1 /*                                                      log2l.c
2  *      Base 2 logarithm, 128-bit long double precision
3  *
4  *
5  *
6  * SYNOPSIS:
7  *
8  * long double x, y, log2l();
9  *
10  * y = log2l( x );
11  *
12  *
13  *
14  * DESCRIPTION:
15  *
16  * Returns the base 2 logarithm of x.
17  *
18  * The argument is separated into its exponent and fractional
19  * parts.  If the exponent is between -1 and +1, the (natural)
20  * logarithm of the fraction is approximated by
21  *
22  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
23  *
24  * Otherwise, setting  z = 2(x-1)/x+1),
25  *
26  *     log(x) = z + z^3 P(z)/Q(z).
27  *
28  *
29  *
30  * ACCURACY:
31  *
32  *                      Relative error:
33  * arithmetic   domain     # trials      peak         rms
34  *    IEEE      0.5, 2.0     100,000    2.6e-34     4.9e-35
35  *    IEEE     exp(+-10000)  100,000    9.6e-35     4.0e-35
36  *
37  * In the tests over the interval exp(+-10000), the logarithms
38  * of the random arguments were uniformly distributed over
39  * [-10000, +10000].
40  *
41  */
42 
43 /*
44    Cephes Math Library Release 2.2:  January, 1991
45    Copyright 1984, 1991 by Stephen L. Moshier
46    Adapted for glibc November, 2001
47 
48     This library is free software; you can redistribute it and/or
49     modify it under the terms of the GNU Lesser General Public
50     License as published by the Free Software Foundation; either
51     version 2.1 of the License, or (at your option) any later version.
52 
53     This library is distributed in the hope that it will be useful,
54     but WITHOUT ANY WARRANTY; without even the implied warranty of
55     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
56     Lesser General Public License for more details.
57 
58     You should have received a copy of the GNU Lesser General Public
59     License along with this library; if not, see <https://www.gnu.org/licenses/>.
60  */
61 
62 #include <math.h>
63 #include <math_private.h>
64 #include <libm-alias-finite.h>
65 
66 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
67  * 1/sqrt(2) <= x < sqrt(2)
68  * Theoretical peak relative error = 5.3e-37,
69  * relative peak error spread = 2.3e-14
70  */
71 static const _Float128 P[13] =
72 {
73   L(1.313572404063446165910279910527789794488E4),
74   L(7.771154681358524243729929227226708890930E4),
75   L(2.014652742082537582487669938141683759923E5),
76   L(3.007007295140399532324943111654767187848E5),
77   L(2.854829159639697837788887080758954924001E5),
78   L(1.797628303815655343403735250238293741397E5),
79   L(7.594356839258970405033155585486712125861E4),
80   L(2.128857716871515081352991964243375186031E4),
81   L(3.824952356185897735160588078446136783779E3),
82   L(4.114517881637811823002128927449878962058E2),
83   L(2.321125933898420063925789532045674660756E1),
84   L(4.998469661968096229986658302195402690910E-1),
85   L(1.538612243596254322971797716843006400388E-6)
86 };
87 static const _Float128 Q[12] =
88 {
89   L(3.940717212190338497730839731583397586124E4),
90   L(2.626900195321832660448791748036714883242E5),
91   L(7.777690340007566932935753241556479363645E5),
92   L(1.347518538384329112529391120390701166528E6),
93   L(1.514882452993549494932585972882995548426E6),
94   L(1.158019977462989115839826904108208787040E6),
95   L(6.132189329546557743179177159925690841200E5),
96   L(2.248234257620569139969141618556349415120E5),
97   L(5.605842085972455027590989944010492125825E4),
98   L(9.147150349299596453976674231612674085381E3),
99   L(9.104928120962988414618126155557301584078E2),
100   L(4.839208193348159620282142911143429644326E1)
101 /* 1.000000000000000000000000000000000000000E0L, */
102 };
103 
104 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
105  * where z = 2(x-1)/(x+1)
106  * 1/sqrt(2) <= x < sqrt(2)
107  * Theoretical peak relative error = 1.1e-35,
108  * relative peak error spread 1.1e-9
109  */
110 static const _Float128 R[6] =
111 {
112   L(1.418134209872192732479751274970992665513E5),
113  L(-8.977257995689735303686582344659576526998E4),
114   L(2.048819892795278657810231591630928516206E4),
115  L(-2.024301798136027039250415126250455056397E3),
116   L(8.057002716646055371965756206836056074715E1),
117  L(-8.828896441624934385266096344596648080902E-1)
118 };
119 static const _Float128 S[6] =
120 {
121   L(1.701761051846631278975701529965589676574E6),
122  L(-1.332535117259762928288745111081235577029E6),
123   L(4.001557694070773974936904547424676279307E5),
124  L(-5.748542087379434595104154610899551484314E4),
125   L(3.998526750980007367835804959888064681098E3),
126  L(-1.186359407982897997337150403816839480438E2)
127 /* 1.000000000000000000000000000000000000000E0L, */
128 };
129 
130 static const _Float128
131 /* log2(e) - 1 */
132 LOG2EA = L(4.4269504088896340735992468100189213742664595E-1),
133 /* sqrt(2)/2 */
134 SQRTH = L(7.071067811865475244008443621048490392848359E-1);
135 
136 
137 /* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
138 
139 static _Float128
neval(_Float128 x,const _Float128 * p,int n)140 neval (_Float128 x, const _Float128 *p, int n)
141 {
142   _Float128 y;
143 
144   p += n;
145   y = *p--;
146   do
147     {
148       y = y * x + *p--;
149     }
150   while (--n > 0);
151   return y;
152 }
153 
154 
155 /* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
156 
157 static _Float128
deval(_Float128 x,const _Float128 * p,int n)158 deval (_Float128 x, const _Float128 *p, int n)
159 {
160   _Float128 y;
161 
162   p += n;
163   y = x + *p--;
164   do
165     {
166       y = y * x + *p--;
167     }
168   while (--n > 0);
169   return y;
170 }
171 
172 
173 
174 _Float128
__ieee754_log2l(_Float128 x)175 __ieee754_log2l (_Float128 x)
176 {
177   _Float128 z;
178   _Float128 y;
179   int e;
180   int64_t hx, lx;
181 
182 /* Test for domain */
183   GET_LDOUBLE_WORDS64 (hx, lx, x);
184   if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
185     return (-1 / fabsl (x));		/* log2l(+-0)=-inf  */
186   if (hx < 0)
187     return (x - x) / (x - x);
188   if (hx >= 0x7fff000000000000LL)
189     return (x + x);
190 
191   if (x == 1)
192     return 0;
193 
194 /* separate mantissa from exponent */
195 
196 /* Note, frexp is used so that denormal numbers
197  * will be handled properly.
198  */
199   x = __frexpl (x, &e);
200 
201 
202 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
203  * where z = 2(x-1)/x+1)
204  */
205   if ((e > 2) || (e < -2))
206     {
207       if (x < SQRTH)
208 	{			/* 2( 2x-1 )/( 2x+1 ) */
209 	  e -= 1;
210 	  z = x - L(0.5);
211 	  y = L(0.5) * z + L(0.5);
212 	}
213       else
214 	{			/*  2 (x-1)/(x+1)   */
215 	  z = x - L(0.5);
216 	  z -= L(0.5);
217 	  y = L(0.5) * x + L(0.5);
218 	}
219       x = z / y;
220       z = x * x;
221       y = x * (z * neval (z, R, 5) / deval (z, S, 5));
222       goto done;
223     }
224 
225 
226 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
227 
228   if (x < SQRTH)
229     {
230       e -= 1;
231       x = 2.0 * x - 1;	/*  2x - 1  */
232     }
233   else
234     {
235       x = x - 1;
236     }
237   z = x * x;
238   y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
239   y = y - 0.5 * z;
240 
241 done:
242 
243 /* Multiply log of fraction by log2(e)
244  * and base 2 exponent by 1
245  */
246   z = y * LOG2EA;
247   z += x * LOG2EA;
248   z += y;
249   z += x;
250   z += e;
251   return (z);
252 }
253 libm_alias_finite (__ieee754_log2l, __log2l)
254