1.file "log1p.s"
2
3
4// Copyright (c) 2000 - 2005, Intel Corporation
5// All rights reserved.
6//
7//
8// Redistribution and use in source and binary forms, with or without
9// modification, are permitted provided that the following conditions are
10// met:
11//
12// * Redistributions of source code must retain the above copyright
13// notice, this list of conditions and the following disclaimer.
14//
15// * Redistributions in binary form must reproduce the above copyright
16// notice, this list of conditions and the following disclaimer in the
17// documentation and/or other materials provided with the distribution.
18//
19// * The name of Intel Corporation may not be used to endorse or promote
20// products derived from this software without specific prior written
21// permission.
22
23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34//
35// Intel Corporation is the author of this code, and requests that all
36// problem reports or change requests be submitted to it directly at
37// http://www.intel.com/software/products/opensource/libraries/num.htm.
38//
39// History
40//==============================================================
41// 02/02/00 Initial version
42// 04/04/00 Unwind support added
43// 08/15/00 Bundle added after call to __libm_error_support to properly
44//          set [the previously overwritten] GR_Parameter_RESULT.
45// 06/29/01 Improved speed of all paths
46// 05/20/02 Cleaned up namespace and sf0 syntax
47// 10/02/02 Improved performance by basing on log algorithm
48// 02/10/03 Reordered header: .section, .global, .proc, .align
49// 04/18/03 Eliminate possible WAW dependency warning
50// 03/31/05 Reformatted delimiters between data tables
51//
52// API
53//==============================================================
54// double log1p(double)
55//
56// log1p(x) = log(x+1)
57//
58// Overview of operation
59//==============================================================
60// Background
61// ----------
62//
63// This algorithm is based on fact that
64// log1p(x) = log(1+x) and
65// log(a b) = log(a) + log(b).
66// In our case we have 1+x = 2^N f, where 1 <= f < 2.
67// So
68//   log(1+x) = log(2^N f) = log(2^N) + log(f) = n*log(2) + log(f)
69//
70// To calculate log(f) we do following
71//   log(f) = log(f * frcpa(f) / frcpa(f)) =
72//          = log(f * frcpa(f)) + log(1/frcpa(f))
73//
74// According to definition of IA-64's frcpa instruction it's a
75// floating point that approximates 1/f using a lookup on the
76// top of 8 bits of the input number's + 1 significand with relative
77// error < 2^(-8.886). So we have following
78//
79// |(1/f - frcpa(f)) / (1/f))| = |1 - f*frcpa(f)| < 1/256
80//
81// and
82//
83// log(f) = log(f * frcpa(f)) + log(1/frcpa(f)) =
84//        = log(1 + r) + T
85//
86// The first value can be computed by polynomial P(r) approximating
87// log(1 + r) on |r| < 1/256 and the second is precomputed tabular
88// value defined by top 8 bit of f.
89//
90// Finally we have that  log(1+x) ~ (N*log(2) + T) + P(r)
91//
92// Note that if input argument is close to 0.0 (in our case it means
93// that |x| < 1/256) we can use just polynomial approximation
94// because 1+x = 2^0 * f = f = 1 + r and
95// log(1+x) = log(1 + r) ~ P(r)
96//
97//
98// Implementation
99// --------------
100//
101// 1. |x| >= 2^(-8), and x > -1
102//   InvX = frcpa(x+1)
103//   r = InvX*(x+1) - 1
104//   P(r) = r*((r*A3 - A2) + r^4*((A4 + r*A5) + r^2*(A6 + r*A7)),
105//   all coefficients are calculated in quad and rounded to double
106//   precision. A7,A6,A5,A4 are stored in memory whereas A3 and A2
107//   created with setf.
108//
109//   N = float(n) where n is true unbiased exponent of x
110//
111//   T is tabular value of log(1/frcpa(x)) calculated in quad precision
112//   and represented by two floating-point numbers 64-bit Thi and 32-bit Tlo.
113//   To load Thi,Tlo we get bits from 55 to 62 of register format significand
114//   as index and calculate two addresses
115//     ad_Thi = Thi_table_base_addr + 8 * index
116//     ad_Tlo = Tlo_table_base_addr + 4 * index
117//
118//   L1 (log(2)) is calculated in quad
119//   precision and represented by two floating-point 64-bit numbers L1hi,L1lo
120//   stored in memory.
121//
122//   And final result = ((L1hi*N + Thi) + (N*L1lo + Tlo)) + P(r)
123//
124//
125// 2. 2^(-80) <= |x| < 2^(-8)
126//   r = x
127//   P(r) = r*((r*A3 - A2) + r^4*((A4 + r*A5) + r^2*(A6 + r*A7)),
128//   A7,A6,A5,A4,A3,A2 are the same as in case |x| >= 1/256
129//
130//   And final results
131//     log(1+x)   = P(r)
132//
133// 3. 0 < |x| < 2^(-80)
134//   Although log1p(x) is basically x, we would like to preserve the inexactness
135//   nature as well as consistent behavior under different rounding modes.
136//   We can do this by computing the result as
137//
138//     log1p(x) = x - x*x
139//
140//
141//    Note: NaT, any NaNs, +/-INF, +/-0, negatives and unnormalized numbers are
142//          filtered and processed on special branches.
143//
144
145//
146// Special values
147//==============================================================
148//
149// log1p(-1)    = -inf            // Call error support
150//
151// log1p(+qnan) = +qnan
152// log1p(-qnan) = -qnan
153// log1p(+snan) = +qnan
154// log1p(-snan) = -qnan
155//
156// log1p(x),x<-1= QNAN Indefinite // Call error support
157// log1p(-inf)  = QNAN Indefinite
158// log1p(+inf)  = +inf
159// log1p(+/-0)  = +/-0
160//
161//
162// Registers used
163//==============================================================
164// Floating Point registers used:
165// f8, input
166// f7 -> f15,  f32 -> f40
167//
168// General registers used:
169// r8  -> r11
170// r14 -> r20
171//
172// Predicate registers used:
173// p6 -> p12
174
175// Assembly macros
176//==============================================================
177GR_TAG                 = r8
178GR_ad_1                = r8
179GR_ad_2                = r9
180GR_Exp                 = r10
181GR_N                   = r11
182
183GR_signexp_x           = r14
184GR_exp_mask            = r15
185GR_exp_bias            = r16
186GR_05                  = r17
187GR_A3                  = r18
188GR_Sig                 = r19
189GR_Ind                 = r19
190GR_exp_x               = r20
191
192
193GR_SAVE_B0             = r33
194GR_SAVE_PFS            = r34
195GR_SAVE_GP             = r35
196GR_SAVE_SP             = r36
197
198GR_Parameter_X         = r37
199GR_Parameter_Y         = r38
200GR_Parameter_RESULT    = r39
201GR_Parameter_TAG       = r40
202
203
204
205FR_NormX               = f7
206FR_RcpX                = f9
207FR_r                   = f10
208FR_r2                  = f11
209FR_r4                  = f12
210FR_N                   = f13
211FR_Ln2hi               = f14
212FR_Ln2lo               = f15
213
214FR_A7                  = f32
215FR_A6                  = f33
216FR_A5                  = f34
217FR_A4                  = f35
218FR_A3                  = f36
219FR_A2                  = f37
220
221FR_Thi                 = f38
222FR_NxLn2hipThi         = f38
223FR_NxLn2pT             = f38
224FR_Tlo                 = f39
225FR_NxLn2lopTlo         = f39
226
227FR_Xp1                 = f40
228
229
230FR_Y                   = f1
231FR_X                   = f10
232FR_RESULT              = f8
233
234
235// Data
236//==============================================================
237RODATA
238.align 16
239
240LOCAL_OBJECT_START(log_data)
241// coefficients of polynomial approximation
242data8 0x3FC2494104381A8E // A7
243data8 0xBFC5556D556BBB69 // A6
244data8 0x3FC999999988B5E9 // A5
245data8 0xBFCFFFFFFFF6FFF5 // A4
246//
247// hi parts of ln(1/frcpa(1+i/256)), i=0...255
248data8 0x3F60040155D5889D // 0
249data8 0x3F78121214586B54 // 1
250data8 0x3F841929F96832EF // 2
251data8 0x3F8C317384C75F06 // 3
252data8 0x3F91A6B91AC73386 // 4
253data8 0x3F95BA9A5D9AC039 // 5
254data8 0x3F99D2A8074325F3 // 6
255data8 0x3F9D6B2725979802 // 7
256data8 0x3FA0C58FA19DFAA9 // 8
257data8 0x3FA2954C78CBCE1A // 9
258data8 0x3FA4A94D2DA96C56 // 10
259data8 0x3FA67C94F2D4BB58 // 11
260data8 0x3FA85188B630F068 // 12
261data8 0x3FAA6B8ABE73AF4C // 13
262data8 0x3FAC441E06F72A9E // 14
263data8 0x3FAE1E6713606D06 // 15
264data8 0x3FAFFA6911AB9300 // 16
265data8 0x3FB0EC139C5DA600 // 17
266data8 0x3FB1DBD2643D190B // 18
267data8 0x3FB2CC7284FE5F1C // 19
268data8 0x3FB3BDF5A7D1EE64 // 20
269data8 0x3FB4B05D7AA012E0 // 21
270data8 0x3FB580DB7CEB5701 // 22
271data8 0x3FB674F089365A79 // 23
272data8 0x3FB769EF2C6B568D // 24
273data8 0x3FB85FD927506A47 // 25
274data8 0x3FB9335E5D594988 // 26
275data8 0x3FBA2B0220C8E5F4 // 27
276data8 0x3FBB0004AC1A86AB // 28
277data8 0x3FBBF968769FCA10 // 29
278data8 0x3FBCCFEDBFEE13A8 // 30
279data8 0x3FBDA727638446A2 // 31
280data8 0x3FBEA3257FE10F79 // 32
281data8 0x3FBF7BE9FEDBFDE5 // 33
282data8 0x3FC02AB352FF25F3 // 34
283data8 0x3FC097CE579D204C // 35
284data8 0x3FC1178E8227E47B // 36
285data8 0x3FC185747DBECF33 // 37
286data8 0x3FC1F3B925F25D41 // 38
287data8 0x3FC2625D1E6DDF56 // 39
288data8 0x3FC2D1610C868139 // 40
289data8 0x3FC340C59741142E // 41
290data8 0x3FC3B08B6757F2A9 // 42
291data8 0x3FC40DFB08378003 // 43
292data8 0x3FC47E74E8CA5F7C // 44
293data8 0x3FC4EF51F6466DE4 // 45
294data8 0x3FC56092E02BA516 // 46
295data8 0x3FC5D23857CD74D4 // 47
296data8 0x3FC6313A37335D76 // 48
297data8 0x3FC6A399DABBD383 // 49
298data8 0x3FC70337DD3CE41A // 50
299data8 0x3FC77654128F6127 // 51
300data8 0x3FC7E9D82A0B022D // 52
301data8 0x3FC84A6B759F512E // 53
302data8 0x3FC8AB47D5F5A30F // 54
303data8 0x3FC91FE49096581B // 55
304data8 0x3FC981634011AA75 // 56
305data8 0x3FC9F6C407089664 // 57
306data8 0x3FCA58E729348F43 // 58
307data8 0x3FCABB55C31693AC // 59
308data8 0x3FCB1E104919EFD0 // 60
309data8 0x3FCB94EE93E367CA // 61
310data8 0x3FCBF851C067555E // 62
311data8 0x3FCC5C0254BF23A5 // 63
312data8 0x3FCCC000C9DB3C52 // 64
313data8 0x3FCD244D99C85673 // 65
314data8 0x3FCD88E93FB2F450 // 66
315data8 0x3FCDEDD437EAEF00 // 67
316data8 0x3FCE530EFFE71012 // 68
317data8 0x3FCEB89A1648B971 // 69
318data8 0x3FCF1E75FADF9BDE // 70
319data8 0x3FCF84A32EAD7C35 // 71
320data8 0x3FCFEB2233EA07CD // 72
321data8 0x3FD028F9C7035C1C // 73
322data8 0x3FD05C8BE0D9635A // 74
323data8 0x3FD085EB8F8AE797 // 75
324data8 0x3FD0B9C8E32D1911 // 76
325data8 0x3FD0EDD060B78080 // 77
326data8 0x3FD122024CF0063F // 78
327data8 0x3FD14BE2927AECD4 // 79
328data8 0x3FD180618EF18ADF // 80
329data8 0x3FD1B50BBE2FC63B // 81
330data8 0x3FD1DF4CC7CF242D // 82
331data8 0x3FD214456D0EB8D4 // 83
332data8 0x3FD23EC5991EBA49 // 84
333data8 0x3FD2740D9F870AFB // 85
334data8 0x3FD29ECDABCDFA03 // 86
335data8 0x3FD2D46602ADCCEE // 87
336data8 0x3FD2FF66B04EA9D4 // 88
337data8 0x3FD335504B355A37 // 89
338data8 0x3FD360925EC44F5C // 90
339data8 0x3FD38BF1C3337E74 // 91
340data8 0x3FD3C25277333183 // 92
341data8 0x3FD3EDF463C1683E // 93
342data8 0x3FD419B423D5E8C7 // 94
343data8 0x3FD44591E0539F48 // 95
344data8 0x3FD47C9175B6F0AD // 96
345data8 0x3FD4A8B341552B09 // 97
346data8 0x3FD4D4F39089019F // 98
347data8 0x3FD501528DA1F967 // 99
348data8 0x3FD52DD06347D4F6 // 100
349data8 0x3FD55A6D3C7B8A89 // 101
350data8 0x3FD5925D2B112A59 // 102
351data8 0x3FD5BF406B543DB1 // 103
352data8 0x3FD5EC433D5C35AD // 104
353data8 0x3FD61965CDB02C1E // 105
354data8 0x3FD646A84935B2A1 // 106
355data8 0x3FD6740ADD31DE94 // 107
356data8 0x3FD6A18DB74A58C5 // 108
357data8 0x3FD6CF31058670EC // 109
358data8 0x3FD6F180E852F0B9 // 110
359data8 0x3FD71F5D71B894EF // 111
360data8 0x3FD74D5AEFD66D5C // 112
361data8 0x3FD77B79922BD37D // 113
362data8 0x3FD7A9B9889F19E2 // 114
363data8 0x3FD7D81B037EB6A6 // 115
364data8 0x3FD8069E33827230 // 116
365data8 0x3FD82996D3EF8BCA // 117
366data8 0x3FD85855776DCBFA // 118
367data8 0x3FD8873658327CCE // 119
368data8 0x3FD8AA75973AB8CE // 120
369data8 0x3FD8D992DC8824E4 // 121
370data8 0x3FD908D2EA7D9511 // 122
371data8 0x3FD92C59E79C0E56 // 123
372data8 0x3FD95BD750EE3ED2 // 124
373data8 0x3FD98B7811A3EE5B // 125
374data8 0x3FD9AF47F33D406B // 126
375data8 0x3FD9DF270C1914A7 // 127
376data8 0x3FDA0325ED14FDA4 // 128
377data8 0x3FDA33440224FA78 // 129
378data8 0x3FDA57725E80C382 // 130
379data8 0x3FDA87D0165DD199 // 131
380data8 0x3FDAAC2E6C03F895 // 132
381data8 0x3FDADCCC6FDF6A81 // 133
382data8 0x3FDB015B3EB1E790 // 134
383data8 0x3FDB323A3A635948 // 135
384data8 0x3FDB56FA04462909 // 136
385data8 0x3FDB881AA659BC93 // 137
386data8 0x3FDBAD0BEF3DB164 // 138
387data8 0x3FDBD21297781C2F // 139
388data8 0x3FDC039236F08818 // 140
389data8 0x3FDC28CB1E4D32FC // 141
390data8 0x3FDC4E19B84723C1 // 142
391data8 0x3FDC7FF9C74554C9 // 143
392data8 0x3FDCA57B64E9DB05 // 144
393data8 0x3FDCCB130A5CEBAF // 145
394data8 0x3FDCF0C0D18F326F // 146
395data8 0x3FDD232075B5A201 // 147
396data8 0x3FDD490246DEFA6B // 148
397data8 0x3FDD6EFA918D25CD // 149
398data8 0x3FDD9509707AE52F // 150
399data8 0x3FDDBB2EFE92C554 // 151
400data8 0x3FDDEE2F3445E4AE // 152
401data8 0x3FDE148A1A2726CD // 153
402data8 0x3FDE3AFC0A49FF3F // 154
403data8 0x3FDE6185206D516D // 155
404data8 0x3FDE882578823D51 // 156
405data8 0x3FDEAEDD2EAC990C // 157
406data8 0x3FDED5AC5F436BE2 // 158
407data8 0x3FDEFC9326D16AB8 // 159
408data8 0x3FDF2391A21575FF // 160
409data8 0x3FDF4AA7EE03192C // 161
410data8 0x3FDF71D627C30BB0 // 162
411data8 0x3FDF991C6CB3B379 // 163
412data8 0x3FDFC07ADA69A90F // 164
413data8 0x3FDFE7F18EB03D3E // 165
414data8 0x3FE007C053C5002E // 166
415data8 0x3FE01B942198A5A0 // 167
416data8 0x3FE02F74400C64EA // 168
417data8 0x3FE04360BE7603AC // 169
418data8 0x3FE05759AC47FE33 // 170
419data8 0x3FE06B5F1911CF51 // 171
420data8 0x3FE078BF0533C568 // 172
421data8 0x3FE08CD9687E7B0E // 173
422data8 0x3FE0A10074CF9019 // 174
423data8 0x3FE0B5343A234476 // 175
424data8 0x3FE0C974C89431CD // 176
425data8 0x3FE0DDC2305B9886 // 177
426data8 0x3FE0EB524BAFC918 // 178
427data8 0x3FE0FFB54213A475 // 179
428data8 0x3FE114253DA97D9F // 180
429data8 0x3FE128A24F1D9AFF // 181
430data8 0x3FE1365252BF0864 // 182
431data8 0x3FE14AE558B4A92D // 183
432data8 0x3FE15F85A19C765B // 184
433data8 0x3FE16D4D38C119FA // 185
434data8 0x3FE18203C20DD133 // 186
435data8 0x3FE196C7BC4B1F3A // 187
436data8 0x3FE1A4A738B7A33C // 188
437data8 0x3FE1B981C0C9653C // 189
438data8 0x3FE1CE69E8BB106A // 190
439data8 0x3FE1DC619DE06944 // 191
440data8 0x3FE1F160A2AD0DA3 // 192
441data8 0x3FE2066D7740737E // 193
442data8 0x3FE2147DBA47A393 // 194
443data8 0x3FE229A1BC5EBAC3 // 195
444data8 0x3FE237C1841A502E // 196
445data8 0x3FE24CFCE6F80D9A // 197
446data8 0x3FE25B2C55CD5762 // 198
447data8 0x3FE2707F4D5F7C40 // 199
448data8 0x3FE285E0842CA383 // 200
449data8 0x3FE294294708B773 // 201
450data8 0x3FE2A9A2670AFF0C // 202
451data8 0x3FE2B7FB2C8D1CC0 // 203
452data8 0x3FE2C65A6395F5F5 // 204
453data8 0x3FE2DBF557B0DF42 // 205
454data8 0x3FE2EA64C3F97654 // 206
455data8 0x3FE3001823684D73 // 207
456data8 0x3FE30E97E9A8B5CC // 208
457data8 0x3FE32463EBDD34E9 // 209
458data8 0x3FE332F4314AD795 // 210
459data8 0x3FE348D90E7464CF // 211
460data8 0x3FE35779F8C43D6D // 212
461data8 0x3FE36621961A6A99 // 213
462data8 0x3FE37C299F3C366A // 214
463data8 0x3FE38AE2171976E7 // 215
464data8 0x3FE399A157A603E7 // 216
465data8 0x3FE3AFCCFE77B9D1 // 217
466data8 0x3FE3BE9D503533B5 // 218
467data8 0x3FE3CD7480B4A8A2 // 219
468data8 0x3FE3E3C43918F76C // 220
469data8 0x3FE3F2ACB27ED6C6 // 221
470data8 0x3FE4019C2125CA93 // 222
471data8 0x3FE4181061389722 // 223
472data8 0x3FE42711518DF545 // 224
473data8 0x3FE436194E12B6BF // 225
474data8 0x3FE445285D68EA69 // 226
475data8 0x3FE45BCC464C893A // 227
476data8 0x3FE46AED21F117FC // 228
477data8 0x3FE47A1527E8A2D3 // 229
478data8 0x3FE489445EFFFCCB // 230
479data8 0x3FE4A018BCB69835 // 231
480data8 0x3FE4AF5A0C9D65D7 // 232
481data8 0x3FE4BEA2A5BDBE87 // 233
482data8 0x3FE4CDF28F10AC46 // 234
483data8 0x3FE4DD49CF994058 // 235
484data8 0x3FE4ECA86E64A683 // 236
485data8 0x3FE503C43CD8EB68 // 237
486data8 0x3FE513356667FC57 // 238
487data8 0x3FE522AE0738A3D7 // 239
488data8 0x3FE5322E26867857 // 240
489data8 0x3FE541B5CB979809 // 241
490data8 0x3FE55144FDBCBD62 // 242
491data8 0x3FE560DBC45153C6 // 243
492data8 0x3FE5707A26BB8C66 // 244
493data8 0x3FE587F60ED5B8FF // 245
494data8 0x3FE597A7977C8F31 // 246
495data8 0x3FE5A760D634BB8A // 247
496data8 0x3FE5B721D295F10E // 248
497data8 0x3FE5C6EA94431EF9 // 249
498data8 0x3FE5D6BB22EA86F5 // 250
499data8 0x3FE5E6938645D38F // 251
500data8 0x3FE5F673C61A2ED1 // 252
501data8 0x3FE6065BEA385926 // 253
502data8 0x3FE6164BFA7CC06B // 254
503data8 0x3FE62643FECF9742 // 255
504//
505// two parts of ln(2)
506data8 0x3FE62E42FEF00000,0x3DD473DE6AF278ED
507//
508// lo parts of ln(1/frcpa(1+i/256)), i=0...255
509data4 0x20E70672 // 0
510data4 0x1F60A5D0 // 1
511data4 0x218EABA0 // 2
512data4 0x21403104 // 3
513data4 0x20E9B54E // 4
514data4 0x21EE1382 // 5
515data4 0x226014E3 // 6
516data4 0x2095E5C9 // 7
517data4 0x228BA9D4 // 8
518data4 0x22932B86 // 9
519data4 0x22608A57 // 10
520data4 0x220209F3 // 11
521data4 0x212882CC // 12
522data4 0x220D46E2 // 13
523data4 0x21FA4C28 // 14
524data4 0x229E5BD9 // 15
525data4 0x228C9838 // 16
526data4 0x2311F954 // 17
527data4 0x221365DF // 18
528data4 0x22BD0CB3 // 19
529data4 0x223D4BB7 // 20
530data4 0x22A71BBE // 21
531data4 0x237DB2FA // 22
532data4 0x23194C9D // 23
533data4 0x22EC639E // 24
534data4 0x2367E669 // 25
535data4 0x232E1D5F // 26
536data4 0x234A639B // 27
537data4 0x2365C0E0 // 28
538data4 0x234646C1 // 29
539data4 0x220CBF9C // 30
540data4 0x22A00FD4 // 31
541data4 0x2306A3F2 // 32
542data4 0x23745A9B // 33
543data4 0x2398D756 // 34
544data4 0x23DD0B6A // 35
545data4 0x23DE338B // 36
546data4 0x23A222DF // 37
547data4 0x223164F8 // 38
548data4 0x23B4E87B // 39
549data4 0x23D6CCB8 // 40
550data4 0x220C2099 // 41
551data4 0x21B86B67 // 42
552data4 0x236D14F1 // 43
553data4 0x225A923F // 44
554data4 0x22748723 // 45
555data4 0x22200D13 // 46
556data4 0x23C296EA // 47
557data4 0x2302AC38 // 48
558data4 0x234B1996 // 49
559data4 0x2385E298 // 50
560data4 0x23175BE5 // 51
561data4 0x2193F482 // 52
562data4 0x23BFEA90 // 53
563data4 0x23D70A0C // 54
564data4 0x231CF30A // 55
565data4 0x235D9E90 // 56
566data4 0x221AD0CB // 57
567data4 0x22FAA08B // 58
568data4 0x23D29A87 // 59
569data4 0x20C4B2FE // 60
570data4 0x2381B8B7 // 61
571data4 0x23F8D9FC // 62
572data4 0x23EAAE7B // 63
573data4 0x2329E8AA // 64
574data4 0x23EC0322 // 65
575data4 0x2357FDCB // 66
576data4 0x2392A9AD // 67
577data4 0x22113B02 // 68
578data4 0x22DEE901 // 69
579data4 0x236A6D14 // 70
580data4 0x2371D33E // 71
581data4 0x2146F005 // 72
582data4 0x23230B06 // 73
583data4 0x22F1C77D // 74
584data4 0x23A89FA3 // 75
585data4 0x231D1241 // 76
586data4 0x244DA96C // 77
587data4 0x23ECBB7D // 78
588data4 0x223E42B4 // 79
589data4 0x23801BC9 // 80
590data4 0x23573263 // 81
591data4 0x227C1158 // 82
592data4 0x237BD749 // 83
593data4 0x21DDBAE9 // 84
594data4 0x23401735 // 85
595data4 0x241D9DEE // 86
596data4 0x23BC88CB // 87
597data4 0x2396D5F1 // 88
598data4 0x23FC89CF // 89
599data4 0x2414F9A2 // 90
600data4 0x2474A0F5 // 91
601data4 0x24354B60 // 92
602data4 0x23C1EB40 // 93
603data4 0x2306DD92 // 94
604data4 0x24353B6B // 95
605data4 0x23CD1701 // 96
606data4 0x237C7A1C // 97
607data4 0x245793AA // 98
608data4 0x24563695 // 99
609data4 0x23C51467 // 100
610data4 0x24476B68 // 101
611data4 0x212585A9 // 102
612data4 0x247B8293 // 103
613data4 0x2446848A // 104
614data4 0x246A53F8 // 105
615data4 0x246E496D // 106
616data4 0x23ED1D36 // 107
617data4 0x2314C258 // 108
618data4 0x233244A7 // 109
619data4 0x245B7AF0 // 110
620data4 0x24247130 // 111
621data4 0x22D67B38 // 112
622data4 0x2449F620 // 113
623data4 0x23BBC8B8 // 114
624data4 0x237D3BA0 // 115
625data4 0x245E8F13 // 116
626data4 0x2435573F // 117
627data4 0x242DE666 // 118
628data4 0x2463BC10 // 119
629data4 0x2466587D // 120
630data4 0x2408144B // 121
631data4 0x2405F0E5 // 122
632data4 0x22381CFF // 123
633data4 0x24154F9B // 124
634data4 0x23A4E96E // 125
635data4 0x24052967 // 126
636data4 0x2406963F // 127
637data4 0x23F7D3CB // 128
638data4 0x2448AFF4 // 129
639data4 0x24657A21 // 130
640data4 0x22FBC230 // 131
641data4 0x243C8DEA // 132
642data4 0x225DC4B7 // 133
643data4 0x23496EBF // 134
644data4 0x237C2B2B // 135
645data4 0x23A4A5B1 // 136
646data4 0x2394E9D1 // 137
647data4 0x244BC950 // 138
648data4 0x23C7448F // 139
649data4 0x2404A1AD // 140
650data4 0x246511D5 // 141
651data4 0x24246526 // 142
652data4 0x23111F57 // 143
653data4 0x22868951 // 144
654data4 0x243EB77F // 145
655data4 0x239F3DFF // 146
656data4 0x23089666 // 147
657data4 0x23EBFA6A // 148
658data4 0x23C51312 // 149
659data4 0x23E1DD5E // 150
660data4 0x232C0944 // 151
661data4 0x246A741F // 152
662data4 0x2414DF8D // 153
663data4 0x247B5546 // 154
664data4 0x2415C980 // 155
665data4 0x24324ABD // 156
666data4 0x234EB5E5 // 157
667data4 0x2465E43E // 158
668data4 0x242840D1 // 159
669data4 0x24444057 // 160
670data4 0x245E56F0 // 161
671data4 0x21AE30F8 // 162
672data4 0x23FB3283 // 163
673data4 0x247A4D07 // 164
674data4 0x22AE314D // 165
675data4 0x246B7727 // 166
676data4 0x24EAD526 // 167
677data4 0x24B41DC9 // 168
678data4 0x24EE8062 // 169
679data4 0x24A0C7C4 // 170
680data4 0x24E8DA67 // 171
681data4 0x231120F7 // 172
682data4 0x24401FFB // 173
683data4 0x2412DD09 // 174
684data4 0x248C131A // 175
685data4 0x24C0A7CE // 176
686data4 0x243DD4C8 // 177
687data4 0x24457FEB // 178
688data4 0x24DEEFBB // 179
689data4 0x243C70AE // 180
690data4 0x23E7A6FA // 181
691data4 0x24C2D311 // 182
692data4 0x23026255 // 183
693data4 0x2437C9B9 // 184
694data4 0x246BA847 // 185
695data4 0x2420B448 // 186
696data4 0x24C4CF5A // 187
697data4 0x242C4981 // 188
698data4 0x24DE1525 // 189
699data4 0x24F5CC33 // 190
700data4 0x235A85DA // 191
701data4 0x24A0B64F // 192
702data4 0x244BA0A4 // 193
703data4 0x24AAF30A // 194
704data4 0x244C86F9 // 195
705data4 0x246D5B82 // 196
706data4 0x24529347 // 197
707data4 0x240DD008 // 198
708data4 0x24E98790 // 199
709data4 0x2489B0CE // 200
710data4 0x22BC29AC // 201
711data4 0x23F37C7A // 202
712data4 0x24987FE8 // 203
713data4 0x22AFE20B // 204
714data4 0x24C8D7C2 // 205
715data4 0x24B28B7D // 206
716data4 0x23B6B271 // 207
717data4 0x24C77CB6 // 208
718data4 0x24EF1DCA // 209
719data4 0x24A4F0AC // 210
720data4 0x24CF113E // 211
721data4 0x2496BBAB // 212
722data4 0x23C7CC8A // 213
723data4 0x23AE3961 // 214
724data4 0x2410A895 // 215
725data4 0x23CE3114 // 216
726data4 0x2308247D // 217
727data4 0x240045E9 // 218
728data4 0x24974F60 // 219
729data4 0x242CB39F // 220
730data4 0x24AB8D69 // 221
731data4 0x23436788 // 222
732data4 0x24305E9E // 223
733data4 0x243E71A9 // 224
734data4 0x23C2A6B3 // 225
735data4 0x23FFE6CF // 226
736data4 0x2322D801 // 227
737data4 0x24515F21 // 228
738data4 0x2412A0D6 // 229
739data4 0x24E60D44 // 230
740data4 0x240D9251 // 231
741data4 0x247076E2 // 232
742data4 0x229B101B // 233
743data4 0x247B12DE // 234
744data4 0x244B9127 // 235
745data4 0x2499EC42 // 236
746data4 0x21FC3963 // 237
747data4 0x23E53266 // 238
748data4 0x24CE102D // 239
749data4 0x23CC45D2 // 240
750data4 0x2333171D // 241
751data4 0x246B3533 // 242
752data4 0x24931129 // 243
753data4 0x24405FFA // 244
754data4 0x24CF464D // 245
755data4 0x237095CD // 246
756data4 0x24F86CBD // 247
757data4 0x24E2D84B // 248
758data4 0x21ACBB44 // 249
759data4 0x24F43A8C // 250
760data4 0x249DB931 // 251
761data4 0x24A385EF // 252
762data4 0x238B1279 // 253
763data4 0x2436213E // 254
764data4 0x24F18A3B // 255
765LOCAL_OBJECT_END(log_data)
766
767
768// Code
769//==============================================================
770
771.section .text
772GLOBAL_IEEE754_ENTRY(log1p)
773{ .mfi
774      getf.exp      GR_signexp_x = f8 // if x is unorm then must recompute
775      fadd.s1       FR_Xp1 = f8, f1       // Form 1+x
776      mov           GR_05 = 0xfffe
777}
778{ .mlx
779      addl          GR_ad_1 = @ltoff(log_data),gp
780      movl          GR_A3 = 0x3fd5555555555557 // double precision memory
781                                               // representation of A3
782}
783;;
784
785{ .mfi
786      ld8           GR_ad_1 = [GR_ad_1]
787      fclass.m      p8,p0 = f8,0xb // Is x unorm?
788      mov           GR_exp_mask = 0x1ffff
789}
790{ .mfi
791      nop.m         0
792      fnorm.s1      FR_NormX = f8              // Normalize x
793      mov           GR_exp_bias = 0xffff
794}
795;;
796
797{ .mfi
798      setf.exp      FR_A2 = GR_05 // create A2 = 0.5
799      fclass.m      p9,p0 = f8,0x1E1 // is x NaN, NaT or +Inf?
800      nop.i         0
801}
802{ .mib
803      setf.d        FR_A3 = GR_A3 // create A3
804      add           GR_ad_2 = 16,GR_ad_1 // address of A5,A4
805(p8)  br.cond.spnt  log1p_unorm          // Branch if x=unorm
806}
807;;
808
809log1p_common:
810{ .mfi
811      nop.m         0
812      frcpa.s1      FR_RcpX,p0 = f1,FR_Xp1
813      nop.i         0
814}
815{ .mfb
816      nop.m         0
817(p9)  fma.d.s0      f8 = f8,f1,f0 // set V-flag
818(p9)  br.ret.spnt   b0 // exit for NaN, NaT and +Inf
819}
820;;
821
822{ .mfi
823      getf.exp      GR_Exp = FR_Xp1            // signexp of x+1
824      fclass.m      p10,p0 = FR_Xp1,0x3A // is 1+x < 0?
825      and           GR_exp_x = GR_exp_mask, GR_signexp_x // biased exponent of x
826}
827{ .mfi
828      ldfpd         FR_A7,FR_A6 = [GR_ad_1]
829      nop.f         0
830      nop.i         0
831}
832;;
833
834{ .mfi
835      getf.sig      GR_Sig = FR_Xp1 // get significand to calculate index
836                                    // for Thi,Tlo if |x| >= 2^-8
837      fcmp.eq.s1    p12,p0 = f8,f0     // is x equal to 0?
838      sub           GR_exp_x = GR_exp_x, GR_exp_bias // true exponent of x
839}
840;;
841
842{ .mfi
843      sub           GR_N = GR_Exp,GR_exp_bias // true exponent of x+1
844      fcmp.eq.s1    p11,p0 = FR_Xp1,f0     // is x = -1?
845      cmp.gt        p6,p7 = -8, GR_exp_x  // Is |x| < 2^-8
846}
847{ .mfb
848      ldfpd         FR_A5,FR_A4 = [GR_ad_2],16
849      nop.f         0
850(p10) br.cond.spnt  log1p_lt_minus_1   // jump if x < -1
851}
852;;
853
854// p6 is true if |x| < 1/256
855// p7 is true if |x| >= 1/256
856.pred.rel "mutex",p6,p7
857{ .mfi
858(p7)  add           GR_ad_1 = 0x820,GR_ad_1 // address of log(2) parts
859(p6)  fms.s1        FR_r = f8,f1,f0 // range reduction for |x|<1/256
860(p6)  cmp.gt.unc    p10,p0 = -80, GR_exp_x  // Is |x| < 2^-80
861}
862{ .mfb
863(p7)  setf.sig      FR_N = GR_N // copy unbiased exponent of x to the
864                                // significand field of FR_N
865(p7)  fms.s1        FR_r = FR_RcpX,FR_Xp1,f1 // range reduction for |x|>=1/256
866(p12) br.ret.spnt   b0 // exit for x=0, return x
867}
868;;
869
870{ .mib
871(p7)  ldfpd         FR_Ln2hi,FR_Ln2lo = [GR_ad_1],16
872(p7)  extr.u        GR_Ind = GR_Sig,55,8 // get bits from 55 to 62 as index
873(p11) br.cond.spnt  log1p_eq_minus_1 // jump if x = -1
874}
875;;
876
877{ .mmf
878(p7)  shladd        GR_ad_2 = GR_Ind,3,GR_ad_2 // address of Thi
879(p7)  shladd        GR_ad_1 = GR_Ind,2,GR_ad_1 // address of Tlo
880(p10) fnma.d.s0     f8 = f8,f8,f8   // If |x| very small, result=x-x*x
881}
882;;
883
884{ .mmb
885(p7)  ldfd          FR_Thi = [GR_ad_2]
886(p7)  ldfs          FR_Tlo = [GR_ad_1]
887(p10) br.ret.spnt   b0                   // Exit if |x| < 2^(-80)
888}
889;;
890
891{ .mfi
892      nop.m         0
893      fma.s1        FR_r2 = FR_r,FR_r,f0 // r^2
894      nop.i         0
895}
896{ .mfi
897      nop.m         0
898      fms.s1        FR_A2 = FR_A3,FR_r,FR_A2 // A3*r+A2
899      nop.i         0
900}
901;;
902
903{ .mfi
904      nop.m         0
905      fma.s1        FR_A6 = FR_A7,FR_r,FR_A6 // A7*r+A6
906      nop.i         0
907}
908{ .mfi
909      nop.m         0
910      fma.s1        FR_A4 = FR_A5,FR_r,FR_A4 // A5*r+A4
911      nop.i         0
912}
913;;
914
915{ .mfi
916      nop.m         0
917(p7)  fcvt.xf       FR_N = FR_N
918      nop.i         0
919}
920;;
921
922{ .mfi
923      nop.m         0
924      fma.s1        FR_r4 = FR_r2,FR_r2,f0 // r^4
925      nop.i         0
926}
927{ .mfi
928      nop.m         0
929      // (A3*r+A2)*r^2+r
930      fma.s1        FR_A2 = FR_A2,FR_r2,FR_r
931      nop.i         0
932}
933;;
934
935{ .mfi
936      nop.m         0
937      // (A7*r+A6)*r^2+(A5*r+A4)
938      fma.s1        FR_A4 = FR_A6,FR_r2,FR_A4
939      nop.i         0
940}
941;;
942
943{ .mfi
944      nop.m         0
945      // N*Ln2hi+Thi
946(p7)  fma.s1        FR_NxLn2hipThi = FR_N,FR_Ln2hi,FR_Thi
947      nop.i         0
948}
949{ .mfi
950      nop.m         0
951      // N*Ln2lo+Tlo
952(p7)  fma.s1        FR_NxLn2lopTlo = FR_N,FR_Ln2lo,FR_Tlo
953      nop.i         0
954}
955;;
956
957{ .mfi
958      nop.m         0
959(p7)  fma.s1        f8 = FR_A4,FR_r4,FR_A2 // P(r) if |x| >= 1/256
960      nop.i         0
961}
962{ .mfi
963      nop.m         0
964      // (N*Ln2hi+Thi) + (N*Ln2lo+Tlo)
965(p7)  fma.s1        FR_NxLn2pT = FR_NxLn2hipThi,f1,FR_NxLn2lopTlo
966      nop.i         0
967}
968;;
969
970.pred.rel "mutex",p6,p7
971{ .mfi
972      nop.m         0
973(p6)  fma.d.s0      f8 = FR_A4,FR_r4,FR_A2 // result if 2^(-80) <= |x| < 1/256
974      nop.i         0
975}
976{ .mfb
977      nop.m         0
978(p7)  fma.d.s0      f8 = f8,f1,FR_NxLn2pT  // result if |x| >= 1/256
979      br.ret.sptk   b0                     // Exit if |x| >= 2^(-80)
980}
981;;
982
983.align 32
984log1p_unorm:
985// Here if x=unorm
986{ .mfb
987      getf.exp      GR_signexp_x = FR_NormX // recompute biased exponent
988      nop.f         0
989      br.cond.sptk  log1p_common
990}
991;;
992
993.align 32
994log1p_eq_minus_1:
995// Here if x=-1
996{ .mfi
997      nop.m         0
998      fmerge.s      FR_X = f8,f8 // keep input argument for subsequent
999                                 // call of __libm_error_support#
1000      nop.i         0
1001}
1002;;
1003
1004{ .mfi
1005      mov           GR_TAG = 140  // set libm error in case of log1p(-1).
1006      frcpa.s0      f8,p0 = f8,f0 // log1p(-1) should be equal to -INF.
1007                                      // We can get it using frcpa because it
1008                                      // sets result to the IEEE-754 mandated
1009                                      // quotient of f8/f0.
1010      nop.i         0
1011}
1012{ .mib
1013      nop.m         0
1014      nop.i         0
1015      br.cond.sptk  log_libm_err
1016}
1017;;
1018
1019.align 32
1020log1p_lt_minus_1:
1021// Here if x < -1
1022{ .mfi
1023      nop.m         0
1024      fmerge.s      FR_X = f8,f8
1025      nop.i         0
1026}
1027;;
1028
1029{ .mfi
1030      mov           GR_TAG = 141  // set libm error in case of x < -1.
1031      frcpa.s0      f8,p0 = f0,f0 // log1p(x) x < -1 should be equal to NaN.
1032                                  // We can get it using frcpa because it
1033                                  // sets result to the IEEE-754 mandated
1034                                  // quotient of f0/f0 i.e. NaN.
1035      nop.i         0
1036}
1037;;
1038
1039.align 32
1040log_libm_err:
1041{ .mmi
1042      alloc         r32 = ar.pfs,1,4,4,0
1043      mov           GR_Parameter_TAG = GR_TAG
1044      nop.i         0
1045}
1046;;
1047
1048GLOBAL_IEEE754_END(log1p)
1049libm_alias_double_other (__log1p, log1p)
1050
1051
1052LOCAL_LIBM_ENTRY(__libm_error_region)
1053.prologue
1054{ .mfi
1055        add   GR_Parameter_Y = -32,sp         // Parameter 2 value
1056        nop.f 0
1057.save   ar.pfs,GR_SAVE_PFS
1058        mov  GR_SAVE_PFS = ar.pfs             // Save ar.pfs
1059}
1060{ .mfi
1061.fframe 64
1062        add sp = -64,sp                       // Create new stack
1063        nop.f 0
1064        mov GR_SAVE_GP = gp                   // Save gp
1065};;
1066{ .mmi
1067        stfd [GR_Parameter_Y] = FR_Y,16       // STORE Parameter 2 on stack
1068        add GR_Parameter_X = 16,sp            // Parameter 1 address
1069.save   b0, GR_SAVE_B0
1070        mov GR_SAVE_B0 = b0                   // Save b0
1071};;
1072.body
1073{ .mib
1074        stfd [GR_Parameter_X] = FR_X          // STORE Parameter 1 on stack
1075        add   GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
1076        nop.b 0
1077}
1078{ .mib
1079        stfd [GR_Parameter_Y] = FR_RESULT     // STORE Parameter 3 on stack
1080        add   GR_Parameter_Y = -16,GR_Parameter_Y
1081        br.call.sptk b0=__libm_error_support# // Call error handling function
1082};;
1083{ .mmi
1084        add   GR_Parameter_RESULT = 48,sp
1085        nop.m 0
1086        nop.i 0
1087};;
1088{ .mmi
1089        ldfd  f8 = [GR_Parameter_RESULT]      // Get return result off stack
1090.restore sp
1091        add   sp = 64,sp                      // Restore stack pointer
1092        mov   b0 = GR_SAVE_B0                 // Restore return address
1093};;
1094{ .mib
1095        mov   gp = GR_SAVE_GP                 // Restore gp
1096        mov   ar.pfs = GR_SAVE_PFS            // Restore ar.pfs
1097        br.ret.sptk     b0                    // Return
1098};;
1099LOCAL_LIBM_END(__libm_error_region)
1100
1101.type   __libm_error_support#,@function
1102.global __libm_error_support#
1103