1 /* Extended-precision floating point cosine on <-pi/4,pi/4>.
2    Copyright (C) 1999-2022 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 #include <math.h>
20 #include <math_private.h>
21 
22 /* The polynomials have not been optimized for extended-precision and
23    may contain more terms than needed.  */
24 
25 static const long double c[] = {
26 #define ONE c[0]
27  1.00000000000000000000000000000000000E+00L,
28 
29 /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
30    x in <0,1/256>  */
31 #define SCOS1 c[1]
32 #define SCOS2 c[2]
33 #define SCOS3 c[3]
34 #define SCOS4 c[4]
35 #define SCOS5 c[5]
36 -5.00000000000000000000000000000000000E-01L,
37  4.16666666666666666666666666556146073E-02L,
38 -1.38888888888888888888309442601939728E-03L,
39  2.48015873015862382987049502531095061E-05L,
40 -2.75573112601362126593516899592158083E-07L,
41 
42 /* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 )
43    x in <0,0.1484375>  */
44 #define COS1 c[6]
45 #define COS2 c[7]
46 #define COS3 c[8]
47 #define COS4 c[9]
48 #define COS5 c[10]
49 #define COS6 c[11]
50 #define COS7 c[12]
51 #define COS8 c[13]
52 -4.99999999999999999999999999999999759E-01L,
53  4.16666666666666666666666666651287795E-02L,
54 -1.38888888888888888888888742314300284E-03L,
55  2.48015873015873015867694002851118210E-05L,
56 -2.75573192239858811636614709689300351E-07L,
57  2.08767569877762248667431926878073669E-09L,
58 -1.14707451049343817400420280514614892E-11L,
59  4.77810092804389587579843296923533297E-14L,
60 
61 /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
62    x in <0,1/256>  */
63 #define SSIN1 c[14]
64 #define SSIN2 c[15]
65 #define SSIN3 c[16]
66 #define SSIN4 c[17]
67 #define SSIN5 c[18]
68 -1.66666666666666666666666666666666659E-01L,
69  8.33333333333333333333333333146298442E-03L,
70 -1.98412698412698412697726277416810661E-04L,
71  2.75573192239848624174178393552189149E-06L,
72 -2.50521016467996193495359189395805639E-08L,
73 };
74 
75 #define SINCOSL_COS_HI 0
76 #define SINCOSL_COS_LO 1
77 #define SINCOSL_SIN_HI 2
78 #define SINCOSL_SIN_LO 3
79 extern const long double __sincosl_table[];
80 
81 long double
__kernel_cosl(long double x,long double y)82 __kernel_cosl(long double x, long double y)
83 {
84   long double h, l, z, sin_l, cos_l_m1;
85   int index;
86 
87   if (signbit (x))
88     {
89       x = -x;
90       y = -y;
91     }
92   if (x < 0.1484375L)
93     {
94       /* Argument is small enough to approximate it by a Chebyshev
95 	 polynomial of degree 16.  */
96       if (x < 0x1p-33L)
97 	if (!((int)x)) return ONE;	/* generate inexact */
98       z = x * x;
99       return ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+
100 		    z*(COS5+z*(COS6+z*(COS7+z*COS8))))))));
101     }
102   else
103     {
104       /* So that we don't have to use too large polynomial,  we find
105 	 l and h such that x = l + h,  where fabsl(l) <= 1.0/256 with 83
106 	 possible values for h.  We look up cosl(h) and sinl(h) in
107 	 pre-computed tables,  compute cosl(l) and sinl(l) using a
108 	 Chebyshev polynomial of degree 10(11) and compute
109 	 cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l).  */
110       index = (int) (128 * (x - (0.1484375L - 1.0L / 256.0L)));
111       h = 0.1484375L + index / 128.0;
112       index *= 4;
113       l = y - (h - x);
114       z = l * l;
115       sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
116       cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
117       return __sincosl_table [index + SINCOSL_COS_HI]
118 	     + (__sincosl_table [index + SINCOSL_COS_LO]
119 		- (__sincosl_table [index + SINCOSL_SIN_HI] * sin_l
120 		   - __sincosl_table [index + SINCOSL_COS_HI] * cos_l_m1));
121     }
122 }
123