double: 1
672float: 2
673ldouble: 3
674
675Function: Real part of "cpow":
676double: 2
677float: 5
678ldouble: 4
679
680Function: Imaginary part of "cpow":
681float: 2
682ldouble: 1
683
684Function: Real part of "cpow_downward":
685double: 4
686float: 8
687ldouble: 6
688
689Function: Imaginary part of "cpow_downward":
690double: 1
691float: 2
692ldouble: 2
693
694Function: Real part of "cpow_towardzero":
695double: 4
696float: 8
697ldouble: 6
698
699Function: Imaginary part of "cpow_towardzero":
700double: 1
701float: 2
702ldouble: 2
703
704Function: Real part of "cpow_upward":
705double: 4
706float: 1
707ldouble: 3
708
709Function: Imaginary part of "cpow_upward":
710double: 1
711float: 2
712ldouble: 2
713
714Function: Real part of "csin":
715double: 1
716float: 1
717ldouble: 1
718
719Function: Imaginary part of "csin":
720ldouble: 1
721
722Function: Real part of "csin_downward":
723double: 2
724float: 3
725ldouble: 2
726
727Function: Imaginary part of "csin_downward":
728double: 1
729float: 1
730ldouble: 2
731
732Function: Real part of "csin_towardzero":
733double: 2
734float: 3
735ldouble: 2
736
737Function: Imaginary part of "csin_towardzero":
738double: 1
739float: 1
740ldouble: 2
741
742Function: Real part of "csin_upward":
743double: 2
744float: 2
745ldouble: 2
746
747Function: Imaginary part of "csin_upward":
748double: 1
749float: 2
750ldouble: 3
751
752Function: Real part of "csinh":
753float: 1
754ldouble: 1
755
756Function: Imaginary part of "csinh":
757double: 1
758float: 1
759ldouble: 1
760
761Function: Real part of "csinh_downward":
762double: 2
763float: 1
764ldouble: 2
765
766Function: Imaginary part of "csinh_downward":
767double: 2
768float: 3
769ldouble: 2
770
771Function: Real part of "csinh_towardzero":
772double: 2
773float: 2
774ldouble: 2
775
776Function: Imaginary part of "csinh_towardzero":
777double: 2
778float: 3
779ldouble: 2
780
781Function: Real part of "csinh_upward":
782double: 1
783float: 2
784ldouble: 3
785
786Function: Imaginary part of "csinh_upward":
787double: 2
788float: 2
789ldouble: 2
790
791Function: Real part of "csqrt":
792double: 2
793float: 2
794ldouble: 2
795
796Function: Imaginary part of "csqrt":
797double: 2
798float: 2
799ldouble: 2
800
801Function: Real part of "csqrt_downward":
802double: 5
803float: 4
804ldouble: 4
805
806Function: Imaginary part of "csqrt_downward":
807double: 4
808float: 3
809ldouble: 3
810
811Function: Real part of "csqrt_towardzero":
812double: 4
813float: 3
814ldouble: 3
815
816Function: Imaginary part of "csqrt_towardzero":
817double: 4
818float: 3
819ldouble: 3
820
821Function: Real part of "csqrt_upward":
822double: 5
823float: 4
824ldouble: 4
825
826Function: Imaginary part of "csqrt_upward":
827double: 3
828float: 3
829ldouble: 3
830
831Function: Real part of "ctan":
832double: 1
833float: 1
834ldouble: 3
835
836Function: Imaginary part of "ctan":
837double: 2
838float: 2
839ldouble: 3
840
841Function: Real part of "ctan_downward":
842double: 6
843float: 5
844ldouble: 4
845
846Function: Imaginary part of "ctan_downward":
847double: 2
848float: 2
849ldouble: 5
850
851Function: Real part of "ctan_towardzero":
852double: 5
853float: 2
854ldouble: 4
855
856Function: Imaginary part of "ctan_towardzero":
857double: 1
858float: 2
859ldouble: 5
860
861Function: Real part of "ctan_upward":
862double: 2
863float: 4
864ldouble: 5
865
866Function: Imaginary part of "ctan_upward":
867double: 2
868float: 2
869ldouble: 5
870
871Function: Real part of "ctanh":
872double: 2
873float: 2
874ldouble: 3
875
876Function: Imaginary part of "ctanh":
877double: 2
878float: 2
879ldouble: 3
880
881Function: Real part of "ctanh_downward":
882double: 4
883float: 2
884ldouble: 5
885
886Function: Imaginary part of "ctanh_downward":
887double: 6
888float: 5
889ldouble: 4
890
891Function: Real part of "ctanh_towardzero":
892double: 2
893float: 2
894ldouble: 5
895
896Function: Imaginary part of "ctanh_towardzero":
897double: 5
898float: 2
899ldouble: 3
900
901Function: Real part of "ctanh_upward":
902double: 2
903float: 2
904ldouble: 5
905
906Function: Imaginary part of "ctanh_upward":
907double: 2
908float: 3
909ldouble: 5
910
911Function: "erf":
912double: 1
913float: 1
914ldouble: 1
915
916Function: "erf_downward":
917double: 1
918float: 1
919ldouble: 2
920
921Function: "erf_towardzero":
922double: 1
923float: 1
924ldouble: 1
925
926Function: "erf_upward":
927double: 1
928float: 1
929ldouble: 2
930
931Function: "erfc":
932double: 5
933float: 3
934ldouble: 4
935
936Function: "erfc_downward":
937double: 3
938float: 4
939ldouble: 5
940
941Function: "erfc_towardzero":
942double: 3
943float: 3
944ldouble: 4
945
946Function: "erfc_upward":
947double: 3
948float: 4
949ldouble: 5
950
951Function: "exp":
952double: 1
953float: 1
954ldouble: 1
955
956Function: "exp10":
957double: 2
958ldouble: 2
959
960Function: "exp10_downward":
961double: 2
962float: 1
963ldouble: 3
964
965Function: "exp10_towardzero":
966double: 2
967float: 1
968ldouble: 3
969
970Function: "exp10_upward":
971double: 2
972float: 1
973ldouble: 3
974
975Function: "exp2":
976double: 1
977ldouble: 1
978
979Function: "exp2_downward":
980double: 1
981ldouble: 1
982
983Function: "exp2_towardzero":
984double: 1
985ldouble: 1
986
987Function: "exp2_upward":
988double: 1
989float: 1
990ldouble: 2
991
992Function: "exp_downward":
993double: 1
994float: 1
995
996Function: "exp_towardzero":
997double: 1
998float: 1
999
1000Function: "exp_upward":
1001double: 1
1002float: 1
1003
1004Function: "expm1":
1005double: 1
1006float: 1
1007ldouble: 2
1008
1009Function: "expm1_downward":
1010double: 1
1011float: 1
1012ldouble: 2
1013
1014Function: "expm1_towardzero":
1015double: 1
1016float: 2
1017ldouble: 4
1018
1019Function: "expm1_upward":
1020double: 1
1021float: 1
1022ldouble: 3
1023
1024Function: "gamma":
1025double: 4
1026float: 7
1027ldouble: 5
1028
1029Function: "gamma_downward":
1030double: 4
1031float: 4
1032ldouble: 8
1033
1034Function: "gamma_towardzero":
1035double: 4
1036float: 3
1037ldouble: 5
1038
1039Function: "gamma_upward":
1040double: 4
1041float: 5
1042ldouble: 8
1043
1044Function: "hypot":
1045double: 1
1046ldouble: 1
1047
1048Function: "hypot_downward":
1049double: 1
1050ldouble: 1
1051
1052Function: "hypot_towardzero":
1053double: 1
1054ldouble: 1
1055
1056Function: "hypot_upward":
1057double: 1
1058ldouble: 1
1059
1060Function: "j0":
1061double: 2
1062float: 9
1063ldouble: 2
1064
1065Function: "j0_downward":
1066double: 2
1067float: 4
1068ldouble: 4
1069
1070Function: "j0_towardzero":
1071double: 2
1072float: 1
1073ldouble: 2
1074
1075Function: "j0_upward":
1076double: 3
1077float: 2
1078ldouble: 5
1079
1080Function: "j1":
1081double: 4
1082float: 9
1083ldouble: 4
1084
1085Function: "j1_downward":
1086double: 3
1087float: 2
1088ldouble: 4
1089
1090Function: "j1_towardzero":
1091double: 3
1092float: 2
1093ldouble: 4
1094
1095Function: "j1_upward":
1096double: 3
1097float: 4
1098ldouble: 3
1099
1100Function: "jn":
1101double: 4
1102float: 4
1103ldouble: 7
1104
1105Function: "jn_downward":
1106double: 4
1107float: 5
1108ldouble: 8
1109
1110Function: "jn_towardzero":
1111double: 4
1112float: 5
1113ldouble: 8
1114
1115Function: "jn_upward":
1116double: 5
1117float: 4
1118ldouble: 7
1119
1120Function: "lgamma":
1121double: 4
1122float: 7
1123ldouble: 5
1124
1125Function: "lgamma_downward":
1126double: 4
1127float: 4
1128ldouble: 8
1129
1130Function: "lgamma_towardzero":
1131double: 4
1132float: 3
1133ldouble: 5
1134
1135Function: "lgamma_upward":
1136double: 4
1137float: 5
1138ldouble: 8
1139
1140Function: "log":
1141ldouble: 1
1142
1143Function: "log10":
1144double: 2
1145float: 2
1146ldouble: 2
1147
1148Function: "log10_downward":
1149double: 2
1150float: 3
1151ldouble: 1
1152
1153Function: "log10_towardzero":
1154double: 2
1155float: 1
1156ldouble: 1
1157
1158Function: "log10_upward":
1159double: 2
1160float: 2
1161ldouble: 1
1162
1163Function: "log1p":
1164double: 1
1165float: 1
1166ldouble: 3
1167
1168Function: "log1p_downward":
1169double: 1
1170float: 2
1171ldouble: 3
1172
1173Function: "log1p_towardzero":
1174double: 2
1175float: 2
1176ldouble: 3
1177
1178Function: "log1p_upward":
1179double: 2
1180float: 2
1181ldouble: 2
1182
1183Function: "log2":
1184double: 2
1185float: 1
1186ldouble: 3
1187
1188Function: "log2_downward":
1189double: 3
1190ldouble: 3
1191
1192Function: "log2_towardzero":
1193double: 2
1194ldouble: 1
1195
1196Function: "log2_upward":
1197double: 3
1198ldouble: 1
1199
1200Function: "log_downward":
1201ldouble: 1
1202
1203Function: "log_towardzero":
1204ldouble: 2
1205
1206Function: "log_upward":
1207double: 1
1208ldouble: 1
1209
1210Function: "pow":
1211double: 1
1212ldouble: 2
1213
1214Function: "pow_downward":
1215double: 1
1216float: 1
1217ldouble: 2
1218
1219Function: "pow_towardzero":
1220double: 1
1221float: 1
1222ldouble: 2
1223
1224Function: "pow_upward":
1225double: 1
1226float: 1
1227ldouble: 2
1228
1229Function: "sin":
1230double: 1
1231float: 1
1232ldouble: 2
1233
1234Function: "sin_downward":
1235double: 1
1236ldouble: 3
1237
1238Function: "sin_towardzero":
1239double: 1
1240ldouble: 2
1241
1242Function: "sin_upward":
1243double: 1
1244ldouble: 3
1245
1246Function: "sincos":
1247double: 1
1248ldouble: 1
1249
1250Function: "sincos_downward":
1251double: 1
1252ldouble: 3
1253
1254Function: "sincos_towardzero":
1255double: 1
1256ldouble: 2
1257
1258Function: "sincos_upward":
1259double: 1
1260ldouble: 3
1261
1262Function: "sinh":
1263double: 2
1264float: 2
1265ldouble: 2
1266
1267Function: "sinh_downward":
1268double: 3
1269float: 3
1270ldouble: 3
1271
1272Function: "sinh_towardzero":
1273double: 2
1274float: 2
1275ldouble: 3
1276
1277Function: "sinh_upward":
1278double: 3
1279float: 3
1280ldouble: 4
1281
1282Function: "tan":
1283float: 1
1284ldouble: 1
1285
1286Function: "tan_downward":
1287double: 1
1288float: 2
1289ldouble: 1
1290
1291Function: "tan_towardzero":
1292double: 1
1293float: 1
1294ldouble: 1
1295
1296Function: "tan_upward":
1297double: 1
1298float: 1
1299ldouble: 1
1300
1301Function: "tanh":
1302double: 2
1303float: 2
1304ldouble: 2
1305
1306Function: "tanh_downward":
1307double: 3
1308float: 3
1309ldouble: 4
1310
1311Function: "tanh_towardzero":
1312double: 2
1313float: 2
1314ldouble: 3
1315
1316Function: "tanh_upward":
1317double: 3
1318float: 3
1319ldouble: 3
1320
1321Function: "tgamma":
1322double: 9
1323float: 8
1324ldouble: 4
1325
1326Function: "tgamma_downward":
1327double: 5
1328float: 5
1329ldouble: 5
1330
1331Function: "tgamma_towardzero":
1332double: 5
1333float: 4
1334ldouble: 5
1335
1336Function: "tgamma_upward":
1337double: 4
1338float: 4
1339ldouble: 4
1340
1341Function: "y0":
1342double: 3
1343float: 9
1344ldouble: 3
1345
1346Function: "y0_downward":
1347double: 3
1348float: 4
1349ldouble: 4
1350
1351Function: "y0_towardzero":
1352double: 3
1353float: 3
1354ldouble: 3
1355
1356Function: "y0_upward":
1357double: 2
1358float: 5
1359ldouble: 3
1360
1361Function: "y1":
1362double: 3
1363float: 9
1364ldouble: 5
1365
1366Function: "y1_downward":
1367double: 3
1368float: 2
1369ldouble: 4
1370
1371Function: "y1_towardzero":
1372double: 3
1373float: 2
1374ldouble: 2
1375
1376Function: "y1_upward":
1377double: 5
1378float: 2
1379ldouble: 5
1380
1381Function: "yn":
1382double: 3
1383float: 3
1384ldouble: 5
1385
1386Function: "yn_downward":
1387double: 3
1388float: 4
1389ldouble: 5
1390
1391Function: "yn_towardzero":
1392double: 3
1393float: 3
1394ldouble: 5
1395
1396Function: "yn_upward":
1397double: 4
1398float: 5
1399ldouble: 5
1400
1401# end of automatic generation
1402