1 /* Implementation of gamma function according to ISO C.
2    Copyright (C) 1997-2022 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 #include <math.h>
20 #include <math_private.h>
21 #include <fenv_private.h>
22 #include <math-underflow.h>
23 #include <float.h>
24 #include <libm-alias-finite.h>
25 
26 /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
27    approximation to gamma function.  */
28 
29 static const long double gamma_coeff[] =
30   {
31     0x1.5555555555555556p-4L,
32     -0xb.60b60b60b60b60bp-12L,
33     0x3.4034034034034034p-12L,
34     -0x2.7027027027027028p-12L,
35     0x3.72a3c5631fe46aep-12L,
36     -0x7.daac36664f1f208p-12L,
37     0x1.a41a41a41a41a41ap-8L,
38     -0x7.90a1b2c3d4e5f708p-8L,
39   };
40 
41 #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
42 
43 /* Return gamma (X), for positive X less than 1766, in the form R *
44    2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
45    avoid overflow or underflow in intermediate calculations.  */
46 
47 static long double
gammal_positive(long double x,int * exp2_adj)48 gammal_positive (long double x, int *exp2_adj)
49 {
50   int local_signgam;
51   if (x < 0.5L)
52     {
53       *exp2_adj = 0;
54       return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x;
55     }
56   else if (x <= 1.5L)
57     {
58       *exp2_adj = 0;
59       return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam));
60     }
61   else if (x < 7.5L)
62     {
63       /* Adjust into the range for using exp (lgamma).  */
64       *exp2_adj = 0;
65       long double n = ceill (x - 1.5L);
66       long double x_adj = x - n;
67       long double eps;
68       long double prod = __gamma_productl (x_adj, 0, n, &eps);
69       return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam))
70 	      * prod * (1.0L + eps));
71     }
72   else
73     {
74       long double eps = 0;
75       long double x_eps = 0;
76       long double x_adj = x;
77       long double prod = 1;
78       if (x < 13.0L)
79 	{
80 	  /* Adjust into the range for applying Stirling's
81 	     approximation.  */
82 	  long double n = ceill (13.0L - x);
83 	  x_adj = x + n;
84 	  x_eps = (x - (x_adj - n));
85 	  prod = __gamma_productl (x_adj - n, x_eps, n, &eps);
86 	}
87       /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
88 	 Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
89 	 starting by computing pow (X_ADJ, X_ADJ) with a power of 2
90 	 factored out.  */
91       long double exp_adj = -eps;
92       long double x_adj_int = roundl (x_adj);
93       long double x_adj_frac = x_adj - x_adj_int;
94       int x_adj_log2;
95       long double x_adj_mant = __frexpl (x_adj, &x_adj_log2);
96       if (x_adj_mant < M_SQRT1_2l)
97 	{
98 	  x_adj_log2--;
99 	  x_adj_mant *= 2.0L;
100 	}
101       *exp2_adj = x_adj_log2 * (int) x_adj_int;
102       long double ret = (__ieee754_powl (x_adj_mant, x_adj)
103 			 * __ieee754_exp2l (x_adj_log2 * x_adj_frac)
104 			 * __ieee754_expl (-x_adj)
105 			 * sqrtl (2 * M_PIl / x_adj)
106 			 / prod);
107       exp_adj += x_eps * __ieee754_logl (x_adj);
108       long double bsum = gamma_coeff[NCOEFF - 1];
109       long double x_adj2 = x_adj * x_adj;
110       for (size_t i = 1; i <= NCOEFF - 1; i++)
111 	bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
112       exp_adj += bsum / x_adj;
113       return ret + ret * __expm1l (exp_adj);
114     }
115 }
116 
117 long double
__ieee754_gammal_r(long double x,int * signgamp)118 __ieee754_gammal_r (long double x, int *signgamp)
119 {
120   uint32_t es, hx, lx;
121   long double ret;
122 
123   GET_LDOUBLE_WORDS (es, hx, lx, x);
124 
125   if (__glibc_unlikely (((es & 0x7fff) | hx | lx) == 0))
126     {
127       /* Return value for x == 0 is Inf with divide by zero exception.  */
128       *signgamp = 0;
129       return 1.0 / x;
130     }
131   if (__glibc_unlikely (es == 0xffffffff && ((hx & 0x7fffffff) | lx) == 0))
132     {
133       /* x == -Inf.  According to ISO this is NaN.  */
134       *signgamp = 0;
135       return x - x;
136     }
137   if (__glibc_unlikely ((es & 0x7fff) == 0x7fff))
138     {
139       /* Positive infinity (return positive infinity) or NaN (return
140 	 NaN).  */
141       *signgamp = 0;
142       return x + x;
143     }
144   if (__builtin_expect ((es & 0x8000) != 0, 0) && rintl (x) == x)
145     {
146       /* Return value for integer x < 0 is NaN with invalid exception.  */
147       *signgamp = 0;
148       return (x - x) / (x - x);
149     }
150 
151   if (x >= 1756.0L)
152     {
153       /* Overflow.  */
154       *signgamp = 0;
155       return LDBL_MAX * LDBL_MAX;
156     }
157   else
158     {
159       SET_RESTORE_ROUNDL (FE_TONEAREST);
160       if (x > 0.0L)
161 	{
162 	  *signgamp = 0;
163 	  int exp2_adj;
164 	  ret = gammal_positive (x, &exp2_adj);
165 	  ret = __scalbnl (ret, exp2_adj);
166 	}
167       else if (x >= -LDBL_EPSILON / 4.0L)
168 	{
169 	  *signgamp = 0;
170 	  ret = 1.0L / x;
171 	}
172       else
173 	{
174 	  long double tx = truncl (x);
175 	  *signgamp = (tx == 2.0L * truncl (tx / 2.0L)) ? -1 : 1;
176 	  if (x <= -1766.0L)
177 	    /* Underflow.  */
178 	    ret = LDBL_MIN * LDBL_MIN;
179 	  else
180 	    {
181 	      long double frac = tx - x;
182 	      if (frac > 0.5L)
183 		frac = 1.0L - frac;
184 	      long double sinpix = (frac <= 0.25L
185 				    ? __sinl (M_PIl * frac)
186 				    : __cosl (M_PIl * (0.5L - frac)));
187 	      int exp2_adj;
188 	      ret = M_PIl / (-x * sinpix
189 			     * gammal_positive (-x, &exp2_adj));
190 	      ret = __scalbnl (ret, -exp2_adj);
191 	      math_check_force_underflow_nonneg (ret);
192 	    }
193 	}
194     }
195   if (isinf (ret) && x != 0)
196     {
197       if (*signgamp < 0)
198 	return -(-copysignl (LDBL_MAX, ret) * LDBL_MAX);
199       else
200 	return copysignl (LDBL_MAX, ret) * LDBL_MAX;
201     }
202   else if (ret == 0)
203     {
204       if (*signgamp < 0)
205 	return -(-copysignl (LDBL_MIN, ret) * LDBL_MIN);
206       else
207 	return copysignl (LDBL_MIN, ret) * LDBL_MIN;
208     }
209   else
210     return ret;
211 }
212 libm_alias_finite (__ieee754_gammal_r, __gammal_r)
213