1 /* e_jnf.c -- float version of e_jn.c.
2  */
3 
4 /*
5  * ====================================================
6  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7  *
8  * Developed at SunPro, a Sun Microsystems, Inc. business.
9  * Permission to use, copy, modify, and distribute this
10  * software is freely granted, provided that this notice
11  * is preserved.
12  * ====================================================
13  */
14 
15 #include <errno.h>
16 #include <float.h>
17 #include <math.h>
18 #include <math-narrow-eval.h>
19 #include <math_private.h>
20 #include <fenv_private.h>
21 #include <math-underflow.h>
22 #include <libm-alias-finite.h>
23 
24 static const float
25 two   =  2.0000000000e+00, /* 0x40000000 */
26 one   =  1.0000000000e+00; /* 0x3F800000 */
27 
28 static const float zero  =  0.0000000000e+00;
29 
30 float
__ieee754_jnf(int n,float x)31 __ieee754_jnf(int n, float x)
32 {
33     float ret;
34     {
35 	int32_t i,hx,ix, sgn;
36 	float a, b, temp, di;
37 	float z, w;
38 
39     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
40      * Thus, J(-n,x) = J(n,-x)
41      */
42 	GET_FLOAT_WORD(hx,x);
43 	ix = 0x7fffffff&hx;
44     /* if J(n,NaN) is NaN */
45 	if(__builtin_expect(ix>0x7f800000, 0)) return x+x;
46 	if(n<0){
47 		n = -n;
48 		x = -x;
49 		hx ^= 0x80000000;
50 	}
51 	if(n==0) return(__ieee754_j0f(x));
52 	if(n==1) return(__ieee754_j1f(x));
53 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
54 	x = fabsf(x);
55 	SET_RESTORE_ROUNDF (FE_TONEAREST);
56 	if(__builtin_expect(ix==0||ix>=0x7f800000, 0))	/* if x is 0 or inf */
57 	    return sgn == 1 ? -zero : zero;
58 	else if((float)n<=x) {
59 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
60 	    a = __ieee754_j0f(x);
61 	    b = __ieee754_j1f(x);
62 	    for(i=1;i<n;i++){
63 		temp = b;
64 		b = b*((double)(i+i)/x) - a; /* avoid underflow */
65 		a = temp;
66 	    }
67 	} else {
68 	    if(ix<0x30800000) {	/* x < 2**-29 */
69     /* x is tiny, return the first Taylor expansion of J(n,x)
70      * J(n,x) = 1/n!*(x/2)^n  - ...
71      */
72 		if(n>33)	/* underflow */
73 		    b = zero;
74 		else {
75 		    temp = x*(float)0.5; b = temp;
76 		    for (a=one,i=2;i<=n;i++) {
77 			a *= (float)i;		/* a = n! */
78 			b *= temp;		/* b = (x/2)^n */
79 		    }
80 		    b = b/a;
81 		}
82 	    } else {
83 		/* use backward recurrence */
84 		/*			x      x^2      x^2
85 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
86 		 *			2n  - 2(n+1) - 2(n+2)
87 		 *
88 		 *			1      1        1
89 		 *  (for large x)   =  ----  ------   ------   .....
90 		 *			2n   2(n+1)   2(n+2)
91 		 *			-- - ------ - ------ -
92 		 *			 x     x         x
93 		 *
94 		 * Let w = 2n/x and h=2/x, then the above quotient
95 		 * is equal to the continued fraction:
96 		 *		    1
97 		 *	= -----------------------
98 		 *		       1
99 		 *	   w - -----------------
100 		 *			  1
101 		 *		w+h - ---------
102 		 *		       w+2h - ...
103 		 *
104 		 * To determine how many terms needed, let
105 		 * Q(0) = w, Q(1) = w(w+h) - 1,
106 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
107 		 * When Q(k) > 1e4	good for single
108 		 * When Q(k) > 1e9	good for double
109 		 * When Q(k) > 1e17	good for quadruple
110 		 */
111 	    /* determine k */
112 		float t,v;
113 		float q0,q1,h,tmp; int32_t k,m;
114 		w  = (n+n)/(float)x; h = (float)2.0/(float)x;
115 		q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
116 		while(q1<(float)1.0e9) {
117 			k += 1; z += h;
118 			tmp = z*q1 - q0;
119 			q0 = q1;
120 			q1 = tmp;
121 		}
122 		m = n+n;
123 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
124 		a = t;
125 		b = one;
126 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
127 		 *  Hence, if n*(log(2n/x)) > ...
128 		 *  single 8.8722839355e+01
129 		 *  double 7.09782712893383973096e+02
130 		 *  long double 1.1356523406294143949491931077970765006170e+04
131 		 *  then recurrent value may overflow and the result is
132 		 *  likely underflow to zero
133 		 */
134 		tmp = n;
135 		v = two/x;
136 		tmp = tmp*__ieee754_logf(fabsf(v*tmp));
137 		if(tmp<8.8721679688e+01f) {
138 		    for(i=n-1,di=(float)(i+i);i>0;i--){
139 			temp = b;
140 			b *= di;
141 			b  = b/x - a;
142 			a = temp;
143 			di -= two;
144 		    }
145 		} else {
146 		    for(i=n-1,di=(float)(i+i);i>0;i--){
147 			temp = b;
148 			b *= di;
149 			b  = b/x - a;
150 			a = temp;
151 			di -= two;
152 		    /* scale b to avoid spurious overflow */
153 			if(b>(float)1e10) {
154 			    a /= b;
155 			    t /= b;
156 			    b  = one;
157 			}
158 		    }
159 		}
160 		/* j0() and j1() suffer enormous loss of precision at and
161 		 * near zero; however, we know that their zero points never
162 		 * coincide, so just choose the one further away from zero.
163 		 */
164 		z = __ieee754_j0f (x);
165 		w = __ieee754_j1f (x);
166 		if (fabsf (z) >= fabsf (w))
167 		  b = (t * z / b);
168 		else
169 		  b = (t * w / a);
170 	    }
171 	}
172 	if(sgn==1) ret = -b; else ret = b;
173 	ret = math_narrow_eval (ret);
174     }
175     if (ret == 0)
176       {
177 	ret = math_narrow_eval (copysignf (FLT_MIN, ret) * FLT_MIN);
178 	__set_errno (ERANGE);
179       }
180     else
181 	math_check_force_underflow (ret);
182     return ret;
183 }
libm_alias_finite(__ieee754_jnf,__jnf)184 libm_alias_finite (__ieee754_jnf, __jnf)
185 
186 float
187 __ieee754_ynf(int n, float x)
188 {
189     float ret;
190     {
191 	int32_t i,hx,ix;
192 	uint32_t ib;
193 	int32_t sign;
194 	float a, b, temp;
195 
196 	GET_FLOAT_WORD(hx,x);
197 	ix = 0x7fffffff&hx;
198     /* if Y(n,NaN) is NaN */
199 	if(__builtin_expect(ix>0x7f800000, 0)) return x+x;
200 	sign = 1;
201 	if(n<0){
202 		n = -n;
203 		sign = 1 - ((n&1)<<1);
204 	}
205 	if(n==0) return(__ieee754_y0f(x));
206 	if(__builtin_expect(ix==0, 0))
207 		return -sign/zero;
208 	if(__builtin_expect(hx<0, 0)) return zero/(zero*x);
209 	SET_RESTORE_ROUNDF (FE_TONEAREST);
210 	if(n==1) {
211 	    ret = sign*__ieee754_y1f(x);
212 	    goto out;
213 	}
214 	if(__builtin_expect(ix==0x7f800000, 0)) return zero;
215 
216 	a = __ieee754_y0f(x);
217 	b = __ieee754_y1f(x);
218 	/* quit if b is -inf */
219 	GET_FLOAT_WORD(ib,b);
220 	for(i=1;i<n&&ib!=0xff800000;i++){
221 	    temp = b;
222 	    b = ((double)(i+i)/x)*b - a;
223 	    GET_FLOAT_WORD(ib,b);
224 	    a = temp;
225 	}
226 	/* If B is +-Inf, set up errno accordingly.  */
227 	if (! isfinite (b))
228 	  __set_errno (ERANGE);
229 	if(sign>0) ret = b; else ret = -b;
230     }
231  out:
232     if (isinf (ret))
233 	ret = copysignf (FLT_MAX, ret) * FLT_MAX;
234     return ret;
235 }
236 libm_alias_finite (__ieee754_ynf, __ynf)
237