1 /* Euclidean distance function.  Long Double/Binary96 version.
2    Copyright (C) 2021-2022 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 /* This implementation is based on 'An Improved Algorithm for hypot(a,b)' by
20    Carlos F. Borges [1] using the MyHypot3 with the following changes:
21 
22    - Handle qNaN and sNaN.
23    - Tune the 'widely varying operands' to avoid spurious underflow
24      due the multiplication and fix the return value for upwards
25      rounding mode.
26    - Handle required underflow exception for subnormal results.
27 
28    [1] https://arxiv.org/pdf/1904.09481.pdf  */
29 
30 #include <math.h>
31 #include <math_private.h>
32 #include <math-underflow.h>
33 #include <libm-alias-finite.h>
34 
35 #define SCALE      0x8p-8257L
36 #define LARGE_VAL  0xb.504f333f9de6484p+8188L
37 #define TINY_VAL   0x8p-8194L
38 #define EPS        0x8p-68L
39 
40 /* Hypot kernel. The inputs must be adjusted so that ax >= ay >= 0
41    and squaring ax, ay and (ax - ay) does not overflow or underflow.  */
42 static inline long double
kernel(long double ax,long double ay)43 kernel (long double ax, long double ay)
44 {
45   long double t1, t2;
46   long double h = sqrtl (ax * ax + ay * ay);
47   if (h <= 2.0L * ay)
48     {
49       long double delta = h - ay;
50       t1 = ax * (2.0L * delta - ax);
51       t2 = (delta - 2.0L * (ax - ay)) * delta;
52     }
53   else
54     {
55       long double delta = h - ax;
56       t1 = 2.0L * delta * (ax - 2.0L * ay);
57       t2 = (4.0L * delta - ay) * ay + delta * delta;
58     }
59 
60   h -= (t1 + t2) / (2.0L * h);
61   return h;
62 }
63 
64 long double
__ieee754_hypotl(long double x,long double y)65 __ieee754_hypotl (long double x, long double y)
66 {
67   if (!isfinite(x) || !isfinite(y))
68     {
69       if ((isinf (x) || isinf (y))
70 	  && !issignaling (x) && !issignaling (y))
71 	return INFINITY;
72       return x + y;
73     }
74 
75   x = fabsl (x);
76   y = fabsl (y);
77 
78   long double ax = x < y ? y : x;
79   long double ay = x < y ? x : y;
80 
81   /* If ax is huge, scale both inputs down.  */
82   if (__glibc_unlikely (ax > LARGE_VAL))
83     {
84       if (__glibc_unlikely (ay <= ax * EPS))
85 	return ax + ay;
86 
87       return kernel (ax * SCALE, ay * SCALE) / SCALE;
88     }
89 
90   /* If ay is tiny, scale both inputs up.  */
91   if (__glibc_unlikely (ay < TINY_VAL))
92     {
93       if (__glibc_unlikely (ax >= ay / EPS))
94 	return ax + ay;
95 
96       ax = kernel (ax / SCALE, ay / SCALE) * SCALE;
97       math_check_force_underflow_nonneg (ax);
98       return ax;
99     }
100 
101   /* Common case: ax is not huge and ay is not tiny.  */
102   if (__glibc_unlikely (ay <= ax * EPS))
103     return ax + ay;
104 
105   return kernel (ax, ay);
106 }
107 libm_alias_finite (__ieee754_hypotl, __hypotl)
108