1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5double: 1
6float: 1
7float128: 1
8ldouble: 1
9
10Function: "acos_downward":
11double: 1
12float: 1
13float128: 1
14ldouble: 3
15
16Function: "acos_towardzero":
17double: 1
18float: 1
19float128: 1
20ldouble: 3
21
22Function: "acos_upward":
23double: 1
24float: 1
25float128: 1
26ldouble: 2
27
28Function: "acosh":
29double: 2
30float: 2
31float128: 4
32ldouble: 2
33
34Function: "acosh_downward":
35double: 2
36float: 2
37float128: 3
38ldouble: 3
39
40Function: "acosh_towardzero":
41double: 2
42float: 2
43float128: 2
44ldouble: 5
45
46Function: "acosh_upward":
47double: 2
48float: 2
49float128: 3
50ldouble: 4
51
52Function: "add_ldouble":
53double: 1
54float: 1
55
56Function: "asin":
57double: 1
58float: 1
59float128: 1
60ldouble: 2
61
62Function: "asin_downward":
63double: 1
64float: 1
65float128: 2
66ldouble: 2
67
68Function: "asin_towardzero":
69double: 1
70float: 1
71float128: 1
72ldouble: 1
73
74Function: "asin_upward":
75double: 2
76float: 1
77float128: 2
78ldouble: 2
79
80Function: "asinh":
81double: 2
82float: 2
83float128: 4
84ldouble: 2
85
86Function: "asinh_downward":
87double: 3
88float: 3
89float128: 4
90ldouble: 5
91
92Function: "asinh_towardzero":
93double: 2
94float: 2
95float128: 2
96ldouble: 5
97
98Function: "asinh_upward":
99double: 3
100float: 3
101float128: 4
102ldouble: 7
103
104Function: "atan":
105double: 1
106float: 1
107float128: 1
108ldouble: 1
109
110Function: "atan2":
111float: 1
112float128: 2
113ldouble: 2
114
115Function: "atan2_downward":
116double: 1
117float: 2
118float128: 2
119ldouble: 5
120
121Function: "atan2_towardzero":
122double: 1
123float: 2
124float128: 3
125ldouble: 6
126
127Function: "atan2_upward":
128double: 1
129float: 1
130float128: 2
131ldouble: 3
132
133Function: "atan_downward":
134double: 1
135float: 2
136float128: 2
137ldouble: 1
138
139Function: "atan_towardzero":
140double: 1
141float: 1
142float128: 1
143ldouble: 1
144
145Function: "atan_upward":
146double: 1
147float: 2
148float128: 2
149ldouble: 2
150
151Function: "atanh":
152double: 2
153float: 2
154float128: 4
155ldouble: 2
156
157Function: "atanh_downward":
158double: 3
159float: 3
160float128: 4
161ldouble: 3
162
163Function: "atanh_towardzero":
164double: 2
165float: 2
166float128: 2
167ldouble: 4
168
169Function: "atanh_upward":
170double: 3
171float: 3
172float128: 4
173ldouble: 4
174
175Function: "cabs":
176double: 1
177float128: 1
178ldouble: 1
179
180Function: "cabs_downward":
181double: 1
182float128: 1
183ldouble: 1
184
185Function: "cabs_towardzero":
186double: 1
187float128: 1
188ldouble: 1
189
190Function: "cabs_upward":
191double: 1
192float128: 1
193ldouble: 2
194
195Function: Real part of "cacos":
196double: 1
197float: 2
198float128: 2
199ldouble: 1
200
201Function: Imaginary part of "cacos":
202double: 2
203float: 2
204float128: 2
205ldouble: 2
206
207Function: Real part of "cacos_downward":
208double: 3
209float: 2
210float128: 3
211ldouble: 6
212
213Function: Imaginary part of "cacos_downward":
214double: 5
215float: 3
216float128: 6
217ldouble: 8
218
219Function: Real part of "cacos_towardzero":
220double: 3
221float: 2
222float128: 3
223ldouble: 7
224
225Function: Imaginary part of "cacos_towardzero":
226double: 5
227float: 3
228float128: 5
229ldouble: 8
230
231Function: Real part of "cacos_upward":
232double: 2
233float: 2
234float128: 3
235ldouble: 7
236
237Function: Imaginary part of "cacos_upward":
238double: 5
239float: 5
240float128: 7
241ldouble: 13
242
243Function: Real part of "cacosh":
244double: 2
245float: 2
246float128: 2
247ldouble: 2
248
249Function: Imaginary part of "cacosh":
250double: 1
251float: 2
252float128: 2
253ldouble: 1
254
255Function: Real part of "cacosh_downward":
256double: 5
257float: 3
258float128: 5
259ldouble: 8
260
261Function: Imaginary part of "cacosh_downward":
262double: 3
263float: 3
264float128: 4
265ldouble: 6
266
267Function: Real part of "cacosh_towardzero":
268double: 5
269float: 3
270float128: 5
271ldouble: 8
272
273Function: Imaginary part of "cacosh_towardzero":
274double: 3
275float: 2
276float128: 3
277ldouble: 7
278
279Function: Real part of "cacosh_upward":
280double: 4
281float: 4
282float128: 6
283ldouble: 12
284
285Function: Imaginary part of "cacosh_upward":
286double: 3
287float: 2
288float128: 4
289ldouble: 8
290
291Function: "carg":
292double: 1
293float: 1
294float128: 2
295ldouble: 2
296
297Function: "carg_downward":
298double: 1
299float: 2
300float128: 2
301ldouble: 5
302
303Function: "carg_towardzero":
304double: 1
305float: 2
306float128: 3
307ldouble: 6
308
309Function: "carg_upward":
310double: 1
311float: 1
312float128: 2
313ldouble: 3
314
315Function: Real part of "casin":
316double: 1
317float: 1
318float128: 2
319ldouble: 1
320
321Function: Imaginary part of "casin":
322double: 2
323float: 2
324float128: 2
325ldouble: 2
326
327Function: Real part of "casin_downward":
328double: 3
329float: 2
330float128: 3
331ldouble: 4
332
333Function: Imaginary part of "casin_downward":
334double: 5
335float: 3
336float128: 6
337ldouble: 8
338
339Function: Real part of "casin_towardzero":
340double: 3
341float: 1
342float128: 3
343ldouble: 5
344
345Function: Imaginary part of "casin_towardzero":
346double: 5
347float: 3
348float128: 5
349ldouble: 8
350
351Function: Real part of "casin_upward":
352double: 3
353float: 2
354float128: 3
355ldouble: 6
356
357Function: Imaginary part of "casin_upward":
358double: 5
359float: 5
360float128: 7
361ldouble: 13
362
363Function: Real part of "casinh":
364double: 2
365float: 2
366float128: 2
367ldouble: 2
368
369Function: Imaginary part of "casinh":
370double: 1
371float: 1
372float128: 2
373ldouble: 1
374
375Function: Real part of "casinh_downward":
376double: 5
377float: 3
378float128: 6
379ldouble: 8
380
381Function: Imaginary part of "casinh_downward":
382double: 3
383float: 2
384float128: 3
385ldouble: 4
386
387Function: Real part of "casinh_towardzero":
388double: 5
389float: 3
390float128: 5
391ldouble: 8
392
393Function: Imaginary part of "casinh_towardzero":
394double: 3
395float: 1
396float128: 3
397ldouble: 5
398
399Function: Real part of "casinh_upward":
400double: 5
401float: 5
402float128: 7
403ldouble: 13
404
405Function: Imaginary part of "casinh_upward":
406double: 3
407float: 2
408float128: 3
409ldouble: 6
410
411Function: Real part of "catan":
412double: 1
413float: 1
414float128: 1
415ldouble: 3
416
417Function: Imaginary part of "catan":
418double: 1
419float: 1
420float128: 1
421ldouble: 2
422
423Function: Real part of "catan_downward":
424double: 1
425float: 2
426float128: 2
427ldouble: 6
428
429Function: Imaginary part of "catan_downward":
430double: 2
431float: 2
432float128: 2
433ldouble: 7
434
435Function: Real part of "catan_towardzero":
436double: 1
437float: 2
438float128: 2
439ldouble: 7
440
441Function: Imaginary part of "catan_towardzero":
442double: 2
443float: 2
444float128: 2
445ldouble: 3
446
447Function: Real part of "catan_upward":
448double: 1
449float: 1
450float128: 2
451ldouble: 6
452
453Function: Imaginary part of "catan_upward":
454double: 3
455float: 3
456float128: 3
457ldouble: 8
458
459Function: Real part of "catanh":
460double: 1
461float: 1
462float128: 1
463ldouble: 2
464
465Function: Imaginary part of "catanh":
466double: 1
467float: 1
468float128: 1
469ldouble: 3
470
471Function: Real part of "catanh_downward":
472double: 2
473float: 2
474float128: 2
475ldouble: 5
476
477Function: Imaginary part of "catanh_downward":
478double: 1
479float: 2
480float128: 2
481ldouble: 6
482
483Function: Real part of "catanh_towardzero":
484double: 2
485float: 2
486float128: 2
487ldouble: 3
488
489Function: Imaginary part of "catanh_towardzero":
490double: 1
491float: 2
492float128: 2
493ldouble: 7
494
495Function: Real part of "catanh_upward":
496double: 4
497float: 4
498float128: 4
499ldouble: 8
500
501Function: Imaginary part of "catanh_upward":
502double: 1
503float: 1
504float128: 2
505ldouble: 6
506
507Function: "cbrt":
508double: 4
509float: 1
510float128: 1
511ldouble: 1
512
513Function: "cbrt_downward":
514double: 4
515float: 1
516float128: 1
517ldouble: 5
518
519Function: "cbrt_towardzero":
520double: 3
521float: 1
522float128: 1
523ldouble: 3
524
525Function: "cbrt_upward":
526double: 5
527float: 1
528float128: 2
529ldouble: 2
530
531Function: Real part of "ccos":
532double: 1
533float: 1
534float128: 1
535ldouble: 1
536
537Function: Imaginary part of "ccos":
538double: 1
539float: 1
540float128: 1
541ldouble: 2
542
543Function: Real part of "ccos_downward":
544double: 1
545float: 1
546float128: 2
547ldouble: 6
548
549Function: Imaginary part of "ccos_downward":
550double: 3
551float: 3
552float128: 2
553ldouble: 6
554
555Function: Real part of "ccos_towardzero":
556double: 1
557float: 2
558float128: 2
559ldouble: 6
560
561Function: Imaginary part of "ccos_towardzero":
562double: 3
563float: 3
564float128: 2
565ldouble: 6
566
567Function: Real part of "ccos_upward":
568double: 1
569float: 2
570float128: 3
571ldouble: 3
572
573Function: Imaginary part of "ccos_upward":
574double: 2
575float: 2
576float128: 2
577ldouble: 4
578
579Function: Real part of "ccosh":
580double: 1
581float: 1
582float128: 1
583ldouble: 1
584
585Function: Imaginary part of "ccosh":
586double: 1
587float: 1
588float128: 1
589ldouble: 2
590
591Function: Real part of "ccosh_downward":
592double: 2
593float: 3
594float128: 2
595ldouble: 6
596
597Function: Imaginary part of "ccosh_downward":
598double: 3
599float: 3
600float128: 2
601ldouble: 6
602
603Function: Real part of "ccosh_towardzero":
604double: 2
605float: 3
606float128: 2
607ldouble: 6
608
609Function: Imaginary part of "ccosh_towardzero":
610double: 3
611float: 3
612float128: 2
613ldouble: 6
614
615Function: Real part of "ccosh_upward":
616double: 1
617float: 2
618float128: 3
619ldouble: 3
620
621Function: Imaginary part of "ccosh_upward":
622double: 2
623float: 2
624float128: 2
625ldouble: 4
626
627Function: Real part of "cexp":
628double: 2
629float: 1
630float128: 1
631ldouble: 2
632
633Function: Imaginary part of "cexp":
634double: 1
635float: 2
636float128: 1
637ldouble: 2
638
639Function: Real part of "cexp_downward":
640double: 2
641float: 2
642float128: 2
643ldouble: 11
644
645Function: Imaginary part of "cexp_downward":
646double: 3
647float: 3
648float128: 2
649ldouble: 11
650
651Function: Real part of "cexp_towardzero":
652double: 2
653float: 2
654float128: 2
655ldouble: 11
656
657Function: Imaginary part of "cexp_towardzero":
658double: 3
659float: 3
660float128: 2
661ldouble: 11
662
663Function: Real part of "cexp_upward":
664double: 1
665float: 2
666float128: 3
667ldouble: 3
668
669Function: Imaginary part of "cexp_upward":
670double: 3
671float: 2
672float128: 3
673ldouble: 3
674
675Function: Real part of "clog":
676double: 3
677float: 3
678float128: 2
679ldouble: 5
680
681Function: Imaginary part of "clog":
682double: 1
683float: 1
684float128: 1
685ldouble: 2
686
687Function: Real part of "clog10":
688double: 3
689float: 4
690float128: 2
691ldouble: 3
692
693Function: Imaginary part of "clog10":
694double: 2
695float: 2
696float128: 2
697ldouble: 2
698
699Function: Real part of "clog10_downward":
700double: 6
701float: 6
702float128: 3
703ldouble: 10
704
705Function: Imaginary part of "clog10_downward":
706double: 2
707float: 4
708float128: 3
709ldouble: 7
710
711Function: Real part of "clog10_towardzero":
712double: 5
713float: 5
714float128: 4
715ldouble: 9
716
717Function: Imaginary part of "clog10_towardzero":
718double: 2
719float: 4
720float128: 3
721ldouble: 8
722
723Function: Real part of "clog10_upward":
724double: 8
725float: 5
726float128: 4
727ldouble: 10
728
729Function: Imaginary part of "clog10_upward":
730double: 2
731float: 4
732float128: 3
733ldouble: 7
734
735Function: Real part of "clog_downward":
736double: 7
737float: 5
738float128: 3
739ldouble: 11
740
741Function: Imaginary part of "clog_downward":
742double: 1
743float: 2
744float128: 2
745ldouble: 5
746
747Function: Real part of "clog_towardzero":
748double: 7
749float: 5
750float128: 3
751ldouble: 10
752
753Function: Imaginary part of "clog_towardzero":
754double: 1
755float: 3
756float128: 2
757ldouble: 7
758
759Function: Real part of "clog_upward":
760double: 8
761float: 5
762float128: 4
763ldouble: 10
764
765Function: Imaginary part of "clog_upward":
766double: 1
767float: 2
768float128: 2
769ldouble: 4
770
771Function: "cos":
772double: 1
773float: 3
774float128: 2
775ldouble: 4
776
777Function: "cos_downward":
778double: 1
779float: 4
780float128: 3
781ldouble: 5
782
783Function: "cos_towardzero":
784double: 1
785float: 3
786float128: 1
787ldouble: 4
788
789Function: "cos_upward":
790double: 1
791float: 3
792float128: 2
793ldouble: 5
794
795Function: "cosh":
796double: 2
797float: 2
798float128: 2
799ldouble: 3
800
801Function: "cosh_downward":
802double: 3
803float: 1
804float128: 3
805ldouble: 6
806
807Function: "cosh_towardzero":
808double: 3
809float: 1
810float128: 3
811ldouble: 6
812
813Function: "cosh_upward":
814double: 2
815float: 2
816float128: 3
817ldouble: 2
818
819Function: Real part of "cpow":
820double: 2
821float: 5
822float128: 4
823ldouble: 4
824
825Function: Imaginary part of "cpow":
826float: 2
827float128: 1
828ldouble: 2
829
830Function: Real part of "cpow_downward":
831double: 5
832float: 8
833float128: 6
834ldouble: 7
835
836Function: Imaginary part of "cpow_downward":
837double: 1
838float: 2
839float128: 2
840ldouble: 4
841
842Function: Real part of "cpow_towardzero":
843double: 5
844float: 8
845float128: 6
846ldouble: 8
847
848Function: Imaginary part of "cpow_towardzero":
849double: 1
850float: 2
851float128: 2
852ldouble: 4
853
854Function: Real part of "cpow_upward":
855double: 4
856float: 1
857float128: 3
858ldouble: 3
859
860Function: Imaginary part of "cpow_upward":
861double: 1
862float: 2
863float128: 2
864ldouble: 3
865
866Function: Real part of "csin":
867double: 1
868float: 1
869float128: 1
870ldouble: 2
871
872Function: Imaginary part of "csin":
873float128: 1
874ldouble: 1
875
876Function: Real part of "csin_downward":
877double: 3
878float: 3
879float128: 2
880ldouble: 6
881
882Function: Imaginary part of "csin_downward":
883double: 1
884float: 1
885float128: 2
886ldouble: 6
887
888Function: Real part of "csin_towardzero":
889double: 3
890float: 3
891float128: 2
892ldouble: 6
893
894Function: Imaginary part of "csin_towardzero":
895double: 1
896float: 1
897float128: 2
898ldouble: 6
899
900Function: Real part of "csin_upward":
901double: 2
902float: 2
903float128: 2
904ldouble: 3
905
906Function: Imaginary part of "csin_upward":
907double: 1
908float: 2
909float128: 3
910ldouble: 3
911
912Function: Real part of "csinh":
913float: 1
914float128: 1
915ldouble: 1
916
917Function: Imaginary part of "csinh":
918double: 1
919float: 1
920float128: 1
921ldouble: 2
922
923Function: Real part of "csinh_downward":
924double: 2
925float: 2
926float128: 2
927ldouble: 6
928
929Function: Imaginary part of "csinh_downward":
930double: 3
931float: 3
932float128: 2
933ldouble: 6
934
935Function: Real part of "csinh_towardzero":
936double: 2
937float: 2
938float128: 2
939ldouble: 6
940
941Function: Imaginary part of "csinh_towardzero":
942double: 3
943float: 3
944float128: 2
945ldouble: 6
946
947Function: Real part of "csinh_upward":
948double: 1
949float: 2
950float128: 3
951ldouble: 3
952
953Function: Imaginary part of "csinh_upward":
954double: 2
955float: 2
956float128: 2
957ldouble: 3
958
959Function: Real part of "csqrt":
960double: 2
961float: 2
962float128: 2
963ldouble: 1
964
965Function: Imaginary part of "csqrt":
966double: 2
967float: 2
968float128: 2
969ldouble: 1
970
971Function: Real part of "csqrt_downward":
972double: 5
973float: 4
974float128: 4
975ldouble: 4
976
977Function: Imaginary part of "csqrt_downward":
978double: 4
979float: 3
980float128: 3
981ldouble: 5
982
983Function: Real part of "csqrt_towardzero":
984double: 4
985float: 3
986float128: 3
987ldouble: 5
988
989Function: Imaginary part of "csqrt_towardzero":
990double: 4
991float: 3
992float128: 3
993ldouble: 5
994
995Function: Real part of "csqrt_upward":
996double: 5
997float: 4
998float128: 4
999ldouble: 12
1000
1001Function: Imaginary part of "csqrt_upward":
1002double: 3
1003float: 3
1004float128: 3
1005ldouble: 8
1006
1007Function: Real part of "ctan":
1008double: 1
1009float: 1
1010float128: 3
1011ldouble: 3
1012
1013Function: Imaginary part of "ctan":
1014double: 2
1015float: 2
1016float128: 3
1017ldouble: 2
1018
1019Function: Real part of "ctan_downward":
1020double: 6
1021float: 5
1022float128: 4
1023ldouble: 6
1024
1025Function: Imaginary part of "ctan_downward":
1026double: 2
1027float: 2
1028float128: 5
1029ldouble: 9
1030
1031Function: Real part of "ctan_towardzero":
1032double: 5
1033float: 3
1034float128: 4
1035ldouble: 6
1036
1037Function: Imaginary part of "ctan_towardzero":
1038double: 2
1039float: 2
1040float128: 5
1041ldouble: 13
1042
1043Function: Real part of "ctan_upward":
1044double: 2
1045float: 4
1046float128: 5
1047ldouble: 7
1048
1049Function: Imaginary part of "ctan_upward":
1050double: 2
1051float: 3
1052float128: 5
1053ldouble: 10
1054
1055Function: Real part of "ctanh":
1056double: 2
1057float: 2
1058float128: 3
1059ldouble: 3
1060
1061Function: Imaginary part of "ctanh":
1062double: 2
1063float: 1
1064float128: 3
1065ldouble: 3
1066
1067Function: Real part of "ctanh_downward":
1068double: 4
1069float: 2
1070float128: 5
1071ldouble: 9
1072
1073Function: Imaginary part of "ctanh_downward":
1074double: 6
1075float: 5
1076float128: 4
1077ldouble: 6
1078
1079Function: Real part of "ctanh_towardzero":
1080double: 2
1081float: 2
1082float128: 5
1083ldouble: 13
1084
1085Function: Imaginary part of "ctanh_towardzero":
1086double: 5
1087float: 2
1088float128: 3
1089ldouble: 10
1090
1091Function: Real part of "ctanh_upward":
1092double: 2
1093float: 3
1094float128: 5
1095ldouble: 10
1096
1097Function: Imaginary part of "ctanh_upward":
1098double: 2
1099float: 3
1100float128: 5
1101ldouble: 10
1102
1103Function: "div_ldouble":
1104float: 1
1105
1106Function: "div_towardzero_ldouble":
1107double: 1
1108
1109Function: "erf":
1110double: 1
1111float: 1
1112float128: 1
1113ldouble: 1
1114
1115Function: "erf_downward":
1116double: 1
1117float: 1
1118float128: 2
1119ldouble: 2
1120
1121Function: "erf_towardzero":
1122double: 1
1123float: 1
1124float128: 1
1125ldouble: 2
1126
1127Function: "erf_upward":
1128double: 1
1129float: 1
1130float128: 2
1131ldouble: 3
1132
1133Function: "erfc":
1134double: 2
1135float: 2
1136float128: 4
1137ldouble: 3
1138
1139Function: "erfc_downward":
1140double: 4
1141float: 4
1142float128: 5
1143ldouble: 10
1144
1145Function: "erfc_towardzero":
1146double: 3
1147float: 3
1148float128: 4
1149ldouble: 11
1150
1151Function: "erfc_upward":
1152double: 4
1153float: 4
1154float128: 5
1155ldouble: 7
1156
1157Function: "exp":
1158double: 1
1159float: 1
1160float128: 1
1161ldouble: 1
1162
1163Function: "exp10":
1164double: 2
1165float: 1
1166float128: 2
1167ldouble: 1
1168
1169Function: "exp10_downward":
1170double: 3
1171float: 1
1172float128: 3
1173ldouble: 9
1174
1175Function: "exp10_towardzero":
1176double: 3
1177float: 1
1178float128: 3
1179ldouble: 9
1180
1181Function: "exp10_upward":
1182double: 2
1183float: 1
1184float128: 3
1185ldouble: 4
1186
1187Function: "exp2":
1188double: 1
1189float128: 1
1190ldouble: 2
1191
1192Function: "exp2_downward":
1193double: 1
1194float128: 1
1195ldouble: 1
1196
1197Function: "exp2_towardzero":
1198double: 1
1199float128: 1
1200ldouble: 2
1201
1202Function: "exp2_upward":
1203double: 1
1204float: 1
1205float128: 2
1206ldouble: 2
1207
1208Function: "exp_downward":
1209double: 1
1210float: 1
1211ldouble: 2
1212
1213Function: "exp_towardzero":
1214double: 1
1215float: 1
1216ldouble: 2
1217
1218Function: "exp_upward":
1219double: 1
1220float: 1
1221ldouble: 1
1222
1223Function: "expm1":
1224double: 1
1225float: 1
1226float128: 2
1227ldouble: 1
1228
1229Function: "expm1_downward":
1230double: 1
1231float: 1
1232float128: 2
1233ldouble: 7
1234
1235Function: "expm1_towardzero":
1236double: 1
1237float: 2
1238float128: 4
1239ldouble: 6
1240
1241Function: "expm1_upward":
1242double: 1
1243float: 1
1244float128: 3
1245ldouble: 6
1246
1247Function: "fma":
1248ldouble: 1
1249
1250Function: "fma_downward":
1251ldouble: 1
1252
1253Function: "fma_downward_ldouble":
1254double: 1
1255float: 1
1256
1257Function: "fma_ldouble":
1258double: 1
1259float: 1
1260
1261Function: "fma_towardzero":
1262ldouble: 2
1263
1264Function: "fma_towardzero_ldouble":
1265double: 1
1266float: 1
1267
1268Function: "fma_upward":
1269ldouble: 3
1270
1271Function: "fma_upward_ldouble":
1272double: 1
1273float: 1
1274
1275Function: "fmod":
1276ldouble: 1
1277
1278Function: "fmod_downward":
1279ldouble: 1
1280
1281Function: "fmod_towardzero":
1282ldouble: 1
1283
1284Function: "fmod_upward":
1285ldouble: 1
1286
1287Function: "gamma":
1288double: 3
1289float: 4
1290float128: 5
1291ldouble: 3
1292
1293Function: "gamma_downward":
1294double: 4
1295float: 4
1296float128: 8
1297ldouble: 15
1298
1299Function: "gamma_towardzero":
1300double: 4
1301float: 3
1302float128: 5
1303ldouble: 16
1304
1305Function: "gamma_upward":
1306double: 4
1307float: 5
1308float128: 8
1309ldouble: 11
1310
1311Function: "hypot":
1312double: 1
1313float128: 1
1314ldouble: 1
1315
1316Function: "hypot_downward":
1317double: 1
1318float128: 1
1319ldouble: 2
1320
1321Function: "hypot_towardzero":
1322double: 1
1323float128: 1
1324ldouble: 2
1325
1326Function: "hypot_upward":
1327double: 1
1328float128: 1
1329ldouble: 3
1330
1331Function: "j0":
1332double: 3
1333float: 9
1334float128: 7
1335ldouble: 5
1336
1337Function: "j0_downward":
1338double: 6
1339float: 9
1340float128: 9
1341ldouble: 12
1342
1343Function: "j0_towardzero":
1344double: 7
1345float: 9
1346float128: 9
1347ldouble: 16
1348
1349Function: "j0_upward":
1350double: 9
1351float: 9
1352float128: 7
1353ldouble: 14
1354
1355Function: "j1":
1356double: 4
1357float: 9
1358float128: 4
1359ldouble: 6
1360
1361Function: "j1_downward":
1362double: 3
1363float: 8
1364float128: 4
1365ldouble: 7
1366
1367Function: "j1_towardzero":
1368double: 4
1369float: 8
1370float128: 4
1371ldouble: 7
1372
1373Function: "j1_upward":
1374double: 9
1375float: 9
1376float128: 3
1377ldouble: 6
1378
1379Function: "jn":
1380double: 4
1381float: 4
1382float128: 7
1383ldouble: 4
1384
1385Function: "jn_downward":
1386double: 4
1387float: 5
1388float128: 8
1389ldouble: 7
1390
1391Function: "jn_towardzero":
1392double: 4
1393float: 5
1394float128: 8
1395ldouble: 7
1396
1397Function: "jn_upward":
1398double: 5
1399float: 4
1400float128: 7
1401ldouble: 5
1402
1403Function: "lgamma":
1404double: 3
1405float: 4
1406float128: 5
1407ldouble: 3
1408
1409Function: "lgamma_downward":
1410double: 4
1411float: 4
1412float128: 8
1413ldouble: 15
1414
1415Function: "lgamma_towardzero":
1416double: 4
1417float: 3
1418float128: 5
1419ldouble: 16
1420
1421Function: "lgamma_upward":
1422double: 4
1423float: 5
1424float128: 8
1425ldouble: 11
1426
1427Function: "log":
1428double: 1
1429float: 1
1430float128: 1
1431ldouble: 1
1432
1433Function: "log10":
1434double: 2
1435float: 2
1436float128: 2
1437ldouble: 1
1438
1439Function: "log10_downward":
1440double: 2
1441float: 3
1442float128: 1
1443ldouble: 1
1444
1445Function: "log10_towardzero":
1446double: 2
1447float: 2
1448float128: 1
1449ldouble: 2
1450
1451Function: "log10_upward":
1452double: 2
1453float: 2
1454float128: 1
1455ldouble: 2
1456
1457Function: "log1p":
1458double: 1
1459float: 1
1460float128: 3
1461ldouble: 2
1462
1463Function: "log1p_downward":
1464double: 1
1465float: 2
1466float128: 3
1467ldouble: 2
1468
1469Function: "log1p_towardzero":
1470double: 2
1471float: 2
1472float128: 3
1473ldouble: 3
1474
1475Function: "log1p_upward":
1476double: 2
1477float: 2
1478float128: 2
1479ldouble: 3
1480
1481Function: "log2":
1482double: 1
1483float: 1
1484float128: 3
1485ldouble: 1
1486
1487Function: "log2_downward":
1488double: 3
1489float: 3
1490float128: 3
1491ldouble: 2
1492
1493Function: "log2_towardzero":
1494double: 2
1495float: 2
1496float128: 1
1497ldouble: 5
1498
1499Function: "log2_upward":
1500double: 3
1501float: 3
1502float128: 1
1503ldouble: 4
1504
1505Function: "log_downward":
1506float: 2
1507float128: 1
1508ldouble: 1
1509
1510Function: "log_towardzero":
1511float: 2
1512float128: 2
1513ldouble: 2
1514
1515Function: "log_upward":
1516double: 1
1517float: 2
1518float128: 1
1519ldouble: 1
1520
1521Function: "mul_downward_ldouble":
1522double: 1
1523float: 1
1524
1525Function: "mul_ldouble":
1526double: 1
1527float: 1
1528
1529Function: "mul_towardzero_ldouble":
1530double: 1
1531float: 1
1532
1533Function: "mul_upward_ldouble":
1534double: 1
1535float: 1
1536
1537Function: "nextafter_downward":
1538ldouble: 1
1539
1540Function: "nextafter_upward":
1541ldouble: 1
1542
1543Function: "pow":
1544double: 1
1545float: 1
1546float128: 2
1547ldouble: 1
1548
1549Function: "pow_downward":
1550double: 1
1551float: 1
1552float128: 2
1553ldouble: 1
1554
1555Function: "pow_towardzero":
1556double: 1
1557float: 1
1558float128: 2
1559ldouble: 1
1560
1561Function: "pow_upward":
1562double: 1
1563float: 1
1564float128: 2
1565ldouble: 1
1566
1567Function: "sin":
1568double: 1
1569float: 1
1570float128: 2
1571ldouble: 1
1572
1573Function: "sin_downward":
1574double: 1
1575float: 2
1576float128: 3
1577ldouble: 4
1578
1579Function: "sin_towardzero":
1580double: 1
1581float: 1
1582float128: 2
1583ldouble: 5
1584
1585Function: "sin_upward":
1586double: 1
1587float: 2
1588float128: 3
1589ldouble: 5
1590
1591Function: "sincos":
1592double: 1
1593float: 1
1594float128: 1
1595ldouble: 1
1596
1597Function: "sincos_downward":
1598double: 1
1599float: 2
1600float128: 3
1601ldouble: 4
1602
1603Function: "sincos_towardzero":
1604double: 1
1605float: 1
1606float128: 2
1607ldouble: 7
1608
1609Function: "sincos_upward":
1610double: 1
1611float: 2
1612float128: 3
1613ldouble: 7
1614
1615Function: "sinh":
1616double: 2
1617float: 2
1618float128: 2
1619ldouble: 3
1620
1621Function: "sinh_downward":
1622double: 3
1623float: 3
1624float128: 3
1625ldouble: 6
1626
1627Function: "sinh_towardzero":
1628double: 3
1629float: 2
1630float128: 3
1631ldouble: 6
1632
1633Function: "sinh_upward":
1634double: 3
1635float: 3
1636float128: 4
1637ldouble: 6
1638
1639Function: "sqrt":
1640ldouble: 1
1641
1642Function: "sqrt_downward":
1643ldouble: 1
1644
1645Function: "sqrt_ldouble":
1646double: 1
1647
1648Function: "sqrt_towardzero":
1649ldouble: 1
1650
1651Function: "sqrt_upward":
1652ldouble: 1
1653
1654Function: "sub_ldouble":
1655double: 1
1656float: 1
1657
1658Function: "tan":
1659float: 3
1660float128: 1
1661ldouble: 2
1662
1663Function: "tan_downward":
1664double: 1
1665float: 3
1666float128: 1
1667ldouble: 3
1668
1669Function: "tan_towardzero":
1670double: 1
1671float: 3
1672float128: 1
1673ldouble: 2
1674
1675Function: "tan_upward":
1676double: 1
1677float: 3
1678float128: 1
1679ldouble: 3
1680
1681Function: "tanh":
1682double: 2
1683float: 2
1684float128: 2
1685ldouble: 1
1686
1687Function: "tanh_downward":
1688double: 3
1689float: 3
1690float128: 4
1691ldouble: 4
1692
1693Function: "tanh_towardzero":
1694double: 2
1695float: 2
1696float128: 3
1697ldouble: 4
1698
1699Function: "tanh_upward":
1700double: 3
1701float: 3
1702float128: 3
1703ldouble: 6
1704
1705Function: "tgamma":
1706double: 9
1707float: 8
1708float128: 4
1709ldouble: 5
1710
1711Function: "tgamma_downward":
1712double: 9
1713float: 7
1714float128: 5
1715ldouble: 6
1716
1717Function: "tgamma_towardzero":
1718double: 9
1719float: 7
1720float128: 5
1721ldouble: 5
1722
1723Function: "tgamma_upward":
1724double: 9
1725float: 8
1726float128: 4
1727ldouble: 5
1728
1729Function: "y0":
1730double: 2
1731float: 8
1732float128: 3
1733ldouble: 10
1734
1735Function: "y0_downward":
1736double: 3
1737float: 8
1738float128: 7
1739ldouble: 10
1740
1741Function: "y0_towardzero":
1742double: 3
1743float: 8
1744float128: 3
1745ldouble: 9
1746
1747Function: "y0_upward":
1748double: 2
1749float: 8
1750float128: 4
1751ldouble: 9
1752
1753Function: "y1":
1754double: 3
1755float: 9
1756float128: 5
1757ldouble: 2
1758
1759Function: "y1_downward":
1760double: 6
1761float: 8
1762float128: 5
1763ldouble: 11
1764
1765Function: "y1_towardzero":
1766double: 3
1767float: 9
1768float128: 3
1769ldouble: 9
1770
1771Function: "y1_upward":
1772double: 6
1773float: 9
1774float128: 5
1775ldouble: 9
1776
1777Function: "yn":
1778double: 3
1779float: 3
1780float128: 5
1781ldouble: 2
1782
1783Function: "yn_downward":
1784double: 3
1785float: 4
1786float128: 5
1787ldouble: 10
1788
1789Function: "yn_towardzero":
1790double: 3
1791float: 3
1792float128: 5
1793ldouble: 8
1794
1795Function: "yn_upward":
1796double: 4
1797float: 5
1798float128: 5
1799ldouble: 9
1800
1801# end of automatic generation
1802