1 /* @(#)s_expm1.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
13    for performance improvement on pipelined processors.
14  */
15 
16 /* expm1(x)
17  * Returns exp(x)-1, the exponential of x minus 1.
18  *
19  * Method
20  *   1. Argument reduction:
21  *	Given x, find r and integer k such that
22  *
23  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
24  *
25  *      Here a correction term c will be computed to compensate
26  *	the error in r when rounded to a floating-point number.
27  *
28  *   2. Approximating expm1(r) by a special rational function on
29  *	the interval [0,0.34658]:
30  *	Since
31  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
32  *	we define R1(r*r) by
33  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
34  *	That is,
35  *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
36  *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
37  *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
38  *      We use a special Reme algorithm on [0,0.347] to generate
39  *	a polynomial of degree 5 in r*r to approximate R1. The
40  *	maximum error of this polynomial approximation is bounded
41  *	by 2**-61. In other words,
42  *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
43  *	where	Q1  =  -1.6666666666666567384E-2,
44  *		Q2  =   3.9682539681370365873E-4,
45  *		Q3  =  -9.9206344733435987357E-6,
46  *		Q4  =   2.5051361420808517002E-7,
47  *		Q5  =  -6.2843505682382617102E-9;
48  *	(where z=r*r, and the values of Q1 to Q5 are listed below)
49  *	with error bounded by
50  *	    |                  5           |     -61
51  *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
52  *	    |                              |
53  *
54  *	expm1(r) = exp(r)-1 is then computed by the following
55  *	specific way which minimize the accumulation rounding error:
56  *			       2     3
57  *			      r     r    [ 3 - (R1 + R1*r/2)  ]
58  *	      expm1(r) = r + --- + --- * [--------------------]
59  *			      2     2    [ 6 - r*(3 - R1*r/2) ]
60  *
61  *	To compensate the error in the argument reduction, we use
62  *		expm1(r+c) = expm1(r) + c + expm1(r)*c
63  *			   ~ expm1(r) + c + r*c
64  *	Thus c+r*c will be added in as the correction terms for
65  *	expm1(r+c). Now rearrange the term to avoid optimization
66  *	screw up:
67  *			(      2                                    2 )
68  *			({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
69  *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
70  *			({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
71  *                      (                                             )
72  *
73  *		   = r - E
74  *   3. Scale back to obtain expm1(x):
75  *	From step 1, we have
76  *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
77  *		    = or     2^k*[expm1(r) + (1-2^-k)]
78  *   4. Implementation notes:
79  *	(A). To save one multiplication, we scale the coefficient Qi
80  *	     to Qi*2^i, and replace z by (x^2)/2.
81  *	(B). To achieve maximum accuracy, we compute expm1(x) by
82  *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
83  *	  (ii)  if k=0, return r-E
84  *	  (iii) if k=-1, return 0.5*(r-E)-0.5
85  *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
86  *		       else	     return  1.0+2.0*(r-E);
87  *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
88  *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
89  *	  (vii) return 2^k(1-((E+2^-k)-r))
90  *
91  * Special cases:
92  *	expm1(INF) is INF, expm1(NaN) is NaN;
93  *	expm1(-INF) is -1, and
94  *	for finite argument, only expm1(0)=0 is exact.
95  *
96  * Accuracy:
97  *	according to an error analysis, the error is always less than
98  *	1 ulp (unit in the last place).
99  *
100  * Misc. info.
101  *	For IEEE double
102  *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
103  *
104  * Constants:
105  * The hexadecimal values are the intended ones for the following
106  * constants. The decimal values may be used, provided that the
107  * compiler will convert from decimal to binary accurately enough
108  * to produce the hexadecimal values shown.
109  */
110 
111 #include <errno.h>
112 #include <float.h>
113 #include <math.h>
114 #include <math-barriers.h>
115 #include <math_private.h>
116 #include <math-underflow.h>
117 #include <libm-alias-double.h>
118 #define one Q[0]
119 static const double
120   huge = 1.0e+300,
121   tiny = 1.0e-300,
122   o_threshold = 7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
123   ln2_hi = 6.93147180369123816490e-01,       /* 0x3fe62e42, 0xfee00000 */
124   ln2_lo = 1.90821492927058770002e-10,       /* 0x3dea39ef, 0x35793c76 */
125   invln2 = 1.44269504088896338700e+00,       /* 0x3ff71547, 0x652b82fe */
126 /* scaled coefficients related to expm1 */
127   Q[] = { 1.0, -3.33333333333331316428e-02, /* BFA11111 111110F4 */
128 	  1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
129 	  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
130 	  4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
131 	  -2.01099218183624371326e-07 }; /* BE8AFDB7 6E09C32D */
132 
133 double
__expm1(double x)134 __expm1 (double x)
135 {
136   double y, hi, lo, c, t, e, hxs, hfx, r1, h2, h4, R1, R2, R3;
137   int32_t k, xsb;
138   uint32_t hx;
139 
140   GET_HIGH_WORD (hx, x);
141   xsb = hx & 0x80000000;                /* sign bit of x */
142   if (xsb == 0)
143     y = x;
144   else
145     y = -x;                             /* y = |x| */
146   hx &= 0x7fffffff;                     /* high word of |x| */
147 
148   /* filter out huge and non-finite argument */
149   if (hx >= 0x4043687A)                         /* if |x|>=56*ln2 */
150     {
151       if (hx >= 0x40862E42)                     /* if |x|>=709.78... */
152 	{
153 	  if (hx >= 0x7ff00000)
154 	    {
155 	      uint32_t low;
156 	      GET_LOW_WORD (low, x);
157 	      if (((hx & 0xfffff) | low) != 0)
158 		return x + x;            /* NaN */
159 	      else
160 		return (xsb == 0) ? x : -1.0;    /* exp(+-inf)={inf,-1} */
161 	    }
162 	  if (x > o_threshold)
163 	    {
164 	      __set_errno (ERANGE);
165 	      return huge * huge;   /* overflow */
166 	    }
167 	}
168       if (xsb != 0)      /* x < -56*ln2, return -1.0 with inexact */
169 	{
170 	  math_force_eval (x + tiny);           /* raise inexact */
171 	  return tiny - one;            /* return -1 */
172 	}
173     }
174 
175   /* argument reduction */
176   if (hx > 0x3fd62e42)                  /* if  |x| > 0.5 ln2 */
177     {
178       if (hx < 0x3FF0A2B2)              /* and |x| < 1.5 ln2 */
179 	{
180 	  if (xsb == 0)
181 	    {
182 	      hi = x - ln2_hi; lo = ln2_lo;  k = 1;
183 	    }
184 	  else
185 	    {
186 	      hi = x + ln2_hi; lo = -ln2_lo;  k = -1;
187 	    }
188 	}
189       else
190 	{
191 	  k = invln2 * x + ((xsb == 0) ? 0.5 : -0.5);
192 	  t = k;
193 	  hi = x - t * ln2_hi;          /* t*ln2_hi is exact here */
194 	  lo = t * ln2_lo;
195 	}
196       x = hi - lo;
197       c = (hi - x) - lo;
198     }
199   else if (hx < 0x3c900000)             /* when |x|<2**-54, return x */
200     {
201       math_check_force_underflow (x);
202       t = huge + x;     /* return x with inexact flags when x!=0 */
203       return x - (t - (huge + x));
204     }
205   else
206     k = 0;
207 
208   /* x is now in primary range */
209   hfx = 0.5 * x;
210   hxs = x * hfx;
211   R1 = one + hxs * Q[1]; h2 = hxs * hxs;
212   R2 = Q[2] + hxs * Q[3]; h4 = h2 * h2;
213   R3 = Q[4] + hxs * Q[5];
214   r1 = R1 + h2 * R2 + h4 * R3;
215   t = 3.0 - r1 * hfx;
216   e = hxs * ((r1 - t) / (6.0 - x * t));
217   if (k == 0)
218     return x - (x * e - hxs);                   /* c is 0 */
219   else
220     {
221       e = (x * (e - c) - c);
222       e -= hxs;
223       if (k == -1)
224 	return 0.5 * (x - e) - 0.5;
225       if (k == 1)
226 	{
227 	  if (x < -0.25)
228 	    return -2.0 * (e - (x + 0.5));
229 	  else
230 	    return one + 2.0 * (x - e);
231 	}
232       if (k <= -2 || k > 56)         /* suffice to return exp(x)-1 */
233 	{
234 	  uint32_t high;
235 	  y = one - (e - x);
236 	  GET_HIGH_WORD (high, y);
237 	  SET_HIGH_WORD (y, high + (k << 20));  /* add k to y's exponent */
238 	  return y - one;
239 	}
240       t = one;
241       if (k < 20)
242 	{
243 	  uint32_t high;
244 	  SET_HIGH_WORD (t, 0x3ff00000 - (0x200000 >> k));    /* t=1-2^-k */
245 	  y = t - (e - x);
246 	  GET_HIGH_WORD (high, y);
247 	  SET_HIGH_WORD (y, high + (k << 20));  /* add k to y's exponent */
248 	}
249       else
250 	{
251 	  uint32_t high;
252 	  SET_HIGH_WORD (t, ((0x3ff - k) << 20));       /* 2^-k */
253 	  y = x - (e + t);
254 	  y += one;
255 	  GET_HIGH_WORD (high, y);
256 	  SET_HIGH_WORD (y, high + (k << 20));  /* add k to y's exponent */
257 	}
258     }
259   return y;
260 }
261 libm_alias_double (__expm1, expm1)
262