1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /* __ieee754_acosh(x)
13  * Method :
14  *	Based on
15  *		acosh(x) = log [ x + sqrt(x*x-1) ]
16  *	we have
17  *		acosh(x) := log(x)+ln2,	if x is large; else
18  *		acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
19  *		acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
20  *
21  * Special cases:
22  *	acosh(x) is NaN with signal if x<1.
23  *	acosh(NaN) is NaN without signal.
24  */
25 
26 #include <math.h>
27 #include <math_private.h>
28 #include <libm-alias-finite.h>
29 
30 static const double
31 one	= 1.0,
32 ln2	= 6.93147180559945286227e-01;  /* 0x3FE62E42, 0xFEFA39EF */
33 
34 double
__ieee754_acosh(double x)35 __ieee754_acosh (double x)
36 {
37   int64_t hx;
38   EXTRACT_WORDS64 (hx, x);
39 
40   if (hx > INT64_C (0x4000000000000000))
41     {
42       if (__glibc_unlikely (hx >= INT64_C (0x41b0000000000000)))
43 	{
44 	  /* x > 2**28 */
45 	  if (hx >= INT64_C (0x7ff0000000000000))
46 	    /* x is inf of NaN */
47 	    return x + x;
48 	  else
49 	    return __ieee754_log (x) + ln2;/* acosh(huge)=log(2x) */
50 	}
51 
52       /* 2**28 > x > 2 */
53       double t = x * x;
54       return __ieee754_log (2.0 * x - one / (x + sqrt (t - one)));
55     }
56   else if (__glibc_likely (hx > INT64_C (0x3ff0000000000000)))
57     {
58       /* 1<x<2 */
59       double t = x - one;
60       return __log1p (t + sqrt (2.0 * t + t * t));
61     }
62   else if (__glibc_likely (hx == INT64_C (0x3ff0000000000000)))
63     return 0.0;				/* acosh(1) = 0 */
64   else					/* x < 1 */
65     return (x - x) / (x - x);
66 }
67 libm_alias_finite (__ieee754_acosh, __acosh)
68