1.file "expf_m1.s" 2 3 4// Copyright (c) 2000 - 2005, Intel Corporation 5// All rights reserved. 6// 7// 8// Redistribution and use in source and binary forms, with or without 9// modification, are permitted provided that the following conditions are 10// met: 11// 12// * Redistributions of source code must retain the above copyright 13// notice, this list of conditions and the following disclaimer. 14// 15// * Redistributions in binary form must reproduce the above copyright 16// notice, this list of conditions and the following disclaimer in the 17// documentation and/or other materials provided with the distribution. 18// 19// * The name of Intel Corporation may not be used to endorse or promote 20// products derived from this software without specific prior written 21// permission. 22 23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS 27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 28// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 31// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING 32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34// 35// Intel Corporation is the author of this code, and requests that all 36// problem reports or change requests be submitted to it directly at 37// http://www.intel.com/software/products/opensource/libraries/num.htm. 38 39// History 40//********************************************************************* 41// 02/02/00 Initial Version 42// 04/04/00 Unwind support added 43// 08/15/00 Bundle added after call to __libm_error_support to properly 44// set [the previously overwritten] GR_Parameter_RESULT. 45// 07/07/01 Improved speed of all paths 46// 05/20/02 Cleaned up namespace and sf0 syntax 47// 11/20/02 Improved speed, algorithm based on expf 48// 03/31/05 Reformatted delimiters between data tables 49// 50// 51// API 52//********************************************************************* 53// float expm1f(float) 54// 55// Overview of operation 56//********************************************************************* 57// 1. Inputs of Nan, Inf, Zero, NatVal handled with special paths 58// 59// 2. |x| < 2^-40 60// Result = x, computed by x + x*x to handle appropriate flags and rounding 61// 62// 3. 2^-40 <= |x| < 2^-2 63// Result determined by 8th order Taylor series polynomial 64// expm1f(x) = x + A2*x^2 + ... + A8*x^8 65// 66// 4. x < -24.0 67// Here we know result is essentially -1 + eps, where eps only affects 68// rounded result. Set I. 69// 70// 5. x >= 88.7228 71// Result overflows. Set I, O, and call error support 72// 73// 6. 2^-2 <= x < 88.7228 or -24.0 <= x < -2^-2 74// This is the main path. The algorithm is described below: 75 76// Take the input x. w is "how many log2/128 in x?" 77// w = x * 64/log2 78// NJ = int(w) 79// x = NJ*log2/64 + R 80 81// NJ = 64*n + j 82// x = n*log2 + (log2/64)*j + R 83// 84// So, exp(x) = 2^n * 2^(j/64)* exp(R) 85// 86// T = 2^n * 2^(j/64) 87// Construct 2^n 88// Get 2^(j/64) table 89// actually all the entries of 2^(j/64) table are stored in DP and 90// with exponent bits set to 0 -> multiplication on 2^n can be 91// performed by doing logical "or" operation with bits presenting 2^n 92 93// exp(R) = 1 + (exp(R) - 1) 94// P = exp(R) - 1 approximated by Taylor series of 3rd degree 95// P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2 96// 97 98// The final result is reconstructed as follows 99// expm1f(x) = T*P + (T - 1.0) 100 101// Special values 102//********************************************************************* 103// expm1f(+0) = +0.0 104// expm1f(-0) = -0.0 105 106// expm1f(+qnan) = +qnan 107// expm1f(-qnan) = -qnan 108// expm1f(+snan) = +qnan 109// expm1f(-snan) = -qnan 110 111// expm1f(-inf) = -1.0 112// expm1f(+inf) = +inf 113 114// Overflow and Underflow 115//********************************************************************* 116// expm1f(x) = largest single normal when 117// x = 88.7228 = 0x42b17217 118// 119// Underflow is handled as described in case 2 above. 120 121 122// Registers used 123//********************************************************************* 124// Floating Point registers used: 125// f8, input 126// f6,f7, f9 -> f15, f32 -> f45 127 128// General registers used: 129// r3, r20 -> r38 130 131// Predicate registers used: 132// p9 -> p15 133 134// Assembly macros 135//********************************************************************* 136// integer registers used 137// scratch 138rNJ = r3 139 140rExp_half = r20 141rSignexp_x = r21 142rExp_x = r22 143rExp_mask = r23 144rExp_bias = r24 145rTmp = r25 146rM1_lim = r25 147rGt_ln = r25 148rJ = r26 149rN = r27 150rTblAddr = r28 151rLn2Div64 = r29 152rRightShifter = r30 153r64DivLn2 = r31 154// stacked 155GR_SAVE_PFS = r32 156GR_SAVE_B0 = r33 157GR_SAVE_GP = r34 158GR_Parameter_X = r35 159GR_Parameter_Y = r36 160GR_Parameter_RESULT = r37 161GR_Parameter_TAG = r38 162 163// floating point registers used 164FR_X = f10 165FR_Y = f1 166FR_RESULT = f8 167// scratch 168fRightShifter = f6 169f64DivLn2 = f7 170fNormX = f9 171fNint = f10 172fN = f11 173fR = f12 174fLn2Div64 = f13 175fA2 = f14 176fA3 = f15 177// stacked 178fP = f32 179fX3 = f33 180fT = f34 181fMIN_SGL_OFLOW_ARG = f35 182fMAX_SGL_NORM_ARG = f36 183fMAX_SGL_MINUS_1_ARG = f37 184fA4 = f38 185fA43 = f38 186fA432 = f38 187fRSqr = f39 188fA5 = f40 189fTmp = f41 190fGt_pln = f41 191fXsq = f41 192fA7 = f42 193fA6 = f43 194fA65 = f43 195fTm1 = f44 196fA8 = f45 197fA87 = f45 198fA8765 = f45 199fA8765432 = f45 200fWre_urm_f8 = f45 201 202RODATA 203.align 16 204LOCAL_OBJECT_START(_expf_table) 205data8 0x3efa01a01a01a01a // A8 = 1/8! 206data8 0x3f2a01a01a01a01a // A7 = 1/7! 207data8 0x3f56c16c16c16c17 // A6 = 1/6! 208data8 0x3f81111111111111 // A5 = 1/5! 209data8 0x3fa5555555555555 // A4 = 1/4! 210data8 0x3fc5555555555555 // A3 = 1/3! 211// 212data4 0x42b17218 // Smallest sgl arg to overflow sgl result 213data4 0x42b17217 // Largest sgl arg to give sgl result 214// 215// 2^(j/64) table, j goes from 0 to 63 216data8 0x0000000000000000 // 2^(0/64) 217data8 0x00002C9A3E778061 // 2^(1/64) 218data8 0x000059B0D3158574 // 2^(2/64) 219data8 0x0000874518759BC8 // 2^(3/64) 220data8 0x0000B5586CF9890F // 2^(4/64) 221data8 0x0000E3EC32D3D1A2 // 2^(5/64) 222data8 0x00011301D0125B51 // 2^(6/64) 223data8 0x0001429AAEA92DE0 // 2^(7/64) 224data8 0x000172B83C7D517B // 2^(8/64) 225data8 0x0001A35BEB6FCB75 // 2^(9/64) 226data8 0x0001D4873168B9AA // 2^(10/64) 227data8 0x0002063B88628CD6 // 2^(11/64) 228data8 0x0002387A6E756238 // 2^(12/64) 229data8 0x00026B4565E27CDD // 2^(13/64) 230data8 0x00029E9DF51FDEE1 // 2^(14/64) 231data8 0x0002D285A6E4030B // 2^(15/64) 232data8 0x000306FE0A31B715 // 2^(16/64) 233data8 0x00033C08B26416FF // 2^(17/64) 234data8 0x000371A7373AA9CB // 2^(18/64) 235data8 0x0003A7DB34E59FF7 // 2^(19/64) 236data8 0x0003DEA64C123422 // 2^(20/64) 237data8 0x0004160A21F72E2A // 2^(21/64) 238data8 0x00044E086061892D // 2^(22/64) 239data8 0x000486A2B5C13CD0 // 2^(23/64) 240data8 0x0004BFDAD5362A27 // 2^(24/64) 241data8 0x0004F9B2769D2CA7 // 2^(25/64) 242data8 0x0005342B569D4F82 // 2^(26/64) 243data8 0x00056F4736B527DA // 2^(27/64) 244data8 0x0005AB07DD485429 // 2^(28/64) 245data8 0x0005E76F15AD2148 // 2^(29/64) 246data8 0x0006247EB03A5585 // 2^(30/64) 247data8 0x0006623882552225 // 2^(31/64) 248data8 0x0006A09E667F3BCD // 2^(32/64) 249data8 0x0006DFB23C651A2F // 2^(33/64) 250data8 0x00071F75E8EC5F74 // 2^(34/64) 251data8 0x00075FEB564267C9 // 2^(35/64) 252data8 0x0007A11473EB0187 // 2^(36/64) 253data8 0x0007E2F336CF4E62 // 2^(37/64) 254data8 0x00082589994CCE13 // 2^(38/64) 255data8 0x000868D99B4492ED // 2^(39/64) 256data8 0x0008ACE5422AA0DB // 2^(40/64) 257data8 0x0008F1AE99157736 // 2^(41/64) 258data8 0x00093737B0CDC5E5 // 2^(42/64) 259data8 0x00097D829FDE4E50 // 2^(43/64) 260data8 0x0009C49182A3F090 // 2^(44/64) 261data8 0x000A0C667B5DE565 // 2^(45/64) 262data8 0x000A5503B23E255D // 2^(46/64) 263data8 0x000A9E6B5579FDBF // 2^(47/64) 264data8 0x000AE89F995AD3AD // 2^(48/64) 265data8 0x000B33A2B84F15FB // 2^(49/64) 266data8 0x000B7F76F2FB5E47 // 2^(50/64) 267data8 0x000BCC1E904BC1D2 // 2^(51/64) 268data8 0x000C199BDD85529C // 2^(52/64) 269data8 0x000C67F12E57D14B // 2^(53/64) 270data8 0x000CB720DCEF9069 // 2^(54/64) 271data8 0x000D072D4A07897C // 2^(55/64) 272data8 0x000D5818DCFBA487 // 2^(56/64) 273data8 0x000DA9E603DB3285 // 2^(57/64) 274data8 0x000DFC97337B9B5F // 2^(58/64) 275data8 0x000E502EE78B3FF6 // 2^(59/64) 276data8 0x000EA4AFA2A490DA // 2^(60/64) 277data8 0x000EFA1BEE615A27 // 2^(61/64) 278data8 0x000F50765B6E4540 // 2^(62/64) 279data8 0x000FA7C1819E90D8 // 2^(63/64) 280LOCAL_OBJECT_END(_expf_table) 281 282 283.section .text 284GLOBAL_IEEE754_ENTRY(expm1f) 285 286{ .mlx 287 getf.exp rSignexp_x = f8 // Must recompute if x unorm 288 movl r64DivLn2 = 0x40571547652B82FE // 64/ln(2) 289} 290{ .mlx 291 addl rTblAddr = @ltoff(_expf_table),gp 292 movl rRightShifter = 0x43E8000000000000 // DP Right Shifter 293} 294;; 295 296{ .mfi 297 // point to the beginning of the table 298 ld8 rTblAddr = [rTblAddr] 299 fclass.m p14, p0 = f8 , 0x22 // test for -INF 300 mov rExp_mask = 0x1ffff // Exponent mask 301} 302{ .mfi 303 nop.m 0 304 fnorm.s1 fNormX = f8 // normalized x 305 nop.i 0 306} 307;; 308 309{ .mfi 310 setf.d f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg 311 fclass.m p9, p0 = f8 , 0x0b // test for x unorm 312 mov rExp_bias = 0xffff // Exponent bias 313} 314{ .mlx 315 // load Right Shifter to FP reg 316 setf.d fRightShifter = rRightShifter 317 movl rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR 318} 319;; 320 321{ .mfi 322 ldfpd fA8, fA7 = [rTblAddr], 16 323 fcmp.eq.s1 p13, p0 = f0, f8 // test for x = 0.0 324 mov rExp_half = 0xfffe 325} 326{ .mfb 327 setf.d fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg 328 nop.f 0 329(p9) br.cond.spnt EXPM1_UNORM // Branch if x unorm 330} 331;; 332 333EXPM1_COMMON: 334{ .mfb 335 ldfpd fA6, fA5 = [rTblAddr], 16 336(p14) fms.s.s0 f8 = f0, f0, f1 // result if x = -inf 337(p14) br.ret.spnt b0 // exit here if x = -inf 338} 339;; 340 341{ .mfb 342 ldfpd fA4, fA3 = [rTblAddr], 16 343 fclass.m p15, p0 = f8 , 0x1e1 // test for NaT,NaN,+Inf 344(p13) br.ret.spnt b0 // exit here if x =0.0, result is x 345} 346;; 347 348{ .mfi 349 // overflow thresholds 350 ldfps fMIN_SGL_OFLOW_ARG, fMAX_SGL_NORM_ARG = [rTblAddr], 8 351 fma.s1 fXsq = fNormX, fNormX, f0 // x^2 for small path 352 and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x 353} 354{ .mlx 355 nop.m 0 356 movl rM1_lim = 0xc1c00000 // Minus -1 limit (-24.0), SP 357} 358;; 359 360{ .mfi 361 setf.exp fA2 = rExp_half 362 // x*(64/ln(2)) + Right Shifter 363 fma.s1 fNint = fNormX, f64DivLn2, fRightShifter 364 sub rExp_x = rExp_x, rExp_bias // True exponent of x 365} 366{ .mfb 367 nop.m 0 368(p15) fma.s.s0 f8 = f8, f1, f0 // result if x = NaT,NaN,+Inf 369(p15) br.ret.spnt b0 // exit here if x = NaT,NaN,+Inf 370} 371;; 372 373{ .mfi 374 setf.s fMAX_SGL_MINUS_1_ARG = rM1_lim // -1 threshold, -24.0 375 nop.f 0 376 cmp.gt p7, p8 = -2, rExp_x // Test |x| < 2^(-2) 377} 378;; 379 380{ .mfi 381(p7) cmp.gt.unc p6, p7 = -40, rExp_x // Test |x| < 2^(-40) 382 fma.s1 fA87 = fA8, fNormX, fA7 // Small path, A8*x+A7 383 nop.i 0 384} 385{ .mfi 386 nop.m 0 387 fma.s1 fA65 = fA6, fNormX, fA5 // Small path, A6*x+A5 388 nop.i 0 389} 390;; 391 392{ .mfb 393 nop.m 0 394(p6) fma.s.s0 f8 = f8, f8, f8 // If x < 2^-40, result=x+x*x 395(p6) br.ret.spnt b0 // Exit if x < 2^-40 396} 397;; 398 399{ .mfi 400 nop.m 0 401 // check for overflow 402 fcmp.gt.s1 p15, p14 = fNormX, fMIN_SGL_OFLOW_ARG 403 nop.i 0 404} 405{ .mfi 406 nop.m 0 407 fms.s1 fN = fNint, f1, fRightShifter // n in FP register 408 nop.i 0 409} 410;; 411 412{ .mfi 413 nop.m 0 414(p7) fma.s1 fA43 = fA4, fNormX, fA3 // Small path, A4*x+A3 415 nop.i 0 416} 417;; 418 419{ .mfi 420 getf.sig rNJ = fNint // bits of n, j 421(p7) fma.s1 fA8765 = fA87, fXsq, fA65 // Small path, A87*xsq+A65 422 nop.i 0 423} 424{ .mfb 425 nop.m 0 426(p7) fma.s1 fX3 = fXsq, fNormX, f0 // Small path, x^3 427 // branch out if overflow 428(p15) br.cond.spnt EXPM1_CERTAIN_OVERFLOW 429} 430;; 431 432{ .mfi 433 addl rN = 0xffff-63, rNJ // biased and shifted n 434 fnma.s1 fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64 435 extr.u rJ = rNJ , 0 , 6 // bits of j 436} 437;; 438 439{ .mfi 440 shladd rJ = rJ, 3, rTblAddr // address in the 2^(j/64) table 441 // check for certain -1 442 fcmp.le.s1 p13, p0 = fNormX, fMAX_SGL_MINUS_1_ARG 443 shr rN = rN, 6 // biased n 444} 445{ .mfi 446 nop.m 0 447(p7) fma.s1 fA432 = fA43, fNormX, fA2 // Small path, A43*x+A2 448 nop.i 0 449} 450;; 451 452{ .mfi 453 ld8 rJ = [rJ] 454 nop.f 0 455 shl rN = rN , 52 // 2^n bits in DP format 456} 457;; 458 459{ .mmi 460 or rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format 461(p13) mov rTmp = 1 // Make small value for -1 path 462 nop.i 0 463} 464;; 465 466{ .mfi 467 setf.d fT = rN // 2^n 468 // check for possible overflow (only happens if input higher precision) 469(p14) fcmp.gt.s1 p14, p0 = fNormX, fMAX_SGL_NORM_ARG 470 nop.i 0 471} 472{ .mfi 473 nop.m 0 474(p7) fma.s1 fA8765432 = fA8765, fX3, fA432 // A8765*x^3+A432 475 nop.i 0 476} 477;; 478 479{ .mfi 480(p13) setf.exp fTmp = rTmp // Make small value for -1 path 481 fma.s1 fP = fA3, fR, fA2 // A3*R + A2 482 nop.i 0 483} 484{ .mfb 485 nop.m 0 486 fma.s1 fRSqr = fR, fR, f0 // R^2 487(p13) br.cond.spnt EXPM1_CERTAIN_MINUS_ONE // Branch if x < -24.0 488} 489;; 490 491{ .mfb 492 nop.m 0 493(p7) fma.s.s0 f8 = fA8765432, fXsq, fNormX // Small path, 494 // result=xsq*A8765432+x 495(p7) br.ret.spnt b0 // Exit if 2^-40 <= |x| < 2^-2 496} 497;; 498 499{ .mfi 500 nop.m 0 501 fma.s1 fP = fP, fRSqr, fR // P = (A3*R + A2)*Rsqr + R 502 nop.i 0 503} 504;; 505 506{ .mfb 507 nop.m 0 508 fms.s1 fTm1 = fT, f1, f1 // T - 1.0 509(p14) br.cond.spnt EXPM1_POSSIBLE_OVERFLOW 510} 511;; 512 513{ .mfb 514 nop.m 0 515 fma.s.s0 f8 = fP, fT, fTm1 516 br.ret.sptk b0 // Result for main path 517 // minus_one_limit < x < -2^-2 518 // and +2^-2 <= x < overflow_limit 519} 520;; 521 522// Here if x unorm 523EXPM1_UNORM: 524{ .mfb 525 getf.exp rSignexp_x = fNormX // Must recompute if x unorm 526 fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag 527 br.cond.sptk EXPM1_COMMON 528} 529;; 530 531// here if result will be -1 and inexact, x <= -24.0 532EXPM1_CERTAIN_MINUS_ONE: 533{ .mfb 534 nop.m 0 535 fms.s.s0 f8 = fTmp, fTmp, f1 // Result -1, and Inexact set 536 br.ret.sptk b0 537} 538;; 539 540EXPM1_POSSIBLE_OVERFLOW: 541 542// Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG 543// This cannot happen if input is a single, only if input higher precision. 544// Overflow is a possibility, not a certainty. 545 546// Recompute result using status field 2 with user's rounding mode, 547// and wre set. If result is larger than largest single, then we have 548// overflow 549 550{ .mfi 551 mov rGt_ln = 0x1007f // Exponent for largest sgl + 1 ulp 552 fsetc.s2 0x7F,0x42 // Get user's round mode, set wre 553 nop.i 0 554} 555;; 556 557{ .mfi 558 setf.exp fGt_pln = rGt_ln // Create largest single + 1 ulp 559 fma.s.s2 fWre_urm_f8 = fP, fT, fTm1 // Result with wre set 560 nop.i 0 561} 562;; 563 564{ .mfi 565 nop.m 0 566 fsetc.s2 0x7F,0x40 // Turn off wre in sf2 567 nop.i 0 568} 569;; 570 571{ .mfi 572 nop.m 0 573 fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow 574 nop.i 0 575} 576;; 577 578{ .mfb 579 nop.m 0 580 nop.f 0 581(p6) br.cond.spnt EXPM1_CERTAIN_OVERFLOW // Branch if overflow 582} 583;; 584 585{ .mfb 586 nop.m 0 587 fma.s.s0 f8 = fP, fT, fTm1 588 br.ret.sptk b0 // Exit if really no overflow 589} 590;; 591 592// here if overflow 593EXPM1_CERTAIN_OVERFLOW: 594{ .mmi 595 addl rTmp = 0x1FFFE, r0;; 596 setf.exp fTmp = rTmp 597 nop.i 999 598} 599;; 600 601{ .mfi 602 alloc r32 = ar.pfs, 0, 3, 4, 0 // get some registers 603 fmerge.s FR_X = fNormX,fNormX 604 nop.i 0 605} 606{ .mfb 607 mov GR_Parameter_TAG = 43 608 fma.s.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result 609 br.cond.sptk __libm_error_region 610} 611;; 612 613GLOBAL_IEEE754_END(expm1f) 614libm_alias_float_other (__expm1, expm1) 615 616 617LOCAL_LIBM_ENTRY(__libm_error_region) 618.prologue 619{ .mfi 620 add GR_Parameter_Y=-32,sp // Parameter 2 value 621 nop.f 999 622.save ar.pfs,GR_SAVE_PFS 623 mov GR_SAVE_PFS=ar.pfs // Save ar.pfs 624} 625{ .mfi 626.fframe 64 627 add sp=-64,sp // Create new stack 628 nop.f 0 629 mov GR_SAVE_GP=gp // Save gp 630};; 631{ .mmi 632 stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack 633 add GR_Parameter_X = 16,sp // Parameter 1 address 634.save b0, GR_SAVE_B0 635 mov GR_SAVE_B0=b0 // Save b0 636};; 637.body 638{ .mfi 639 stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack 640 nop.f 0 641 add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address 642} 643{ .mib 644 stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack 645 add GR_Parameter_Y = -16,GR_Parameter_Y 646 br.call.sptk b0=__libm_error_support# // Call error handling function 647};; 648 649{ .mmi 650 add GR_Parameter_RESULT = 48,sp 651 nop.m 0 652 nop.i 0 653};; 654 655{ .mmi 656 ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack 657.restore sp 658 add sp = 64,sp // Restore stack pointer 659 mov b0 = GR_SAVE_B0 // Restore return address 660};; 661{ .mib 662 mov gp = GR_SAVE_GP // Restore gp 663 mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs 664 br.ret.sptk b0 // Return 665};; 666 667LOCAL_LIBM_END(__libm_error_region) 668 669 670.type __libm_error_support#,@function 671.global __libm_error_support# 672