1 /* Single-precision floating point square root.
2    Copyright (C) 1997-2022 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 #include <math.h>
20 #include <math_private.h>
21 #include <fenv_libc.h>
22 #include <libm-alias-finite.h>
23 #include <math-use-builtins.h>
24 
25 float
__ieee754_sqrtf(float x)26 __ieee754_sqrtf (float x)
27 {
28 #if USE_SQRTF_BUILTIN
29   return __builtin_sqrtf (x);
30 #else
31 /* The method is based on a description in
32    Computation of elementary functions on the IBM RISC System/6000 processor,
33    P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
34    Basically, it consists of two interleaved Newton-Raphson approximations,
35    one to find the actual square root, and one to find its reciprocal
36    without the expense of a division operation.   The tricky bit here
37    is the use of the POWER/PowerPC multiply-add operation to get the
38    required accuracy with high speed.
39 
40    The argument reduction works by a combination of table lookup to
41    obtain the initial guesses, and some careful modification of the
42    generated guesses (which mostly runs on the integer unit, while the
43    Newton-Raphson is running on the FPU).  */
44 
45   extern const float __t_sqrt[1024];
46 
47   if (x > 0)
48     {
49       if (x != INFINITY)
50 	{
51 	  /* Variables named starting with 's' exist in the
52 	     argument-reduced space, so that 2 > sx >= 0.5,
53 	     1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
54 	     Variables named ending with 'i' are integer versions of
55 	     floating-point values.  */
56 	  float sx;		/* The value of which we're trying to find the square
57 				   root.  */
58 	  float sg, g;		/* Guess of the square root of x.  */
59 	  float sd, d;		/* Difference between the square of the guess and x.  */
60 	  float sy;		/* Estimate of 1/2g (overestimated by 1ulp).  */
61 	  float sy2;		/* 2*sy */
62 	  float e;		/* Difference between y*g and 1/2 (note that e==se).  */
63 	  float shx;		/* == sx * fsg */
64 	  float fsg;		/* sg*fsg == g.  */
65 	  fenv_t fe;		/* Saved floating-point environment (stores rounding
66 				   mode and whether the inexact exception is
67 				   enabled).  */
68 	  uint32_t xi, sxi, fsgi;
69 	  const float *t_sqrt;
70 
71 	  GET_FLOAT_WORD (xi, x);
72 	  fe = fegetenv_register ();
73 	  relax_fenv_state ();
74 	  sxi = (xi & 0x3fffffff) | 0x3f000000;
75 	  SET_FLOAT_WORD (sx, sxi);
76 	  t_sqrt = __t_sqrt + (xi >> (23 - 8 - 1) & 0x3fe);
77 	  sg = t_sqrt[0];
78 	  sy = t_sqrt[1];
79 
80 	  /* Here we have three Newton-Raphson iterations each of a
81 	     division and a square root and the remainder of the
82 	     argument reduction, all interleaved.   */
83 	  sd = -__builtin_fmaf (sg, sg, -sx);
84 	  fsgi = (xi + 0x40000000) >> 1 & 0x7f800000;
85 	  sy2 = sy + sy;
86 	  sg = __builtin_fmaf (sy, sd, sg);	/* 16-bit approximation to
87 						   sqrt(sx). */
88 	  e = -__builtin_fmaf (sy, sg, -0x1.0000020365653p-1);
89 	  SET_FLOAT_WORD (fsg, fsgi);
90 	  sd = -__builtin_fmaf (sg, sg, -sx);
91 	  sy = __builtin_fmaf (e, sy2, sy);
92 	  if ((xi & 0x7f800000) == 0)
93 	    goto denorm;
94 	  shx = sx * fsg;
95 	  sg = __builtin_fmaf (sy, sd, sg);	/* 32-bit approximation to
96 						   sqrt(sx), but perhaps
97 						   rounded incorrectly.  */
98 	  sy2 = sy + sy;
99 	  g = sg * fsg;
100 	  e = -__builtin_fmaf (sy, sg, -0x1.0000020365653p-1);
101 	  d = -__builtin_fmaf (g, sg, -shx);
102 	  sy = __builtin_fmaf (e, sy2, sy);
103 	  fesetenv_register (fe);
104 	  return __builtin_fmaf (sy, d, g);
105 	denorm:
106 	  /* For denormalised numbers, we normalise, calculate the
107 	     square root, and return an adjusted result.  */
108 	  fesetenv_register (fe);
109 	  return __ieee754_sqrtf (x * 0x1p+48) * 0x1p-24;
110 	}
111     }
112   else if (x < 0)
113     {
114       /* For some reason, some PowerPC32 processors don't implement
115 	 FE_INVALID_SQRT.  */
116 # ifdef FE_INVALID_SQRT
117       feraiseexcept (FE_INVALID_SQRT);
118 
119       fenv_union_t u = { .fenv = fegetenv_register () };
120       if ((u.l & FE_INVALID) == 0)
121 # endif
122 	feraiseexcept (FE_INVALID);
123       x = NAN;
124     }
125   return f_washf (x);
126 #endif /* USE_SQRTF_BUILTIN  */
127 }
128 libm_alias_finite (__ieee754_sqrtf, __sqrtf)
129