1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acos": 5double: 1 6float: 1 7float128: 1 8ldouble: 1 9 10Function: "acos_downward": 11double: 1 12float: 1 13float128: 1 14ldouble: 3 15 16Function: "acos_towardzero": 17double: 1 18float: 1 19float128: 1 20ldouble: 3 21 22Function: "acos_upward": 23double: 1 24float: 1 25float128: 1 26ldouble: 2 27 28Function: "acosh": 29double: 2 30float: 2 31float128: 4 32ldouble: 2 33 34Function: "acosh_downward": 35double: 2 36float: 2 37float128: 3 38ldouble: 3 39 40Function: "acosh_towardzero": 41double: 2 42float: 2 43float128: 2 44ldouble: 5 45 46Function: "acosh_upward": 47double: 2 48float: 2 49float128: 3 50ldouble: 4 51 52Function: "add_ldouble": 53double: 1 54float: 1 55 56Function: "asin": 57double: 1 58float: 1 59float128: 1 60ldouble: 2 61 62Function: "asin_downward": 63double: 1 64float: 1 65float128: 2 66ldouble: 2 67 68Function: "asin_towardzero": 69double: 1 70float: 1 71float128: 1 72ldouble: 1 73 74Function: "asin_upward": 75double: 2 76float: 1 77float128: 2 78ldouble: 2 79 80Function: "asinh": 81double: 2 82float: 2 83float128: 4 84ldouble: 2 85 86Function: "asinh_downward": 87double: 3 88float: 3 89float128: 4 90ldouble: 5 91 92Function: "asinh_towardzero": 93double: 2 94float: 2 95float128: 2 96ldouble: 5 97 98Function: "asinh_upward": 99double: 3 100float: 3 101float128: 4 102ldouble: 7 103 104Function: "atan": 105double: 1 106float: 1 107float128: 1 108ldouble: 1 109 110Function: "atan2": 111float: 1 112float128: 2 113ldouble: 2 114 115Function: "atan2_downward": 116double: 1 117float: 2 118float128: 2 119ldouble: 5 120 121Function: "atan2_towardzero": 122double: 1 123float: 2 124float128: 3 125ldouble: 6 126 127Function: "atan2_upward": 128double: 1 129float: 1 130float128: 2 131ldouble: 3 132 133Function: "atan_downward": 134double: 1 135float: 2 136float128: 2 137ldouble: 1 138 139Function: "atan_towardzero": 140double: 1 141float: 1 142float128: 1 143ldouble: 1 144 145Function: "atan_upward": 146double: 1 147float: 2 148float128: 2 149ldouble: 2 150 151Function: "atanh": 152double: 2 153float: 2 154float128: 4 155ldouble: 2 156 157Function: "atanh_downward": 158double: 3 159float: 3 160float128: 4 161ldouble: 3 162 163Function: "atanh_towardzero": 164double: 2 165float: 2 166float128: 2 167ldouble: 4 168 169Function: "atanh_upward": 170double: 3 171float: 3 172float128: 4 173ldouble: 4 174 175Function: "cabs": 176double: 1 177float128: 1 178ldouble: 1 179 180Function: "cabs_downward": 181double: 1 182float128: 1 183ldouble: 1 184 185Function: "cabs_towardzero": 186double: 1 187float128: 1 188ldouble: 1 189 190Function: "cabs_upward": 191double: 1 192float128: 1 193ldouble: 2 194 195Function: Real part of "cacos": 196double: 1 197float: 2 198float128: 2 199ldouble: 1 200 201Function: Imaginary part of "cacos": 202double: 2 203float: 2 204float128: 2 205ldouble: 2 206 207Function: Real part of "cacos_downward": 208double: 3 209float: 2 210float128: 3 211ldouble: 6 212 213Function: Imaginary part of "cacos_downward": 214double: 5 215float: 3 216float128: 6 217ldouble: 8 218 219Function: Real part of "cacos_towardzero": 220double: 3 221float: 2 222float128: 3 223ldouble: 7 224 225Function: Imaginary part of "cacos_towardzero": 226double: 5 227float: 3 228float128: 5 229ldouble: 8 230 231Function: Real part of "cacos_upward": 232double: 2 233float: 2 234float128: 3 235ldouble: 7 236 237Function: Imaginary part of "cacos_upward": 238double: 5 239float: 5 240float128: 7 241ldouble: 13 242 243Function: Real part of "cacosh": 244double: 2 245float: 2 246float128: 2 247ldouble: 2 248 249Function: Imaginary part of "cacosh": 250double: 1 251float: 2 252float128: 2 253ldouble: 1 254 255Function: Real part of "cacosh_downward": 256double: 5 257float: 3 258float128: 5 259ldouble: 8 260 261Function: Imaginary part of "cacosh_downward": 262double: 3 263float: 3 264float128: 4 265ldouble: 6 266 267Function: Real part of "cacosh_towardzero": 268double: 5 269float: 3 270float128: 5 271ldouble: 8 272 273Function: Imaginary part of "cacosh_towardzero": 274double: 3 275float: 2 276float128: 3 277ldouble: 7 278 279Function: Real part of "cacosh_upward": 280double: 4 281float: 4 282float128: 6 283ldouble: 12 284 285Function: Imaginary part of "cacosh_upward": 286double: 3 287float: 2 288float128: 4 289ldouble: 8 290 291Function: "carg": 292double: 1 293float: 1 294float128: 2 295ldouble: 2 296 297Function: "carg_downward": 298double: 1 299float: 2 300float128: 2 301ldouble: 5 302 303Function: "carg_towardzero": 304double: 1 305float: 2 306float128: 3 307ldouble: 6 308 309Function: "carg_upward": 310double: 1 311float: 1 312float128: 2 313ldouble: 3 314 315Function: Real part of "casin": 316double: 1 317float: 1 318float128: 2 319ldouble: 1 320 321Function: Imaginary part of "casin": 322double: 2 323float: 2 324float128: 2 325ldouble: 2 326 327Function: Real part of "casin_downward": 328double: 3 329float: 2 330float128: 3 331ldouble: 4 332 333Function: Imaginary part of "casin_downward": 334double: 5 335float: 3 336float128: 6 337ldouble: 8 338 339Function: Real part of "casin_towardzero": 340double: 3 341float: 1 342float128: 3 343ldouble: 5 344 345Function: Imaginary part of "casin_towardzero": 346double: 5 347float: 3 348float128: 5 349ldouble: 8 350 351Function: Real part of "casin_upward": 352double: 3 353float: 2 354float128: 3 355ldouble: 6 356 357Function: Imaginary part of "casin_upward": 358double: 5 359float: 5 360float128: 7 361ldouble: 13 362 363Function: Real part of "casinh": 364double: 2 365float: 2 366float128: 2 367ldouble: 2 368 369Function: Imaginary part of "casinh": 370double: 1 371float: 1 372float128: 2 373ldouble: 1 374 375Function: Real part of "casinh_downward": 376double: 5 377float: 3 378float128: 6 379ldouble: 8 380 381Function: Imaginary part of "casinh_downward": 382double: 3 383float: 2 384float128: 3 385ldouble: 4 386 387Function: Real part of "casinh_towardzero": 388double: 5 389float: 3 390float128: 5 391ldouble: 8 392 393Function: Imaginary part of "casinh_towardzero": 394double: 3 395float: 1 396float128: 3 397ldouble: 5 398 399Function: Real part of "casinh_upward": 400double: 5 401float: 5 402float128: 7 403ldouble: 13 404 405Function: Imaginary part of "casinh_upward": 406double: 3 407float: 2 408float128: 3 409ldouble: 6 410 411Function: Real part of "catan": 412double: 1 413float: 1 414float128: 1 415ldouble: 3 416 417Function: Imaginary part of "catan": 418double: 1 419float: 1 420float128: 1 421ldouble: 2 422 423Function: Real part of "catan_downward": 424double: 1 425float: 2 426float128: 2 427ldouble: 6 428 429Function: Imaginary part of "catan_downward": 430double: 2 431float: 2 432float128: 2 433ldouble: 7 434 435Function: Real part of "catan_towardzero": 436double: 1 437float: 2 438float128: 2 439ldouble: 7 440 441Function: Imaginary part of "catan_towardzero": 442double: 2 443float: 2 444float128: 2 445ldouble: 3 446 447Function: Real part of "catan_upward": 448double: 1 449float: 1 450float128: 2 451ldouble: 6 452 453Function: Imaginary part of "catan_upward": 454double: 3 455float: 3 456float128: 3 457ldouble: 8 458 459Function: Real part of "catanh": 460double: 1 461float: 1 462float128: 1 463ldouble: 2 464 465Function: Imaginary part of "catanh": 466double: 1 467float: 1 468float128: 1 469ldouble: 3 470 471Function: Real part of "catanh_downward": 472double: 2 473float: 2 474float128: 2 475ldouble: 5 476 477Function: Imaginary part of "catanh_downward": 478double: 1 479float: 2 480float128: 2 481ldouble: 6 482 483Function: Real part of "catanh_towardzero": 484double: 2 485float: 2 486float128: 2 487ldouble: 3 488 489Function: Imaginary part of "catanh_towardzero": 490double: 1 491float: 2 492float128: 2 493ldouble: 7 494 495Function: Real part of "catanh_upward": 496double: 4 497float: 4 498float128: 4 499ldouble: 8 500 501Function: Imaginary part of "catanh_upward": 502double: 1 503float: 1 504float128: 2 505ldouble: 6 506 507Function: "cbrt": 508double: 4 509float: 1 510float128: 1 511ldouble: 1 512 513Function: "cbrt_downward": 514double: 4 515float: 1 516float128: 1 517ldouble: 5 518 519Function: "cbrt_towardzero": 520double: 3 521float: 1 522float128: 1 523ldouble: 3 524 525Function: "cbrt_upward": 526double: 5 527float: 1 528float128: 2 529ldouble: 2 530 531Function: Real part of "ccos": 532double: 1 533float: 1 534float128: 1 535ldouble: 1 536 537Function: Imaginary part of "ccos": 538double: 1 539float: 1 540float128: 1 541ldouble: 2 542 543Function: Real part of "ccos_downward": 544double: 1 545float: 1 546float128: 2 547ldouble: 6 548 549Function: Imaginary part of "ccos_downward": 550double: 3 551float: 3 552float128: 2 553ldouble: 6 554 555Function: Real part of "ccos_towardzero": 556double: 1 557float: 2 558float128: 2 559ldouble: 6 560 561Function: Imaginary part of "ccos_towardzero": 562double: 3 563float: 3 564float128: 2 565ldouble: 6 566 567Function: Real part of "ccos_upward": 568double: 1 569float: 2 570float128: 3 571ldouble: 3 572 573Function: Imaginary part of "ccos_upward": 574double: 2 575float: 2 576float128: 2 577ldouble: 4 578 579Function: Real part of "ccosh": 580double: 1 581float: 1 582float128: 1 583ldouble: 1 584 585Function: Imaginary part of "ccosh": 586double: 1 587float: 1 588float128: 1 589ldouble: 2 590 591Function: Real part of "ccosh_downward": 592double: 2 593float: 3 594float128: 2 595ldouble: 6 596 597Function: Imaginary part of "ccosh_downward": 598double: 3 599float: 3 600float128: 2 601ldouble: 6 602 603Function: Real part of "ccosh_towardzero": 604double: 2 605float: 3 606float128: 2 607ldouble: 6 608 609Function: Imaginary part of "ccosh_towardzero": 610double: 3 611float: 3 612float128: 2 613ldouble: 6 614 615Function: Real part of "ccosh_upward": 616double: 1 617float: 2 618float128: 3 619ldouble: 3 620 621Function: Imaginary part of "ccosh_upward": 622double: 2 623float: 2 624float128: 2 625ldouble: 4 626 627Function: Real part of "cexp": 628double: 2 629float: 1 630float128: 1 631ldouble: 2 632 633Function: Imaginary part of "cexp": 634double: 1 635float: 2 636float128: 1 637ldouble: 2 638 639Function: Real part of "cexp_downward": 640double: 2 641float: 2 642float128: 2 643ldouble: 11 644 645Function: Imaginary part of "cexp_downward": 646double: 3 647float: 3 648float128: 2 649ldouble: 11 650 651Function: Real part of "cexp_towardzero": 652double: 2 653float: 2 654float128: 2 655ldouble: 11 656 657Function: Imaginary part of "cexp_towardzero": 658double: 3 659float: 3 660float128: 2 661ldouble: 11 662 663Function: Real part of "cexp_upward": 664double: 1 665float: 2 666float128: 3 667ldouble: 3 668 669Function: Imaginary part of "cexp_upward": 670double: 3 671float: 2 672float128: 3 673ldouble: 3 674 675Function: Real part of "clog": 676double: 3 677float: 3 678float128: 2 679ldouble: 5 680 681Function: Imaginary part of "clog": 682double: 1 683float: 1 684float128: 1 685ldouble: 2 686 687Function: Real part of "clog10": 688double: 3 689float: 4 690float128: 2 691ldouble: 3 692 693Function: Imaginary part of "clog10": 694double: 2 695float: 2 696float128: 2 697ldouble: 2 698 699Function: Real part of "clog10_downward": 700double: 6 701float: 6 702float128: 3 703ldouble: 10 704 705Function: Imaginary part of "clog10_downward": 706double: 2 707float: 4 708float128: 3 709ldouble: 7 710 711Function: Real part of "clog10_towardzero": 712double: 5 713float: 5 714float128: 4 715ldouble: 9 716 717Function: Imaginary part of "clog10_towardzero": 718double: 2 719float: 4 720float128: 3 721ldouble: 8 722 723Function: Real part of "clog10_upward": 724double: 8 725float: 5 726float128: 4 727ldouble: 10 728 729Function: Imaginary part of "clog10_upward": 730double: 2 731float: 4 732float128: 3 733ldouble: 7 734 735Function: Real part of "clog_downward": 736double: 7 737float: 5 738float128: 3 739ldouble: 11 740 741Function: Imaginary part of "clog_downward": 742double: 1 743float: 2 744float128: 2 745ldouble: 5 746 747Function: Real part of "clog_towardzero": 748double: 7 749float: 5 750float128: 3 751ldouble: 10 752 753Function: Imaginary part of "clog_towardzero": 754double: 1 755float: 3 756float128: 2 757ldouble: 7 758 759Function: Real part of "clog_upward": 760double: 8 761float: 5 762float128: 4 763ldouble: 10 764 765Function: Imaginary part of "clog_upward": 766double: 1 767float: 2 768float128: 2 769ldouble: 4 770 771Function: "cos": 772double: 1 773float: 3 774float128: 2 775ldouble: 4 776 777Function: "cos_downward": 778double: 1 779float: 4 780float128: 3 781ldouble: 5 782 783Function: "cos_towardzero": 784double: 1 785float: 3 786float128: 1 787ldouble: 4 788 789Function: "cos_upward": 790double: 1 791float: 3 792float128: 2 793ldouble: 5 794 795Function: "cosh": 796double: 2 797float: 2 798float128: 2 799ldouble: 3 800 801Function: "cosh_downward": 802double: 3 803float: 1 804float128: 3 805ldouble: 6 806 807Function: "cosh_towardzero": 808double: 3 809float: 1 810float128: 3 811ldouble: 6 812 813Function: "cosh_upward": 814double: 2 815float: 2 816float128: 3 817ldouble: 2 818 819Function: Real part of "cpow": 820double: 2 821float: 5 822float128: 4 823ldouble: 4 824 825Function: Imaginary part of "cpow": 826float: 2 827float128: 1 828ldouble: 2 829 830Function: Real part of "cpow_downward": 831double: 5 832float: 8 833float128: 6 834ldouble: 7 835 836Function: Imaginary part of "cpow_downward": 837double: 1 838float: 2 839float128: 2 840ldouble: 4 841 842Function: Real part of "cpow_towardzero": 843double: 5 844float: 8 845float128: 6 846ldouble: 8 847 848Function: Imaginary part of "cpow_towardzero": 849double: 1 850float: 2 851float128: 2 852ldouble: 4 853 854Function: Real part of "cpow_upward": 855double: 4 856float: 1 857float128: 3 858ldouble: 3 859 860Function: Imaginary part of "cpow_upward": 861double: 1 862float: 2 863float128: 2 864ldouble: 3 865 866Function: Real part of "csin": 867double: 1 868float: 1 869float128: 1 870ldouble: 2 871 872Function: Imaginary part of "csin": 873float128: 1 874ldouble: 1 875 876Function: Real part of "csin_downward": 877double: 3 878float: 3 879float128: 2 880ldouble: 6 881 882Function: Imaginary part of "csin_downward": 883double: 1 884float: 1 885float128: 2 886ldouble: 6 887 888Function: Real part of "csin_towardzero": 889double: 3 890float: 3 891float128: 2 892ldouble: 6 893 894Function: Imaginary part of "csin_towardzero": 895double: 1 896float: 1 897float128: 2 898ldouble: 6 899 900Function: Real part of "csin_upward": 901double: 2 902float: 2 903float128: 2 904ldouble: 3 905 906Function: Imaginary part of "csin_upward": 907double: 1 908float: 2 909float128: 3 910ldouble: 3 911 912Function: Real part of "csinh": 913float: 1 914float128: 1 915ldouble: 1 916 917Function: Imaginary part of "csinh": 918double: 1 919float: 1 920float128: 1 921ldouble: 2 922 923Function: Real part of "csinh_downward": 924double: 2 925float: 2 926float128: 2 927ldouble: 6 928 929Function: Imaginary part of "csinh_downward": 930double: 3 931float: 3 932float128: 2 933ldouble: 6 934 935Function: Real part of "csinh_towardzero": 936double: 2 937float: 2 938float128: 2 939ldouble: 6 940 941Function: Imaginary part of "csinh_towardzero": 942double: 3 943float: 3 944float128: 2 945ldouble: 6 946 947Function: Real part of "csinh_upward": 948double: 1 949float: 2 950float128: 3 951ldouble: 3 952 953Function: Imaginary part of "csinh_upward": 954double: 2 955float: 2 956float128: 2 957ldouble: 3 958 959Function: Real part of "csqrt": 960double: 2 961float: 2 962float128: 2 963ldouble: 1 964 965Function: Imaginary part of "csqrt": 966double: 2 967float: 2 968float128: 2 969ldouble: 1 970 971Function: Real part of "csqrt_downward": 972double: 5 973float: 4 974float128: 4 975ldouble: 4 976 977Function: Imaginary part of "csqrt_downward": 978double: 4 979float: 3 980float128: 3 981ldouble: 5 982 983Function: Real part of "csqrt_towardzero": 984double: 4 985float: 3 986float128: 3 987ldouble: 5 988 989Function: Imaginary part of "csqrt_towardzero": 990double: 4 991float: 3 992float128: 3 993ldouble: 5 994 995Function: Real part of "csqrt_upward": 996double: 5 997float: 4 998float128: 4 999ldouble: 12 1000 1001Function: Imaginary part of "csqrt_upward": 1002double: 3 1003float: 3 1004float128: 3 1005ldouble: 8 1006 1007Function: Real part of "ctan": 1008double: 1 1009float: 1 1010float128: 3 1011ldouble: 3 1012 1013Function: Imaginary part of "ctan": 1014double: 2 1015float: 2 1016float128: 3 1017ldouble: 2 1018 1019Function: Real part of "ctan_downward": 1020double: 6 1021float: 5 1022float128: 4 1023ldouble: 6 1024 1025Function: Imaginary part of "ctan_downward": 1026double: 2 1027float: 2 1028float128: 5 1029ldouble: 9 1030 1031Function: Real part of "ctan_towardzero": 1032double: 5 1033float: 3 1034float128: 4 1035ldouble: 6 1036 1037Function: Imaginary part of "ctan_towardzero": 1038double: 2 1039float: 2 1040float128: 5 1041ldouble: 13 1042 1043Function: Real part of "ctan_upward": 1044double: 2 1045float: 4 1046float128: 5 1047ldouble: 7 1048 1049Function: Imaginary part of "ctan_upward": 1050double: 2 1051float: 3 1052float128: 5 1053ldouble: 10 1054 1055Function: Real part of "ctanh": 1056double: 2 1057float: 2 1058float128: 3 1059ldouble: 3 1060 1061Function: Imaginary part of "ctanh": 1062double: 2 1063float: 1 1064float128: 3 1065ldouble: 3 1066 1067Function: Real part of "ctanh_downward": 1068double: 4 1069float: 2 1070float128: 5 1071ldouble: 9 1072 1073Function: Imaginary part of "ctanh_downward": 1074double: 6 1075float: 5 1076float128: 4 1077ldouble: 6 1078 1079Function: Real part of "ctanh_towardzero": 1080double: 2 1081float: 2 1082float128: 5 1083ldouble: 13 1084 1085Function: Imaginary part of "ctanh_towardzero": 1086double: 5 1087float: 2 1088float128: 3 1089ldouble: 10 1090 1091Function: Real part of "ctanh_upward": 1092double: 2 1093float: 3 1094float128: 5 1095ldouble: 10 1096 1097Function: Imaginary part of "ctanh_upward": 1098double: 2 1099float: 3 1100float128: 5 1101ldouble: 10 1102 1103Function: "div_ldouble": 1104float: 1 1105 1106Function: "div_towardzero_ldouble": 1107double: 1 1108 1109Function: "erf": 1110double: 1 1111float: 1 1112float128: 1 1113ldouble: 1 1114 1115Function: "erf_downward": 1116double: 1 1117float: 1 1118float128: 2 1119ldouble: 2 1120 1121Function: "erf_towardzero": 1122double: 1 1123float: 1 1124float128: 1 1125ldouble: 2 1126 1127Function: "erf_upward": 1128double: 1 1129float: 1 1130float128: 2 1131ldouble: 3 1132 1133Function: "erfc": 1134double: 2 1135float: 2 1136float128: 4 1137ldouble: 3 1138 1139Function: "erfc_downward": 1140double: 4 1141float: 4 1142float128: 5 1143ldouble: 10 1144 1145Function: "erfc_towardzero": 1146double: 3 1147float: 3 1148float128: 4 1149ldouble: 11 1150 1151Function: "erfc_upward": 1152double: 4 1153float: 4 1154float128: 5 1155ldouble: 7 1156 1157Function: "exp": 1158double: 1 1159float: 1 1160float128: 1 1161ldouble: 1 1162 1163Function: "exp10": 1164double: 2 1165float: 1 1166float128: 2 1167ldouble: 1 1168 1169Function: "exp10_downward": 1170double: 3 1171float: 1 1172float128: 3 1173ldouble: 9 1174 1175Function: "exp10_towardzero": 1176double: 3 1177float: 1 1178float128: 3 1179ldouble: 9 1180 1181Function: "exp10_upward": 1182double: 2 1183float: 1 1184float128: 3 1185ldouble: 4 1186 1187Function: "exp2": 1188double: 1 1189float128: 1 1190ldouble: 2 1191 1192Function: "exp2_downward": 1193double: 1 1194float128: 1 1195ldouble: 1 1196 1197Function: "exp2_towardzero": 1198double: 1 1199float128: 1 1200ldouble: 2 1201 1202Function: "exp2_upward": 1203double: 1 1204float: 1 1205float128: 2 1206ldouble: 2 1207 1208Function: "exp_downward": 1209double: 1 1210float: 1 1211ldouble: 2 1212 1213Function: "exp_towardzero": 1214double: 1 1215float: 1 1216ldouble: 2 1217 1218Function: "exp_upward": 1219double: 1 1220float: 1 1221ldouble: 1 1222 1223Function: "expm1": 1224double: 1 1225float: 1 1226float128: 2 1227ldouble: 1 1228 1229Function: "expm1_downward": 1230double: 1 1231float: 1 1232float128: 2 1233ldouble: 7 1234 1235Function: "expm1_towardzero": 1236double: 1 1237float: 2 1238float128: 4 1239ldouble: 6 1240 1241Function: "expm1_upward": 1242double: 1 1243float: 1 1244float128: 3 1245ldouble: 6 1246 1247Function: "fma": 1248ldouble: 1 1249 1250Function: "fma_downward": 1251ldouble: 1 1252 1253Function: "fma_downward_ldouble": 1254double: 1 1255float: 1 1256 1257Function: "fma_ldouble": 1258double: 1 1259float: 1 1260 1261Function: "fma_towardzero": 1262ldouble: 2 1263 1264Function: "fma_towardzero_ldouble": 1265double: 1 1266float: 1 1267 1268Function: "fma_upward": 1269ldouble: 3 1270 1271Function: "fma_upward_ldouble": 1272double: 1 1273float: 1 1274 1275Function: "fmod": 1276ldouble: 1 1277 1278Function: "fmod_downward": 1279ldouble: 1 1280 1281Function: "fmod_towardzero": 1282ldouble: 1 1283 1284Function: "fmod_upward": 1285ldouble: 1 1286 1287Function: "gamma": 1288double: 3 1289float: 4 1290float128: 5 1291ldouble: 3 1292 1293Function: "gamma_downward": 1294double: 4 1295float: 4 1296float128: 8 1297ldouble: 15 1298 1299Function: "gamma_towardzero": 1300double: 4 1301float: 3 1302float128: 5 1303ldouble: 16 1304 1305Function: "gamma_upward": 1306double: 4 1307float: 5 1308float128: 8 1309ldouble: 11 1310 1311Function: "hypot": 1312double: 1 1313float128: 1 1314ldouble: 1 1315 1316Function: "hypot_downward": 1317double: 1 1318float128: 1 1319ldouble: 2 1320 1321Function: "hypot_towardzero": 1322double: 1 1323float128: 1 1324ldouble: 2 1325 1326Function: "hypot_upward": 1327double: 1 1328float128: 1 1329ldouble: 3 1330 1331Function: "j0": 1332double: 3 1333float: 9 1334float128: 7 1335ldouble: 5 1336 1337Function: "j0_downward": 1338double: 6 1339float: 9 1340float128: 9 1341ldouble: 12 1342 1343Function: "j0_towardzero": 1344double: 7 1345float: 9 1346float128: 9 1347ldouble: 16 1348 1349Function: "j0_upward": 1350double: 9 1351float: 9 1352float128: 7 1353ldouble: 14 1354 1355Function: "j1": 1356double: 4 1357float: 9 1358float128: 4 1359ldouble: 6 1360 1361Function: "j1_downward": 1362double: 3 1363float: 8 1364float128: 4 1365ldouble: 7 1366 1367Function: "j1_towardzero": 1368double: 4 1369float: 8 1370float128: 4 1371ldouble: 7 1372 1373Function: "j1_upward": 1374double: 9 1375float: 9 1376float128: 3 1377ldouble: 6 1378 1379Function: "jn": 1380double: 4 1381float: 4 1382float128: 7 1383ldouble: 4 1384 1385Function: "jn_downward": 1386double: 4 1387float: 5 1388float128: 8 1389ldouble: 7 1390 1391Function: "jn_towardzero": 1392double: 4 1393float: 5 1394float128: 8 1395ldouble: 7 1396 1397Function: "jn_upward": 1398double: 5 1399float: 4 1400float128: 7 1401ldouble: 5 1402 1403Function: "lgamma": 1404double: 3 1405float: 4 1406float128: 5 1407ldouble: 3 1408 1409Function: "lgamma_downward": 1410double: 4 1411float: 4 1412float128: 8 1413ldouble: 15 1414 1415Function: "lgamma_towardzero": 1416double: 4 1417float: 3 1418float128: 5 1419ldouble: 16 1420 1421Function: "lgamma_upward": 1422double: 4 1423float: 5 1424float128: 8 1425ldouble: 11 1426 1427Function: "log": 1428double: 1 1429float: 1 1430float128: 1 1431ldouble: 1 1432 1433Function: "log10": 1434double: 2 1435float: 2 1436float128: 2 1437ldouble: 1 1438 1439Function: "log10_downward": 1440double: 2 1441float: 3 1442float128: 1 1443ldouble: 1 1444 1445Function: "log10_towardzero": 1446double: 2 1447float: 2 1448float128: 1 1449ldouble: 2 1450 1451Function: "log10_upward": 1452double: 2 1453float: 2 1454float128: 1 1455ldouble: 2 1456 1457Function: "log1p": 1458double: 1 1459float: 1 1460float128: 3 1461ldouble: 2 1462 1463Function: "log1p_downward": 1464double: 1 1465float: 2 1466float128: 3 1467ldouble: 2 1468 1469Function: "log1p_towardzero": 1470double: 2 1471float: 2 1472float128: 3 1473ldouble: 3 1474 1475Function: "log1p_upward": 1476double: 2 1477float: 2 1478float128: 2 1479ldouble: 3 1480 1481Function: "log2": 1482double: 1 1483float: 1 1484float128: 3 1485ldouble: 1 1486 1487Function: "log2_downward": 1488double: 3 1489float: 3 1490float128: 3 1491ldouble: 2 1492 1493Function: "log2_towardzero": 1494double: 2 1495float: 2 1496float128: 1 1497ldouble: 5 1498 1499Function: "log2_upward": 1500double: 3 1501float: 3 1502float128: 1 1503ldouble: 4 1504 1505Function: "log_downward": 1506float: 2 1507float128: 1 1508ldouble: 1 1509 1510Function: "log_towardzero": 1511float: 2 1512float128: 2 1513ldouble: 2 1514 1515Function: "log_upward": 1516double: 1 1517float: 2 1518float128: 1 1519ldouble: 1 1520 1521Function: "mul_downward_ldouble": 1522double: 1 1523float: 1 1524 1525Function: "mul_ldouble": 1526double: 1 1527float: 1 1528 1529Function: "mul_towardzero_ldouble": 1530double: 1 1531float: 1 1532 1533Function: "mul_upward_ldouble": 1534double: 1 1535float: 1 1536 1537Function: "nextafter_downward": 1538ldouble: 1 1539 1540Function: "nextafter_upward": 1541ldouble: 1 1542 1543Function: "pow": 1544double: 1 1545float: 1 1546float128: 2 1547ldouble: 1 1548 1549Function: "pow_downward": 1550double: 1 1551float: 1 1552float128: 2 1553ldouble: 1 1554 1555Function: "pow_towardzero": 1556double: 1 1557float: 1 1558float128: 2 1559ldouble: 1 1560 1561Function: "pow_upward": 1562double: 1 1563float: 1 1564float128: 2 1565ldouble: 1 1566 1567Function: "sin": 1568double: 1 1569float: 1 1570float128: 2 1571ldouble: 1 1572 1573Function: "sin_downward": 1574double: 1 1575float: 2 1576float128: 3 1577ldouble: 4 1578 1579Function: "sin_towardzero": 1580double: 1 1581float: 1 1582float128: 2 1583ldouble: 5 1584 1585Function: "sin_upward": 1586double: 1 1587float: 2 1588float128: 3 1589ldouble: 5 1590 1591Function: "sincos": 1592double: 1 1593float: 1 1594float128: 1 1595ldouble: 1 1596 1597Function: "sincos_downward": 1598double: 1 1599float: 2 1600float128: 3 1601ldouble: 4 1602 1603Function: "sincos_towardzero": 1604double: 1 1605float: 1 1606float128: 2 1607ldouble: 7 1608 1609Function: "sincos_upward": 1610double: 1 1611float: 2 1612float128: 3 1613ldouble: 7 1614 1615Function: "sinh": 1616double: 2 1617float: 2 1618float128: 2 1619ldouble: 3 1620 1621Function: "sinh_downward": 1622double: 3 1623float: 3 1624float128: 3 1625ldouble: 6 1626 1627Function: "sinh_towardzero": 1628double: 3 1629float: 2 1630float128: 3 1631ldouble: 6 1632 1633Function: "sinh_upward": 1634double: 3 1635float: 3 1636float128: 4 1637ldouble: 6 1638 1639Function: "sqrt": 1640ldouble: 1 1641 1642Function: "sqrt_downward": 1643ldouble: 1 1644 1645Function: "sqrt_ldouble": 1646double: 1 1647 1648Function: "sqrt_towardzero": 1649ldouble: 1 1650 1651Function: "sqrt_upward": 1652ldouble: 1 1653 1654Function: "sub_ldouble": 1655double: 1 1656float: 1 1657 1658Function: "tan": 1659float: 3 1660float128: 1 1661ldouble: 2 1662 1663Function: "tan_downward": 1664double: 1 1665float: 3 1666float128: 1 1667ldouble: 3 1668 1669Function: "tan_towardzero": 1670double: 1 1671float: 3 1672float128: 1 1673ldouble: 2 1674 1675Function: "tan_upward": 1676double: 1 1677float: 3 1678float128: 1 1679ldouble: 3 1680 1681Function: "tanh": 1682double: 2 1683float: 2 1684float128: 2 1685ldouble: 1 1686 1687Function: "tanh_downward": 1688double: 3 1689float: 3 1690float128: 4 1691ldouble: 4 1692 1693Function: "tanh_towardzero": 1694double: 2 1695float: 2 1696float128: 3 1697ldouble: 4 1698 1699Function: "tanh_upward": 1700double: 3 1701float: 3 1702float128: 3 1703ldouble: 6 1704 1705Function: "tgamma": 1706double: 9 1707float: 8 1708float128: 4 1709ldouble: 5 1710 1711Function: "tgamma_downward": 1712double: 9 1713float: 7 1714float128: 5 1715ldouble: 6 1716 1717Function: "tgamma_towardzero": 1718double: 9 1719float: 7 1720float128: 5 1721ldouble: 5 1722 1723Function: "tgamma_upward": 1724double: 9 1725float: 8 1726float128: 4 1727ldouble: 5 1728 1729Function: "y0": 1730double: 2 1731float: 8 1732float128: 3 1733ldouble: 10 1734 1735Function: "y0_downward": 1736double: 3 1737float: 8 1738float128: 7 1739ldouble: 10 1740 1741Function: "y0_towardzero": 1742double: 3 1743float: 8 1744float128: 3 1745ldouble: 9 1746 1747Function: "y0_upward": 1748double: 2 1749float: 8 1750float128: 4 1751ldouble: 9 1752 1753Function: "y1": 1754double: 3 1755float: 9 1756float128: 5 1757ldouble: 2 1758 1759Function: "y1_downward": 1760double: 6 1761float: 8 1762float128: 5 1763ldouble: 11 1764 1765Function: "y1_towardzero": 1766double: 3 1767float: 9 1768float128: 3 1769ldouble: 9 1770 1771Function: "y1_upward": 1772double: 6 1773float: 9 1774float128: 5 1775ldouble: 9 1776 1777Function: "yn": 1778double: 3 1779float: 3 1780float128: 5 1781ldouble: 2 1782 1783Function: "yn_downward": 1784double: 3 1785float: 4 1786float128: 5 1787ldouble: 10 1788 1789Function: "yn_towardzero": 1790double: 3 1791float: 3 1792float128: 5 1793ldouble: 8 1794 1795Function: "yn_upward": 1796double: 4 1797float: 5 1798float128: 5 1799ldouble: 9 1800 1801# end of automatic generation 1802