1.file "expf_m1.s"
2
3
4// Copyright (c) 2000 - 2005, Intel Corporation
5// All rights reserved.
6//
7//
8// Redistribution and use in source and binary forms, with or without
9// modification, are permitted provided that the following conditions are
10// met:
11//
12// * Redistributions of source code must retain the above copyright
13// notice, this list of conditions and the following disclaimer.
14//
15// * Redistributions in binary form must reproduce the above copyright
16// notice, this list of conditions and the following disclaimer in the
17// documentation and/or other materials provided with the distribution.
18//
19// * The name of Intel Corporation may not be used to endorse or promote
20// products derived from this software without specific prior written
21// permission.
22
23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34//
35// Intel Corporation is the author of this code, and requests that all
36// problem reports or change requests be submitted to it directly at
37// http://www.intel.com/software/products/opensource/libraries/num.htm.
38
39// History
40//*********************************************************************
41// 02/02/00 Initial Version
42// 04/04/00 Unwind support added
43// 08/15/00 Bundle added after call to __libm_error_support to properly
44//          set [the previously overwritten] GR_Parameter_RESULT.
45// 07/07/01 Improved speed of all paths
46// 05/20/02 Cleaned up namespace and sf0 syntax
47// 11/20/02 Improved speed, algorithm based on expf
48// 03/31/05 Reformatted delimiters between data tables
49//
50//
51// API
52//*********************************************************************
53// float expm1f(float)
54//
55// Overview of operation
56//*********************************************************************
57// 1. Inputs of Nan, Inf, Zero, NatVal handled with special paths
58//
59// 2. |x| < 2^-40
60//    Result = x, computed by x + x*x to handle appropriate flags and rounding
61//
62// 3. 2^-40 <= |x| < 2^-2
63//    Result determined by 8th order Taylor series polynomial
64//    expm1f(x) = x + A2*x^2 + ... + A8*x^8
65//
66// 4. x < -24.0
67//    Here we know result is essentially -1 + eps, where eps only affects
68//    rounded result.  Set I.
69//
70// 5. x >= 88.7228
71//    Result overflows.  Set I, O, and call error support
72//
73// 6. 2^-2 <= x < 88.7228  or  -24.0 <= x < -2^-2
74//    This is the main path.  The algorithm is described below:
75
76// Take the input x. w is "how many log2/128 in x?"
77//  w = x * 64/log2
78//  NJ = int(w)
79//  x = NJ*log2/64 + R
80
81//  NJ = 64*n + j
82//  x = n*log2 + (log2/64)*j + R
83//
84//  So, exp(x) = 2^n * 2^(j/64)* exp(R)
85//
86//  T =  2^n * 2^(j/64)
87//       Construct 2^n
88//       Get 2^(j/64) table
89//           actually all the entries of 2^(j/64) table are stored in DP and
90//           with exponent bits set to 0 -> multiplication on 2^n can be
91//           performed by doing logical "or" operation with bits presenting 2^n
92
93//  exp(R) = 1 + (exp(R) - 1)
94//  P = exp(R) - 1 approximated by Taylor series of 3rd degree
95//      P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2
96//
97
98//  The final result is reconstructed as follows
99//  expm1f(x) = T*P + (T - 1.0)
100
101// Special values
102//*********************************************************************
103// expm1f(+0)    = +0.0
104// expm1f(-0)    = -0.0
105
106// expm1f(+qnan) = +qnan
107// expm1f(-qnan) = -qnan
108// expm1f(+snan) = +qnan
109// expm1f(-snan) = -qnan
110
111// expm1f(-inf)  = -1.0
112// expm1f(+inf)  = +inf
113
114// Overflow and Underflow
115//*********************************************************************
116// expm1f(x) = largest single normal when
117//     x = 88.7228 = 0x42b17217
118//
119// Underflow is handled as described in case 2 above.
120
121
122// Registers used
123//*********************************************************************
124// Floating Point registers used:
125// f8, input
126// f6,f7, f9 -> f15,  f32 -> f45
127
128// General registers used:
129// r3, r20 -> r38
130
131// Predicate registers used:
132// p9 -> p15
133
134// Assembly macros
135//*********************************************************************
136// integer registers used
137// scratch
138rNJ                   = r3
139
140rExp_half             = r20
141rSignexp_x            = r21
142rExp_x                = r22
143rExp_mask             = r23
144rExp_bias             = r24
145rTmp                  = r25
146rM1_lim               = r25
147rGt_ln                = r25
148rJ                    = r26
149rN                    = r27
150rTblAddr              = r28
151rLn2Div64             = r29
152rRightShifter         = r30
153r64DivLn2             = r31
154// stacked
155GR_SAVE_PFS           = r32
156GR_SAVE_B0            = r33
157GR_SAVE_GP            = r34
158GR_Parameter_X        = r35
159GR_Parameter_Y        = r36
160GR_Parameter_RESULT   = r37
161GR_Parameter_TAG      = r38
162
163// floating point registers used
164FR_X                  = f10
165FR_Y                  = f1
166FR_RESULT             = f8
167// scratch
168fRightShifter         = f6
169f64DivLn2             = f7
170fNormX                = f9
171fNint                 = f10
172fN                    = f11
173fR                    = f12
174fLn2Div64             = f13
175fA2                   = f14
176fA3                   = f15
177// stacked
178fP                    = f32
179fX3                   = f33
180fT                    = f34
181fMIN_SGL_OFLOW_ARG    = f35
182fMAX_SGL_NORM_ARG     = f36
183fMAX_SGL_MINUS_1_ARG  = f37
184fA4                   = f38
185fA43                  = f38
186fA432                 = f38
187fRSqr                 = f39
188fA5                   = f40
189fTmp                  = f41
190fGt_pln               = f41
191fXsq                  = f41
192fA7                   = f42
193fA6                   = f43
194fA65                  = f43
195fTm1                  = f44
196fA8                   = f45
197fA87                  = f45
198fA8765                = f45
199fA8765432             = f45
200fWre_urm_f8           = f45
201
202RODATA
203.align 16
204LOCAL_OBJECT_START(_expf_table)
205data8 0x3efa01a01a01a01a // A8 = 1/8!
206data8 0x3f2a01a01a01a01a // A7 = 1/7!
207data8 0x3f56c16c16c16c17 // A6 = 1/6!
208data8 0x3f81111111111111 // A5 = 1/5!
209data8 0x3fa5555555555555 // A4 = 1/4!
210data8 0x3fc5555555555555 // A3 = 1/3!
211//
212data4 0x42b17218         // Smallest sgl arg to overflow sgl result
213data4 0x42b17217         // Largest sgl arg to give sgl result
214//
215// 2^(j/64) table, j goes from 0 to 63
216data8 0x0000000000000000 // 2^(0/64)
217data8 0x00002C9A3E778061 // 2^(1/64)
218data8 0x000059B0D3158574 // 2^(2/64)
219data8 0x0000874518759BC8 // 2^(3/64)
220data8 0x0000B5586CF9890F // 2^(4/64)
221data8 0x0000E3EC32D3D1A2 // 2^(5/64)
222data8 0x00011301D0125B51 // 2^(6/64)
223data8 0x0001429AAEA92DE0 // 2^(7/64)
224data8 0x000172B83C7D517B // 2^(8/64)
225data8 0x0001A35BEB6FCB75 // 2^(9/64)
226data8 0x0001D4873168B9AA // 2^(10/64)
227data8 0x0002063B88628CD6 // 2^(11/64)
228data8 0x0002387A6E756238 // 2^(12/64)
229data8 0x00026B4565E27CDD // 2^(13/64)
230data8 0x00029E9DF51FDEE1 // 2^(14/64)
231data8 0x0002D285A6E4030B // 2^(15/64)
232data8 0x000306FE0A31B715 // 2^(16/64)
233data8 0x00033C08B26416FF // 2^(17/64)
234data8 0x000371A7373AA9CB // 2^(18/64)
235data8 0x0003A7DB34E59FF7 // 2^(19/64)
236data8 0x0003DEA64C123422 // 2^(20/64)
237data8 0x0004160A21F72E2A // 2^(21/64)
238data8 0x00044E086061892D // 2^(22/64)
239data8 0x000486A2B5C13CD0 // 2^(23/64)
240data8 0x0004BFDAD5362A27 // 2^(24/64)
241data8 0x0004F9B2769D2CA7 // 2^(25/64)
242data8 0x0005342B569D4F82 // 2^(26/64)
243data8 0x00056F4736B527DA // 2^(27/64)
244data8 0x0005AB07DD485429 // 2^(28/64)
245data8 0x0005E76F15AD2148 // 2^(29/64)
246data8 0x0006247EB03A5585 // 2^(30/64)
247data8 0x0006623882552225 // 2^(31/64)
248data8 0x0006A09E667F3BCD // 2^(32/64)
249data8 0x0006DFB23C651A2F // 2^(33/64)
250data8 0x00071F75E8EC5F74 // 2^(34/64)
251data8 0x00075FEB564267C9 // 2^(35/64)
252data8 0x0007A11473EB0187 // 2^(36/64)
253data8 0x0007E2F336CF4E62 // 2^(37/64)
254data8 0x00082589994CCE13 // 2^(38/64)
255data8 0x000868D99B4492ED // 2^(39/64)
256data8 0x0008ACE5422AA0DB // 2^(40/64)
257data8 0x0008F1AE99157736 // 2^(41/64)
258data8 0x00093737B0CDC5E5 // 2^(42/64)
259data8 0x00097D829FDE4E50 // 2^(43/64)
260data8 0x0009C49182A3F090 // 2^(44/64)
261data8 0x000A0C667B5DE565 // 2^(45/64)
262data8 0x000A5503B23E255D // 2^(46/64)
263data8 0x000A9E6B5579FDBF // 2^(47/64)
264data8 0x000AE89F995AD3AD // 2^(48/64)
265data8 0x000B33A2B84F15FB // 2^(49/64)
266data8 0x000B7F76F2FB5E47 // 2^(50/64)
267data8 0x000BCC1E904BC1D2 // 2^(51/64)
268data8 0x000C199BDD85529C // 2^(52/64)
269data8 0x000C67F12E57D14B // 2^(53/64)
270data8 0x000CB720DCEF9069 // 2^(54/64)
271data8 0x000D072D4A07897C // 2^(55/64)
272data8 0x000D5818DCFBA487 // 2^(56/64)
273data8 0x000DA9E603DB3285 // 2^(57/64)
274data8 0x000DFC97337B9B5F // 2^(58/64)
275data8 0x000E502EE78B3FF6 // 2^(59/64)
276data8 0x000EA4AFA2A490DA // 2^(60/64)
277data8 0x000EFA1BEE615A27 // 2^(61/64)
278data8 0x000F50765B6E4540 // 2^(62/64)
279data8 0x000FA7C1819E90D8 // 2^(63/64)
280LOCAL_OBJECT_END(_expf_table)
281
282
283.section .text
284GLOBAL_IEEE754_ENTRY(expm1f)
285
286{ .mlx
287      getf.exp        rSignexp_x = f8      // Must recompute if x unorm
288      movl            r64DivLn2 = 0x40571547652B82FE // 64/ln(2)
289}
290{ .mlx
291      addl            rTblAddr = @ltoff(_expf_table),gp
292      movl            rRightShifter = 0x43E8000000000000 // DP Right Shifter
293}
294;;
295
296{ .mfi
297      // point to the beginning of the table
298      ld8             rTblAddr = [rTblAddr]
299      fclass.m        p14, p0 = f8 , 0x22  // test for -INF
300      mov             rExp_mask = 0x1ffff   // Exponent mask
301}
302{ .mfi
303      nop.m           0
304      fnorm.s1        fNormX = f8 // normalized x
305      nop.i           0
306}
307;;
308
309{ .mfi
310      setf.d          f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg
311      fclass.m        p9, p0 = f8 , 0x0b    // test for x unorm
312      mov             rExp_bias = 0xffff    // Exponent bias
313}
314{ .mlx
315      // load Right Shifter to FP reg
316      setf.d          fRightShifter = rRightShifter
317      movl            rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR
318}
319;;
320
321{ .mfi
322      ldfpd           fA8, fA7 = [rTblAddr], 16
323      fcmp.eq.s1      p13, p0 = f0, f8      // test for x = 0.0
324      mov             rExp_half = 0xfffe
325}
326{ .mfb
327      setf.d          fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg
328      nop.f           0
329(p9)  br.cond.spnt    EXPM1_UNORM // Branch if x unorm
330}
331;;
332
333EXPM1_COMMON:
334{ .mfb
335      ldfpd           fA6, fA5 = [rTblAddr], 16
336(p14) fms.s.s0        f8 = f0, f0, f1       // result if x = -inf
337(p14) br.ret.spnt     b0                    // exit here if x = -inf
338}
339;;
340
341{ .mfb
342      ldfpd           fA4, fA3 = [rTblAddr], 16
343      fclass.m        p15, p0 = f8 , 0x1e1  // test for NaT,NaN,+Inf
344(p13) br.ret.spnt     b0                    // exit here if x =0.0, result is x
345}
346;;
347
348{ .mfi
349      // overflow thresholds
350      ldfps           fMIN_SGL_OFLOW_ARG, fMAX_SGL_NORM_ARG = [rTblAddr], 8
351      fma.s1          fXsq = fNormX, fNormX, f0      // x^2 for small path
352      and             rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
353}
354{ .mlx
355      nop.m           0
356      movl            rM1_lim = 0xc1c00000  // Minus -1 limit (-24.0), SP
357}
358;;
359
360{ .mfi
361      setf.exp        fA2 = rExp_half
362      // x*(64/ln(2)) + Right Shifter
363      fma.s1          fNint = fNormX, f64DivLn2, fRightShifter
364      sub             rExp_x = rExp_x, rExp_bias     // True exponent of x
365}
366{ .mfb
367      nop.m           0
368(p15) fma.s.s0        f8 = f8, f1, f0       // result if x = NaT,NaN,+Inf
369(p15) br.ret.spnt     b0                    // exit here if x = NaT,NaN,+Inf
370}
371;;
372
373{ .mfi
374      setf.s          fMAX_SGL_MINUS_1_ARG = rM1_lim // -1 threshold, -24.0
375      nop.f           0
376      cmp.gt          p7, p8 = -2, rExp_x      // Test |x| < 2^(-2)
377}
378;;
379
380{ .mfi
381(p7)  cmp.gt.unc      p6, p7 = -40, rExp_x     // Test |x| < 2^(-40)
382      fma.s1          fA87 = fA8, fNormX, fA7  // Small path, A8*x+A7
383      nop.i           0
384}
385{ .mfi
386      nop.m           0
387      fma.s1          fA65 = fA6, fNormX, fA5  // Small path, A6*x+A5
388      nop.i           0
389}
390;;
391
392{ .mfb
393      nop.m           0
394(p6)  fma.s.s0        f8 = f8, f8, f8          // If x < 2^-40, result=x+x*x
395(p6)  br.ret.spnt     b0                       // Exit if x < 2^-40
396}
397;;
398
399{ .mfi
400      nop.m           0
401      // check for overflow
402      fcmp.gt.s1      p15, p14 = fNormX, fMIN_SGL_OFLOW_ARG
403      nop.i           0
404}
405{ .mfi
406      nop.m           0
407      fms.s1          fN = fNint, f1, fRightShifter // n in FP register
408      nop.i           0
409}
410;;
411
412{ .mfi
413      nop.m           0
414(p7)  fma.s1          fA43 = fA4, fNormX, fA3   // Small path, A4*x+A3
415      nop.i           0
416}
417;;
418
419{ .mfi
420      getf.sig        rNJ = fNint               // bits of n, j
421(p7)  fma.s1          fA8765 = fA87, fXsq, fA65 // Small path, A87*xsq+A65
422      nop.i           0
423}
424{ .mfb
425      nop.m           0
426(p7)  fma.s1          fX3 = fXsq, fNormX, f0    // Small path, x^3
427      // branch out if overflow
428(p15) br.cond.spnt    EXPM1_CERTAIN_OVERFLOW
429}
430;;
431
432{ .mfi
433      addl            rN = 0xffff-63, rNJ    // biased and shifted n
434      fnma.s1         fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64
435      extr.u          rJ = rNJ , 0 , 6       // bits of j
436}
437;;
438
439{ .mfi
440      shladd          rJ = rJ, 3, rTblAddr   // address in the 2^(j/64) table
441      // check for certain -1
442      fcmp.le.s1      p13, p0 = fNormX, fMAX_SGL_MINUS_1_ARG
443      shr             rN = rN, 6             // biased n
444}
445{ .mfi
446      nop.m           0
447(p7)  fma.s1          fA432 = fA43, fNormX, fA2 // Small path, A43*x+A2
448      nop.i           0
449}
450;;
451
452{ .mfi
453      ld8             rJ = [rJ]
454      nop.f           0
455      shl             rN = rN , 52           // 2^n bits in DP format
456}
457;;
458
459{ .mmi
460      or              rN = rN, rJ        // bits of 2^n * 2^(j/64) in DP format
461(p13) mov             rTmp = 1           // Make small value for -1 path
462      nop.i           0
463}
464;;
465
466{ .mfi
467      setf.d          fT = rN            // 2^n
468      // check for possible overflow (only happens if input higher precision)
469(p14) fcmp.gt.s1      p14, p0 = fNormX, fMAX_SGL_NORM_ARG
470      nop.i           0
471}
472{ .mfi
473      nop.m           0
474(p7)  fma.s1          fA8765432 = fA8765, fX3, fA432 // A8765*x^3+A432
475      nop.i           0
476}
477;;
478
479{ .mfi
480(p13) setf.exp        fTmp = rTmp        // Make small value for -1 path
481      fma.s1          fP = fA3, fR, fA2  // A3*R + A2
482      nop.i           0
483}
484{ .mfb
485      nop.m           0
486      fma.s1          fRSqr = fR, fR, f0 // R^2
487(p13) br.cond.spnt    EXPM1_CERTAIN_MINUS_ONE // Branch if x < -24.0
488}
489;;
490
491{ .mfb
492      nop.m           0
493(p7)  fma.s.s0        f8 = fA8765432, fXsq, fNormX // Small path,
494                                         // result=xsq*A8765432+x
495(p7)  br.ret.spnt     b0                 // Exit if 2^-40 <= |x| < 2^-2
496}
497;;
498
499{ .mfi
500      nop.m           0
501      fma.s1          fP = fP, fRSqr, fR // P = (A3*R + A2)*Rsqr + R
502      nop.i           0
503}
504;;
505
506{ .mfb
507      nop.m           0
508      fms.s1          fTm1 = fT, f1, f1  // T - 1.0
509(p14) br.cond.spnt    EXPM1_POSSIBLE_OVERFLOW
510}
511;;
512
513{ .mfb
514      nop.m           0
515      fma.s.s0        f8 = fP, fT, fTm1
516      br.ret.sptk     b0                 // Result for main path
517                                         // minus_one_limit < x < -2^-2
518                                         // and +2^-2 <= x < overflow_limit
519}
520;;
521
522// Here if x unorm
523EXPM1_UNORM:
524{ .mfb
525      getf.exp        rSignexp_x = fNormX // Must recompute if x unorm
526      fcmp.eq.s0      p6, p0 = f8, f0     // Set D flag
527      br.cond.sptk    EXPM1_COMMON
528}
529;;
530
531// here if result will be -1 and inexact, x <= -24.0
532EXPM1_CERTAIN_MINUS_ONE:
533{ .mfb
534      nop.m           0
535      fms.s.s0        f8 = fTmp, fTmp, f1  // Result -1, and Inexact set
536      br.ret.sptk     b0
537}
538;;
539
540EXPM1_POSSIBLE_OVERFLOW:
541
542// Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG
543// This cannot happen if input is a single, only if input higher precision.
544// Overflow is a possibility, not a certainty.
545
546// Recompute result using status field 2 with user's rounding mode,
547// and wre set.  If result is larger than largest single, then we have
548// overflow
549
550{ .mfi
551      mov             rGt_ln  = 0x1007f // Exponent for largest sgl + 1 ulp
552      fsetc.s2        0x7F,0x42         // Get user's round mode, set wre
553      nop.i           0
554}
555;;
556
557{ .mfi
558      setf.exp        fGt_pln = rGt_ln  // Create largest single + 1 ulp
559      fma.s.s2        fWre_urm_f8 = fP, fT, fTm1  // Result with wre set
560      nop.i           0
561}
562;;
563
564{ .mfi
565      nop.m           0
566      fsetc.s2        0x7F,0x40                   // Turn off wre in sf2
567      nop.i           0
568}
569;;
570
571{ .mfi
572      nop.m           0
573      fcmp.ge.s1      p6, p0 =  fWre_urm_f8, fGt_pln // Test for overflow
574      nop.i           0
575}
576;;
577
578{ .mfb
579      nop.m           0
580      nop.f           0
581(p6)  br.cond.spnt    EXPM1_CERTAIN_OVERFLOW // Branch if overflow
582}
583;;
584
585{ .mfb
586      nop.m           0
587      fma.s.s0        f8 = fP, fT, fTm1
588      br.ret.sptk     b0                     // Exit if really no overflow
589}
590;;
591
592// here if overflow
593EXPM1_CERTAIN_OVERFLOW:
594{ .mmi
595      addl            rTmp = 0x1FFFE, r0;;
596      setf.exp        fTmp = rTmp
597      nop.i 999
598}
599;;
600
601{ .mfi
602      alloc           r32 = ar.pfs, 0, 3, 4, 0 // get some registers
603      fmerge.s        FR_X = fNormX,fNormX
604      nop.i           0
605}
606{ .mfb
607      mov             GR_Parameter_TAG = 43
608      fma.s.s0        FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
609      br.cond.sptk    __libm_error_region
610}
611;;
612
613GLOBAL_IEEE754_END(expm1f)
614libm_alias_float_other (__expm1, expm1)
615
616
617LOCAL_LIBM_ENTRY(__libm_error_region)
618.prologue
619{ .mfi
620      add   GR_Parameter_Y=-32,sp             // Parameter 2 value
621      nop.f 999
622.save   ar.pfs,GR_SAVE_PFS
623      mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
624}
625{ .mfi
626.fframe 64
627      add sp=-64,sp                           // Create new stack
628      nop.f 0
629      mov GR_SAVE_GP=gp                       // Save gp
630};;
631{ .mmi
632      stfs [GR_Parameter_Y] = FR_Y,16         // Store Parameter 2 on stack
633      add GR_Parameter_X = 16,sp              // Parameter 1 address
634.save   b0, GR_SAVE_B0
635      mov GR_SAVE_B0=b0                       // Save b0
636};;
637.body
638{ .mfi
639      stfs [GR_Parameter_X] = FR_X            // Store Parameter 1 on stack
640      nop.f 0
641      add   GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
642}
643{ .mib
644      stfs [GR_Parameter_Y] = FR_RESULT       // Store Parameter 3 on stack
645      add   GR_Parameter_Y = -16,GR_Parameter_Y
646      br.call.sptk b0=__libm_error_support#   // Call error handling function
647};;
648
649{ .mmi
650      add   GR_Parameter_RESULT = 48,sp
651      nop.m 0
652      nop.i 0
653};;
654
655{ .mmi
656      ldfs  f8 = [GR_Parameter_RESULT]       // Get return result off stack
657.restore sp
658      add   sp = 64,sp                       // Restore stack pointer
659      mov   b0 = GR_SAVE_B0                  // Restore return address
660};;
661{ .mib
662      mov   gp = GR_SAVE_GP                  // Restore gp
663      mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
664      br.ret.sptk     b0                     // Return
665};;
666
667LOCAL_LIBM_END(__libm_error_region)
668
669
670.type   __libm_error_support#,@function
671.global __libm_error_support#
672