1 /* @(#)e_hypotl.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* __ieee754_hypotl(x,y)
14  *
15  * Method :
16  *	If (assume round-to-nearest) z=x*x+y*y
17  *	has error less than sqrtl(2)/2 ulp, than
18  *	sqrtl(z) has error less than 1 ulp (exercise).
19  *
20  *	So, compute sqrtl(x*x+y*y) with some care as
21  *	follows to get the error below 1 ulp:
22  *
23  *	Assume x>y>0;
24  *	(if possible, set rounding to round-to-nearest)
25  *	1. if x > 2y  use
26  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
27  *	where x1 = x with lower 53 bits cleared, x2 = x-x1; else
28  *	2. if x <= 2y use
29  *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
30  *	where t1 = 2x with lower 53 bits cleared, t2 = 2x-t1,
31  *	y1= y with lower 53 bits chopped, y2 = y-y1.
32  *
33  *	NOTE: scaling may be necessary if some argument is too
34  *	      large or too tiny
35  *
36  * Special cases:
37  *	hypotl(x,y) is INF if x or y is +INF or -INF; else
38  *	hypotl(x,y) is NAN if x or y is NAN.
39  *
40  * Accuracy:
41  *	hypotl(x,y) returns sqrtl(x^2+y^2) with error less
42  *	than 1 ulps (units in the last place)
43  */
44 
45 #include <math.h>
46 #include <math_private.h>
47 #include <math-underflow.h>
48 #include <libm-alias-finite.h>
49 
50 long double
__ieee754_hypotl(long double x,long double y)51 __ieee754_hypotl(long double x, long double y)
52 {
53 	long double a,b,a1,a2,b1,b2,w,kld;
54 	int64_t j,k,ha,hb;
55 	double xhi, yhi, hi, lo;
56 
57 	xhi = ldbl_high (x);
58 	EXTRACT_WORDS64 (ha, xhi);
59 	yhi = ldbl_high (y);
60 	EXTRACT_WORDS64 (hb, yhi);
61 	ha &= 0x7fffffffffffffffLL;
62 	hb &= 0x7fffffffffffffffLL;
63 	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
64 	a = fabsl(a);	/* a <- |a| */
65 	b = fabsl(b);	/* b <- |b| */
66 	if((ha-hb)>0x0780000000000000LL) {return a+b;} /* x/y > 2**120 */
67 	k=0;
68 	kld = 1.0L;
69 	if(ha > 0x5f30000000000000LL) {	/* a>2**500 */
70 	   if(ha >= 0x7ff0000000000000LL) {	/* Inf or NaN */
71 	       w = a+b;			/* for sNaN */
72 	       if (issignaling (a) || issignaling (b))
73 		 return w;
74 	       if(ha == 0x7ff0000000000000LL)
75 		 w = a;
76 	       if(hb == 0x7ff0000000000000LL)
77 		 w = b;
78 	       return w;
79 	   }
80 	   /* scale a and b by 2**-600 */
81 	   a *= 0x1p-600L;
82 	   b *= 0x1p-600L;
83 	   k = 600;
84 	   kld = 0x1p+600L;
85 	}
86 	else if(hb < 0x23d0000000000000LL) {	/* b < 2**-450 */
87 	    if(hb <= 0x000fffffffffffffLL) {	/* subnormal b or 0 */
88 		if(hb==0) return a;
89 		a *= 0x1p+1022L;
90 		b *= 0x1p+1022L;
91 		k = -1022;
92 		kld = 0x1p-1022L;
93 	    } else {		/* scale a and b by 2^600 */
94 		a *= 0x1p+600L;
95 		b *= 0x1p+600L;
96 		k = -600;
97 		kld = 0x1p-600L;
98 	    }
99 	}
100     /* medium size a and b */
101 	w = a-b;
102 	if (w>b) {
103 	    ldbl_unpack (a, &hi, &lo);
104 	    a1 = hi;
105 	    a2 = lo;
106 	    /* a*a + b*b
107 	       = (a1+a2)*a + b*b
108 	       = a1*a + a2*a + b*b
109 	       = a1*(a1+a2) + a2*a + b*b
110 	       = a1*a1 + a1*a2 + a2*a + b*b
111 	       = a1*a1 + a2*(a+a1) + b*b  */
112 	    w  = sqrtl(a1*a1-(b*(-b)-a2*(a+a1)));
113 	} else {
114 	    a  = a+a;
115 	    ldbl_unpack (b, &hi, &lo);
116 	    b1 = hi;
117 	    b2 = lo;
118 	    ldbl_unpack (a, &hi, &lo);
119 	    a1 = hi;
120 	    a2 = lo;
121 	    /* a*a + b*b
122 	       = a*a + (a-b)*(a-b) - (a-b)*(a-b) + b*b
123 	       = a*a + w*w  - (a*a - 2*a*b + b*b) + b*b
124 	       = w*w + 2*a*b
125 	       = w*w + (a1+a2)*b
126 	       = w*w + a1*b + a2*b
127 	       = w*w + a1*(b1+b2) + a2*b
128 	       = w*w + a1*b1 + a1*b2 + a2*b  */
129 	    w  = sqrtl(a1*b1-(w*(-w)-(a1*b2+a2*b)));
130 	}
131 	if(k!=0)
132 	    {
133 		w *= kld;
134 		math_check_force_underflow_nonneg (w);
135 		return w;
136 	    }
137 	else
138 	    return w;
139 }
140 libm_alias_finite (__ieee754_hypotl, __hypotl)
141