1 /* Double-precision x^y function.
2    Copyright (C) 2018-2022 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 #include <math.h>
20 #include <stdint.h>
21 #include <math-barriers.h>
22 #include <math-narrow-eval.h>
23 #include <math-svid-compat.h>
24 #include <libm-alias-finite.h>
25 #include <libm-alias-double.h>
26 #include "math_config.h"
27 
28 /*
29 Worst-case error: 0.54 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53)
30 relerr_log: 1.3 * 2^-68 (Relative error of log, 1.5 * 2^-68 without fma)
31 ulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma)
32 */
33 
34 #define T __pow_log_data.tab
35 #define A __pow_log_data.poly
36 #define Ln2hi __pow_log_data.ln2hi
37 #define Ln2lo __pow_log_data.ln2lo
38 #define N (1 << POW_LOG_TABLE_BITS)
39 #define OFF 0x3fe6955500000000
40 
41 /* Top 12 bits of a double (sign and exponent bits).  */
42 static inline uint32_t
top12(double x)43 top12 (double x)
44 {
45   return asuint64 (x) >> 52;
46 }
47 
48 /* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
49    additional 15 bits precision.  IX is the bit representation of x, but
50    normalized in the subnormal range using the sign bit for the exponent.  */
51 static inline double_t
log_inline(uint64_t ix,double_t * tail)52 log_inline (uint64_t ix, double_t *tail)
53 {
54   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
55   double_t z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p;
56   uint64_t iz, tmp;
57   int k, i;
58 
59   /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
60      The range is split into N subintervals.
61      The ith subinterval contains z and c is near its center.  */
62   tmp = ix - OFF;
63   i = (tmp >> (52 - POW_LOG_TABLE_BITS)) % N;
64   k = (int64_t) tmp >> 52; /* arithmetic shift */
65   iz = ix - (tmp & 0xfffULL << 52);
66   z = asdouble (iz);
67   kd = (double_t) k;
68 
69   /* log(x) = k*Ln2 + log(c) + log1p(z/c-1).  */
70   invc = T[i].invc;
71   logc = T[i].logc;
72   logctail = T[i].logctail;
73 
74   /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
75      |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible.  */
76 #ifdef __FP_FAST_FMA
77   r = __builtin_fma (z, invc, -1.0);
78 #else
79   /* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|.  */
80   double_t zhi = asdouble ((iz + (1ULL << 31)) & (-1ULL << 32));
81   double_t zlo = z - zhi;
82   double_t rhi = zhi * invc - 1.0;
83   double_t rlo = zlo * invc;
84   r = rhi + rlo;
85 #endif
86 
87   /* k*Ln2 + log(c) + r.  */
88   t1 = kd * Ln2hi + logc;
89   t2 = t1 + r;
90   lo1 = kd * Ln2lo + logctail;
91   lo2 = t1 - t2 + r;
92 
93   /* Evaluation is optimized assuming superscalar pipelined execution.  */
94   double_t ar, ar2, ar3, lo3, lo4;
95   ar = A[0] * r; /* A[0] = -0.5.  */
96   ar2 = r * ar;
97   ar3 = r * ar2;
98   /* k*Ln2 + log(c) + r + A[0]*r*r.  */
99 #ifdef __FP_FAST_FMA
100   hi = t2 + ar2;
101   lo3 = __builtin_fma (ar, r, -ar2);
102   lo4 = t2 - hi + ar2;
103 #else
104   double_t arhi = A[0] * rhi;
105   double_t arhi2 = rhi * arhi;
106   hi = t2 + arhi2;
107   lo3 = rlo * (ar + arhi);
108   lo4 = t2 - hi + arhi2;
109 #endif
110   /* p = log1p(r) - r - A[0]*r*r.  */
111   p = (ar3
112        * (A[1] + r * A[2] + ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r * A[6]))));
113   lo = lo1 + lo2 + lo3 + lo4 + p;
114   y = hi + lo;
115   *tail = hi - y + lo;
116   return y;
117 }
118 
119 #undef N
120 #undef T
121 #define N (1 << EXP_TABLE_BITS)
122 #define InvLn2N __exp_data.invln2N
123 #define NegLn2hiN __exp_data.negln2hiN
124 #define NegLn2loN __exp_data.negln2loN
125 #define Shift __exp_data.shift
126 #define T __exp_data.tab
127 #define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
128 #define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
129 #define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
130 #define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
131 #define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
132 
133 /* Handle cases that may overflow or underflow when computing the result that
134    is scale*(1+TMP) without intermediate rounding.  The bit representation of
135    scale is in SBITS, however it has a computed exponent that may have
136    overflown into the sign bit so that needs to be adjusted before using it as
137    a double.  (int32_t)KI is the k used in the argument reduction and exponent
138    adjustment of scale, positive k here means the result may overflow and
139    negative k means the result may underflow.  */
140 static inline double
specialcase(double_t tmp,uint64_t sbits,uint64_t ki)141 specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
142 {
143   double_t scale, y;
144 
145   if ((ki & 0x80000000) == 0)
146     {
147       /* k > 0, the exponent of scale might have overflowed by <= 460.  */
148       sbits -= 1009ull << 52;
149       scale = asdouble (sbits);
150       y = 0x1p1009 * (scale + scale * tmp);
151       return check_oflow (y);
152     }
153   /* k < 0, need special care in the subnormal range.  */
154   sbits += 1022ull << 52;
155   /* Note: sbits is signed scale.  */
156   scale = asdouble (sbits);
157   y = scale + scale * tmp;
158   if (fabs (y) < 1.0)
159     {
160       /* Round y to the right precision before scaling it into the subnormal
161 	 range to avoid double rounding that can cause 0.5+E/2 ulp error where
162 	 E is the worst-case ulp error outside the subnormal range.  So this
163 	 is only useful if the goal is better than 1 ulp worst-case error.  */
164       double_t hi, lo, one = 1.0;
165       if (y < 0.0)
166 	one = -1.0;
167       lo = scale - y + scale * tmp;
168       hi = one + y;
169       lo = one - hi + y + lo;
170       y = math_narrow_eval (hi + lo) - one;
171       /* Fix the sign of 0.  */
172       if (y == 0.0)
173 	y = asdouble (sbits & 0x8000000000000000);
174       /* The underflow exception needs to be signaled explicitly.  */
175       math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
176     }
177   y = 0x1p-1022 * y;
178   return check_uflow (y);
179 }
180 
181 #define SIGN_BIAS (0x800 << EXP_TABLE_BITS)
182 
183 /* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
184    The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1.  */
185 static inline double
exp_inline(double x,double xtail,uint32_t sign_bias)186 exp_inline (double x, double xtail, uint32_t sign_bias)
187 {
188   uint32_t abstop;
189   uint64_t ki, idx, top, sbits;
190   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
191   double_t kd, z, r, r2, scale, tail, tmp;
192 
193   abstop = top12 (x) & 0x7ff;
194   if (__glibc_unlikely (abstop - top12 (0x1p-54)
195 			>= top12 (512.0) - top12 (0x1p-54)))
196     {
197       if (abstop - top12 (0x1p-54) >= 0x80000000)
198 	{
199 	  /* Avoid spurious underflow for tiny x.  */
200 	  /* Note: 0 is common input.  */
201 	  double_t one = WANT_ROUNDING ? 1.0 + x : 1.0;
202 	  return sign_bias ? -one : one;
203 	}
204       if (abstop >= top12 (1024.0))
205 	{
206 	  /* Note: inf and nan are already handled.  */
207 	  if (asuint64 (x) >> 63)
208 	    return __math_uflow (sign_bias);
209 	  else
210 	    return __math_oflow (sign_bias);
211 	}
212       /* Large x is special cased below.  */
213       abstop = 0;
214     }
215 
216   /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)].  */
217   /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N].  */
218   z = InvLn2N * x;
219 #if TOINT_INTRINSICS
220   /* z - kd is in [-0.5, 0.5] in all rounding modes.  */
221   kd = roundtoint (z);
222   ki = converttoint (z);
223 #else
224   /* z - kd is in [-1, 1] in non-nearest rounding modes.  */
225   kd = math_narrow_eval (z + Shift);
226   ki = asuint64 (kd);
227   kd -= Shift;
228 #endif
229   r = x + kd * NegLn2hiN + kd * NegLn2loN;
230   /* The code assumes 2^-200 < |xtail| < 2^-8/N.  */
231   r += xtail;
232   /* 2^(k/N) ~= scale * (1 + tail).  */
233   idx = 2 * (ki % N);
234   top = (ki + sign_bias) << (52 - EXP_TABLE_BITS);
235   tail = asdouble (T[idx]);
236   /* This is only a valid scale when -1023*N < k < 1024*N.  */
237   sbits = T[idx + 1] + top;
238   /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1).  */
239   /* Evaluation is optimized assuming superscalar pipelined execution.  */
240   r2 = r * r;
241   /* Without fma the worst case error is 0.25/N ulp larger.  */
242   /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp.  */
243   tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
244   if (__glibc_unlikely (abstop == 0))
245     return specialcase (tmp, sbits, ki);
246   scale = asdouble (sbits);
247   /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
248      is no spurious underflow here even without fma.  */
249   return scale + scale * tmp;
250 }
251 
252 /* Returns 0 if not int, 1 if odd int, 2 if even int.  The argument is
253    the bit representation of a non-zero finite floating-point value.  */
254 static inline int
checkint(uint64_t iy)255 checkint (uint64_t iy)
256 {
257   int e = iy >> 52 & 0x7ff;
258   if (e < 0x3ff)
259     return 0;
260   if (e > 0x3ff + 52)
261     return 2;
262   if (iy & ((1ULL << (0x3ff + 52 - e)) - 1))
263     return 0;
264   if (iy & (1ULL << (0x3ff + 52 - e)))
265     return 1;
266   return 2;
267 }
268 
269 /* Returns 1 if input is the bit representation of 0, infinity or nan.  */
270 static inline int
zeroinfnan(uint64_t i)271 zeroinfnan (uint64_t i)
272 {
273   return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1;
274 }
275 
276 #ifndef SECTION
277 # define SECTION
278 #endif
279 
280 double
281 SECTION
__pow(double x,double y)282 __pow (double x, double y)
283 {
284   uint32_t sign_bias = 0;
285   uint64_t ix, iy;
286   uint32_t topx, topy;
287 
288   ix = asuint64 (x);
289   iy = asuint64 (y);
290   topx = top12 (x);
291   topy = top12 (y);
292   if (__glibc_unlikely (topx - 0x001 >= 0x7ff - 0x001
293 			|| (topy & 0x7ff) - 0x3be >= 0x43e - 0x3be))
294     {
295       /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
296 	 and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1.  */
297       /* Special cases: (x < 0x1p-126 or inf or nan) or
298 	 (|y| < 0x1p-65 or |y| >= 0x1p63 or nan).  */
299       if (__glibc_unlikely (zeroinfnan (iy)))
300 	{
301 	  if (2 * iy == 0)
302 	    return issignaling_inline (x) ? x + y : 1.0;
303 	  if (ix == asuint64 (1.0))
304 	    return issignaling_inline (y) ? x + y : 1.0;
305 	  if (2 * ix > 2 * asuint64 (INFINITY)
306 	      || 2 * iy > 2 * asuint64 (INFINITY))
307 	    return x + y;
308 	  if (2 * ix == 2 * asuint64 (1.0))
309 	    return 1.0;
310 	  if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63))
311 	    return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf.  */
312 	  return y * y;
313 	}
314       if (__glibc_unlikely (zeroinfnan (ix)))
315 	{
316 	  double_t x2 = x * x;
317 	  if (ix >> 63 && checkint (iy) == 1)
318 	    {
319 	      x2 = -x2;
320 	      sign_bias = 1;
321 	    }
322 	  if (WANT_ERRNO && 2 * ix == 0 && iy >> 63)
323 	    return __math_divzero (sign_bias);
324 	  /* Without the barrier some versions of clang hoist the 1/x2 and
325 	     thus division by zero exception can be signaled spuriously.  */
326 	  return iy >> 63 ? math_opt_barrier (1 / x2) : x2;
327 	}
328       /* Here x and y are non-zero finite.  */
329       if (ix >> 63)
330 	{
331 	  /* Finite x < 0.  */
332 	  int yint = checkint (iy);
333 	  if (yint == 0)
334 	    return __math_invalid (x);
335 	  if (yint == 1)
336 	    sign_bias = SIGN_BIAS;
337 	  ix &= 0x7fffffffffffffff;
338 	  topx &= 0x7ff;
339 	}
340       if ((topy & 0x7ff) - 0x3be >= 0x43e - 0x3be)
341 	{
342 	  /* Note: sign_bias == 0 here because y is not odd.  */
343 	  if (ix == asuint64 (1.0))
344 	    return 1.0;
345 	  if ((topy & 0x7ff) < 0x3be)
346 	    {
347 	      /* |y| < 2^-65, x^y ~= 1 + y*log(x).  */
348 	      if (WANT_ROUNDING)
349 		return ix > asuint64 (1.0) ? 1.0 + y : 1.0 - y;
350 	      else
351 		return 1.0;
352 	    }
353 	  return (ix > asuint64 (1.0)) == (topy < 0x800) ? __math_oflow (0)
354 							 : __math_uflow (0);
355 	}
356       if (topx == 0)
357 	{
358 	  /* Normalize subnormal x so exponent becomes negative.  */
359 	  ix = asuint64 (x * 0x1p52);
360 	  ix &= 0x7fffffffffffffff;
361 	  ix -= 52ULL << 52;
362 	}
363     }
364 
365   double_t lo;
366   double_t hi = log_inline (ix, &lo);
367   double_t ehi, elo;
368 #ifdef __FP_FAST_FMA
369   ehi = y * hi;
370   elo = y * lo + __builtin_fma (y, hi, -ehi);
371 #else
372   double_t yhi = asdouble (iy & -1ULL << 27);
373   double_t ylo = y - yhi;
374   double_t lhi = asdouble (asuint64 (hi) & -1ULL << 27);
375   double_t llo = hi - lhi + lo;
376   ehi = yhi * lhi;
377   elo = ylo * lhi + y * llo; /* |elo| < |ehi| * 2^-25.  */
378 #endif
379   return exp_inline (ehi, elo, sign_bias);
380 }
381 #ifndef __pow
382 strong_alias (__pow, __ieee754_pow)
383 libm_alias_finite (__ieee754_pow, __pow)
384 # if LIBM_SVID_COMPAT
385 versioned_symbol (libm, __pow, pow, GLIBC_2_29);
386 libm_alias_double_other (__pow, pow)
387 # else
388 libm_alias_double (__pow, pow)
389 # endif
390 #endif
391