1 /* Implementation of gamma function according to ISO C.
2    Copyright (C) 1997-2022 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 #include <math.h>
20 #include <math_private.h>
21 #include <fenv_private.h>
22 #include <math-underflow.h>
23 #include <float.h>
24 #include <libm-alias-finite.h>
25 
26 /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
27    approximation to gamma function.  */
28 
29 static const long double gamma_coeff[] =
30   {
31     0x1.555555555555555555555555558p-4L,
32     -0xb.60b60b60b60b60b60b60b60b6p-12L,
33     0x3.4034034034034034034034034p-12L,
34     -0x2.7027027027027027027027027p-12L,
35     0x3.72a3c5631fe46ae1d4e700dca9p-12L,
36     -0x7.daac36664f1f207daac36664f2p-12L,
37     0x1.a41a41a41a41a41a41a41a41a4p-8L,
38     -0x7.90a1b2c3d4e5f708192a3b4c5ep-8L,
39     0x2.dfd2c703c0cfff430edfd2c704p-4L,
40     -0x1.6476701181f39edbdb9ce625988p+0L,
41     0xd.672219167002d3a7a9c886459cp+0L,
42     -0x9.cd9292e6660d55b3f712eb9e08p+4L,
43     0x8.911a740da740da740da740da74p+8L,
44   };
45 
46 #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
47 
48 /* Return gamma (X), for positive X less than 191, in the form R *
49    2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
50    avoid overflow or underflow in intermediate calculations.  */
51 
52 static long double
gammal_positive(long double x,int * exp2_adj)53 gammal_positive (long double x, int *exp2_adj)
54 {
55   int local_signgam;
56   if (x < 0.5L)
57     {
58       *exp2_adj = 0;
59       return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x;
60     }
61   else if (x <= 1.5L)
62     {
63       *exp2_adj = 0;
64       return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam));
65     }
66   else if (x < 11.5L)
67     {
68       /* Adjust into the range for using exp (lgamma).  */
69       *exp2_adj = 0;
70       long double n = ceill (x - 1.5L);
71       long double x_adj = x - n;
72       long double eps;
73       long double prod = __gamma_productl (x_adj, 0, n, &eps);
74       return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam))
75 	      * prod * (1.0L + eps));
76     }
77   else
78     {
79       long double eps = 0;
80       long double x_eps = 0;
81       long double x_adj = x;
82       long double prod = 1;
83       if (x < 23.0L)
84 	{
85 	  /* Adjust into the range for applying Stirling's
86 	     approximation.  */
87 	  long double n = ceill (23.0L - x);
88 	  x_adj = x + n;
89 	  x_eps = (x - (x_adj - n));
90 	  prod = __gamma_productl (x_adj - n, x_eps, n, &eps);
91 	}
92       /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
93 	 Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
94 	 starting by computing pow (X_ADJ, X_ADJ) with a power of 2
95 	 factored out.  */
96       long double exp_adj = -eps;
97       long double x_adj_int = roundl (x_adj);
98       long double x_adj_frac = x_adj - x_adj_int;
99       int x_adj_log2;
100       long double x_adj_mant = __frexpl (x_adj, &x_adj_log2);
101       if (x_adj_mant < M_SQRT1_2l)
102 	{
103 	  x_adj_log2--;
104 	  x_adj_mant *= 2.0L;
105 	}
106       *exp2_adj = x_adj_log2 * (int) x_adj_int;
107       long double ret = (__ieee754_powl (x_adj_mant, x_adj)
108 			 * __ieee754_exp2l (x_adj_log2 * x_adj_frac)
109 			 * __ieee754_expl (-x_adj)
110 			 * sqrtl (2 * M_PIl / x_adj)
111 			 / prod);
112       exp_adj += x_eps * __ieee754_logl (x_adj);
113       long double bsum = gamma_coeff[NCOEFF - 1];
114       long double x_adj2 = x_adj * x_adj;
115       for (size_t i = 1; i <= NCOEFF - 1; i++)
116 	bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
117       exp_adj += bsum / x_adj;
118       return ret + ret * __expm1l (exp_adj);
119     }
120 }
121 
122 long double
__ieee754_gammal_r(long double x,int * signgamp)123 __ieee754_gammal_r (long double x, int *signgamp)
124 {
125   int64_t hx;
126   double xhi;
127   long double ret;
128 
129   xhi = ldbl_high (x);
130   EXTRACT_WORDS64 (hx, xhi);
131 
132   if ((hx & 0x7fffffffffffffffLL) == 0)
133     {
134       /* Return value for x == 0 is Inf with divide by zero exception.  */
135       *signgamp = 0;
136       return 1.0 / x;
137     }
138   if (hx < 0 && (uint64_t) hx < 0xfff0000000000000ULL && rintl (x) == x)
139     {
140       /* Return value for integer x < 0 is NaN with invalid exception.  */
141       *signgamp = 0;
142       return (x - x) / (x - x);
143     }
144   if (hx == 0xfff0000000000000ULL)
145     {
146       /* x == -Inf.  According to ISO this is NaN.  */
147       *signgamp = 0;
148       return x - x;
149     }
150   if ((hx & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL)
151     {
152       /* Positive infinity (return positive infinity) or NaN (return
153 	 NaN).  */
154       *signgamp = 0;
155       return x + x;
156     }
157 
158   if (x >= 172.0L)
159     {
160       /* Overflow.  */
161       *signgamp = 0;
162       return LDBL_MAX * LDBL_MAX;
163     }
164   else
165     {
166       SET_RESTORE_ROUNDL (FE_TONEAREST);
167       if (x > 0.0L)
168 	{
169 	  *signgamp = 0;
170 	  int exp2_adj;
171 	  ret = gammal_positive (x, &exp2_adj);
172 	  ret = __scalbnl (ret, exp2_adj);
173 	}
174       else if (x >= -0x1p-110L)
175 	{
176 	  *signgamp = 0;
177 	  ret = 1.0L / x;
178 	}
179       else
180 	{
181 	  long double tx = truncl (x);
182 	  *signgamp = (tx == 2.0L * truncl (tx / 2.0L)) ? -1 : 1;
183 	  if (x <= -191.0L)
184 	    /* Underflow.  */
185 	    ret = LDBL_MIN * LDBL_MIN;
186 	  else
187 	    {
188 	      long double frac = tx - x;
189 	      if (frac > 0.5L)
190 		frac = 1.0L - frac;
191 	      long double sinpix = (frac <= 0.25L
192 				    ? __sinl (M_PIl * frac)
193 				    : __cosl (M_PIl * (0.5L - frac)));
194 	      int exp2_adj;
195 	      ret = M_PIl / (-x * sinpix
196 			     * gammal_positive (-x, &exp2_adj));
197 	      ret = __scalbnl (ret, -exp2_adj);
198 	      math_check_force_underflow_nonneg (ret);
199 	    }
200 	}
201     }
202   if (isinf (ret) && x != 0)
203     {
204       if (*signgamp < 0)
205 	return -(-copysignl (LDBL_MAX, ret) * LDBL_MAX);
206       else
207 	return copysignl (LDBL_MAX, ret) * LDBL_MAX;
208     }
209   else if (ret == 0)
210     {
211       if (*signgamp < 0)
212 	return -(-copysignl (LDBL_MIN, ret) * LDBL_MIN);
213       else
214 	return copysignl (LDBL_MIN, ret) * LDBL_MIN;
215     }
216   else
217     return ret;
218 }
219 libm_alias_finite (__ieee754_gammal_r, __gammal_r)
220