1 /* s_tanl.c -- long double version of s_tan.c.
2  */
3 
4 /*
5  * ====================================================
6  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7  *
8  * Developed at SunPro, a Sun Microsystems, Inc. business.
9  * Permission to use, copy, modify, and distribute this
10  * software is freely granted, provided that this notice
11  * is preserved.
12  * ====================================================
13  */
14 
15 #if defined(LIBM_SCCS) && !defined(lint)
16 static char rcsid[] = "$NetBSD: $";
17 #endif
18 
19 /* tanl(x)
20  * Return tangent function of x.
21  *
22  * kernel function:
23  *	__kernel_tanl		... tangent function on [-pi/4,pi/4]
24  *	__ieee754_rem_pio2l	... argument reduction routine
25  *
26  * Method.
27  *      Let S,C and T denote the sin, cos and tan respectively on
28  *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
29  *	in [-pi/4 , +pi/4], and let n = k mod 4.
30  *	We have
31  *
32  *          n        sin(x)      cos(x)        tan(x)
33  *     ----------------------------------------------------------
34  *	    0	       S	   C		 T
35  *	    1	       C	  -S		-1/T
36  *	    2	      -S	  -C		 T
37  *	    3	      -C	   S		-1/T
38  *     ----------------------------------------------------------
39  *
40  * Special cases:
41  *      Let trig be any of sin, cos, or tan.
42  *      trig(+-INF)  is NaN, with signals;
43  *      trig(NaN)    is that NaN;
44  *
45  * Accuracy:
46  *	TRIG(x) returns trig(x) nearly rounded
47  */
48 
49 #include <errno.h>
50 #include <math.h>
51 #include <math_private.h>
52 #include <libm-alias-ldouble.h>
53 
__tanl(long double x)54 long double __tanl(long double x)
55 {
56 	long double y[2],z=0.0;
57 	int32_t n, se, i0, i1;
58 
59     /* High word of x. */
60 	GET_LDOUBLE_WORDS(se,i0,i1,x);
61 
62     /* |x| ~< pi/4 */
63 	se &= 0x7fff;
64 	if(se <= 0x3ffe) return __kernel_tanl(x,z,1);
65 
66     /* tan(Inf or NaN) is NaN */
67 	else if (se==0x7fff) {
68 	  if (i1 == 0 && i0 == 0x80000000)
69 	    __set_errno (EDOM);
70 	  return x-x;
71 	}
72 
73     /* argument reduction needed */
74 	else {
75 	    n = __ieee754_rem_pio2l(x,y);
76 	    return __kernel_tanl(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
77 							-1 -- n odd */
78 	}
79 }
80 libm_alias_ldouble (__tan, tan)
81