1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acos": 5double: 1 6float: 1 7ldouble: 1 8 9Function: "acos_downward": 10double: 1 11float: 1 12ldouble: 1 13 14Function: "acos_towardzero": 15double: 1 16float: 1 17ldouble: 1 18 19Function: "acos_upward": 20double: 1 21float: 1 22ldouble: 1 23 24Function: "acosh": 25double: 2 26float: 2 27ldouble: 4 28 29Function: "acosh_downward": 30double: 2 31float: 2 32ldouble: 3 33 34Function: "acosh_towardzero": 35double: 2 36float: 2 37ldouble: 2 38 39Function: "acosh_upward": 40double: 2 41float: 2 42ldouble: 2 43 44Function: "asin": 45double: 1 46float: 1 47ldouble: 1 48 49Function: "asin_downward": 50double: 1 51float: 1 52ldouble: 2 53 54Function: "asin_towardzero": 55double: 1 56float: 1 57ldouble: 1 58 59Function: "asin_upward": 60double: 1 61float: 1 62ldouble: 2 63 64Function: "asinh": 65double: 2 66float: 2 67ldouble: 4 68 69Function: "asinh_downward": 70double: 3 71float: 3 72ldouble: 4 73 74Function: "asinh_towardzero": 75double: 2 76float: 2 77ldouble: 2 78 79Function: "asinh_upward": 80double: 3 81float: 3 82ldouble: 4 83 84Function: "atan": 85double: 1 86float: 1 87ldouble: 1 88 89Function: "atan2": 90float: 2 91ldouble: 2 92 93Function: "atan2_downward": 94double: 1 95float: 2 96ldouble: 2 97 98Function: "atan2_towardzero": 99double: 1 100float: 2 101ldouble: 3 102 103Function: "atan2_upward": 104double: 1 105float: 1 106ldouble: 2 107 108Function: "atan_downward": 109double: 1 110float: 2 111ldouble: 2 112 113Function: "atan_towardzero": 114double: 1 115float: 1 116ldouble: 1 117 118Function: "atan_upward": 119double: 1 120float: 2 121ldouble: 2 122 123Function: "atanh": 124double: 2 125float: 2 126ldouble: 4 127 128Function: "atanh_downward": 129double: 3 130float: 3 131ldouble: 4 132 133Function: "atanh_towardzero": 134double: 2 135float: 2 136ldouble: 2 137 138Function: "atanh_upward": 139double: 3 140float: 3 141ldouble: 4 142 143Function: "cabs": 144double: 1 145ldouble: 1 146 147Function: "cabs_downward": 148double: 1 149ldouble: 1 150 151Function: "cabs_towardzero": 152double: 1 153ldouble: 1 154 155Function: "cabs_upward": 156double: 1 157ldouble: 1 158 159Function: Real part of "cacos": 160double: 1 161float: 2 162ldouble: 2 163 164Function: Imaginary part of "cacos": 165double: 2 166float: 2 167ldouble: 2 168 169Function: Real part of "cacos_downward": 170double: 3 171float: 2 172ldouble: 3 173 174Function: Imaginary part of "cacos_downward": 175double: 5 176float: 3 177ldouble: 6 178 179Function: Real part of "cacos_towardzero": 180double: 3 181float: 2 182ldouble: 3 183 184Function: Imaginary part of "cacos_towardzero": 185double: 4 186float: 2 187ldouble: 5 188 189Function: Real part of "cacos_upward": 190double: 2 191float: 2 192ldouble: 3 193 194Function: Imaginary part of "cacos_upward": 195double: 5 196float: 5 197ldouble: 7 198 199Function: Real part of "cacosh": 200double: 2 201float: 2 202ldouble: 2 203 204Function: Imaginary part of "cacosh": 205double: 1 206float: 2 207ldouble: 2 208 209Function: Real part of "cacosh_downward": 210double: 4 211float: 2 212ldouble: 5 213 214Function: Imaginary part of "cacosh_downward": 215double: 3 216float: 3 217ldouble: 4 218 219Function: Real part of "cacosh_towardzero": 220double: 4 221float: 2 222ldouble: 5 223 224Function: Imaginary part of "cacosh_towardzero": 225double: 3 226float: 2 227ldouble: 3 228 229Function: Real part of "cacosh_upward": 230double: 4 231float: 3 232ldouble: 6 233 234Function: Imaginary part of "cacosh_upward": 235double: 3 236float: 2 237ldouble: 4 238 239Function: "carg": 240float: 1 241ldouble: 2 242 243Function: "carg_downward": 244double: 1 245float: 2 246ldouble: 2 247 248Function: "carg_towardzero": 249double: 1 250float: 2 251ldouble: 3 252 253Function: "carg_upward": 254double: 1 255float: 1 256ldouble: 2 257 258Function: Real part of "casin": 259double: 1 260float: 1 261ldouble: 2 262 263Function: Imaginary part of "casin": 264double: 2 265float: 2 266ldouble: 2 267 268Function: Real part of "casin_downward": 269double: 3 270float: 2 271ldouble: 3 272 273Function: Imaginary part of "casin_downward": 274double: 5 275float: 3 276ldouble: 6 277 278Function: Real part of "casin_towardzero": 279double: 3 280float: 1 281ldouble: 3 282 283Function: Imaginary part of "casin_towardzero": 284double: 4 285float: 2 286ldouble: 5 287 288Function: Real part of "casin_upward": 289double: 3 290float: 2 291ldouble: 3 292 293Function: Imaginary part of "casin_upward": 294double: 5 295float: 5 296ldouble: 7 297 298Function: Real part of "casinh": 299double: 2 300float: 2 301ldouble: 2 302 303Function: Imaginary part of "casinh": 304double: 1 305float: 1 306ldouble: 2 307 308Function: Real part of "casinh_downward": 309double: 5 310float: 3 311ldouble: 6 312 313Function: Imaginary part of "casinh_downward": 314double: 3 315float: 2 316ldouble: 3 317 318Function: Real part of "casinh_towardzero": 319double: 4 320float: 2 321ldouble: 5 322 323Function: Imaginary part of "casinh_towardzero": 324double: 3 325float: 1 326ldouble: 3 327 328Function: Real part of "casinh_upward": 329double: 5 330float: 5 331ldouble: 7 332 333Function: Imaginary part of "casinh_upward": 334double: 3 335float: 2 336ldouble: 3 337 338Function: Real part of "catan": 339double: 1 340float: 1 341ldouble: 1 342 343Function: Imaginary part of "catan": 344double: 1 345float: 1 346ldouble: 1 347 348Function: Real part of "catan_downward": 349double: 1 350float: 2 351ldouble: 2 352 353Function: Imaginary part of "catan_downward": 354double: 2 355float: 2 356ldouble: 2 357 358Function: Real part of "catan_towardzero": 359double: 1 360float: 2 361ldouble: 2 362 363Function: Imaginary part of "catan_towardzero": 364double: 2 365float: 2 366ldouble: 2 367 368Function: Real part of "catan_upward": 369double: 1 370float: 1 371ldouble: 2 372 373Function: Imaginary part of "catan_upward": 374double: 2 375float: 2 376ldouble: 3 377 378Function: Real part of "catanh": 379double: 1 380float: 1 381ldouble: 1 382 383Function: Imaginary part of "catanh": 384double: 1 385float: 1 386ldouble: 1 387 388Function: Real part of "catanh_downward": 389double: 2 390float: 2 391ldouble: 2 392 393Function: Imaginary part of "catanh_downward": 394double: 1 395float: 2 396ldouble: 2 397 398Function: Real part of "catanh_towardzero": 399double: 2 400float: 2 401ldouble: 2 402 403Function: Imaginary part of "catanh_towardzero": 404double: 1 405float: 2 406ldouble: 2 407 408Function: Real part of "catanh_upward": 409double: 4 410float: 4 411ldouble: 4 412 413Function: Imaginary part of "catanh_upward": 414double: 1 415float: 1 416ldouble: 2 417 418Function: "cbrt": 419double: 4 420float: 1 421ldouble: 1 422 423Function: "cbrt_downward": 424double: 4 425float: 1 426ldouble: 1 427 428Function: "cbrt_towardzero": 429double: 3 430float: 1 431ldouble: 1 432 433Function: "cbrt_upward": 434double: 5 435float: 1 436ldouble: 1 437 438Function: Real part of "ccos": 439double: 1 440float: 1 441ldouble: 1 442 443Function: Imaginary part of "ccos": 444double: 1 445float: 1 446ldouble: 1 447 448Function: Real part of "ccos_downward": 449double: 1 450float: 1 451ldouble: 2 452 453Function: Imaginary part of "ccos_downward": 454double: 2 455float: 3 456ldouble: 2 457 458Function: Real part of "ccos_towardzero": 459double: 1 460float: 2 461ldouble: 2 462 463Function: Imaginary part of "ccos_towardzero": 464double: 2 465float: 3 466ldouble: 2 467 468Function: Real part of "ccos_upward": 469double: 1 470float: 2 471ldouble: 3 472 473Function: Imaginary part of "ccos_upward": 474double: 2 475float: 2 476ldouble: 2 477 478Function: Real part of "ccosh": 479double: 1 480float: 1 481ldouble: 1 482 483Function: Imaginary part of "ccosh": 484double: 1 485float: 1 486ldouble: 1 487 488Function: Real part of "ccosh_downward": 489double: 1 490float: 2 491ldouble: 2 492 493Function: Imaginary part of "ccosh_downward": 494double: 2 495float: 3 496ldouble: 2 497 498Function: Real part of "ccosh_towardzero": 499double: 1 500float: 3 501ldouble: 2 502 503Function: Imaginary part of "ccosh_towardzero": 504double: 2 505float: 3 506ldouble: 2 507 508Function: Real part of "ccosh_upward": 509double: 1 510float: 2 511ldouble: 3 512 513Function: Imaginary part of "ccosh_upward": 514double: 2 515float: 2 516ldouble: 2 517 518Function: Real part of "cexp": 519double: 2 520float: 1 521ldouble: 1 522 523Function: Imaginary part of "cexp": 524double: 1 525float: 2 526ldouble: 1 527 528Function: Real part of "cexp_downward": 529double: 1 530float: 2 531ldouble: 2 532 533Function: Imaginary part of "cexp_downward": 534double: 1 535float: 3 536ldouble: 2 537 538Function: Real part of "cexp_towardzero": 539double: 1 540float: 2 541ldouble: 2 542 543Function: Imaginary part of "cexp_towardzero": 544double: 1 545float: 3 546ldouble: 2 547 548Function: Real part of "cexp_upward": 549double: 1 550float: 2 551ldouble: 3 552 553Function: Imaginary part of "cexp_upward": 554double: 1 555float: 2 556ldouble: 3 557 558Function: Real part of "clog": 559double: 3 560float: 3 561ldouble: 2 562 563Function: Imaginary part of "clog": 564double: 1 565float: 1 566ldouble: 1 567 568Function: Real part of "clog10": 569double: 3 570float: 4 571ldouble: 2 572 573Function: Imaginary part of "clog10": 574double: 2 575float: 2 576ldouble: 2 577 578Function: Real part of "clog10_downward": 579double: 5 580float: 5 581ldouble: 3 582 583Function: Imaginary part of "clog10_downward": 584double: 2 585float: 4 586ldouble: 3 587 588Function: Real part of "clog10_towardzero": 589double: 5 590float: 5 591ldouble: 4 592 593Function: Imaginary part of "clog10_towardzero": 594double: 2 595float: 4 596ldouble: 3 597 598Function: Real part of "clog10_upward": 599double: 6 600float: 5 601ldouble: 4 602 603Function: Imaginary part of "clog10_upward": 604double: 2 605float: 4 606ldouble: 3 607 608Function: Real part of "clog_downward": 609double: 4 610float: 3 611ldouble: 3 612 613Function: Imaginary part of "clog_downward": 614double: 1 615float: 2 616ldouble: 2 617 618Function: Real part of "clog_towardzero": 619double: 4 620float: 4 621ldouble: 3 622 623Function: Imaginary part of "clog_towardzero": 624double: 1 625float: 3 626ldouble: 2 627 628Function: Real part of "clog_upward": 629double: 4 630float: 3 631ldouble: 4 632 633Function: Imaginary part of "clog_upward": 634double: 1 635float: 2 636ldouble: 2 637 638Function: "cos": 639double: 1 640float: 1 641ldouble: 2 642 643Function: "cos_downward": 644double: 1 645ldouble: 3 646 647Function: "cos_towardzero": 648double: 1 649ldouble: 1 650 651Function: "cos_upward": 652double: 1 653ldouble: 2 654 655Function: "cosh": 656double: 2 657float: 2 658ldouble: 2 659 660Function: "cosh_downward": 661double: 1 662float: 1 663ldouble: 2 664 665Function: "cosh_towardzero": 666double: 1 667float: 1 668ldouble: 2 669 670Function: "cosh_upward": 671double: 1 672float: 2 673ldouble: 3 674 675Function: Real part of "cpow": 676double: 2 677float: 5 678ldouble: 4 679 680Function: Imaginary part of "cpow": 681float: 2 682ldouble: 1 683 684Function: Real part of "cpow_downward": 685double: 4 686float: 8 687ldouble: 6 688 689Function: Imaginary part of "cpow_downward": 690double: 1 691float: 2 692ldouble: 2 693 694Function: Real part of "cpow_towardzero": 695double: 4 696float: 8 697ldouble: 6 698 699Function: Imaginary part of "cpow_towardzero": 700double: 1 701float: 2 702ldouble: 2 703 704Function: Real part of "cpow_upward": 705double: 4 706float: 1 707ldouble: 3 708 709Function: Imaginary part of "cpow_upward": 710double: 1 711float: 2 712ldouble: 2 713 714Function: Real part of "csin": 715double: 1 716float: 1 717ldouble: 1 718 719Function: Imaginary part of "csin": 720ldouble: 1 721 722Function: Real part of "csin_downward": 723double: 2 724float: 3 725ldouble: 2 726 727Function: Imaginary part of "csin_downward": 728double: 1 729float: 1 730ldouble: 2 731 732Function: Real part of "csin_towardzero": 733double: 2 734float: 3 735ldouble: 2 736 737Function: Imaginary part of "csin_towardzero": 738double: 1 739float: 1 740ldouble: 2 741 742Function: Real part of "csin_upward": 743double: 2 744float: 2 745ldouble: 2 746 747Function: Imaginary part of "csin_upward": 748double: 1 749float: 2 750ldouble: 3 751 752Function: Real part of "csinh": 753float: 1 754ldouble: 1 755 756Function: Imaginary part of "csinh": 757double: 1 758float: 1 759ldouble: 1 760 761Function: Real part of "csinh_downward": 762double: 2 763float: 1 764ldouble: 2 765 766Function: Imaginary part of "csinh_downward": 767double: 2 768float: 3 769ldouble: 2 770 771Function: Real part of "csinh_towardzero": 772double: 2 773float: 2 774ldouble: 2 775 776Function: Imaginary part of "csinh_towardzero": 777double: 2 778float: 3 779ldouble: 2 780 781Function: Real part of "csinh_upward": 782double: 1 783float: 2 784ldouble: 3 785 786Function: Imaginary part of "csinh_upward": 787double: 2 788float: 2 789ldouble: 2 790 791Function: Real part of "csqrt": 792double: 2 793float: 2 794ldouble: 2 795 796Function: Imaginary part of "csqrt": 797double: 2 798float: 2 799ldouble: 2 800 801Function: Real part of "csqrt_downward": 802double: 5 803float: 4 804ldouble: 4 805 806Function: Imaginary part of "csqrt_downward": 807double: 4 808float: 3 809ldouble: 3 810 811Function: Real part of "csqrt_towardzero": 812double: 4 813float: 3 814ldouble: 3 815 816Function: Imaginary part of "csqrt_towardzero": 817double: 4 818float: 3 819ldouble: 3 820 821Function: Real part of "csqrt_upward": 822double: 5 823float: 4 824ldouble: 4 825 826Function: Imaginary part of "csqrt_upward": 827double: 3 828float: 3 829ldouble: 3 830 831Function: Real part of "ctan": 832double: 1 833float: 1 834ldouble: 3 835 836Function: Imaginary part of "ctan": 837double: 2 838float: 2 839ldouble: 3 840 841Function: Real part of "ctan_downward": 842double: 6 843float: 5 844ldouble: 4 845 846Function: Imaginary part of "ctan_downward": 847double: 2 848float: 2 849ldouble: 5 850 851Function: Real part of "ctan_towardzero": 852double: 5 853float: 2 854ldouble: 4 855 856Function: Imaginary part of "ctan_towardzero": 857double: 1 858float: 2 859ldouble: 5 860 861Function: Real part of "ctan_upward": 862double: 2 863float: 4 864ldouble: 5 865 866Function: Imaginary part of "ctan_upward": 867double: 2 868float: 2 869ldouble: 5 870 871Function: Real part of "ctanh": 872double: 2 873float: 2 874ldouble: 3 875 876Function: Imaginary part of "ctanh": 877double: 2 878float: 2 879ldouble: 3 880 881Function: Real part of "ctanh_downward": 882double: 4 883float: 2 884ldouble: 5 885 886Function: Imaginary part of "ctanh_downward": 887double: 6 888float: 5 889ldouble: 4 890 891Function: Real part of "ctanh_towardzero": 892double: 2 893float: 2 894ldouble: 5 895 896Function: Imaginary part of "ctanh_towardzero": 897double: 5 898float: 2 899ldouble: 3 900 901Function: Real part of "ctanh_upward": 902double: 2 903float: 2 904ldouble: 5 905 906Function: Imaginary part of "ctanh_upward": 907double: 2 908float: 3 909ldouble: 5 910 911Function: "erf": 912double: 1 913float: 1 914ldouble: 1 915 916Function: "erf_downward": 917double: 1 918float: 1 919ldouble: 2 920 921Function: "erf_towardzero": 922double: 1 923float: 1 924ldouble: 1 925 926Function: "erf_upward": 927double: 1 928float: 1 929ldouble: 2 930 931Function: "erfc": 932double: 5 933float: 3 934ldouble: 4 935 936Function: "erfc_downward": 937double: 3 938float: 4 939ldouble: 5 940 941Function: "erfc_towardzero": 942double: 3 943float: 3 944ldouble: 4 945 946Function: "erfc_upward": 947double: 3 948float: 4 949ldouble: 5 950 951Function: "exp": 952double: 1 953float: 1 954ldouble: 1 955 956Function: "exp10": 957double: 2 958ldouble: 2 959 960Function: "exp10_downward": 961double: 2 962float: 1 963ldouble: 3 964 965Function: "exp10_towardzero": 966double: 2 967float: 1 968ldouble: 3 969 970Function: "exp10_upward": 971double: 2 972float: 1 973ldouble: 3 974 975Function: "exp2": 976double: 1 977ldouble: 1 978 979Function: "exp2_downward": 980double: 1 981ldouble: 1 982 983Function: "exp2_towardzero": 984double: 1 985ldouble: 1 986 987Function: "exp2_upward": 988double: 1 989float: 1 990ldouble: 2 991 992Function: "exp_downward": 993double: 1 994float: 1 995 996Function: "exp_towardzero": 997double: 1 998float: 1 999 1000Function: "exp_upward": 1001double: 1 1002float: 1 1003 1004Function: "expm1": 1005double: 1 1006float: 1 1007ldouble: 2 1008 1009Function: "expm1_downward": 1010double: 1 1011float: 1 1012ldouble: 2 1013 1014Function: "expm1_towardzero": 1015double: 1 1016float: 2 1017ldouble: 4 1018 1019Function: "expm1_upward": 1020double: 1 1021float: 1 1022ldouble: 3 1023 1024Function: "gamma": 1025double: 4 1026float: 7 1027ldouble: 5 1028 1029Function: "gamma_downward": 1030double: 4 1031float: 4 1032ldouble: 8 1033 1034Function: "gamma_towardzero": 1035double: 4 1036float: 3 1037ldouble: 5 1038 1039Function: "gamma_upward": 1040double: 4 1041float: 5 1042ldouble: 8 1043 1044Function: "hypot": 1045double: 1 1046ldouble: 1 1047 1048Function: "hypot_downward": 1049double: 1 1050ldouble: 1 1051 1052Function: "hypot_towardzero": 1053double: 1 1054ldouble: 1 1055 1056Function: "hypot_upward": 1057double: 1 1058ldouble: 1 1059 1060Function: "j0": 1061double: 2 1062float: 9 1063ldouble: 2 1064 1065Function: "j0_downward": 1066double: 2 1067float: 4 1068ldouble: 4 1069 1070Function: "j0_towardzero": 1071double: 2 1072float: 1 1073ldouble: 2 1074 1075Function: "j0_upward": 1076double: 3 1077float: 2 1078ldouble: 5 1079 1080Function: "j1": 1081double: 4 1082float: 9 1083ldouble: 4 1084 1085Function: "j1_downward": 1086double: 3 1087float: 2 1088ldouble: 4 1089 1090Function: "j1_towardzero": 1091double: 3 1092float: 2 1093ldouble: 4 1094 1095Function: "j1_upward": 1096double: 3 1097float: 4 1098ldouble: 3 1099 1100Function: "jn": 1101double: 4 1102float: 4 1103ldouble: 7 1104 1105Function: "jn_downward": 1106double: 4 1107float: 5 1108ldouble: 8 1109 1110Function: "jn_towardzero": 1111double: 4 1112float: 5 1113ldouble: 8 1114 1115Function: "jn_upward": 1116double: 5 1117float: 4 1118ldouble: 7 1119 1120Function: "lgamma": 1121double: 4 1122float: 7 1123ldouble: 5 1124 1125Function: "lgamma_downward": 1126double: 4 1127float: 4 1128ldouble: 8 1129 1130Function: "lgamma_towardzero": 1131double: 4 1132float: 3 1133ldouble: 5 1134 1135Function: "lgamma_upward": 1136double: 4 1137float: 5 1138ldouble: 8 1139 1140Function: "log": 1141ldouble: 1 1142 1143Function: "log10": 1144double: 2 1145float: 2 1146ldouble: 2 1147 1148Function: "log10_downward": 1149double: 2 1150float: 3 1151ldouble: 1 1152 1153Function: "log10_towardzero": 1154double: 2 1155float: 1 1156ldouble: 1 1157 1158Function: "log10_upward": 1159double: 2 1160float: 2 1161ldouble: 1 1162 1163Function: "log1p": 1164double: 1 1165float: 1 1166ldouble: 3 1167 1168Function: "log1p_downward": 1169double: 1 1170float: 2 1171ldouble: 3 1172 1173Function: "log1p_towardzero": 1174double: 2 1175float: 2 1176ldouble: 3 1177 1178Function: "log1p_upward": 1179double: 2 1180float: 2 1181ldouble: 2 1182 1183Function: "log2": 1184double: 2 1185float: 1 1186ldouble: 3 1187 1188Function: "log2_downward": 1189double: 3 1190ldouble: 3 1191 1192Function: "log2_towardzero": 1193double: 2 1194ldouble: 1 1195 1196Function: "log2_upward": 1197double: 3 1198ldouble: 1 1199 1200Function: "log_downward": 1201ldouble: 1 1202 1203Function: "log_towardzero": 1204ldouble: 2 1205 1206Function: "log_upward": 1207double: 1 1208ldouble: 1 1209 1210Function: "pow": 1211double: 1 1212ldouble: 2 1213 1214Function: "pow_downward": 1215double: 1 1216float: 1 1217ldouble: 2 1218 1219Function: "pow_towardzero": 1220double: 1 1221float: 1 1222ldouble: 2 1223 1224Function: "pow_upward": 1225double: 1 1226float: 1 1227ldouble: 2 1228 1229Function: "sin": 1230double: 1 1231float: 1 1232ldouble: 2 1233 1234Function: "sin_downward": 1235double: 1 1236ldouble: 3 1237 1238Function: "sin_towardzero": 1239double: 1 1240ldouble: 2 1241 1242Function: "sin_upward": 1243double: 1 1244ldouble: 3 1245 1246Function: "sincos": 1247double: 1 1248ldouble: 1 1249 1250Function: "sincos_downward": 1251double: 1 1252ldouble: 3 1253 1254Function: "sincos_towardzero": 1255double: 1 1256ldouble: 2 1257 1258Function: "sincos_upward": 1259double: 1 1260ldouble: 3 1261 1262Function: "sinh": 1263double: 2 1264float: 2 1265ldouble: 2 1266 1267Function: "sinh_downward": 1268double: 3 1269float: 3 1270ldouble: 3 1271 1272Function: "sinh_towardzero": 1273double: 2 1274float: 2 1275ldouble: 3 1276 1277Function: "sinh_upward": 1278double: 3 1279float: 3 1280ldouble: 4 1281 1282Function: "tan": 1283float: 1 1284ldouble: 1 1285 1286Function: "tan_downward": 1287double: 1 1288float: 2 1289ldouble: 1 1290 1291Function: "tan_towardzero": 1292double: 1 1293float: 1 1294ldouble: 1 1295 1296Function: "tan_upward": 1297double: 1 1298float: 1 1299ldouble: 1 1300 1301Function: "tanh": 1302double: 2 1303float: 2 1304ldouble: 2 1305 1306Function: "tanh_downward": 1307double: 3 1308float: 3 1309ldouble: 4 1310 1311Function: "tanh_towardzero": 1312double: 2 1313float: 2 1314ldouble: 3 1315 1316Function: "tanh_upward": 1317double: 3 1318float: 3 1319ldouble: 3 1320 1321Function: "tgamma": 1322double: 9 1323float: 8 1324ldouble: 4 1325 1326Function: "tgamma_downward": 1327double: 5 1328float: 5 1329ldouble: 5 1330 1331Function: "tgamma_towardzero": 1332double: 5 1333float: 4 1334ldouble: 5 1335 1336Function: "tgamma_upward": 1337double: 4 1338float: 4 1339ldouble: 4 1340 1341Function: "y0": 1342double: 3 1343float: 9 1344ldouble: 3 1345 1346Function: "y0_downward": 1347double: 3 1348float: 4 1349ldouble: 4 1350 1351Function: "y0_towardzero": 1352double: 3 1353float: 3 1354ldouble: 3 1355 1356Function: "y0_upward": 1357double: 2 1358float: 5 1359ldouble: 3 1360 1361Function: "y1": 1362double: 3 1363float: 9 1364ldouble: 5 1365 1366Function: "y1_downward": 1367double: 3 1368float: 2 1369ldouble: 4 1370 1371Function: "y1_towardzero": 1372double: 3 1373float: 2 1374ldouble: 2 1375 1376Function: "y1_upward": 1377double: 5 1378float: 2 1379ldouble: 5 1380 1381Function: "yn": 1382double: 3 1383float: 3 1384ldouble: 5 1385 1386Function: "yn_downward": 1387double: 3 1388float: 4 1389ldouble: 5 1390 1391Function: "yn_towardzero": 1392double: 3 1393float: 3 1394ldouble: 5 1395 1396Function: "yn_upward": 1397double: 4 1398float: 5 1399ldouble: 5 1400 1401# end of automatic generation 1402