1.file "tanhl.s"
2
3
4// Copyright (c) 2001 - 2003, Intel Corporation
5// All rights reserved.
6//
7//
8// Redistribution and use in source and binary forms, with or without
9// modification, are permitted provided that the following conditions are
10// met:
11//
12// * Redistributions of source code must retain the above copyright
13// notice, this list of conditions and the following disclaimer.
14//
15// * Redistributions in binary form must reproduce the above copyright
16// notice, this list of conditions and the following disclaimer in the
17// documentation and/or other materials provided with the distribution.
18//
19// * The name of Intel Corporation may not be used to endorse or promote
20// products derived from this software without specific prior written
21// permission.
22
23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34//
35// Intel Corporation is the author of this code, and requests that all
36// problem reports or change requests be submitted to it directly at
37// http://www.intel.com/software/products/opensource/libraries/num.htm.
38//
39// History
40//==============================================================
41// 11/29/01  Initial version
42// 05/20/02  Cleaned up namespace and sf0 syntax
43// 08/14/02  Changed mli templates to mlx
44// 02/10/03  Reordered header: .section, .global, .proc, .align
45//
46// API
47//==============================================================
48// long double tanhl(long double)
49//
50// Overview of operation
51//==============================================================
52//
53// Algorithm description
54// ---------------------
55//
56// There are 4 paths:
57//
58// 1. Special path: x = 0, Inf, NaNs, denormal
59//    Return tanhl(x) = +/-0.0 for zeros
60//    Return tanhl(x) = QNaN for NaNs
61//    Return tanhl(x) = sign(x)*1.0 for Inf
62//    Return tanhl(x) = x + x^2   for - denormals
63//    Return tanhl(x) = x - x^2   for + denormals
64//
65// 2. [0;1/8] path: 0.0 < |x| < 1/8
66//    Return tanhl(x) = x + x^3*A3 + ... + x^15*A15
67//
68// 3. Main path: 1/8 <= |x| < 22.8
69//    For several ranges of 1/8 <= |x| < 22.8
70//    Return tanhl(x) = sign(x)*((A0H+A0L) + y*(A1H+A1L) + y^2*(A2H+A2L) +
71//                                       + y^3*A3 + y^4*A4 + ... + y^25*A25 )
72//    where y = (|x|/a) - b
73//
74//    For each range there is particular set of coefficients.
75//    Below is the list of ranges:
76//    1/8  <= |x| < 1/4     a = 0.125, b = 1.5
77//    1/4  <= |x| < 1/2     a = 0.25,  b = 1.5
78//    1/2  <= |x| < 1.0     a = 0.5,   b = 1.5
79//    1.0  <= |x| < 2.0     a = 1.0,   b = 1.5
80//    2.0  <= |x| < 3.25    a = 2.0,   b = 1.5
81//    3.25 <= |x| < 4.0     a = 2.0,   b = 2.0
82//    4.0  <= |x| < 6.5     a = 4.0,   b = 1.5
83//    6.5  <= |x| < 8.0     a = 4.0,   b = 2.0
84//    8.0  <= |x| < 13.0    a = 8.0,   b = 1.5
85//    13.0 <= |x| < 16.0    a = 8.0,   b = 2.0
86//    16.0 <= |x| < 22.8    a = 16.0,  b = 1.5
87//    ( [3.25;4.0], [6.5;8.0], [13.9;16.0] subranges separated
88//                               for monotonicity issues resolve )
89//
90// 4. Saturation path: 22.8 <= |x| < +INF
91//    Return tanhl(x) = sign(x)*(1.0 - tiny_value)
92//    (tiny_value ~ 1e-1233)
93//
94// Implementation notes
95// --------------------
96//
97// 1. Special path: x = 0, INF, NaNa, denormals
98//
99//    This branch is cut off by one fclass operation.
100//    Then zeros+nans, infinities and denormals processed separately.
101//    For denormals we use simple fma operaton x+x*x (- for +denorms)
102//
103// 2. [0;1/8] path: 0.0 < |x| < 1/8
104//
105//    Here we use simple polynimial computations, where last step
106//    is performed as x + x^3*A3+...
107//    The rest of polynomial is factorized using binary tree technique.
108//
109// 3. Main path: 1/8 <= |x| < 22.8
110//
111//    Multiprecision have to be performed only for first few
112//    polynomial iterations (up to 3-rd x degree)
113//    Here we use the same parallelisation way as above:
114//    Split whole polynomial to first, "multiprecision" part, and second,
115//    so called "tail", native precision part.
116//
117//    1) Multiprecision part:
118//    [v1=(A0H+A0L)+y*(A1H+A1L)] + [v2=y^2*((A2H+A2L)+y*A3)]
119//    v1 and v2 terms calculated in parallel
120//
121//    2) Tail part:
122//    v3 = x^4 * ( A4 + x*A5 + ... + x^21*A25 )
123//    v3 is splitted to 2 even parts (10 coefficient in each one).
124//    These 2 parts are also factorized using binary tree technique.
125//
126//    So Multiprecision and Tail parts cost is almost the same
127//    and we have both results ready before final summation.
128//
129//    Some tricks were applied to maintain symmetry at direct
130//    rounding modes (to +/-inf). We had to set result sign
131//    not at the last operation but much more earlier and at
132//    several places.
133//
134// 4. Saturation path: 22.8 <= |x| < +INF
135//
136//    We use formula sign(x)*(1.0 - tiny_value) instead of simple sign(x)*1.0
137//    just to meet IEEE requirements for different rounding modes in this case.
138//
139// Registers used
140//==============================================================
141// Floating Point registers used:
142// f8 - input & output
143// f32 -> f92
144
145// General registers used:
146// r2, r3, r32 -> r52
147
148// Predicate registers used:
149// p0, p6 -> p11, p14, p15
150
151// p6  - arg is zero, denormal or special IEEE
152// p7  - arg is in [16;32] binary interval
153// p8  - arg is in one of subranges
154//         [3.25;4.0], [6.5;8.0], [13.9;16.0]
155// p9  - arg < 1/8
156// p10  - arg is NOT in one of subranges
157//         [3.25;4.0], [6.5;8.0], [13.9;16.0]
158// p11 - arg in saturation domain
159// p14 - arg is positive
160// p15 - arg is negative
161
162// Assembly macros
163//==============================================================
164rDataPtr           = r2
165rTailDataPtr       = r3
166
167rBias              = r33
168rSignBit           = r34
169rInterval          = r35
170
171rArgExp            = r36
172rArgSig            = r37
173r3p25Offset        = r38
174r2to4              = r39
175r1p25              = r40
176rOffset            = r41
177r1p5               = r42
178rSaturation        = r43
179r1625Sign          = r44
180rTiny              = r45
181rAddr1             = r46
182rAddr2             = r47
183rTailAddr1         = r48
184rTailAddr2         = r49
185rTailOffset        = r50
186rTailAddOffset     = r51
187rShiftedDataPtr    = r52
188
189//==============================================================
190fA0H               = f32
191fA0L               = f33
192fA1H               = f34
193fA1L               = f35
194fA2H               = f36
195fA2L               = f37
196fA3                = f38
197fA4                = f39
198fA5                = f40
199fA6                = f41
200fA7                = f42
201fA8                = f43
202fA9                = f44
203fA10               = f45
204fA11               = f46
205fA12               = f47
206fA13               = f48
207fA14               = f49
208fA15               = f50
209fA16               = f51
210fA17               = f52
211fA18               = f53
212fA19               = f54
213fA20               = f55
214fA21               = f56
215fA22               = f57
216fA23               = f58
217fA24               = f59
218fA25               = f60
219
220fArgSqr            = f61
221fArgCube           = f62
222fArgFour           = f63
223fArgEight          = f64
224
225fArgAbsNorm        = f65
226fArgAbsNorm2       = f66
227fArgAbsNorm2L      = f67
228fArgAbsNorm3       = f68
229fArgAbsNorm4       = f69
230fArgAbsNorm11      = f70
231
232fRes               = f71
233fResH              = f72
234fResL              = f73
235fRes1H             = f74
236fRes1L             = f75
237fRes1Hd            = f76
238fRes2H             = f77
239fRes2L             = f78
240fRes3H             = f79
241fRes3L             = f80
242fRes4              = f81
243
244fTT                = f82
245fTH                = f83
246fTL                = f84
247fTT2               = f85
248fTH2               = f86
249fTL2               = f87
250
251f1p5               = f88
252f2p0               = f89
253fTiny              = f90
254fSignumX           = f91
255fArgAbsNorm4X      = f92
256
257// Data tables
258//==============================================================
259RODATA
260
261.align 16
262LOCAL_OBJECT_START(tanhl_data)
263
264////////// Main tables ///////////
265_0p125_to_0p25_data: // exp = 2^-3
266// Polynomial coefficients for the tanh(x), 1/8 <= |x| < 1/4
267data8 0x93D27D6AE7E835F8, 0x0000BFF4 //A3 = -5.6389704216278164626050408239e-04
268data8 0xBF66E8668A78A8BC //A2H = -2.7963640930198357253955165902e-03
269data8 0xBBD5384EFD0E7A54 //A2L = -1.7974001252014762983581666453e-20
270data8 0x3FBEE69E31DB6156 //A1H = 1.2070645062647619716322822114e-01
271data8 0x3C43A0B4E24A3DCA //A1L = 2.1280460108882061756490131241e-18
272data8 0x3FC7B8FF903BF776 //A0H = 1.8533319990813951205765874874e-01
273data8 0x3C593F1A61986FD4 //A0L = 5.4744612262799573374268254539e-18
274data8 0xDB9E6735560AAE5A, 0x0000BFA3 //A25 = -3.4649731131719154051239475238e-28
275data8 0xF0DDE953E4327704, 0x00003FA4 //A24 = 7.6004173864565644629900702857e-28
276data8 0x8532AED11DEC5612, 0x00003FAB //A23 = 5.3798235684551098715428515761e-26
277data8 0xAEF72A34D88B0038, 0x0000BFAD //A22 = -2.8267199091484508912273222600e-25
278data8 0x9645EF1DCB759DDD, 0x0000BFB2 //A21 = -7.7689413112830095709522203109e-24
279data8 0xA5D12364E121F70F, 0x00003FB5 //A20 = 6.8580281614531622113161030550e-23
280data8 0x9CF166EA815AC705, 0x00003FB9 //A19 = 1.0385615003184753213024737634e-21
281data8 0x852B1D0252498752, 0x0000BFBD //A18 = -1.4099753997949827217635356478e-20
282data8 0x9270F5716D25EC9F, 0x0000BFC0 //A17 = -1.2404055949090177751123473821e-19
283data8 0xC216A9C4EEBDDDCA, 0x00003FC4 //A16 = 2.6303900460415782677749729120e-18
284data8 0xDCE944D89FF592F2, 0x00003FC6 //A15 = 1.1975620514752377092265425941e-17
285data8 0x83C8DDF213711381, 0x0000BFCC //A14 = -4.5721980583985311263109531319e-16
286LOCAL_OBJECT_END(tanhl_data)
287
288LOCAL_OBJECT_START(_0p25_to_0p5_data)
289// Polynomial coefficients for the tanh(x), 1/4 <= |x| < 1/2
290data8 0xB6E27B747C47C8AD, 0x0000BFF6 //A3 = -2.7905990032063258105302045572e-03
291data8 0xBF93FD54E226F8F7 //A2H = -1.9521070769536099515084615064e-02
292data8 0xBC491BC884F6F18A //A2L = -2.7222721075104525371410300625e-18
293data8 0x3FCBE3FBB015A591 //A1H = 2.1789499376181400980279079249e-01
294data8 0x3C76AFC2D1AE35F7 //A1L = 1.9677459707672596091076696742e-17
295data8 0x3FD6EF53DE8C8FAF //A0H = 3.5835739835078589399230963863e-01
296data8 0x3C8E2A1C14355F9D //A0L = 5.2327050592919416045278607775e-17
297data8 0xF56D363AAE3BAD53, 0x00003FBB //A25 = 6.4963882412697389947564301120e-21
298data8 0xAD6348526CEEB897, 0x0000BFBD //A24 = -1.8358149767147407353343152624e-20
299data8 0x85D96A988565FD65, 0x0000BFC1 //A23 = -2.2674950494950919052759556703e-19
300data8 0xD52CAF6B1E4D9717, 0x00003FC3 //A22 = 1.4445269502644677106995571101e-18
301data8 0xBD7E1BE5CBEF7A01, 0x00003FC5 //A21 = 5.1362075721080004718090799595e-18
302data8 0xAE84A9B12ADD6948, 0x0000BFC9 //A20 = -7.5685210830925426342786733068e-17
303data8 0xEAC2D5FCF80E250C, 0x00003FC6 //A19 = 1.2726423522879522181100392135e-17
304data8 0xE0D2A8AC8C2EDB95, 0x00003FCE //A18 = 3.1200443098733419749016380203e-15
305data8 0xB22F0AB7B417F78E, 0x0000BFD0 //A17 = -9.8911854977385933809488291835e-15
306data8 0xE25A627BAEFFA7A4, 0x0000BFD3 //A16 = -1.0052095388666003876301743498e-13
307data8 0xC90F32EC4A17F908, 0x00003FD6 //A15 = 7.1430637679768183097897337145e-13
308data8 0x905F6F124AF956B1, 0x00003FD8 //A14 = 2.0516607231389483452611375485e-12
309LOCAL_OBJECT_END(_0p25_to_0p5_data)
310
311LOCAL_OBJECT_START(_0p5_to_1_data)
312// Polynomial coefficients for the tanh(x), 1/2 <= |x| < 1
313data8 0xAB402BE491EE72A7, 0x00003FF7 //A3 = 5.2261556931080934657023772945e-03
314data8 0xBFB8403D3DDA87BE //A2H = -9.4730212784752659826992271519e-02
315data8 0xBC6FF7BC2AB71A8B //A2L = -1.3863786398568460929625760740e-17
316data8 0x3FD3173B1EFA6EF4 //A1H = 2.9829290414066567116435635398e-01
317data8 0x3C881E4DCABDE840 //A1L = 4.1838710466827119847963316219e-17
318data8 0x3FE45323E552F228 //A0H = 6.3514895238728730220145735075e-01
319data8 0x3C739D5832BF7BCF //A0L = 1.7012977006567066423682445459e-17
320data8 0xF153980BECD8AE12, 0x00003FD0 //A25 = 1.3396313991261493342597057700e-14
321data8 0xEC9ACCD245368129, 0x0000BFD3 //A24 = -1.0507358886349528807350792383e-13
322data8 0x8AE6498CA36D2D1A, 0x00003FD4 //A23 = 1.2336759149738309660361813001e-13
323data8 0x8DF02FBF5AC70E64, 0x00003FD7 //A22 = 1.0085317723615282268326194551e-12
324data8 0x9E15C7125DA204EE, 0x0000BFD9 //A21 = -4.4930478919612724261941857560e-12
325data8 0xA62C6F39BDDCEC1C, 0x00003FD7 //A20 = 1.1807342457875095150035780314e-12
326data8 0xDFD8D65D30F80F52, 0x00003FDC //A19 = 5.0896919887121116317817665996e-11
327data8 0xB795AFFD458F743E, 0x0000BFDE //A18 = -1.6696932710534097241291327756e-10
328data8 0xFEF30234CB01EC89, 0x0000BFDD //A17 = -1.1593749714588103589483091370e-10
329data8 0xA2F638356E13761E, 0x00003FE2 //A16 = 2.3714062288761887457674853605e-09
330data8 0xC429CC0D031E4FD5, 0x0000BFE3 //A15 = -5.7091025466377379046489586383e-09
331data8 0xC78363FF929EFF62, 0x0000BFE4 //A14 = -1.1613199289622686725595739572e-08
332LOCAL_OBJECT_END(_0p5_to_1_data)
333
334LOCAL_OBJECT_START(_1_to_2_data)
335// Polynomial coefficients for the tanh(x), 1 <= |x| < 2.0
336data8 0xB3D8FB48A548D99A, 0x00003FFB //A3 = 8.7816203264683800892441646129e-02
337data8 0xBFC4EFBD8FB38E3B //A2H = -1.6356629864377389416141284073e-01
338data8 0xBC77687FD8087B23 //A2L = -2.0303377679446772162287121190e-17
339data8 0x3FC72165282C6F72 //A1H = 1.8070663892364852154415189034e-01
340data8 0x3C64E01F7A76D777 //A1L = 9.0532964466719018524360408402e-18
341data8 0x3FECF6F9786DF577 //A0H = 9.0514825364486639625027919465e-01
342data8 0x3C8834EDCE71A65B //A0L = 4.1992023813070331863928976191e-17
343data8 0xC3EEEB3EFA688094, 0x00003FE2 //A25 = 2.8512044383274095705865793485e-09
344data8 0x88461973672AEB12, 0x0000BFE1 //A24 = -9.9152258079470849685057375343e-10
345data8 0xFC2AF9950DC5027E, 0x0000BFE4 //A23 = -1.4678101918123116001692289670e-08
346data8 0x9C80CA742F89B7B5, 0x00003FE6 //A22 = 3.6438714992394138274843759814e-08
347data8 0xA0B3D7FAA606260A, 0x0000BFE6 //A21 = -3.7416469848124568887944709492e-08
348data8 0xDA5858432FBD9D9D, 0x0000BFE6 //A20 = -5.0837429421503142141842414978e-08
349data8 0xB0244D1E1AE9C1B0, 0x00003FE9 //A19 = 3.2808967255272595749004827841e-07
350data8 0xC8D3109ACF740738, 0x0000BFEA //A18 = -7.4812945767507614821609020680e-07
351data8 0xBB0F3440EEA55BBF, 0x00003FEA //A17 = 6.9685053481643125932497676583e-07
352data8 0xC13A8B08D8576C19, 0x00003FEB //A16 = 1.4396658837712390333960587173e-06
353data8 0xFF3A1163CC5522A1, 0x0000BFED //A15 = -7.6063522055104010298762276148e-06
354data8 0x8672AF27EB0823B7, 0x00003FEF //A14 = 1.6027448793338500004496520337e-05
355LOCAL_OBJECT_END(_1_to_2_data)
356
357LOCAL_OBJECT_START(_2_to_3p25_data)
358// Polynomial coefficients for the tanh(x), 2 <= |x| < 3.25
359data8 0xD45657BEC559E366, 0x00003FFA //A3 = 5.1840155367548909799883161889e-02
360data8 0xBFA41B109CA6AB81 //A2H = -3.9268988726084870510835145296e-02
361data8 0xBC2C3D708A4E56C5 //A2L = -7.6544669252238280132415018518e-19
362data8 0x3F9434A517BBC5F4 //A1H = 1.9732074330880380874653212686e-02
363data8 0x3C3ED62DD9585229 //A1L = 1.6716574468135097509707871438e-18
364data8 0x3FEFD77D111A0AFF //A0H = 9.9505475368673035330147058630e-01
365data8 0x3C9C415E151C6CA5 //A0L = 9.8030409604070051319822874013e-17
366data8 0xB1596391D4534D52, 0x00003FEC //A25 = 2.6427086526487251988631279067e-06
367data8 0xC4DC44E243D1AF5F, 0x00003FEF //A24 = 2.3467591534149209236830008333e-05
368data8 0xAED5786023982BB8, 0x00003FF0 //A23 = 4.1683642395739762658623742687e-05
369data8 0xCF39926C9FBC6A10, 0x00003FF0 //A22 = 4.9406263949321793291856681624e-05
370data8 0xA255A72359928142, 0x00003FF0 //A21 = 3.8703580278108400672236161973e-05
371data8 0xA2E573B9FC332C0D, 0x00003FED //A20 = 4.8546879618263642155709302480e-06
372data8 0x82C7BD01830ACA93, 0x00003FF0 //A19 = 3.1180436075031301077175550468e-05
373data8 0xB38AF4C76E96444B, 0x0000BFF0 //A18 = -4.2806338675404452784440167120e-05
374data8 0xEC08FF0FB194464C, 0x00003FF0 //A17 = 5.6275163156181928637744511210e-05
375data8 0xB850825D9E235135, 0x0000BFF0 //A16 = -4.3943998628289568813056822585e-05
376data8 0xF98436E838763687, 0x0000BFEF //A15 = -2.9744680263523220185672219686e-05
377data8 0xE1851A2D00737A5D, 0x00003FF2 //A14 = 2.1507256570895163202182573369e-04
378LOCAL_OBJECT_END(_2_to_3p25_data)
379
380LOCAL_OBJECT_START(_4_to_6p5_data)
381// Polynomial coefficients for the tanh(x), 4 <= |x| < 6.5
382data8 0x896FDBD321A0BE58, 0x00003FF5 //A3 = 1.0485606995331904734870550114e-03
383data8 0xBF39C522B95A37D6 //A2H = -3.9321992640217512306882730044e-04
384data8 0xBBA9B3EC39A45338 //A2L = -2.7213922673282819034134988241e-21
385data8 0x3F19C5377A48B5AD //A1H = 9.8306189621330793766869338146e-05
386data8 0x3BCAFCB1D08A891C //A1L = 1.1429476443042275163117526657e-20
387data8 0x3FEFFFE63ABE253B //A0H = 9.9998771165079547440512897083e-01
388data8 0x3C9BB74C4EE0D16F //A0L = 9.6159219890436197391279544561e-17
389data8 0x8D86121D469AFA7E, 0x0000BFEF //A25 = -1.6870941388985743600323604423e-05
390data8 0x9D3656A36593C5C4, 0x00003FEF //A24 = 1.8741161763079973068909254398e-05
391data8 0xDCD772D5BF9ADB96, 0x00003FF0 //A23 = 5.2652739523018349983563695656e-05
392data8 0xFF79ADCF0DCBCC2D, 0x00003FF1 //A22 = 1.2182012003034659966028035977e-04
393data8 0x84D24E394DEFD0D2, 0x00003FF1 //A21 = 6.3334229517535065590380468696e-05
394data8 0xA66B56BFD2782544, 0x00003FF1 //A20 = 7.9354902476954571736114945842e-05
395data8 0xFB15771FBF3155FE, 0x0000BFEE //A19 = -1.4965763624796745134798717707e-05
396data8 0xC774790126BE54C3, 0x00003FEF //A18 = 2.3776885435831770523136610539e-05
397data8 0x825A13DACB8C68CD, 0x00003FEF //A17 = 1.5539153272890695426189818556e-05
398data8 0xCFF96E6810AACE27, 0x0000BFF1 //A16 = -9.9169893703251156059893890295e-05
399data8 0x8A85D2061B865024, 0x00003FF3 //A15 = 2.6421115104625621420758344535e-04
400data8 0x922EC6F3CFE0496E, 0x0000BFF4 //A14 = -5.5764283474946207558456581668e-04
401LOCAL_OBJECT_END(_4_to_6p5_data)
402
403LOCAL_OBJECT_START(_8_to_13_data)
404// Polynomial coefficients for the tanh(x), 8 <= |x| < 13
405data8 0xDD6050A898303460, 0x00003FE6 //A3 = 5.1543170295688189081352133793e-08
406data8 0xBE44C1078FDBADC0 //A2H = -9.6643444318955652627581125180e-09
407data8 0xBAF95FCAA6DBBA6F //A2L = -1.3118146684038113473094275420e-24
408data8 0x3E14C1078FE26748 //A1H = 1.2080430540780827633746315479e-09
409data8 0x3A88168082F37D95 //A1L = 9.7290246966246404028418245094e-27
410data8 0x3FEFFFFFFFF59F7C //A0H = 9.9999999992449728480892190419e-01
411data8 0x3C7C068EBC5C2EEB //A0L = 2.4308346546749583521003998922e-17
412data8 0x9DC155C77A6C46E5, 0x00003FF2 //A25 = 1.5044709695520252096006763473e-04
413data8 0xF2F9E09CA47F46E9, 0x00003FF3 //A24 = 4.6344010077547944693833282056e-04
414data8 0xCBFD67E704734BC8, 0x00003FF4 //A23 = 7.7815958662026429864083620142e-04
415data8 0xC18DC821CD67E621, 0x00003FF4 //A22 = 7.3834928521190855055818897104e-04
416data8 0x8AF72BCAB05A296E, 0x00003FF4 //A21 = 5.3011135848666430331904214879e-04
417data8 0xC2E73BE9B9AB4007, 0x00003FF2 //A20 = 1.8587423129049905806822275188e-04
418data8 0xE7E8C2058E2FF9F7, 0x00003FF1 //A19 = 1.1058292891321512917337425414e-04
419data8 0xC46309F52E429F97, 0x0000BFF0 //A18 = -4.6822278664829811025251866877e-05
420data8 0x81966C1E007E9BEB, 0x00003FF1 //A17 = 6.1792176836716291200611553354e-05
421data8 0x8CEDC4BEFCAB9A7E, 0x0000BFF1 //A16 = -6.7200080564674449915571760779e-05
422data8 0x8B64E9FA53210018, 0x00003FF1 //A15 = 6.6468331917938095774361868182e-05
423data8 0x82DEDAA539A3A3F1, 0x0000BFF1 //A14 = -6.2403928644276709411156885292e-05
424LOCAL_OBJECT_END(_8_to_13_data)
425
426LOCAL_OBJECT_START(_16_to_22p8_data)
427// Polynomial coefficients for the tanh(x), 16 <= |x| < 22.88
428data8 0x992C00F33DDE804D, 0x00003FCE //A3 = 2.1256869805798788337547274131e-15
429data8 0x3C8D42EA28102760 //A2H = 5.0760412270332007485198379096e-17
430data8 0x391A747B43B072DD //A2L = 1.2737621993898125881520341053e-33
431data8 0x3C309BC5C3CB4D5F //A1H = 9.0034785192019775952205276560e-19
432data8 0x38A8EF3B5C9DCE71 //A1L = 9.3793162715476168397242934494e-36
433data8 0x3FF0000000000000 //A0H = 1.0000000000000000000000000000e+00
434data8 0x3BACC66AFD5CA22A //A0L = 3.0466790472070565954180861749e-21
435data8 0xF020FB351C2F37CB, 0x00003FF1 //A25 = 1.1450235038836625246604146870e-04
436data8 0xBE80596C51302A7B, 0x00003FF4 //A24 = 7.2670503421185030764546828414e-04
437data8 0x91343CF8577E0131, 0x00003FF6 //A23 = 2.2156380512949603402001207105e-03
438data8 0x8D029A8679641286, 0x00003FF7 //A22 = 4.3032888906494613055765544559e-03
439data8 0xC3713F64D8DC4BAB, 0x00003FF7 //A21 = 5.9644279041951657632420721490e-03
440data8 0xCD678C455A5D06C2, 0x00003FF7 //A20 = 6.2684473911812928601693994403e-03
441data8 0xA9E1C825BDCEEBCC, 0x00003FF7 //A19 = 5.1843859941826642445235686826e-03
442data8 0xE29C919AD93F6EB9, 0x00003FF6 //A18 = 3.4578185539872939928152204329e-03
443data8 0xF7E615A75994A607, 0x00003FF5 //A17 = 1.8913175041916131006881986311e-03
444data8 0xE102EFE0F7F2B2AD, 0x00003FF4 //A16 = 8.5835064987089641065525269712e-04
445data8 0xAAD62946DEE96996, 0x00003FF3 //A15 = 3.2584489313998677644253007210e-04
446data8 0xDA2470DE110B293E, 0x00003FF1 //A14 = 1.0401837693241806604296821650e-04
447LOCAL_OBJECT_END(_16_to_22p8_data)
448
449LOCAL_OBJECT_START(_3p25_to_4_data)
450// Polynomial coefficients for the tanh(x), 3.25 <= |x| < 4
451data8 0xE9E07240432926E6, 0x00003FF7 //A3 = 7.1373517862636557382403555215e-03
452data8 0xBF75F495227AF306 //A2H = -5.3602052282115727338540622782e-03
453data8 0xBBBE92D355A6B716 //A2L = -6.4741983326810209847018826624e-21
454data8 0x3F65F85AD510B690 //A1H = 2.6819013660517934671823070403e-03
455data8 0x3C159A0B73E6EC01 //A1L = 2.9275813076637328121849573333e-19
456data8 0x3FEFFA81708A0B42 //A0H = 9.9932929973906703402519724477e-01
457data8 0x3C66857246C19DC6 //A0L = 9.7670460995685717424398031188e-18
458data8 0xE6B6B8365B1E4D6C, 0x00003FE3 //A25 = 6.7146538162212081470554423396e-09
459data8 0xE0453CEEF483A510, 0x00003FE2 //A24 = 3.2635647369924061614015292015e-09
460data8 0x9C7D83B56E92CF1A, 0x00003FE5 //A23 = 1.8217867585545497089756353348e-08
461data8 0xA94635C48ABA9EB4, 0x0000BFE4 //A22 = -9.8530586070049930796756799547e-09
462data8 0xB1B0C14443067646, 0x00003FE5 //A21 = 2.0685890807654992387562340307e-08
463data8 0x9C6E549781E293C3, 0x00003FDE //A20 = 1.4227314592865135171341122138e-10
464data8 0xB0CBFCE7C80F57A7, 0x0000BFE7 //A19 = -8.2327438416004542109809245219e-08
465data8 0xB151AB3876E896E1, 0x00003FE9 //A18 = 3.3028241036175815328309577940e-07
466data8 0xFCF3A5C1A5CB7EEE, 0x0000BFEA //A17 = -9.4231869277542043001280640966e-07
467data8 0x96A9016C7C95BEDA, 0x00003FEC //A16 = 2.2450115975007100522962781833e-06
468data8 0x9B9B0A3901DEC05B, 0x0000BFED //A15 = -4.6374089937147736266514566049e-06
469data8 0x8987DF26A6789CCF, 0x00003FEE //A14 = 8.1974714257536543772040700977e-06
470LOCAL_OBJECT_END(_3p25_to_4_data)
471
472LOCAL_OBJECT_START(_6p5_to_8_data)
473// Polynomial coefficients for the tanh(x), 6.5 <= |x| < 8.0
474data8 0xA11C8A63815E5657, 0x00003FEF //A3 = 1.9205985861286093001394561449e-05
475data8 0xBEDE355AD6CB61D8 //A2H = -7.2022479400070228499307345427e-06
476data8 0xBB8E6B50B8468A63 //A2L = -8.0518953122203408718779840543e-22
477data8 0x3EBE355B48DCF330 //A1H = 1.8005623902549165889479948488e-06
478data8 0x3B5837550FFA98DA //A1L = 8.0124491698609178046195694087e-23
479data8 0x3FEFFFFF872A91F8 //A0H = 9.9999977492967584424832239165e-01
480data8 0x3C8A43B839B4EB63 //A0L = 4.5561696441306660142461355317e-17
481data8 0xB5BC1948966B8826, 0x0000BFE6 //A25 = -4.2313421330480692560677276010e-08
482data8 0x91D0BE367389BDFC, 0x0000BFE8 //A24 = -1.3580117599617083801153887619e-07
483data8 0xFFD950AF282AB36C, 0x0000BFE8 //A23 = -2.3827784451962439125197203287e-07
484data8 0x959B1770EBB8903A, 0x0000BFE9 //A22 = -2.7866256690165347051403663794e-07
485data8 0xCC78060D1C0CFF3C, 0x0000BFE8 //A21 = -1.9042644867126442102188429523e-07
486data8 0xF8919BAF2E87F31D, 0x0000BFE8 //A20 = -2.3149771783868910586746973299e-07
487data8 0xC5B6AC942A3F2440, 0x00003FE8 //A19 = 1.8413511183396213757149263639e-07
488data8 0xABF1A4703056450A, 0x0000BFEA //A18 = -6.4054099983863829656292958643e-07
489data8 0xBB543D8BDB670453, 0x00003FEB //A17 = 1.3957102903892251890348444989e-06
490data8 0xC9D6F37700C1D092, 0x0000BFEC //A16 = -3.0076451968978522605262647414e-06
491data8 0xCA6EF4BB64E49EC8, 0x00003FED //A15 = 6.0329860989478473738709576062e-06
492data8 0xBE25D0FD069D0A93, 0x0000BFEE //A14 = -1.1333687314965721384777951065e-05
493LOCAL_OBJECT_END(_6p5_to_8_data)
494
495LOCAL_OBJECT_START(_13_to_16_data)
496// Polynomial coefficients for the tanh(x), 13 <= |x| < 16
497data8 0x98176FD2075BDBD5, 0x00003FDB //A3 = 1.7290807363028159200235264756e-11
498data8 0xBD8C8464F76162D1 //A2H = -3.2420263805679445515400340441e-12
499data8 0xBA2D56B508E0F1FD //A2L = -1.8515322669984580704502445180e-28
500data8 0x3D5C8464F761639C //A1H = 4.0525329757100331782338488690e-13
501data8 0x3A0A09D9E328E620 //A1L = 4.1081479300866418212862258651e-29
502data8 0x3FEFFFFFFFFFFF1B //A0H = 9.9999999999997457589273608392e-01
503data8 0x3C9B9B089E9BFD89 //A0L = 9.5776165728054091471814161399e-17
504data8 0xC5395B9EC765BDB7, 0x00003FE6 //A25 = 4.5919803498257974411526879804e-08
505data8 0x9A0F1FCB1DC24C3A, 0x00003FE8 //A24 = 1.4347869798460288751020493795e-07
506data8 0x8AA5C3459FAD0B28, 0x00003FE9 //A23 = 2.5825111356333853968900510087e-07
507data8 0x9578B747988CFF9D, 0x00003FE9 //A22 = 2.7841245127068220034870119246e-07
508data8 0x810DF1A589D9CAF1, 0x00003FE9 //A21 = 2.4038267971021370956311255310e-07
509data8 0x8A00D77B9416EB75, 0x00003FE8 //A20 = 1.2852557749068320312899366352e-07
510data8 0xB2436C4A1849C498, 0x00003FE7 //A19 = 8.3010350873515703893886683374e-08
511data8 0xEA6405B18356600B, 0x00003FE3 //A18 = 6.8216675390299296071261114202e-09
512data8 0xF7606C022194B7E8, 0x00003FE5 //A17 = 2.8798432098264655723769995993e-08
513data8 0xAF4B0C453FCAF34E, 0x0000BFE5 //A16 = -2.0406809167824936143455638336e-08
514data8 0xC324C1F10D5FA7CC, 0x00003FE5 //A15 = 2.2717703170390130238356558599e-08
515data8 0xB34A2E3A4D3B9C31, 0x0000BFE5 //A14 = -2.0872076027950789618606920471e-08
516LOCAL_OBJECT_END(_13_to_16_data)
517
518
519//////// "Tail" tables //////////
520LOCAL_OBJECT_START(_0p125_to_0p25_data_tail)
521// Polynomial coefficients for the erf(x), 1/8 <= |x| < 1/4
522data8 0x9D7D206E97ADC83A, 0x0000BFCC //A13 = -5.4639895428711257047470806445e-16
523data8 0xA8972B666A845810, 0x00003FD3 //A12 = 7.4869224589947988668562043110e-14
524data8 0x9A5B31511C9F4698, 0x0000BFD4 //A11 = -1.3709586467430093373657009487e-13
525data8 0xCBB8047BCB274982, 0x0000BFDA //A10 = -1.1580074124926108509393610532e-11
526data8 0xF95EB849E5F9247C, 0x00003FDC //A9 = 5.6700173336564916962945623180e-11
527data8 0xE7893404C6A53386, 0x00003FE1 //A8 = 1.6846457582993065168777704528e-09
528data8 0xF2E5C7E2B5F55ECC, 0x0000BFE4 //A7 = -1.4138500046802141367543484859e-08
529data8 0xF43906FF53A002C0, 0x0000BFE8 //A6 = -2.2745017243678613107034288816e-07
530data8 0xC6175D5E47D1D259, 0x00003FEC //A5 = 2.9517899220726077077586632607e-06
531data8 0xE7C2AE92CB36769B, 0x00003FEF //A4 = 2.7628001723157068127646694830e-05
532LOCAL_OBJECT_END(_0p125_to_0p25_data_tail)
533
534LOCAL_OBJECT_START(_0p25_to_0p5_data_tail)
535// Polynomial coefficients for the tanh(x), 1/4 <= |x| < 1/2
536data8 0x9E2972C008B9965E, 0x0000BFDC //A13 = -3.5961854154738002253192260213e-11
537data8 0xC3EABA3D219BEA8A, 0x00003FDB //A12 = 2.2273173303628274478819473067e-11
538data8 0xC50FB68D960D5CD9, 0x00003FE1 //A11 = 1.4338102430978399800743148719e-09
539data8 0xB3BB92499EF2D583, 0x0000BFE3 //A10 = -5.2309100551458044083112632491e-09
540data8 0xBD915BE632F1D04E, 0x0000BFE6 //A9 = -4.4137194873936112573773943707e-08
541data8 0xBC48C813FA819141, 0x00003FE9 //A8 = 3.5070684356359066908197915734e-07
542data8 0xD3E34EA031AC611B, 0x00003FEA //A7 = 7.8934400708919584259192272835e-07
543data8 0x8EAC489D859541CD, 0x0000BFEF //A6 = -1.7007944944124693133572815137e-05
544data8 0x98D4D7E5D1508B8A, 0x00003FEF //A5 = 1.8218924920302265989878708948e-05
545data8 0xAC262F3F8CF49C02, 0x00003FF4 //A4 = 6.5669692402266433496312492412e-04
546LOCAL_OBJECT_END(_0p25_to_0p5_data_tail)
547
548LOCAL_OBJECT_START(_0p5_to_1_data_tail)
549// Polynomial coefficients for the tanh(x), 1/2 <= |x| < 1
550data8 0xDF67FB36FFA2A538, 0x00003FE7 //A13 = 1.0403160796697495720021114635e-07
551data8 0xB7FB80FB5AFA63A4, 0x0000BFE8 //A12 = -1.7134699677764282023124981753e-07
552data8 0xC87625A0BA7D6C5F, 0x0000BFEA //A11 = -7.4677732458471897291461679095e-07
553data8 0x90DA375DD9AF6D79, 0x00003FED //A10 = 4.3169381418023765618186668159e-06
554data8 0x82DFB03317B17316, 0x0000BFED //A9 = -3.9003426534601562552753368105e-06
555data8 0xAA582FD4F3438BB4, 0x0000BFF0 //A8 = -4.0613288845040776435400454867e-05
556data8 0xB1532D8CF763B21C, 0x00003FF2 //A7 = 1.6911021594787399557528570601e-04
557data8 0x82E12AEF7CAB76C6, 0x0000BFEF //A6 = -1.5602059530458172761585925044e-05
558data8 0x83256E3D0FBA5C93, 0x0000BFF6 //A5 = -2.0011324059500451791903108104e-03
559data8 0xCC4AB2EC0965499B, 0x00003FF7 //A4 = 6.2344907419841579664122448353e-03
560LOCAL_OBJECT_END(_0p5_to_1_data_tail)
561
562LOCAL_OBJECT_START(_1_to_2_data_tail)
563// Polynomial coefficients for the tanh(x), 1 <= |x| < 2.0
564data8 0xCCAEE174EAC17F78, 0x0000BFEE //A13 = -1.2200065117856038355953618829e-05
565data8 0xA39DD0981D1A2776, 0x0000BFF0 //A12 = -3.9009204899026604074167603200e-05
566data8 0xB7104FA27FAF80D0, 0x00003FF2 //A11 = 1.7458316338540792661905876072e-04
567data8 0xB219A7274436A734, 0x0000BFF3 //A10 = -3.3969918595931391572998415468e-04
568data8 0xCCD9D03C0C73CECF, 0x00003FF2 //A9 = 1.9536097875337884986025498958e-04
569data8 0x85321EA40CFEEBEE, 0x00003FF5 //A8 = 1.0162031558369402750607778300e-03
570data8 0x81F272C08C308220, 0x0000BFF7 //A7 = -3.9656696618251138315464862909e-03
571data8 0xE8761C6BDEA9ED87, 0x00003FF7 //A6 = 7.0941580558970243020090656343e-03
572data8 0xAE4E9F3691F66877, 0x0000BFF6 //A5 = -2.6597155288710984120834711909e-03
573data8 0xCC8286B331BD8AAA, 0x0000BFF9 //A4 = -2.4964583478826523250880337777e-02
574LOCAL_OBJECT_END(_1_to_2_data_tail)
575
576LOCAL_OBJECT_START(_2_to_3p25_data_tail)
577// Polynomial coefficients for the tanh(x), 2 <= |x| < 3.25
578data8 0x92E1711A3BD6408B, 0x0000BFF4 //A13 = -5.6030514548041036913731470443e-04
579data8 0x8B9BD885FF3E98C5, 0x00003FF5 //A12 = 1.0651304064581604055612602669e-03
580data8 0xD041356C7FA26A22, 0x0000BFF5 //A11 = -1.5888574328066952147023520244e-03
581data8 0xDFA210BE9BE6B7FD, 0x00003FF5 //A10 = 1.7061849060196387827639060629e-03
582data8 0x8ECC3606808028E9, 0x0000BFF4 //A9 = -5.4472999329435778312080340471e-04
583data8 0xD5C053B8EEBD10C8, 0x0000BFF6 //A8 = -3.2615856552479930645151033322e-03
584data8 0xB7BFD63AC5051539, 0x00003FF8 //A7 = 1.1215171059191957498023766643e-02
585data8 0xC367C59D7FA3ADA2, 0x0000BFF9 //A6 = -2.3853193251842394834616848995e-02
586data8 0x9FC9FB890BB053CF, 0x00003FFA //A5 = 3.9010984954739386625695104667e-02
587data8 0xD01D077B42E7ED76, 0x0000BFFA //A4 = -5.0808934425896607486919526567e-02
588LOCAL_OBJECT_END(_2_to_3p25_data_tail)
589
590LOCAL_OBJECT_START(_4_to_6p5_data_tail)
591// Polynomial coefficients for the tanh(x), 4 <= |x| < 6.5
592data8 0x870CCE8C76C52C7E, 0x00003FF5 //A13 = 1.0303499350193060915603525934e-03
593data8 0xE1431E54AD2A738B, 0x0000BFF5 //A12 = -1.7186140560972621669872002486e-03
594data8 0xAB20056533E28734, 0x00003FF6 //A11 = 2.6111615345168277554841545330e-03
595data8 0xECCB91D64718B9BD, 0x0000BFF6 //A10 = -3.6132079169671860943878776041e-03
596data8 0x94771DA3B8C2EB4F, 0x00003FF7 //A9 = 4.5308012699419563988381317896e-03
597data8 0xA7497377E4946F2C, 0x0000BFF7 //A8 = -5.1051915941441437592654444804e-03
598data8 0xA76B2D6FCA088AE9, 0x00003FF7 //A7 = 5.1092120989582196669504468168e-03
599data8 0x928C8961F33C9560, 0x0000BFF7 //A6 = -4.4723196805537430568162704711e-03
600data8 0xDBDDDF6CDE9AB9BE, 0x00003FF6 //A5 = 3.3548994514326736175581084349e-03
601data8 0x896E211733AD9D40, 0x0000BFF6 //A4 = -2.0970183170010094667442967500e-03
602LOCAL_OBJECT_END(_4_to_6p5_data_tail)
603
604LOCAL_OBJECT_START(_8_to_13_data_tail)
605// Polynomial coefficients for the tanh(x), 8 <= |x| < 13
606data8 0xE50C3476BED020AA, 0x00003FF0 //A13 = 5.4609221347524272615754239857e-05
607data8 0xBA16F5F4EDC0EABC, 0x0000BFF0 //A12 = -4.4367239594986428539386662937e-05
608data8 0x8B916C2F002C3D91, 0x00003FF0 //A11 = 3.3275617838067362533536610680e-05
609data8 0xBFE8031097CB4442, 0x0000BFEF //A10 = -2.2877013297722792747267224605e-05
610data8 0xEFE1FFD106B2DA41, 0x00003FEE //A9 = 1.4298129659899553350478452989e-05
611data8 0x86EF1FF403A6622E, 0x0000BFEE //A8 = -8.0426979849841642112688693288e-06
612data8 0x86EF200FD047306B, 0x00003FED //A7 = 4.0213490418736097707257704218e-06
613data8 0xEC22782377882553, 0x0000BFEB //A6 = -1.7593402092805559754997565942e-06
614data8 0xB119DA1DB7C47773, 0x00003FEA //A5 = 6.5975257917246601211360847253e-07
615data8 0xDD6050A7761D67BB, 0x0000BFE8 //A4 = -2.0617268111985310661707082242e-07
616LOCAL_OBJECT_END(_8_to_13_data_tail)
617
618LOCAL_OBJECT_START(_16_to_22p8_data_tail)
619// Polynomial coefficients for the tanh(x), 16 <= |x| < 22.88
620data8 0xEAF4AF87336E81B1, 0x00003FEF //A13 = 2.8008914392791730186582989654e-05
621data8 0xD5B309EA768E2711, 0x00003FED //A12 = 6.3687375204024238267961143128e-06
622data8 0xA4048CA537113538, 0x00003FEB //A11 = 1.2220276227448617951538196845e-06
623data8 0xD3EC78BB3425377D, 0x00003FE8 //A10 = 1.9736934193679794194181457250e-07
624data8 0xE5763CD37440266E, 0x00003FE5 //A9 = 2.6712876934440631473215182284e-08
625data8 0xCECA765EEB4A265F, 0x00003FE2 //A8 = 3.0092031912460315516888139627e-09
626data8 0x99ABF588DF81A52E, 0x00003FDF //A7 = 2.7952722177649984066847682907e-10
627data8 0xB9C78918294A4685, 0x00003FDB //A6 = 2.1120676552098603524020495036e-11
628data8 0xB3A3C42AD539D50F, 0x00003FD7 //A5 = 1.2764169243389521270291967366e-12
629data8 0x86BC347939478174, 0x00003FD3 //A4 = 5.9834437707863962671883176163e-14
630LOCAL_OBJECT_END(_16_to_22p8_data_tail)
631
632LOCAL_OBJECT_START(_3p25_to_4_data_tail)
633// Polynomial coefficients for the tanh(x), 3.25 <= |x| < 4
634data8 0xBE9A2BE19F21BA1C, 0x0000BFEE //A13 = -1.1360778336288065244475976873e-05
635data8 0xF84910F515BDB014, 0x00003FED //A12 = 7.3994819819577018481862729782e-06
636data8 0xC4C84FB788AA4007, 0x00003FEF //A11 = 2.3458298013663976251972482656e-05
637data8 0x86CC6243C170E5ED, 0x0000BFF2 //A10 = -1.2855374755847770638424932233e-04
638data8 0xD3065AC539ABABFF, 0x00003FF3 //A9 = 4.0249790677367806832685138089e-04
639data8 0x82C4413795EC381B, 0x0000BFF5 //A8 = -9.9767013652382759950854031514e-04
640data8 0x88D588720888899A, 0x00003FF6 //A7 = 2.0879228705174076794011525274e-03
641data8 0xF4CA066137741469, 0x0000BFF6 //A6 = -3.7351861548964870836350490741e-03
642data8 0xB998746D56E81737, 0x00003FF7 //A5 = 5.6639259807333999973200378964e-03
643data8 0xE93FB2F48233275B, 0x0000BFF7 //A4 = -7.1181892208343798194003322900e-03
644LOCAL_OBJECT_END(_3p25_to_4_data_tail)
645
646LOCAL_OBJECT_START(_6p5_to_8_data_tail)
647// Polynomial coefficients for the tanh(x), 6.5 <= |x| < 8.0
648data8 0xA6881D7D21774BFD, 0x00003FEF //A13 = 1.9852125640303530752913966680e-05
649data8 0x875E983AA042E605, 0x0000BFF0 //A12 = -3.2274606306629334402383651599e-05
650data8 0xCB19E01E94FC133C, 0x00003FF0 //A11 = 4.8423069963831314927026982707e-05
651data8 0x8BA5E8D9E72D56B2, 0x0000BFF1 //A10 = -6.6589395655200734237190902534e-05
652data8 0xAE91F647ED4E46B2, 0x00003FF1 //A9 = 8.3241541003842930001632190258e-05
653data8 0xC465A7E0B22F884E, 0x0000BFF1 //A8 = -9.3649431639051891449916386619e-05
654data8 0xC4666148AA01A4D7, 0x00003FF1 //A7 = 9.3650780646160216748407869111e-05
655data8 0xABD9E63D181B0C6C, 0x0000BFF1 //A6 = -8.1945023256769295802996591839e-05
656data8 0x80E38B18E509387A, 0x00003FF1 //A5 = 6.1458988764532931141264026311e-05
657data8 0xA11C80E20ADA5A64, 0x0000BFF0 //A4 = -3.8411937140983728563216440713e-05
658LOCAL_OBJECT_END(_6p5_to_8_data_tail)
659
660LOCAL_OBJECT_START(_13_to_16_data_tail)
661// Polynomial coefficients for the tanh(x), 13 <= |x| < 16
662data8 0x9D6CCDA4767CA6D9, 0x00003FE5 //A13 = 1.8326683535066775712253572575e-08
663data8 0xFFAF154F334BF403, 0x0000BFE4 //A12 = -1.4882762852665077172347508377e-08
664data8 0xBFC68FA7C61B6C17, 0x00003FE4 //A11 = 1.1162810813806544919835662888e-08
665data8 0x83D8439A6B19A015, 0x0000BFE4 //A10 = -7.6743763372603959795701788561e-09
666data8 0xA4CE5BE9DC6A2962, 0x00003FE3 //A9 = 4.7964885012772346158732715382e-09
667data8 0xB96826C0697253CA, 0x0000BFE2 //A8 = -2.6980246373950994097953903952e-09
668data8 0xB96826CADDC00E35, 0x00003FE1 //A7 = 1.3490123232313844006540534789e-09
669data8 0xA23B21F1155DF322, 0x0000BFE0 //A6 = -5.9019289132168830718664922372e-10
670data8 0xF358B2E9A50C349C, 0x00003FDE //A5 = 2.2132233424669131155945897524e-10
671data8 0x98176FD2074C1D77, 0x0000BFDD //A4 = -6.9163229452106125388824134881e-11
672LOCAL_OBJECT_END(_13_to_16_data_tail)
673
674LOCAL_OBJECT_START(_0_to_1o8_data)
675// Polynomial coefficients for the tanh(x), 0.0 <= |x| < 0.125
676data8 0xBA0EC1879495150B, 0x0000BFF5 // A15 = -1.4195071451378679802688367813e-03
677data8 0xEB5A82898D1BCBA4, 0x00003FF6 // A13 = 3.5912102408030526706365632879e-03
678data8 0x91370DAFE0B64438, 0x0000BFF8 // A11 = -8.8632234251336964576640807982e-03
679data8 0xB327A435358F1200, 0x00003FF9 // A9 = 2.1869488447622383899199238857e-02
680data8 0xDD0DD0DD07A0775F, 0x0000BFFA // A7 = -5.3968253967902161405327069187e-02
681data8 0x888888888887C299, 0x00003FFC // A5 = 1.3333333333333264660338062012e-01
682data8 0xAAAAAAAAAAAAAA98, 0x0000BFFD // A3 = -3.3333333333333333282255458755e-01
683LOCAL_OBJECT_END(_0_to_1o8_data)
684
685
686.section .text
687GLOBAL_LIBM_ENTRY(tanhl)
688
689{ .mfi
690      alloc          r32         = ar.pfs, 0, 21, 0, 0
691      fmerge.se      fArgAbsNorm = f1, f8      // normalized x (1.0 <= x < 2.0)
692      addl           rSignBit    = 0x20000, r0 // Set sign bit for exponent
693}
694{ .mlx
695      addl           rDataPtr    = @ltoff(tanhl_data), gp // Get common data ptr
696      movl           r1p5        = 0x3FF8000000000000    // 1.5 in dbl repres.
697};;
698
699{ .mfi
700      getf.exp       rArgExp     = f8              // Get arg exponent
701      fclass.m       p6,p0       = f8, 0xEF // Filter 0, denormals and specials
702                            // 0xEF = @qnan|@snan|@pos|@neg|@zero|@unorm|@inf
703      addl           rBias       = 0xfffc, r0 // Value to subtract from exp
704                                            // to get actual interval number
705}
706{ .mfi
707      ld8            rDataPtr    = [rDataPtr]  // Get real common data pointer
708      fma.s1         fArgSqr     = f8, f8, f0  // x^2 (for [0;1/8] path)
709      addl           r2to4       = 0x10000, r0 // unbiased exponent
710                                             // for [2;4] binary interval
711};;
712
713{ .mfi
714      getf.sig       rArgSig     = f8              // Get arg significand
715      fcmp.lt.s1     p15, p14    = f8, f0          // Is arg negative/positive?
716      addl           rSaturation = 0xb70, r0       // First 12 bits of
717                                                   // saturation value signif.
718}
719{ .mfi
720      setf.d         f1p5        = r1p5            // 1.5 construction
721      fma.s1         f2p0        = f1,f1,f1        // 2.0 construction
722      addl           r1625Sign   = 0xd01, r0       // First 12 bits of
723                                                   // 1.625 value signif.
724      // 1.625 significand used to filter values greater than 3.25, 6.5, 13.0
725};;
726
727{ .mfi
728      addl           rTailDataPtr = 0xB00, rDataPtr  // Pointer to "tail" data
729      fmerge.s       fSignumX = f8, f1            // signum(x)
730      andcm          rArgExp     = rArgExp, rSignBit // Remove sign of exp
731}
732{ .mfb
733      addl           rTiny       = 0xf000, r0 // Tiny value for saturation path
734      nop.f          0
735(p6)  br.cond.spnt   tanhl_spec               // Branch to zero, denorm & specs
736};;
737
738{ .mfi
739      sub            rInterval   = rArgExp, rBias // Get actual interval number
740      nop.f          0
741      shr.u          rArgSig     = rArgSig, 52    // Leave only 12 bits of sign.
742}
743{ .mfi
744      adds           rShiftedDataPtr = 0x10, rDataPtr // Second ptr to data
745      nop.f          0
746      cmp.ge         p8, p10     = rArgExp, r2to4  // If exp >= 2to4 interval?
747};;
748
749{ .mfi
750(p8)  cmp.le         p8, p10     = r1625Sign, rArgSig // If signd is greater
751                            //  than 1.625? (arg is at one of binary subranges)
752      nop.f          0
753      shl            rOffset     = rInterval, 8 // Make offset from
754                                              // interval number
755}
756{ .mfi
757      cmp.gt         p9, p0      = 0x0, rInterval // If interval is less than 0
758                                                // (means arg is in [0; 1/8])
759      nop.f          0
760      cmp.eq         p7, p0      = 0x7, rInterval // If arg is in [16;] interv.?
761};;
762
763{ .mfi
764(p8)  adds           rOffset     = 0x400, rOffset // Add additional offset
765                            //  (arg is at one of binary subranges)
766      fma.s1         fArgCube    = fArgSqr, f8, f0  // x^3 (for [0;1/8] path)
767      shl            rTailOffset = rInterval, 7  // Make offset to "tail" data
768                                                 // from interval number
769}
770{ .mib
771      setf.exp       fTiny       = rTiny // Construct "tiny" value
772                                       // for saturation path
773      cmp.ltu        p11, p0     = 0x7, rInterval // if arg > 32
774(p9)  br.cond.spnt   _0_to_1o8
775};;
776
777{ .mfi
778      add            rAddr1      = rDataPtr, rOffset // Get address for
779                                                   // interval data
780      nop.f          0
781      shl            rTailAddOffset = rInterval, 5 // Offset to interval
782                                                   // "tail" data
783}
784{ .mib
785      add            rAddr2      = rShiftedDataPtr, rOffset // Get second
786                                                 // address for interval data
787(p7)  cmp.leu        p11, p0     = rSaturation, rArgSig // if arg is
788                                                        // in [22.8;32] interval
789(p11) br.cond.spnt   _saturation // Branch to Saturation path
790};;
791
792{ .mmi
793      ldfe           fA3         = [rAddr1], 0x90 // Load A3
794      ldfpd          fA2H, fA2L  = [rAddr2], 16 // Load A2High, A2Low
795      add            rTailOffset = rTailOffset, rTailAddOffset // "Tail" offset
796};;
797
798{ .mmi
799      ldfe           fA20        = [rAddr1], 16 // Load A20
800      ldfpd          fA1H, fA1L  = [rAddr2], 16 // Load A1High, A1Low
801(p8)  adds           rTailOffset = 0x280, rTailOffset // Additional offset
802                                    //  (arg is at one of binary subranges)
803};;
804
805{ .mmi
806      ldfe           fA19        = [rAddr1], 16 // Load A19
807      ldfpd          fA0H, fA0L  = [rAddr2], 16 // Load A0High, A0Low
808      add            rTailAddr1  = rTailDataPtr, rTailOffset // First tail
809                                                           // data address
810};;
811
812.pred.rel "mutex",p8,p10
813{ .mfi
814      ldfe           fA18        = [rAddr1], 16 // Load A18
815(p8)  fms.s1         fArgAbsNorm = fArgAbsNorm, f1, f2p0 // Add 2.0
816                            //  (arg is at one of binary subranges)
817      adds           rTailAddr2  = 0x10, rTailAddr1  // First tail
818                                                     // data address
819}
820{ .mfi
821      ldfe           fA25        = [rAddr2], 16 // Load A25
822(p10) fms.s1         fArgAbsNorm = fArgAbsNorm, f1, f1p5  // Add 1.5
823                                                // to normalized arg
824      nop.i          0
825};;
826
827{ .mmi
828      ldfe           fA17        = [rAddr1], 16 // Load A17
829      ldfe           fA24        = [rAddr2], 16 // Load A24
830      nop.i          0
831};;
832
833{ .mmi
834      ldfe           fA16        = [rAddr1], 16 // Load A16
835      ldfe           fA23        = [rAddr2], 16 // Load A23
836      nop.i          0
837};;
838
839{ .mmi
840      ldfe           fA15        = [rAddr1], 16 // Load A15
841      ldfe           fA22        = [rAddr2], 16 // Load A22
842      nop.i          0
843};;
844
845{ .mmi
846      ldfe           fA14        = [rAddr1], 16 // Load A14
847      ldfe           fA21        = [rAddr2], 16 // Load A21
848      nop.i          0
849};;
850
851{ .mfi
852      ldfe           fA13        = [rTailAddr1], 32              // Load A13
853      fms.s1         fArgAbsNorm2 = fArgAbsNorm, fArgAbsNorm, f0 // x^2
854      nop.i          0
855}
856{ .mfi
857      ldfe           fA12        = [rTailAddr2], 32 // Load A12
858      nop.f          0
859      nop.i          0
860};;
861
862{ .mfi
863      ldfe           fA11        = [rTailAddr1], 32       // Load A11
864      fma.s1         fRes3H      = fA3, fArgAbsNorm, fA2H // (A3*x+A2)*x^2
865      nop.i          0
866}
867{ .mfi
868      ldfe           fA10        = [rTailAddr2], 32     // Load A10
869      fma.s1         fTH         = fA3, fArgAbsNorm, f0 // (A3*x+A2)*x^2
870      nop.i          0
871};;
872
873{ .mfi
874      ldfe           fA9         = [rTailAddr1], 32      // Load A9
875      fma.s1         fTT2        = fA1L, fArgAbsNorm, f0 // A1*x+A0
876      nop.i          0
877}
878{ .mfi
879      ldfe           fA8         = [rTailAddr2], 32 // Load A8
880      nop.f          0
881      nop.i          0
882};;
883
884{ .mmi
885      ldfe           fA7         = [rTailAddr1], 32 // Load A7
886      ldfe           fA6         = [rTailAddr2], 32 // Load A6
887      nop.i          0
888};;
889
890{ .mmi
891      ldfe           fA5         = [rTailAddr1], 32 // Load A5
892      ldfe           fA4         = [rTailAddr2], 32 // Load A4
893      nop.i          0
894};;
895
896{ .mfi
897      nop.m          0
898      fms.s1         fArgAbsNorm2L = fArgAbsNorm, fArgAbsNorm, fArgAbsNorm2
899                                                  // Low part of x^2 (delta)
900      nop.i          0
901}
902{ .mfi
903      nop.m          0
904      fms.s1         fArgAbsNorm4  = fArgAbsNorm2, fArgAbsNorm2, f0 // x^4
905      nop.i          0
906};;
907
908{ .mfi
909      nop.m          0
910      fms.s1         fRes3L      = fA2H, f1, fRes3H // // (A3*x+A2)*x^2
911      nop.i          0
912};;
913
914{ .mfi
915      nop.m          0
916      fms.s1         fArgAbsNorm3 = fArgAbsNorm2, fArgAbsNorm, f0 // x^3
917      nop.i          0
918}
919{ .mfi
920      nop.m          0
921      fma.s1         fTH2        = fA1H, fArgAbsNorm, fTT2 // A1*x+A0
922      nop.i          0
923};;
924
925{ .mfi
926      nop.m          0
927      fma.s1         fA23        = fA24,  fArgAbsNorm, fA23 // Polynomial tail
928      nop.i          0
929}
930{ .mfi
931      nop.m          0
932      fma.s1         fA21        = fA22,  fArgAbsNorm, fA21 // Polynomial tail
933      nop.i          0
934};;
935
936{ .mfi
937      nop.m          0
938      fma.s1         fA12        = fA13,  fArgAbsNorm, fA12 // Polynomial tail
939      nop.i          0
940}
941;;
942
943{ .mfi
944      nop.m          0
945      fma.s1         fRes3L      = fRes3L, f1, fTH // (A3*x+A2)*x^2
946      nop.i          0
947}
948{ .mfi
949      nop.m          0
950      fma.s1         fA19        = fA20,  fArgAbsNorm, fA19 // Polynomial tail
951      nop.i          0
952};;
953
954{ .mfi
955      nop.m          0
956      fma.s1         fRes1H      = fTH2, f1, fA0H // A1*x+A0
957      nop.i          0
958}
959{ .mfi
960      nop.m          0
961      fms.s1         fTL2        = fA1H, fArgAbsNorm, fTH2 // A1*x+A0
962      nop.i          0
963};;
964
965{ .mfi
966      nop.m          0
967      fma.s1         fA8         = fA9,  fArgAbsNorm, fA8 // Polynomial tail
968      nop.i          0
969}
970{ .mfi
971      nop.m          0
972      fma.s1         fA10        = fA11,  fArgAbsNorm, fA10 // Polynomial tail
973      nop.i          0
974};;
975
976{ .mfi
977      nop.m          0
978      fma.s1         fA15        = fA16,  fArgAbsNorm, fA15 // Polynomial tail
979      nop.i          0
980}
981{ .mfi
982      nop.m          0
983      fma.s1         fA17        = fA18,  fArgAbsNorm, fA17 // Polynomial tail
984      nop.i          0
985};;
986
987{ .mfi
988      nop.m          0
989      fms.s1         fArgAbsNorm11 = fArgAbsNorm4, fArgAbsNorm4, f0 // x^8
990      nop.i          0
991}
992{ .mfi
993      nop.m          0
994      fma.s1         fA4         = fA5,  fArgAbsNorm, fA4 // Polynomial tail
995      nop.i          0
996};;
997
998{ .mfi
999      nop.m          0
1000      fma.s1         fRes3L      = fRes3L, f1, fA2L // (A3*x+A2)*x^2
1001      nop.i          0
1002}
1003{ .mfi
1004      nop.m          0
1005      fma.s1         fA6         = fA7,  fArgAbsNorm, fA6 // Polynomial tail
1006      nop.i          0
1007};;
1008
1009{ .mfi
1010      nop.m          0
1011      fma.s1         fTL2        = fTL2, f1, fTT2 // A1*x+A0
1012      nop.i          0
1013}
1014{ .mfi
1015      nop.m          0
1016      fms.s1         fRes1L      = fA0H, f1, fRes1H // A1*x+A0
1017      nop.i          0
1018};;
1019
1020{ .mfi
1021      nop.m          0
1022      fma.s1         fA23        = fA25,  fArgAbsNorm2, fA23 // Polynomial tail
1023      nop.i          0
1024}
1025{ .mfi
1026      nop.m          0
1027      fma.s1         fA12        = fA14,  fArgAbsNorm2, fA12 // Polynomial tail
1028      nop.i          0
1029};;
1030
1031{ .mfi
1032      nop.m          0
1033      fma.s1         fA19        = fA21,  fArgAbsNorm2, fA19  // Polynomial tail
1034      nop.i          0
1035}
1036{ .mfi
1037      nop.m          0
1038      fma.s1         fA8         = fA10,  fArgAbsNorm2, fA8 // Polynomial tail
1039      nop.i          0
1040};;
1041
1042{ .mfi
1043      nop.m          0
1044      fma.s1         fA15        = fA17,  fArgAbsNorm2, fA15 // Polynomial tail
1045      nop.i          0
1046}
1047{ .mfi
1048      nop.m          0
1049      fms.s1         fArgAbsNorm11 = fArgAbsNorm11, fArgAbsNorm3, f0 // x^11
1050      nop.i          0
1051};;
1052
1053{ .mfi
1054      nop.m          0
1055      fma.s1         fTT         = fRes3L, fArgAbsNorm2, f0 // (A3*x+A2)*x^2
1056      nop.i          0
1057}
1058{ .mfi
1059      nop.m          0
1060      fma.s1         fA4         = fA6,  fArgAbsNorm2, fA4 // Polynomial tail
1061      nop.i          0
1062};;
1063
1064{ .mfi
1065      nop.m          0
1066      fma.s1         fRes1L      = fRes1L, f1, fTH2 // A1*x+A0
1067      nop.i          0
1068}
1069{ .mfi
1070      nop.m          0
1071      fms.s1         fArgAbsNorm4X  = fArgAbsNorm4, fSignumX, f0 // x^4 * signum
1072      nop.i          0
1073};;
1074
1075{ .mfi
1076      nop.m          0
1077      fma.s1         fA19        = fA23,  fArgAbsNorm4, fA19 // Polynomial tail
1078      nop.i          0
1079}
1080{ .mfi
1081      nop.m          0
1082      fma.s1         fA8         = fA12,  fArgAbsNorm4, fA8 // Polynomial tail
1083      nop.i          0
1084};;
1085
1086{ .mfi
1087      nop.m          0
1088      fma.s1         fTT         = fRes3H, fArgAbsNorm2L, fTT // (A3*x+A2)*x^2
1089      nop.i          0
1090};;
1091
1092{ .mfi
1093      nop.m          0
1094      fma.s1         fRes1L      = fRes1L, f1, fTL2 // A1*x+A0
1095      nop.i          0
1096};;
1097
1098{ .mfi
1099      nop.m          0
1100      fma.s1         fA15        = fA19,  fArgAbsNorm4, fA15 // Polynomial tail
1101      nop.i          0
1102}
1103{ .mfi
1104      nop.m          0
1105      fma.s1         fA4         = fA8,  fArgAbsNorm4, fA4 // Polynomial tail
1106      nop.i          0
1107};;
1108
1109{ .mfi
1110      nop.m          0
1111      fma.s1         fRes2H      = fRes3H, fArgAbsNorm2, fTT // (A3*x+A2)*x^2
1112      nop.i          0
1113};;
1114
1115{ .mfi
1116      nop.m          0
1117      fma.s1         fRes1L      = fRes1L, f1, fA0L // A1*x+A0
1118      nop.i          0
1119};;
1120
1121{ .mfi
1122      nop.m          0
1123      fma.s1         fRes4       = fA15, fArgAbsNorm11, fA4 // Result of
1124                                                    // polynomial tail
1125      nop.i          0
1126};;
1127
1128{ .mfi
1129      nop.m          0
1130      fms.s1         fRes2L      = fRes3H, fArgAbsNorm2, fRes2H // (A3*x+A2)*x^2
1131      nop.i          0
1132}
1133{ .mfi
1134      nop.m          0
1135      fma.s1         fResH       = fRes2H, f1, fRes1H // High result
1136      nop.i          0
1137};;
1138
1139{ .mfi
1140      nop.m          0
1141(p14) fma.s1         fRes1L      = fRes4, fArgAbsNorm4X, fRes1L // A1*x+A0
1142      nop.i          0
1143}
1144{ .mfi
1145      nop.m          0
1146(p15) fms.s1         fRes1L      = fRes4, fArgAbsNorm4X, fRes1L // A1*x+A0
1147      nop.i          0
1148};;
1149
1150{ .mfi
1151      nop.m          0
1152      fma.s1         fRes2L      = fRes2L, f1, fTT // (A3*x+A2)*x^2
1153      nop.i          0
1154}
1155{ .mfi
1156      nop.m          0
1157      fms.s1         fResL       = fRes1H, f1, fResH // Low result
1158      nop.i          0
1159};;
1160
1161{ .mfi
1162      nop.m          0
1163      fma.s0         fRes1L      = fRes2L, fSignumX, fRes1L // Low result
1164                 // .s0 - for symmetry issue resolving at +/-inf rounding mode
1165      nop.i          0
1166}
1167{ .mfi
1168      nop.m          0
1169      fma.s1         fResL       = fResL, f1, fRes2H // Low result
1170      nop.i          0
1171};;
1172
1173{ .mfi
1174      nop.m          0
1175(p14) fma.s0         fResL       = fRes1L, f1, fResL // Low result
1176                 // .s0 - for symmetry issue resolving at +/-inf rounding mode
1177      nop.i          0
1178}
1179{ .mfi
1180      nop.m          0
1181(p15) fms.s0         fResL     = fRes1L, f1, fResL // Low result
1182                 // .s0 - for symmetry issue resolving at +/-inf rounding mode
1183      nop.i          0
1184};;
1185
1186.pred.rel "mutex",p14,p15
1187{ .mfi
1188      nop.m          0
1189(p14) fma.s0         f8          = fResL, f1,  fResH// Add high and low results
1190      nop.i          0
1191}
1192{ .mfb
1193      nop.m          0
1194(p15) fms.s0         f8          = fResL, f1, fResH // Add high and low results
1195      br.ret.sptk    b0      // Main path return
1196};;
1197
1198//  satiration path ////////////////////////////////////////////////////////////
1199_saturation:
1200
1201.pred.rel "mutex",p14,p15
1202{ .mfi
1203      nop.m          0
1204(p14) fms.s0            f8          = f1, f1, fTiny // Saturation result r = 1-tiny
1205      nop.i 0
1206};;
1207{ .mfb
1208      nop.m          0
1209(p15) fnma.s0           f8          = f1, f1, fTiny // Saturation result r = tiny-1
1210      br.ret.sptk    b0     // Saturation path return
1211};;
1212
1213
1214//  0, denormals and special IEEE numbers path /////////////////////////////////
1215tanhl_spec:
1216
1217{ .mfi
1218      nop.m          0
1219      fclass.m       p6,p0       = f8, 0x23 // To filter infinities
1220                                          // 0x23 = @pos|@neg|@inf
1221      nop.i          0
1222};;
1223
1224{ .mfi
1225      nop.m          0
1226      fclass.m       p7,p0       = f8, 0xC7 // To filter NaNs & Zeros
1227                                 // 0xC7 = @pos|@neg|@zero|@qnan|@snan
1228      nop.i          0
1229};;
1230
1231{ .mfb
1232      nop.m          0
1233(p6)  fmerge.s       f8          = f8, f1     // +/-1 for INF args
1234(p6)  br.ret.spnt    b0                       // exit for x = INF
1235};;
1236
1237{ .mfb
1238      nop.m          0
1239(p7)  fma.s0         f8          = f8, f1, f8    // +/-0 for 0 args
1240                                                 // and NaNs for NaNs
1241(p7)  br.ret.spnt    b0                          // exit for x = NaN or +/-0
1242};;
1243
1244{ .mfi
1245      nop.m          0
1246      fnorm.s0       f8          = f8            // Normalize arg
1247      nop.i          0
1248};;
1249
1250.pred.rel "mutex",p14,p15
1251{ .mfi
1252      nop.m          0
1253(p14) fnma.s0        f8          = f8, f8, f8  // res = r-r^2
1254      nop.i          0
1255}
1256{ .mfb
1257      nop.m          0
1258(p15) fma.s0         f8          = f8, f8, f8  // res = r+r^2
1259      br.ret.sptk    b0          // 0, denormals, IEEE specials return
1260};;
1261
1262
1263//  0 < |x| < 1/8 path /////////////////////////////////////////////////////////
1264_0_to_1o8:
1265
1266{ .mmi
1267      adds           rAddr1      = 0x11e0, rDataPtr // Ptr 1 to coeffs
1268      adds           rAddr2      = 0x11f0, rDataPtr // Ptr 2 to coeffs
1269      nop.i          0
1270};;
1271
1272{ .mmi
1273      ldfe           fA15        = [rAddr1], 32 // Load A15
1274      ldfe           fA13        = [rAddr2], 32 // Load A13
1275      nop.i          0
1276};;
1277
1278{ .mmi
1279      ldfe           fA11        = [rAddr1], 32 // Load A11
1280      ldfe           fA9         = [rAddr2], 32 // Load A9
1281      nop.i          0
1282};;
1283
1284{ .mmi
1285      ldfe           fA7         = [rAddr1], 32 // Load A7
1286      ldfe           fA5         = [rAddr2]  // Load A5
1287      nop.i          0
1288};;
1289
1290{ .mfi
1291      ldfe           fA3         = [rAddr1] // Load A3
1292      fma.s1         fA11        = fA13, fArgSqr, fA11 // Polynomial tail
1293      nop.i          0
1294}
1295{ .mfi
1296      nop.m          0
1297      fma.s1         fArgFour    = fArgSqr, fArgSqr, f0 // a^4
1298      nop.i          0
1299};;
1300
1301
1302{ .mfi
1303      nop.m          0
1304      fma.s1         fA3         = fA5, fArgSqr, fA3 // Polynomial tail
1305      nop.i          0
1306}
1307{ .mfi
1308      nop.m          0
1309      fma.s1         fA7         = fA9, fArgSqr, fA7 // Polynomial tail
1310      nop.i          0
1311};;
1312
1313
1314{ .mfi
1315      nop.m          0
1316      fma.s1         fA11        = fA15, fArgFour, fA11 // Polynomial tail
1317      nop.i          0
1318};;
1319
1320{ .mfi
1321      nop.m          0
1322      fma.s1         fA3         = fA7, fArgFour, fA3 // Polynomial tail
1323      nop.i          0
1324}
1325{ .mfi
1326      nop.m          0
1327      fma.s1         fArgEight   = fArgFour, fArgFour, f0 // a^8
1328      nop.i          0
1329};;
1330
1331{ .mfi
1332      nop.m          0
1333      fma.s1         fRes        = fA11, fArgEight, fA3 //Polynomial tail result
1334      nop.i          0
1335};;
1336
1337{ .mfb
1338      nop.m          0
1339      fma.s0         f8          = fRes, fArgCube, f8 // (Polynomial tail)*x^3
1340      br.ret.sptk    b0          // [0;1/8] interval return
1341};;
1342
1343GLOBAL_LIBM_END(tanhl)
1344libm_alias_ldouble_other (tanh, tanh)
1345