1.file "erfcl.s"
2
3
4// Copyright (c) 2001 - 2005, Intel Corporation
5// All rights reserved.
6//
7//
8// Redistribution and use in source and binary forms, with or without
9// modification, are permitted provided that the following conditions are
10// met:
11//
12// * Redistributions of source code must retain the above copyright
13// notice, this list of conditions and the following disclaimer.
14//
15// * Redistributions in binary form must reproduce the above copyright
16// notice, this list of conditions and the following disclaimer in the
17// documentation and/or other materials provided with the distribution.
18//
19// * The name of Intel Corporation may not be used to endorse or promote
20// products derived from this software without specific prior written
21// permission.
22
23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34//
35// Intel Corporation is the author of this code, and requests that all
36// problem reports or change requests be submitted to it directly at
37// http://www.intel.com/software/products/opensource/libraries/num.htm.
38//
39// History
40//==============================================================
41// 11/12/01  Initial version
42// 02/08/02  Added missing }
43// 05/20/02  Cleaned up namespace and sf0 syntax
44// 02/10/03  Reordered header: .section, .global, .proc, .align;
45//           used data8 for long double table values
46// 03/31/05  Reformatted delimiters between data tables
47//
48// API
49//==============================================================
50// long double erfcl(long double)
51//
52// Implementation and Algorithm Notes:
53//==============================================================
54// 1. 0 <= x <= 107.0
55//
56//    erfcl(x) ~=~ P15(z) * expl( -x^2 )/(dx + x), z = x - xc(i).
57//
58//    Comment:
59//
60//    Let x(i) = -1.0 + 2^(i/4),i=0,...27. So we have 28 unequal
61//    argument intervals [x(i),x(i+1)] with length ratio q = 2^(1/4).
62//    Values xc(i) we have in the table erfc_xc_table,xc(i)=x(i)for i = 0
63//    and xc(i)= 0.5*( x(i)+x(i+1) ) for i>0.
64//
65//    Let x(i)<= x < x(i+1).
66//    We can find i as exponent of number (x + 1)^4.
67//
68//    Let P15(z)= a0+ a1*z +..+a15*z^15 - polynomial approximation of degree 15
69//    for function      erfcl(z+xc(i)) * expl( (z+xc(i))^2)* (dx+z+xc(i)) and
70//    -0.5*[x(i+1)-x(i)] <= z <= 0.5*[x(i+1)-x(i)].
71//
72//    Let  Q(z)= (P(z)- S)/S, S = a0, rounded to 16 bits.
73//    Polynomial coefficients for Q(z) we have in the table erfc_Q_table as
74//    long double values
75//
76//    We use multi precision to calculate input argument -x^2 for expl and
77//    for u = 1/(dx + x).
78//
79//    Algorithm description for expl function see below. In accordance with
80//    denotation of this algorithm we have for expl:
81//
82//    expl(X) ~=~ 2^K*T_1*(1+W_1)*T_2*(1+W_2)*(1+ poly(r)), X = -x^2.
83//
84//    Final calculations for erfcl:
85//
86//    erfcl(x) ~=~
87//
88//         2^K*T_1*(1+W_1)*T_2*(1+W_2)*(1+ poly(r))*(1-dy)*S*(1+Q(z))*u*(1+du),
89//
90//    where dy - low bits of x^2 and u, u*du - hi and low bits of 1/(dx + x).
91//
92//    The order of calculations is the next:
93//
94//    1)  M = 2^K*T_1*T_2*S          without rounding error,
95//    2)  W = W_1 + (W_2 + W_1*W_2), where 1+W  ~=~ (1+W_1)(1+W_2),
96//    3)  H = W - dy,                where 1+H  ~=~ (1+W )(1-dy),
97//    4)  R = poly(r)*H + poly(r),
98//    5)  R = H + R              ,   where 1+R  ~=~ (1+H )(1+poly(r)),
99//    6)  G = Q(z)*R + Q(z),
100//    7)  R1 = R + du,               where 1+R1 ~=~ (1+R)(1+du),
101//    8)  G1 = R1 + G,               where 1+G1 ~=~ (1+R1)(1+Q(z)),
102//    9)  V  = G1*M*u,
103//    10) erfcl(x) ~=~ M*u + V
104//
105// 2. -6.5 <= x < 0
106//
107//    erfcl(x)  = 2.0 - erfl(-x)
108//
109// 3. x > 107.0
110//    erfcl(x)  ~=~ 0.0
111//
112// 4. x < -6.5
113//    erfcl(x)  ~=~ 2.0
114
115// Special values
116//==============================================================
117// erfcl(+0)    = 1.0
118// erfcl(-0)    = 1.0
119
120// erfcl(+qnan) = +qnan
121// erfcl(-qnan) = -qnan
122// erfcl(+snan) = +qnan
123// erfcl(-snan) = -qnan
124
125// erfcl(-inf)  = 2.0
126// erfcl(+inf)  = +0
127
128//==============================================================
129// Algorithm description of used expl function.
130//
131// Implementation and Algorithm Notes:
132//
133//  ker_exp_64( in_FR  : X,
134//            out_FR : Y_hi,
135//            out_FR : Y_lo,
136//            out_FR : scale,
137//            out_PR : Safe )
138//
139// On input, X is in register format
140//
141// On output,
142//
143//   scale*(Y_hi + Y_lo)  approximates  exp(X)
144//
145// The accuracy is sufficient for a highly accurate 64 sig.
146// bit implementation.  Safe is set if there is no danger of
147// overflow/underflow when the result is composed from scale,
148// Y_hi and Y_lo. Thus, we can have a fast return if Safe is set.
149// Otherwise, one must prepare to handle the possible exception
150// appropriately.  Note that SAFE not set (false) does not mean
151// that overflow/underflow will occur; only the setting of SAFE
152// guarantees the opposite.
153//
154// **** High Level Overview ****
155//
156// The method consists of three cases.
157//
158// If           |X| < Tiny  use case exp_tiny;
159// else if  |X| < 2^(-6)    use case exp_small;
160// else     use case exp_regular;
161//
162// Case exp_tiny:
163//
164//   1 + X     can be used to approximate exp(X)
165//   X + X^2/2 can be used to approximate exp(X) - 1
166//
167// Case exp_small:
168//
169//   Here, exp(X) and exp(X) - 1 can all be
170//   approximated by a relatively simple polynomial.
171//
172//   This polynomial resembles the truncated Taylor series
173//
174//  exp(w) = 1 + w + w^2/2! + w^3/3! + ... + w^n/n!
175//
176// Case exp_regular:
177//
178//   Here we use a table lookup method. The basic idea is that in
179//   order to compute exp(X), we accurately decompose X into
180//
181//   X = N * log(2)/(2^12)  + r,    |r| <= log(2)/2^13.
182//
183//   Hence
184//
185//   exp(X) = 2^( N / 2^12 ) * exp(r).
186//
187//   The value 2^( N / 2^12 ) is obtained by simple combinations
188//   of values calculated beforehand and stored in table; exp(r)
189//   is approximated by a short polynomial because |r| is small.
190//
191//   We elaborate this method in 4 steps.
192//
193//   Step 1: Reduction
194//
195//   The value 2^12/log(2) is stored as a double-extended number
196//   L_Inv.
197//
198//   N := round_to_nearest_integer( X * L_Inv )
199//
200//   The value log(2)/2^12 is stored as two numbers L_hi and L_lo so
201//   that r can be computed accurately via
202//
203//   r := (X - N*L_hi) - N*L_lo
204//
205//   We pick L_hi such that N*L_hi is representable in 64 sig. bits
206//   and thus the FMA   X - N*L_hi   is error free. So r is the
207//   1 rounding error from an exact reduction with respect to
208//
209//   L_hi + L_lo.
210//
211//   In particular, L_hi has 30 significant bit and can be stored
212//   as a double-precision number; L_lo has 64 significant bits and
213//   stored as a double-extended number.
214//
215//   Step 2: Approximation
216//
217//   exp(r) - 1 is approximated by a short polynomial of the form
218//
219//   r + A_1 r^2 + A_2 r^3 + A_3 r^4 .
220//
221//   Step 3: Composition from Table Values
222//
223//   The value 2^( N / 2^12 ) can be composed from a couple of tables
224//   of precalculated values. First, express N as three integers
225//   K, M_1, and M_2 as
226//
227//     N  =  K * 2^12  + M_1 * 2^6 + M_2
228//
229//   Where 0 <= M_1, M_2 < 2^6; and K can be positive or negative.
230//   When N is represented in 2's complement, M_2 is simply the 6
231//   lsb's, M_1 is the next 6, and K is simply N shifted right
232//   arithmetically (sign extended) by 12 bits.
233//
234//   Now, 2^( N / 2^12 ) is simply
235//
236//      2^K * 2^( M_1 / 2^6 ) * 2^( M_2 / 2^12 )
237//
238//   Clearly, 2^K needs no tabulation. The other two values are less
239//   trivial because if we store each accurately to more than working
240//   precision, than its product is too expensive to calculate. We
241//   use the following method.
242//
243//   Define two mathematical values, delta_1 and delta_2, implicitly
244//   such that
245//
246//     T_1 = exp( [M_1 log(2)/2^6]  -  delta_1 )
247//     T_2 = exp( [M_2 log(2)/2^12] -  delta_2 )
248//
249//   are representable as 24 significant bits. To illustrate the idea,
250//   we show how we define delta_1:
251//
252//     T_1     := round_to_24_bits( exp( M_1 log(2)/2^6 ) )
253//     delta_1  = (M_1 log(2)/2^6) - log( T_1 )
254//
255//   The last equality means mathematical equality. We then tabulate
256//
257//     W_1 := exp(delta_1) - 1
258//     W_2 := exp(delta_2) - 1
259//
260//   Both in double precision.
261//
262//   From the tabulated values T_1, T_2, W_1, W_2, we compose the values
263//   T and W via
264//
265//     T := T_1 * T_2           ...exactly
266//     W := W_1 + (1 + W_1)*W_2
267//
268//   W approximates exp( delta ) - 1  where delta = delta_1 + delta_2.
269//   The mathematical product of T and (W+1) is an accurate representation
270//   of 2^(M_1/2^6) * 2^(M_2/2^12).
271//
272//   Step 4. Reconstruction
273//
274//   Finally, we can reconstruct exp(X), exp(X) - 1.
275//   Because
276//
277//  X = K * log(2) + (M_1*log(2)/2^6  - delta_1)
278//             + (M_2*log(2)/2^12 - delta_2)
279//             + delta_1 + delta_2 + r      ...accurately
280//   We have
281//
282//  exp(X) ~=~ 2^K * ( T + T*[exp(delta_1+delta_2+r) - 1] )
283//         ~=~ 2^K * ( T + T*[exp(delta + r) - 1]         )
284//         ~=~ 2^K * ( T + T*[(exp(delta)-1)
285//               + exp(delta)*(exp(r)-1)]   )
286//             ~=~ 2^K * ( T + T*( W + (1+W)*poly(r) ) )
287//             ~=~ 2^K * ( Y_hi  +  Y_lo )
288//
289//   where Y_hi = T  and Y_lo = T*(W + (1+W)*poly(r))
290//
291//   For exp(X)-1, we have
292//
293//  exp(X)-1 ~=~ 2^K * ( Y_hi + Y_lo ) - 1
294//       ~=~ 2^K * ( Y_hi + Y_lo - 2^(-K) )
295//
296//   and we combine Y_hi + Y_lo - 2^(-N)  into the form of two
297//   numbers  Y_hi + Y_lo carefully.
298//
299//   **** Algorithm Details ****
300//
301//   A careful algorithm must be used to realize the mathematical ideas
302//   accurately. We describe each of the three cases. We assume SAFE
303//   is preset to be TRUE.
304//
305//   Case exp_tiny:
306//
307//   The important points are to ensure an accurate result under
308//   different rounding directions and a correct setting of the SAFE
309//   flag.
310//
311//   If expm1 is 1, then
312//      SAFE  := False  ...possibility of underflow
313//      Scale := 1.0
314//      Y_hi  := X
315//      Y_lo  := 2^(-17000)
316//   Else
317//      Scale := 1.0
318//      Y_hi  := 1.0
319//      Y_lo  := X  ...for different rounding modes
320//   Endif
321//
322//   Case exp_small:
323//
324//   Here we compute a simple polynomial. To exploit parallelism, we split
325//   the polynomial into several portions.
326//
327//   Let r = X
328//
329//   If exp     ...i.e. exp( argument )
330//
331//      rsq := r * r;
332//      r4  := rsq*rsq
333//      poly_lo := P_3 + r*(P_4 + r*(P_5 + r*P_6))
334//      poly_hi := r + rsq*(P_1 + r*P_2)
335//      Y_lo    := poly_hi + r4 * poly_lo
336//      Y_hi    := 1.0
337//      Scale   := 1.0
338//
339//   Else           ...i.e. exp( argument ) - 1
340//
341//      rsq := r * r
342//      r4  := rsq * rsq
343//      r6  := rsq * r4
344//      poly_lo := r6*(Q_5 + r*(Q_6 + r*Q_7))
345//      poly_hi := Q_1 + r*(Q_2 + r*(Q_3 + r*Q_4))
346//      Y_lo    := rsq*poly_hi +  poly_lo
347//      Y_hi    := X
348//      Scale   := 1.0
349//
350//   Endif
351//
352//  Case exp_regular:
353//
354//  The previous description contain enough information except the
355//  computation of poly and the final Y_hi and Y_lo in the case for
356//  exp(X)-1.
357//
358//  The computation of poly for Step 2:
359//
360//   rsq := r*r
361//   poly := r + rsq*(A_1 + r*(A_2 + r*A_3))
362//
363//  For the case exp(X) - 1, we need to incorporate 2^(-K) into
364//  Y_hi and Y_lo at the end of Step 4.
365//
366//   If K > 10 then
367//      Y_lo := Y_lo - 2^(-K)
368//   Else
369//      If K < -10 then
370//   Y_lo := Y_hi + Y_lo
371//   Y_hi := -2^(-K)
372//      Else
373//   Y_hi := Y_hi - 2^(-K)
374//      End If
375//   End If
376//
377
378// Overview of operation
379//==============================================================
380
381// Registers used
382//==============================================================
383// Floating Point registers used:
384// f8, input
385// f9 -> f14,  f36 -> f126
386
387// General registers used:
388// r32 -> r71
389
390// Predicate registers used:
391// p6 -> p15
392
393// Assembly macros
394//==============================================================
395// GR for exp(X)
396GR_ad_Arg           = r33
397GR_ad_C             = r34
398GR_ERFC_S_TB        = r35
399GR_signexp_x        = r36
400GR_exp_x            = r36
401GR_exp_mask         = r37
402GR_ad_W1            = r38
403GR_ad_W2            = r39
404GR_M2               = r40
405GR_M1               = r41
406GR_K                = r42
407GR_exp_2_k          = r43
408GR_ad_T1            = r44
409GR_ad_T2            = r45
410GR_N_fix            = r46
411GR_ad_P             = r47
412GR_exp_bias         = r48
413GR_BIAS             = r48
414GR_exp_half         = r49
415GR_sig_inv_ln2      = r50
416GR_rshf_2to51       = r51
417GR_exp_2tom51       = r52
418GR_rshf             = r53
419
420// GR for erfcl(x)
421//==============================================================
422
423GR_ERFC_XC_TB       = r54
424GR_ERFC_P_TB        = r55
425GR_IndxPlusBias     = r56
426GR_P_POINT_1        = r57
427GR_P_POINT_2        = r58
428GR_AbsArg           = r59
429GR_ShftXBi          = r60
430GR_ShftPi           = r61
431GR_mBIAS            = r62
432GR_ShftPi_bias      = r63
433GR_ShftXBi_bias     = r64
434GR_ShftA14          = r65
435GR_ShftA15          = r66
436GR_EpsNorm          = r67
437GR_0x1              = r68
438GR_ShftPi_8         = r69
439GR_26PlusBias       = r70
440GR_27PlusBias       = r71
441
442// GR for __libm_support call
443//==============================================================
444GR_SAVE_B0          = r64
445GR_SAVE_PFS         = r65
446GR_SAVE_GP          = r66
447GR_SAVE_SP          = r67
448
449GR_Parameter_X      = r68
450GR_Parameter_Y      = r69
451GR_Parameter_RESULT = r70
452GR_Parameter_TAG    = r71
453
454//==============================================================
455// Floating Point Registers
456//
457FR_RSHF_2TO51       = f10
458FR_INV_LN2_2TO63    = f11
459FR_W_2TO51_RSH      = f12
460FR_2TOM51           = f13
461FR_RSHF             = f14
462
463FR_scale            = f36
464FR_float_N          = f37
465FR_N_signif         = f38
466FR_L_hi             = f39
467FR_L_lo             = f40
468FR_r                = f41
469FR_W1               = f42
470FR_T1               = f43
471FR_W2               = f44
472FR_T2               = f45
473FR_rsq              = f46
474FR_C2               = f47
475FR_C3               = f48
476FR_poly             = f49
477FR_P6               = f49
478FR_T                = f50
479FR_P5               = f50
480FR_P4               = f51
481FR_W                = f51
482FR_P3               = f52
483FR_Wp1              = f52
484FR_P2               = f53
485FR_P1               = f54
486FR_Q7               = f56
487FR_Q6               = f57
488FR_Q5               = f58
489FR_Q4               = f59
490FR_Q3               = f60
491FR_Q2               = f61
492FR_Q1               = f62
493FR_C1               = f63
494FR_A15              = f64
495FR_ch_dx            = f65
496FR_T_scale          = f66
497FR_norm_x           = f67
498FR_AbsArg           = f68
499FR_POS_ARG_ASYMP    = f69
500FR_NEG_ARG_ASYMP    = f70
501FR_Tmp              = f71
502FR_Xc               = f72
503FR_A0               = f73
504FR_A1               = f74
505FR_A2               = f75
506FR_A3               = f76
507FR_A4               = f77
508FR_A5               = f78
509FR_A6               = f79
510FR_A7               = f80
511FR_A8               = f81
512FR_A9               = f82
513FR_A10              = f83
514FR_A11              = f84
515FR_A12              = f85
516FR_A13              = f86
517FR_A14              = f87
518FR_P15_0_1          = f88
519FR_P15_8_1          = f88
520FR_P15_1_1          = f89
521FR_P15_8_2          = f89
522FR_P15_1_2          = f90
523FR_P15_2_1          = f91
524FR_P15_2_2          = f92
525FR_P15_3_1          = f93
526FR_P15_3_2          = f94
527FR_P15_4_2          = f95
528FR_P15_7_1          = f96
529FR_P15_7_2          = f97
530FR_P15_9_1          = f98
531FR_P15_9_2          = f99
532FR_P15_13_1         = f100
533FR_P15_14_1         = f101
534FR_P15_14_2         = f102
535FR_Tmp2             = f103
536FR_Xpdx_lo          = f104
537FR_2                = f105
538FR_xsq_lo           = f106
539FR_LocArg           = f107
540FR_Tmpf             = f108
541FR_Tmp1             = f109
542FR_EpsNorm          = f110
543FR_UnfBound         = f111
544FR_NormX            = f112
545FR_Xpdx_hi          = f113
546FR_dU               = f114
547FR_H                = f115
548FR_G                = f116
549FR_V                = f117
550FR_M                = f118
551FR_U                = f119
552FR_Q                = f120
553FR_S                = f121
554FR_R                = f122
555FR_res_pos_x_hi     = f123
556FR_res_pos_x_lo     = f124
557FR_dx               = f125
558FR_dx1              = f126
559
560// for error handler routine
561FR_X                = f9
562FR_Y                = f0
563FR_RESULT           = f8
564
565// Data tables
566//==============================================================
567RODATA
568.align 16
569
570// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
571LOCAL_OBJECT_START(exp_table_1)
572
573data8 0xae89f995ad3ad5ea , 0x00003ffe      // x = 0.681..,bound for dx = 0.875
574data8 0x405AC00000000000 , 0x401A000000000000        //ARG_ASYMP,NEG_ARG_ASYMP
575data8 0x3FE4000000000000 , 0x3FEC000000000000                    //0.625,0.875
576data8 0xD5126065B720A4e9 , 0x00004005                    // underflow boundary
577data8 0x8000000000000000 , 0x00000001                             //FR_EpsNorm
578LOCAL_OBJECT_END(exp_table_1)
579
580LOCAL_OBJECT_START(Constants_exp_64_Arg)
581data8 0xB17217F400000000,0x00003FF2 //L_hi = hi part log(2)/2^12
582data8 0xF473DE6AF278ECE6,0x00003FD4 //L_lo = lo part log(2)/2^12
583LOCAL_OBJECT_END(Constants_exp_64_Arg)
584
585LOCAL_OBJECT_START(Constants_exp_64_C)
586data8 0xAAAAAAABB1B736A0,0x00003FFA // C3
587data8 0xAAAAAAAB90CD6327,0x00003FFC // C2
588data8 0xFFFFFFFFFFFFFFFF,0x00003FFD // C1
589LOCAL_OBJECT_END(Constants_exp_64_C)
590
591LOCAL_OBJECT_START(Constants_exp_64_T1)
592data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29
593data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5
594data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DC
595data4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942D
596data4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDA
597data4 0x3F9EF532,0x3FA0B051,0x3FA27043,0x3FA43516
598data4 0x3FA5FED7,0x3FA7CD94,0x3FA9A15B,0x3FAB7A3A
599data4 0x3FAD583F,0x3FAF3B79,0x3FB123F6,0x3FB311C4
600data4 0x3FB504F3,0x3FB6FD92,0x3FB8FBAF,0x3FBAFF5B
601data4 0x3FBD08A4,0x3FBF179A,0x3FC12C4D,0x3FC346CD
602data4 0x3FC5672A,0x3FC78D75,0x3FC9B9BE,0x3FCBEC15
603data4 0x3FCE248C,0x3FD06334,0x3FD2A81E,0x3FD4F35B
604data4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5
605data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396A
606data4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177
607data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0C
608LOCAL_OBJECT_END(Constants_exp_64_T1)
609
610LOCAL_OBJECT_START(Constants_exp_64_T2)
611data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4
612data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7
613data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E
614data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349
615data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987
616data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA
617data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610
618data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A
619data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8
620data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA
621data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50
622data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA
623data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07
624data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269
625data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE
626data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37
627LOCAL_OBJECT_END(Constants_exp_64_T2)
628
629LOCAL_OBJECT_START(Constants_exp_64_W1)
630data8 0x0000000000000000, 0xBE384454171EC4B4
631data8 0xBE6947414AA72766, 0xBE5D32B6D42518F8
632data8 0x3E68D96D3A319149, 0xBE68F4DA62415F36
633data8 0xBE6DDA2FC9C86A3B, 0x3E6B2E50F49228FE
634data8 0xBE49C0C21188B886, 0x3E64BFC21A4C2F1F
635data8 0xBE6A2FBB2CB98B54, 0x3E5DC5DE9A55D329
636data8 0x3E69649039A7AACE, 0x3E54728B5C66DBA5
637data8 0xBE62B0DBBA1C7D7D, 0x3E576E0409F1AF5F
638data8 0x3E6125001A0DD6A1, 0xBE66A419795FBDEF
639data8 0xBE5CDE8CE1BD41FC, 0xBE621376EA54964F
640data8 0x3E6370BE476E76EE, 0x3E390D1A3427EB92
641data8 0x3E1336DE2BF82BF8, 0xBE5FF1CBD0F7BD9E
642data8 0xBE60A3550CEB09DD, 0xBE5CA37E0980F30D
643data8 0xBE5C541B4C082D25, 0xBE5BBECA3B467D29
644data8 0xBE400D8AB9D946C5, 0xBE5E2A0807ED374A
645data8 0xBE66CB28365C8B0A, 0x3E3AAD5BD3403BCA
646data8 0x3E526055C7EA21E0, 0xBE442C75E72880D6
647data8 0x3E58B2BB85222A43, 0xBE5AAB79522C42BF
648data8 0xBE605CB4469DC2BC, 0xBE589FA7A48C40DC
649data8 0xBE51C2141AA42614, 0xBE48D087C37293F4
650data8 0x3E367A1CA2D673E0, 0xBE51BEBB114F7A38
651data8 0xBE6348E5661A4B48, 0xBDF526431D3B9962
652data8 0x3E3A3B5E35A78A53, 0xBE46C46C1CECD788
653data8 0xBE60B7EC7857D689, 0xBE594D3DD14F1AD7
654data8 0xBE4F9C304C9A8F60, 0xBE52187302DFF9D2
655data8 0xBE5E4C8855E6D68F, 0xBE62140F667F3DC4
656data8 0xBE36961B3BF88747, 0x3E602861C96EC6AA
657data8 0xBE3B5151D57FD718, 0x3E561CD0FC4A627B
658data8 0xBE3A5217CA913FEA, 0x3E40A3CC9A5D193A
659data8 0xBE5AB71310A9C312, 0x3E4FDADBC5F57719
660data8 0x3E361428DBDF59D5, 0x3E5DB5DB61B4180D
661data8 0xBE42AD5F7408D856, 0x3E2A314831B2B707
662LOCAL_OBJECT_END(Constants_exp_64_W1)
663
664LOCAL_OBJECT_START(Constants_exp_64_W2)
665data8 0x0000000000000000, 0xBE641F2537A3D7A2
666data8 0xBE68DD57AD028C40, 0xBE5C77D8F212B1B6
667data8 0x3E57878F1BA5B070, 0xBE55A36A2ECAE6FE
668data8 0xBE620608569DFA3B, 0xBE53B50EA6D300A3
669data8 0x3E5B5EF2223F8F2C, 0xBE56A0D9D6DE0DF4
670data8 0xBE64EEF3EAE28F51, 0xBE5E5AE2367EA80B
671data8 0x3E47CB1A5FCBC02D, 0xBE656BA09BDAFEB7
672data8 0x3E6E70C6805AFEE7, 0xBE6E0509A3415EBA
673data8 0xBE56856B49BFF529, 0x3E66DD3300508651
674data8 0x3E51165FC114BC13, 0x3E53333DC453290F
675data8 0x3E6A072B05539FDA, 0xBE47CD877C0A7696
676data8 0xBE668BF4EB05C6D9, 0xBE67C3E36AE86C93
677data8 0xBE533904D0B3E84B, 0x3E63E8D9556B53CE
678data8 0x3E212C8963A98DC8, 0xBE33138F032A7A22
679data8 0x3E530FA9BC584008, 0xBE6ADF82CCB93C97
680data8 0x3E5F91138370EA39, 0x3E5443A4FB6A05D8
681data8 0x3E63DACD181FEE7A, 0xBE62B29DF0F67DEC
682data8 0x3E65C4833DDE6307, 0x3E5BF030D40A24C1
683data8 0x3E658B8F14E437BE, 0xBE631C29ED98B6C7
684data8 0x3E6335D204CF7C71, 0x3E529EEDE954A79D
685data8 0x3E5D9257F64A2FB8, 0xBE6BED1B854ED06C
686data8 0x3E5096F6D71405CB, 0xBE3D4893ACB9FDF5
687data8 0xBDFEB15801B68349, 0x3E628D35C6A463B9
688data8 0xBE559725ADE45917, 0xBE68C29C042FC476
689data8 0xBE67593B01E511FA, 0xBE4A4313398801ED
690data8 0x3E699571DA7C3300, 0x3E5349BE08062A9E
691data8 0x3E5229C4755BB28E, 0x3E67E42677A1F80D
692data8 0xBE52B33F6B69C352, 0xBE6B3550084DA57F
693data8 0xBE6DB03FD1D09A20, 0xBE60CBC42161B2C1
694data8 0x3E56ED9C78A2B771, 0xBE508E319D0FA795
695data8 0xBE59482AFD1A54E9, 0xBE2A17CEB07FD23E
696data8 0x3E68BF5C17365712, 0x3E3956F9B3785569
697LOCAL_OBJECT_END(Constants_exp_64_W2)
698
699
700LOCAL_OBJECT_START(erfc_xc_table)
701
702data8 0x0000000000000000, 0x00000000 //XC[0] = +0.00000000000000000000e-01L
703data8 0x9A79C70000000000, 0x00003FFD //XC[1] = +3.01710337400436401367e-01L
704data8 0x8C49EF0000000000, 0x00003FFE //XC[2] = +5.48003137111663818359e-01L
705data8 0xD744FC0000000000, 0x00003FFE //XC[3] = +8.40896368026733398438e-01L
706data8 0x9837F00000000000, 0x00003FFF //XC[4] = +1.18920707702636718750e+00L
707data8 0xCD3CE30000000000, 0x00003FFF //XC[5] = +1.60342061519622802734e+00L
708data8 0x8624F70000000000, 0x00004000 //XC[6] = +2.09600615501403808594e+00L
709data8 0xABA27E0000000000, 0x00004000 //XC[7] = +2.68179273605346679688e+00L
710data8 0xD837F00000000000, 0x00004000 //XC[8] = +3.37841415405273437500e+00L
711data8 0x869E710000000000, 0x00004001 //XC[9] = +4.20684099197387695313e+00L
712data8 0xA624F70000000000, 0x00004001 //XC[10] = +5.19201231002807617188e+00L
713data8 0xCBA27E0000000000, 0x00004001 //XC[11] = +6.36358547210693359375e+00L
714data8 0xF837F00000000000, 0x00004001 //XC[12] = +7.75682830810546875000e+00L
715data8 0x969E710000000000, 0x00004002 //XC[13] = +9.41368198394775390625e+00L
716data8 0xB624F70000000000, 0x00004002 //XC[14] = +1.13840246200561523438e+01L
717data8 0xDBA27E0000000000, 0x00004002 //XC[15] = +1.37271709442138671875e+01L
718data8 0x841BF80000000000, 0x00004003 //XC[16] = +1.65136566162109375000e+01L
719data8 0x9E9E710000000000, 0x00004003 //XC[17] = +1.98273639678955078125e+01L
720data8 0xBE24F70000000000, 0x00004003 //XC[18] = +2.37680492401123046875e+01L
721data8 0xE3A27E0000000000, 0x00004003 //XC[19] = +2.84543418884277343750e+01L
722data8 0x881BF80000000000, 0x00004004 //XC[20] = +3.40273132324218750000e+01L
723data8 0xA29E710000000000, 0x00004004 //XC[21] = +4.06547279357910156250e+01L
724data8 0xC224F70000000000, 0x00004004 //XC[22] = +4.85360984802246093750e+01L
725data8 0xE7A27E0000000000, 0x00004004 //XC[23] = +5.79086837768554687500e+01L
726data8 0x8A1BF80000000000, 0x00004005 //XC[24] = +6.90546264648437500000e+01L
727data8 0xA49E710000000000, 0x00004005 //XC[25] = +8.23094558715820312500e+01L
728data8 0xC424F70000000000, 0x00004005 //XC[26] = +9.80721969604492187500e+01L
729data8 0xD5A27E0000000000, 0x00004005 //XC[27] = +1.06817367553710937500e+02L
730LOCAL_OBJECT_END(erfc_xc_table)
731
732LOCAL_OBJECT_START(erfc_s_table)
733
734data8 0xE000000000000000, 0x00003FFE //s[0] = +8.75000000000000000000e-01L
735data8 0xDCEF000000000000, 0x00003FFE //s[1] = +8.63021850585937500000e-01L
736data8 0xD79D000000000000, 0x00003FFE //s[2] = +8.42239379882812500000e-01L
737data8 0xB25E000000000000, 0x00003FFE //s[3] = +6.96746826171875000000e-01L
738data8 0xB0EA000000000000, 0x00003FFE //s[4] = +6.91070556640625000000e-01L
739data8 0xAE3F000000000000, 0x00003FFE //s[5] = +6.80648803710937500000e-01L
740data8 0xAB05000000000000, 0x00003FFE //s[6] = +6.68045043945312500000e-01L
741data8 0xA7AC000000000000, 0x00003FFE //s[7] = +6.54968261718750000000e-01L
742data8 0xA478000000000000, 0x00003FFE //s[8] = +6.42456054687500000000e-01L
743data8 0xA18D000000000000, 0x00003FFE //s[9] = +6.31057739257812500000e-01L
744data8 0x9EF8000000000000, 0x00003FFE //s[10] = +6.20971679687500000000e-01L
745data8 0x9CBA000000000000, 0x00003FFE //s[11] = +6.12213134765625000000e-01L
746data8 0x9ACD000000000000, 0x00003FFE //s[12] = +6.04690551757812500000e-01L
747data8 0x992A000000000000, 0x00003FFE //s[13] = +5.98297119140625000000e-01L
748data8 0x97C7000000000000, 0x00003FFE //s[14] = +5.92880249023437500000e-01L
749data8 0x969C000000000000, 0x00003FFE //s[15] = +5.88317871093750000000e-01L
750data8 0x95A0000000000000, 0x00003FFE //s[16] = +5.84472656250000000000e-01L
751data8 0x94CB000000000000, 0x00003FFE //s[17] = +5.81222534179687500000e-01L
752data8 0x9419000000000000, 0x00003FFE //s[18] = +5.78506469726562500000e-01L
753data8 0x9383000000000000, 0x00003FFE //s[19] = +5.76217651367187500000e-01L
754data8 0x9305000000000000, 0x00003FFE //s[20] = +5.74295043945312500000e-01L
755data8 0x929B000000000000, 0x00003FFE //s[21] = +5.72677612304687500000e-01L
756data8 0x9242000000000000, 0x00003FFE //s[22] = +5.71319580078125000000e-01L
757data8 0x91F8000000000000, 0x00003FFE //s[23] = +5.70190429687500000000e-01L
758data8 0x91B9000000000000, 0x00003FFE //s[24] = +5.69229125976562500000e-01L
759data8 0x9184000000000000, 0x00003FFE //s[25] = +5.68420410156250000000e-01L
760data8 0x9158000000000000, 0x00003FFE //s[26] = +5.67749023437500000000e-01L
761data8 0x9145000000000000, 0x00003FFE //s[27] = +5.67459106445312500000e-01L
762LOCAL_OBJECT_END(erfc_s_table)
763
764LOCAL_OBJECT_START(erfc_Q_table)
765// Q(z)= (P(z)- S)/S
766//
767// Pol0
768data8 0x98325D50F9DC3499, 0x0000BFAA //A0 = +3.07358861423101280650e-26L
769data8 0xED35081A2494DDD9, 0x00003FF8 //A1 = +1.44779757616302832466e-02L
770data8 0x9443549BCD0F94CE, 0x0000BFFD //A2 = -2.89576190966300084405e-01L
771data8 0xC7FD4B98ECF3DBBF, 0x00003FFD //A3 = +3.90604364793467799170e-01L
772data8 0xB82CE31288B49759, 0x0000BFFD //A4 = -3.59717460644199233866e-01L
773data8 0x8A8293447BEF69B5, 0x00003FFD //A5 = +2.70527460203054582368e-01L
774data8 0xB5793E30EE36766C, 0x0000BFFC //A6 = -1.77220317589265674647e-01L
775data8 0xD6066D16BBDECE17, 0x00003FFB //A7 = +1.04504444366724593714e-01L
776data8 0xE7C783CE3C997BD8, 0x0000BFFA //A8 = -5.65867565781331646771e-02L
777data8 0xE9969EBC2F5B2828, 0x00003FF9 //A9 = +2.85142040533900194955e-02L
778data8 0xDD31D619F29AD7BF, 0x0000BFF8 //A10 = -1.35006514390540367929e-02L
779data8 0xC63A20EB59768F3A, 0x00003FF7 //A11 = +6.04940993680332271481e-03L
780data8 0xA8DEC641AACEB600, 0x0000BFF6 //A12 = -2.57675495383156581601e-03L
781data8 0x87F0E77BA914FBEB, 0x00003FF5 //A13 = +1.03714776726541296794e-03L
782data8 0xC306C2894C5CEF2D, 0x0000BFF3 //A14 = -3.71983348634136412407e-04L
783data8 0xBDAB416A989D0697, 0x00003FF1 //A15 = +9.04412111877987292294e-05L
784// Pol1
785data8 0x82808893DA2DD83F, 0x00003FEE //A0 = +7.77853035974467145290e-06L
786data8 0xAE9CD9DCADC86113, 0x0000BFFB //A1 = -8.52601070853077921197e-02L
787data8 0x9D429743E312AD9F, 0x0000BFFB //A2 = -7.67871682732076080494e-02L
788data8 0x8637FC533AE805DC, 0x00003FFC //A3 = +1.31072943286859831330e-01L
789data8 0xF68DBE3639ABCB6E, 0x0000BFFB //A4 = -1.20387540845703264588e-01L
790data8 0xB168FFC3CFA71256, 0x00003FFB //A5 = +8.66260511047190247534e-02L
791data8 0xDBC5078A7EA89236, 0x0000BFFA //A6 = -5.36546988077281230848e-02L
792data8 0xF4331FEDB2CB838F, 0x00003FF9 //A7 = +2.98095344165515989564e-02L
793data8 0xF909173C0E61C25D, 0x0000BFF8 //A8 = -1.51999213123642373375e-02L
794data8 0xEC83560A2ACB23E9, 0x00003FF7 //A9 = +7.21780491979582106904e-03L
795data8 0xD350D62C4FEAD8F5, 0x0000BFF6 //A10 = -3.22442272982896360044e-03L
796data8 0xB2F44F4B3FD9B826, 0x00003FF5 //A11 = +1.36531322425499451283e-03L
797data8 0x9078BC61927671C6, 0x0000BFF4 //A12 = -5.51115510818844954547e-04L
798data8 0xDF67AC6287A63B03, 0x00003FF2 //A13 = +2.13055585989529858265e-04L
799data8 0xA719CFEE67FCE1CE, 0x0000BFF1 //A14 = -7.96798844477905965933e-05L
800data8 0xEF926367BABBB029, 0x00003FEF //A15 = +2.85591875675765038065e-05L
801// Pol2
802data8 0x82B5E5A93B059C50, 0x00003FEF //A0 = +1.55819100856330860049e-05L
803data8 0xDC856BC2542B1938, 0x0000BFFB //A1 = -1.07676355235999875911e-01L
804data8 0xDF225EF5694F14AE, 0x0000BFF8 //A2 = -1.36190345125628043277e-02L
805data8 0xDAF66A954ED22428, 0x00003FFA //A3 = +5.34576571853233908886e-02L
806data8 0xD28AE4F21A392EC6, 0x0000BFFA //A4 = -5.14019911949062230820e-02L
807data8 0x9441A95713F0DB5B, 0x00003FFA //A5 = +3.61954321717769771045e-02L
808data8 0xB0957B5C483C7A04, 0x0000BFF9 //A6 = -2.15556535133667988704e-02L
809data8 0xBB9260E812814F71, 0x00003FF8 //A7 = +1.14484735825400480057e-02L
810data8 0xB68AB17287ABAB04, 0x0000BFF7 //A8 = -5.57073273108465072470e-03L
811data8 0xA56A95E0BC0EF01B, 0x00003FF6 //A9 = +2.52405318381952650677e-03L
812data8 0x8D19C7D286839C00, 0x0000BFF5 //A10 = -1.07651294935087466892e-03L
813data8 0xE45DB3766711A0D3, 0x00003FF3 //A11 = +4.35573615323234291196e-04L
814data8 0xB05949F947FA7AEF, 0x0000BFF2 //A12 = -1.68179306983868501372e-04L
815data8 0x82901D055A0D5CB6, 0x00003FF1 //A13 = +6.22572626227726684168e-05L
816data8 0xBB957698542D6FD0, 0x0000BFEF //A14 = -2.23617364009159182821e-05L
817data8 0x810740E1DF572394, 0x00003FEE //A15 = +7.69068800065192940487e-06L
818// Pol3
819data8 0x9526D1C87655AFA8, 0x00003FEC //A0 = +2.22253260814242012255e-06L
820data8 0xA47E21EBFE73F72F, 0x0000BFF8 //A1 = -1.00398379581527733314e-02L
821data8 0xDE65685FCDF7A913, 0x0000BFFA //A2 = -5.42959286802879105148e-02L
822data8 0xED289CB8F97D4860, 0x00003FFA //A3 = +5.79000589346770417248e-02L
823data8 0xAA3100D5A7D870F1, 0x0000BFFA //A4 = -4.15506394006027604387e-02L
824data8 0xCA0567032C5308C0, 0x00003FF9 //A5 = +2.46607791863290331169e-02L
825data8 0xD3E1794A50F31BEB, 0x0000BFF8 //A6 = -1.29321751094401754013e-02L
826data8 0xCAA02CB4C87CC1F0, 0x00003FF7 //A7 = +6.18364508551740736863e-03L
827data8 0xB3F126AF16B121F2, 0x0000BFF6 //A8 = -2.74569696838501870748e-03L
828data8 0x962B2D64D3900510, 0x00003FF5 //A9 = +1.14569596409019883022e-03L
829data8 0xED8785714A9A00FB, 0x0000BFF3 //A10 = -4.53051338046340380512e-04L
830data8 0xB325DA4515D8B54C, 0x00003FF2 //A11 = +1.70848714622328427290e-04L
831data8 0x8179C36354571747, 0x0000BFF1 //A12 = -6.17387951061077132522e-05L
832data8 0xB40F241C01C907E9, 0x00003FEF //A13 = +2.14647227210702861416e-05L
833data8 0xF436D84AD7D4D316, 0x0000BFED //A14 = -7.27815144835213913238e-06L
834data8 0x9EB432503FB0B7BC, 0x00003FEC //A15 = +2.36487228755136968792e-06L
835// Pol4
836data8 0xE0BA539E4AFC4741, 0x00003FED //A0 = +6.69741148991838024429e-06L
837data8 0x8583BF71139452CF, 0x0000BFFA //A1 = -3.25963476363756051657e-02L
838data8 0x8384FEF6D08AD6CE, 0x0000BFF9 //A2 = -1.60546283500634200479e-02L
839data8 0xB1E67DFB84C97036, 0x00003FF9 //A3 = +2.17163525195697635702e-02L
840data8 0xFB6ACEE6899E360D, 0x0000BFF8 //A4 = -1.53452892792759316229e-02L
841data8 0x8D2B869EB9149905, 0x00003FF8 //A5 = +8.61633440480716870830e-03L
842data8 0x8A90BFE0FD869A41, 0x0000BFF7 //A6 = -4.22868126950622376530e-03L
843data8 0xF7536A76E59F54D2, 0x00003FF5 //A7 = +1.88694643606912107006e-03L
844data8 0xCCF6FE58C16E1CC7, 0x0000BFF4 //A8 = -7.81878732767742447339e-04L
845data8 0x9FCC6ED9914FAA24, 0x00003FF3 //A9 = +3.04791577214885118730e-04L
846data8 0xEC7F5AAACAE593E8, 0x0000BFF1 //A10 = -1.12770784960291779798e-04L
847data8 0xA72CE628A114C940, 0x00003FF0 //A11 = +3.98577182157456408782e-05L
848data8 0xE2DCC5750FD769BA, 0x0000BFEE //A12 = -1.35220520471857266339e-05L
849data8 0x9459160B1E6F1F8D, 0x00003FED //A13 = +4.42111470121432700283e-06L
850data8 0xBE0A05701BD0DD42, 0x0000BFEB //A14 = -1.41590196994052764542e-06L
851data8 0xE905D729105081BF, 0x00003FE9 //A15 = +4.34038814785401120999e-07L
852// Pol5
853data8 0xA33649C3AB459832, 0x00003FEE //A0 = +9.72819704141525206634e-06L
854data8 0x9E4EA2F44C9A24BD, 0x0000BFFA //A1 = -3.86492123987296806210e-02L
855data8 0xE80C0B1280F357BF, 0x0000BFF2 //A2 = -2.21297306012713370124e-04L
856data8 0xDAECCE90A4D45D9A, 0x00003FF7 //A3 = +6.68106161291482829670e-03L
857data8 0xA4006572071BDD4B, 0x0000BFF7 //A4 = -5.00493005170532147076e-03L
858data8 0xB07FD7EB1F4D8E8E, 0x00003FF6 //A5 = +2.69316693731732554959e-03L
859data8 0xA1F471D42ADD73A1, 0x0000BFF5 //A6 = -1.23561753760779610478e-03L
860data8 0x8611D0ED1B4C8176, 0x00003FF4 //A7 = +5.11434914439322741260e-04L
861data8 0xCDADB789B487A541, 0x0000BFF2 //A8 = -1.96150380913036018825e-04L
862data8 0x9470252731687FEE, 0x00003FF1 //A9 = +7.07807859951401721129e-05L
863data8 0xCB9399AD1C376D85, 0x0000BFEF //A10 = -2.42682175234436724152e-05L
864data8 0x858D815F9CA0A9F7, 0x00003FEE //A11 = +7.96036454038012144300e-06L
865data8 0xA878D338E6E6A079, 0x0000BFEC //A12 = -2.51042802626063073967e-06L
866data8 0xCD2C2F079D2FCB36, 0x00003FEA //A13 = +7.64327468786076941271e-07L
867data8 0xF5EF4A4B2EA426F2, 0x0000BFE8 //A14 = -2.29044563492386125272e-07L
868data8 0x8CE52181393820FC, 0x00003FE7 //A15 = +6.56093668622712763489e-08L
869// Pol6
870data8 0xB2015D7F1864B7CF, 0x00003FEC //A0 = +2.65248615880090351276e-06L
871data8 0x954EA7A861B4462A, 0x0000BFFA //A1 = -3.64519642954351295215e-02L
872data8 0x9E46F2A4D9157E69, 0x00003FF7 //A2 = +4.83023498390681965101e-03L
873data8 0xA0D12B422FFD5BAD, 0x00003FF5 //A3 = +1.22693684633643883352e-03L
874data8 0xB291D16A560A740E, 0x0000BFF5 //A4 = -1.36237794246703606647e-03L
875data8 0xC138941BC8AF4A9D, 0x00003FF4 //A5 = +7.37079658343628747256e-04L
876data8 0xA761669D61B405CF, 0x0000BFF3 //A6 = -3.19252914480518163396e-04L
877data8 0x8053680F1C84607E, 0x00003FF2 //A7 = +1.22381025852939439541e-04L
878data8 0xB518F4B6F25015F9, 0x0000BFF0 //A8 = -4.31770048258291369742e-05L
879data8 0xEFF526AC70B9411E, 0x00003FEE //A9 = +1.43025887824433324525e-05L
880data8 0x970B2A848DF5B5C2, 0x0000BFED //A10 = -4.50145058393497252604e-06L
881data8 0xB614D2E61DB86963, 0x00003FEB //A11 = +1.35661172167726780059e-06L
882data8 0xD34EA4D283EC33FA, 0x0000BFE9 //A12 = -3.93590335713880681528e-07L
883data8 0xED209EBD68E1145F, 0x00003FE7 //A13 = +1.10421060667544991323e-07L
884data8 0x83A126E22A17568D, 0x0000BFE6 //A14 = -3.06473811074239684132e-08L
885data8 0x8B778496EDE9F415, 0x00003FE4 //A15 = +8.11804009754249175736e-09L
886// Pol7
887data8 0x8E152F522501B7B9, 0x00003FEE //A0 = +8.46879203970927626532e-06L
888data8 0xFD22F92EE21F491E, 0x0000BFF9 //A1 = -3.09004656656418947425e-02L
889data8 0xAF0C41847D89EC14, 0x00003FF7 //A2 = +5.34203719233189217519e-03L
890data8 0xB7C539C400445956, 0x0000BFF3 //A3 = -3.50514245383356287965e-04L
891data8 0x8428C78B2B1E3622, 0x0000BFF3 //A4 = -2.52073850239006530978e-04L
892data8 0xAFC0CCC7D1A05F5B, 0x00003FF2 //A5 = +1.67611241057491801028e-04L
893data8 0x95DC7272C5695A5A, 0x0000BFF1 //A6 = -7.14593512262564106636e-05L
894data8 0xD6FCA68A61F0E835, 0x00003FEF //A7 = +2.56284375437771117850e-05L
895data8 0x8B71C74DEA936C66, 0x0000BFEE //A8 = -8.31153675277218441096e-06L
896data8 0xA8AC71E2A56AA2C9, 0x00003FEC //A9 = +2.51343269277107451413e-06L
897data8 0xC15DED6C44B46046, 0x0000BFEA //A10 = -7.20347851650066610771e-07L
898data8 0xD42BA1DFBD1277AC, 0x00003FE8 //A11 = +1.97599119274780745741e-07L
899data8 0xE03A81F2C976D11A, 0x0000BFE6 //A12 = -5.22072765405802337371e-08L
900data8 0xE56A19A67DD66100, 0x00003FE4 //A13 = +1.33536787408751203998e-08L
901data8 0xE964D255CB31DFFA, 0x0000BFE2 //A14 = -3.39632729387679010008e-09L
902data8 0xE22E62E932B704D4, 0x00003FE0 //A15 = +8.22842400379225526299e-10L
903// Pol8
904data8 0xB8B835882D46A6C8, 0x00003FEF //A0 = +2.20202883282415435401e-05L
905data8 0xC9D1F63F89B74E90, 0x0000BFF9 //A1 = -2.46362504515706189782e-02L
906data8 0x8E376748B1274F30, 0x00003FF7 //A2 = +4.34010070001387441657e-03L
907data8 0x98174C7EA49B5B37, 0x0000BFF4 //A3 = -5.80181163659971286762e-04L
908data8 0x8D2C40506AE9FF97, 0x00003FEF //A4 = +1.68291159100251734927e-05L
909data8 0xD9A580C115B9D150, 0x00003FEF //A5 = +2.59454841475194555896e-05L
910data8 0xDB35B21F1C3F99CE, 0x0000BFEE //A6 = -1.30659192305072674545e-05L
911data8 0x99FAADAE17A3050E, 0x00003FED //A7 = +4.58893813631592314881e-06L
912data8 0xBA1D259BCD6987A9, 0x0000BFEB //A8 = -1.38665627771423394637e-06L
913data8 0xCDD7FF5BEA0145C2, 0x00003FE9 //A9 = +3.83413844219813384124e-07L
914data8 0xD60857176CE6AB9D, 0x0000BFE7 //A10 = -9.96666862214499946343e-08L
915data8 0xD446A2402112DF4C, 0x00003FE5 //A11 = +2.47121687566658908126e-08L
916data8 0xCA87133235F1F495, 0x0000BFE3 //A12 = -5.89433000014933371980e-09L
917data8 0xBB15B0021581C8B6, 0x00003FE1 //A13 = +1.36122047057936849125e-09L
918data8 0xAC9D6585D4AF505E, 0x0000BFDF //A14 = -3.13984547328132268695e-10L
919data8 0x975A1439C3795183, 0x00003FDD //A15 = +6.88268624429648826457e-11L
920// Pol9
921data8 0x99A7676284CDC9FE, 0x00003FEF //A0 = +1.83169747921764176475e-05L
922data8 0x9AD0AE249A02896C, 0x0000BFF9 //A1 = -1.88983346204739151909e-02L
923data8 0xCB89B4AEC19898BE, 0x00003FF6 //A2 = +3.10574208447745576452e-03L
924data8 0xEBBC47E30E1AC2C2, 0x0000BFF3 //A3 = -4.49629730048297442064e-04L
925data8 0xD1E35B7FCE1CF859, 0x00003FF0 //A4 = +5.00412261289558493438e-05L
926data8 0xB40743664EF24552, 0x0000BFEB //A5 = -1.34131589671166307319e-06L
927data8 0xCAD2F5C596FFE1B4, 0x0000BFEB //A6 = -1.51115702599728593837e-06L
928data8 0xAE42B6D069DFDDF2, 0x00003FEA //A7 = +6.49171330116787223873e-07L
929data8 0xD0739A05BB43A714, 0x0000BFE8 //A8 = -1.94135651872623440782e-07L
930data8 0xD745B854AB601BD7, 0x00003FE6 //A9 = +5.01219983943456578062e-08L
931data8 0xCC4066E13E338B13, 0x0000BFE4 //A10 = -1.18890061172430768892e-08L
932data8 0xB6EAADB55A6C3CB4, 0x00003FE2 //A11 = +2.66178850259168707794e-09L
933data8 0x9CC6C178AD3F96AD, 0x0000BFE0 //A12 = -5.70349182959704086428e-10L
934data8 0x81D0E2AA27DEB74A, 0x00003FDE //A13 = +1.18066926578104076645e-10L
935data8 0xD75FB9049190BEFD, 0x0000BFDB //A14 = -2.44851795398843967972e-11L
936data8 0xA9384A51D48C8703, 0x00003FD9 //A15 = +4.80951837368635202609e-12L
937// Pol10
938data8 0xD2B3482EE449C535, 0x00003FEE //A0 = +1.25587177382575655080e-05L
939data8 0xE7939B2D0607DFCF, 0x0000BFF8 //A1 = -1.41343131436717436429e-02L
940data8 0x8810EB4AC5F0F1CE, 0x00003FF6 //A2 = +2.07620377002350121270e-03L
941data8 0x9546589602AEB955, 0x0000BFF3 //A3 = -2.84719065122144294949e-04L
942data8 0x9333434342229798, 0x00003FF0 //A4 = +3.50952732796136549298e-05L
943data8 0xEB36A98FD81D3DEB, 0x0000BFEC //A5 = -3.50495464815398722482e-06L
944data8 0xAC370EFA025D0477, 0x00003FE8 //A6 = +1.60387784498518639254e-07L
945data8 0xC8DF7F8ACA099426, 0x00003FE6 //A7 = +4.67693991699936842330e-08L
946data8 0xAC694AD4921C02CF, 0x0000BFE5 //A8 = -2.00713167514877937714e-08L
947data8 0xB6E29F2FDE2D8C1A, 0x00003FE3 //A9 = +5.32266106167252495164e-09L
948data8 0xA41F8EEA75474358, 0x0000BFE1 //A10 = -1.19415398856537468324e-09L
949data8 0x869D778A1C56D3D6, 0x00003FDF //A11 = +2.44863450057778470469e-10L
950data8 0xD02658BF31411F4C, 0x0000BFDC //A12 = -4.73277831746128372261e-11L
951data8 0x9A4A95EE59127779, 0x00003FDA //A13 = +8.77044784978207256260e-12L
952data8 0xE518330AF013C2F6, 0x0000BFD7 //A14 = -1.62781453276882333209e-12L
953data8 0xA036A9DF71BD108A, 0x00003FD5 //A15 = +2.84596398987114375607e-13L
954// Pol11
955data8 0x9191CFBF001F3BB3, 0x00003FEE //A0 = +8.67662287973472452343e-06L
956data8 0xAA47E0CF01AE9730, 0x0000BFF8 //A1 = -1.03931136509584404513e-02L
957data8 0xAEABE7F17B01D18F, 0x00003FF5 //A2 = +1.33263784731775399430e-03L
958data8 0xAC0D6A309D04E5DB, 0x0000BFF2 //A3 = -1.64081956462118568288e-04L
959data8 0xA08357DF458054D0, 0x00003FEF //A4 = +1.91346477952797715021e-05L
960data8 0x8A1596B557440FE0, 0x0000BFEC //A5 = -2.05761687274453412571e-06L
961data8 0xCDA0EAE0A5615E9A, 0x00003FE8 //A6 = +1.91506542215670149741e-07L
962data8 0xD36A08FB4E104F9A, 0x0000BFE4 //A7 = -1.23059260396551086769e-08L
963data8 0xD7433F91E78A7A11, 0x0000BFDF //A8 = -3.91560549815575091188e-10L
964data8 0xC2F5308FD4F5CE62, 0x00003FDF //A9 = +3.54626121852421163117e-10L
965data8 0xC83876915F49D630, 0x0000BFDD //A10 = -9.10497688901018285126e-11L
966data8 0xA11C605DEAE1FE9C, 0x00003FDB //A11 = +1.83161825409194847892e-11L
967data8 0xE7977BC1342D19BF, 0x0000BFD8 //A12 = -3.29111645807102123274e-12L
968data8 0x9BC3A7D6396C6756, 0x00003FD6 //A13 = +5.53385887288503961220e-13L
969data8 0xD0110D5683740B8C, 0x0000BFD3 //A14 = -9.24001363293241428519e-14L
970data8 0x81786D7856A5CC92, 0x00003FD1 //A15 = +1.43741041714595023996e-14L
971// Pol12
972data8 0xB85654F6033B3372, 0x00003FEF //A0 = +2.19747106911869287049e-05L
973data8 0xF78B40078736B406, 0x0000BFF7 //A1 = -7.55444170413862312647e-03L
974data8 0xDA8FDE84D88E5D5D, 0x00003FF4 //A2 = +8.33747822263358628569e-04L
975data8 0xBC2D3F3891721AA9, 0x0000BFF1 //A3 = -8.97296647669960333635e-05L
976data8 0x9D15ACFD3BF50064, 0x00003FEE //A4 = +9.36297600601039610762e-06L
977data8 0xFBED3D03F3C1B671, 0x0000BFEA //A5 = -9.38500137149172923985e-07L
978data8 0xBEE615E3B2FA16C8, 0x00003FE7 //A6 = +8.88941676851808958175e-08L
979data8 0x843D32692CF5662A, 0x0000BFE4 //A7 = -7.69732580860195238520e-09L
980data8 0x99E74472FD94E22B, 0x00003FE0 //A8 = +5.59897264617128952416e-10L
981data8 0xCEF63DABF4C32E15, 0x0000BFDB //A9 = -2.35288414996279313219e-11L
982data8 0xA2D86C25C0991123, 0x0000BFD8 //A10 = -2.31417232327307408235e-12L
983data8 0xF50C1B31D2E922BD, 0x00003FD6 //A11 = +8.70582858983364191159e-13L
984data8 0xC0F093DEC2B019A1, 0x0000BFD4 //A12 = -1.71364927865227509533e-13L
985data8 0xFC1441C4CD105981, 0x00003FD1 //A13 = +2.79864052545369490865e-14L
986data8 0x9CC959853267F026, 0x0000BFCF //A14 = -4.35170017302700609509e-15L
987data8 0xB06BA14016154F1E, 0x00003FCC //A15 = +6.12081320471295704631e-16L
988// Pol13
989data8 0xA59E74BF544F2422, 0x00003FEF //A0 = +1.97433196215210145261e-05L
990data8 0xB2814F4EDAE15330, 0x0000BFF7 //A1 = -5.44754383528015875700e-03L
991data8 0x867C249D378F0A23, 0x00003FF4 //A2 = +5.13019308804593120161e-04L
992data8 0xC76644393388AB68, 0x0000BFF0 //A3 = -4.75405403392600215101e-05L
993data8 0x91143AD5CCA229FE, 0x00003FED //A4 = +4.32369180778264703719e-06L
994data8 0xCE6A11FB6840A974, 0x0000BFE9 //A5 = -3.84476663329551178495e-07L
995data8 0x8EC29F66C59DE243, 0x00003FE6 //A6 = +3.32389596787155456596e-08L
996data8 0xBE3FCDDCA94CA24E, 0x0000BFE2 //A7 = -2.76849073931513325199e-09L
997data8 0xF06A84BDC70A0B0D, 0x00003FDE //A8 = +2.18657158231304988330e-10L
998data8 0x8B8E6969D056D124, 0x0000BFDB //A9 = -1.58657139740906811035e-11L
999data8 0x8984985AA29A0567, 0x00003FD7 //A10 = +9.77123802231106533829e-13L
1000data8 0xA53ABA084300137C, 0x0000BFD2 //A11 = -3.66882970952892030306e-14L
1001data8 0xA90EC851E91C3319, 0x0000BFCE //A12 = -2.34614750044359490986e-15L
1002data8 0xEC9CAF64237B5060, 0x00003FCC //A13 = +8.20912960028437475035e-16L
1003data8 0xA9156668FCF01479, 0x0000BFCA //A14 = -1.46656639874123613261e-16L
1004data8 0xBAEF58D8118DD5D4, 0x00003FC7 //A15 = +2.02675278255254907493e-17L
1005// Pol14
1006data8 0xC698952E9CEAA800, 0x00003FEF //A0 = +2.36744912073515619263e-05L
1007data8 0x800395F8C7B4FA00, 0x0000BFF7 //A1 = -3.90667746392883642897e-03L
1008data8 0xA3B2467B6B391831, 0x00003FF3 //A2 = +3.12226081793919541155e-04L
1009data8 0xCF2061122A69D72B, 0x0000BFEF //A3 = -2.46914006692526122176e-05L
1010data8 0x817FAB6B5DEB9924, 0x00003FEC //A4 = +1.92968114320180123521e-06L
1011data8 0x9FC190F5827740E7, 0x0000BFE8 //A5 = -1.48784479265231093475e-07L
1012data8 0xC1FE5C1835C8AFCD, 0x00003FE4 //A6 = +1.12919132662720380018e-08L
1013data8 0xE7216A9FBB204DA3, 0x0000BFE0 //A7 = -8.40847981461949000003e-10L
1014data8 0x867566ED95C5C64F, 0x00003FDD //A8 = +6.11446929759298780795e-11L
1015data8 0x97A8BFA723F0F014, 0x0000BFD9 //A9 = -4.31041298699752869577e-12L
1016data8 0xA3D24B7034984522, 0x00003FD5 //A10 = +2.91005377301348717042e-13L
1017data8 0xA5AAA371C22F3741, 0x0000BFD1 //A11 = -1.83926825395757259128e-14L
1018data8 0x95352E5597EACC23, 0x00003FCD //A12 = +1.03533666540077850452e-15L
1019data8 0xCCEBE3043B689428, 0x0000BFC8 //A13 = -4.44352525147076912166e-17L
1020data8 0xA779DAB4BE1F80BB, 0x0000BFBC //A14 = -8.86610526981738255206e-21L
1021data8 0xB171271F3517282C, 0x00003FC1 //A15 = +3.00598445879282370850e-19L
1022// Pol15
1023data8 0xB7AC727D1C3FEB05, 0x00003FEE //A0 = +1.09478009914822049780e-05L
1024data8 0xB6E6274485C10B0A, 0x0000BFF6 //A1 = -2.79081782038927199588e-03L
1025data8 0xC5CAE2122D009506, 0x00003FF2 //A2 = +1.88629638738336219173e-04L
1026data8 0xD466E7957D0A3362, 0x0000BFEE //A3 = -1.26601440424012313479e-05L
1027data8 0xE2593D798DA20E2E, 0x00003FEA //A4 = +8.43214222346512003230e-07L
1028data8 0xEF2D2BBA7D2882CC, 0x0000BFE6 //A5 = -5.56876064495961858535e-08L
1029data8 0xFA5819BB4AE974C2, 0x00003FE2 //A6 = +3.64298674151704370449e-09L
1030data8 0x819BB0CE825FBB28, 0x0000BFDF //A7 = -2.35755881668932259913e-10L
1031data8 0x84871099BF728B8F, 0x00003FDB //A8 = +1.50666434199945890414e-11L
1032data8 0x858188962DFEBC9F, 0x0000BFD7 //A9 = -9.48617116568458677088e-13L
1033data8 0x840F38FF2FBAE753, 0x00003FD3 //A10 = +5.86461827778372616657e-14L
1034data8 0xFF47EAF69577B213, 0x0000BFCE //A11 = -3.54273456410181081472e-15L
1035data8 0xEF402CCB4D29FAF8, 0x00003FCA //A12 = +2.07516888659313950588e-16L
1036data8 0xD6B789E01141231B, 0x0000BFC6 //A13 = -1.16398290506765191078e-17L
1037data8 0xB5EEE343E9CFE3EC, 0x00003FC2 //A14 = +6.16413506924643419723e-19L
1038data8 0x859B41A39D600346, 0x0000BFBE //A15 = -2.82922705825870414438e-20L
1039// Pol16
1040data8 0x85708B69FD184E11, 0x00003FED //A0 = +3.97681079176353356199e-06L
1041data8 0x824D92BC60A1F70A, 0x0000BFF6 //A1 = -1.98826630037499070532e-03L
1042data8 0xEDCF7D3576BB5258, 0x00003FF1 //A2 = +1.13396885054265675352e-04L
1043data8 0xD7FC59226A947CDF, 0x0000BFED //A3 = -6.43687650810478871875e-06L
1044data8 0xC32C51B574E2651E, 0x00003FE9 //A4 = +3.63538268539251809118e-07L
1045data8 0xAF67910F5681401F, 0x0000BFE5 //A5 = -2.04197779750247395258e-08L
1046data8 0x9CB3E8D7DCD1EA9D, 0x00003FE1 //A6 = +1.14016272459029850306e-09L
1047data8 0x8B14ECFBF7D4F114, 0x0000BFDD //A7 = -6.32470533185766848692e-11L
1048data8 0xF518253AE4A3AE72, 0x00003FD8 //A8 = +3.48299974583453268369e-12L
1049data8 0xD631A5699AA2F334, 0x0000BFD4 //A9 = -1.90242426474085078079e-13L
1050data8 0xB971AD4C30C56E5D, 0x00003FD0 //A10 = +1.02942127356740047925e-14L
1051data8 0x9ED0065A601F3160, 0x0000BFCC //A11 = -5.50991880383698965959e-16L
1052data8 0x863A04008E12867C, 0x00003FC8 //A12 = +2.91057593756148904838e-17L
1053data8 0xDF62F9F44F5C7170, 0x0000BFC3 //A13 = -1.51372666097522872780e-18L
1054data8 0xBA4E118E88CFDD31, 0x00003FBF //A14 = +7.89032177282079635722e-20L
1055data8 0x942AD897FC4D2F2A, 0x0000BFBB //A15 = -3.92195756076319409245e-21L
1056// Pol17
1057data8 0xCB8514540566C717, 0x00003FEF //A0 = +2.42614557068144130848e-05L
1058data8 0xB94F08D6816E0CD4, 0x0000BFF5 //A1 = -1.41379340061829929314e-03L
1059data8 0x8E7C342C2DABB51B, 0x00003FF1 //A2 = +6.79422240687700109911e-05L
1060data8 0xDA69DAFF71E30D5B, 0x0000BFEC //A3 = -3.25461473899657142468e-06L
1061data8 0xA6D5B2DB69B4B3F6, 0x00003FE8 //A4 = +1.55376978584082701045e-07L
1062data8 0xFDF4F76BC1D1BD47, 0x0000BFE3 //A5 = -7.39111857092131684572e-09L
1063data8 0xC08BC52C95B12C2D, 0x00003FDF //A6 = +3.50239092565793882444e-10L
1064data8 0x91624BF6D3A3F6C9, 0x0000BFDB //A7 = -1.65282439890232458821e-11L
1065data8 0xDA91F7A450DE4270, 0x00003FD6 //A8 = +7.76517285902715940501e-13L
1066data8 0xA380ADF55416E624, 0x0000BFD2 //A9 = -3.63048822989374426852e-14L
1067data8 0xF350FC0CEDEE0FD6, 0x00003FCD //A10 = +1.68834630987974622269e-15L
1068data8 0xB3FA19FBDC8F023C, 0x0000BFC9 //A11 = -7.80525639701804380489e-17L
1069data8 0x8435328C80940126, 0x00003FC5 //A12 = +3.58349966898667910204e-18L
1070data8 0xC0D22F655BA5EF39, 0x0000BFC0 //A13 = -1.63325770165403860181e-19L
1071data8 0x8F14B9EBD5A9AB25, 0x00003FBC //A14 = +7.57464305512080733773e-21L
1072data8 0xCD4804BBF6DC1B6F, 0x0000BFB7 //A15 = -3.39609459750208886298e-22L
1073// Pol18
1074data8 0xE251DFE45AB0C22E, 0x00003FEE //A0 = +1.34897126299700418200e-05L
1075data8 0x83943CC7D59D4215, 0x0000BFF5 //A1 = -1.00386850310061655307e-03L
1076data8 0xAA57896951134BCA, 0x00003FF0 //A2 = +4.06126834109940757047e-05L
1077data8 0xDC0A67051E1C4A2C, 0x0000BFEB //A3 = -1.63943048164477430317e-06L
1078data8 0x8DCB3C0A8CD07BBE, 0x00003FE7 //A4 = +6.60279229777753829876e-08L
1079data8 0xB64DE81C24F7F265, 0x0000BFE2 //A5 = -2.65287705357477481067e-09L
1080data8 0xE9CBB7A990DBA8B5, 0x00003FDD //A6 = +1.06318007608620426224e-10L
1081data8 0x9583D4B85C2ADC6F, 0x0000BFD9 //A7 = -4.24947087941505088222e-12L
1082data8 0xBEB0EE8114EEDF77, 0x00003FD4 //A8 = +1.69367754741562774916e-13L
1083data8 0xF2791BB8F06BDA93, 0x0000BFCF //A9 = -6.72997988617021128704e-15L
1084data8 0x99A907F6A92195B4, 0x00003FCB //A10 = +2.66558091161711891239e-16L
1085data8 0xC213E5E6F833BB93, 0x0000BFC6 //A11 = -1.05209746502719578617e-17L
1086data8 0xF41FBBA6B343960F, 0x00003FC1 //A12 = +4.13562069721140021224e-19L
1087data8 0x98F194AEE31D188D, 0x0000BFBD //A13 = -1.61935414722333263347e-20L
1088data8 0xC42F5029BB622157, 0x00003FB8 //A14 = +6.49121108201931196678e-22L
1089data8 0xF43BD08079E50E0F, 0x0000BFB3 //A15 = -2.52531675510242468317e-23L
1090// Pol19
1091data8 0x82557B149A04D08E, 0x00003FEF //A0 = +1.55370127331027842820e-05L
1092data8 0xBAAB433307CE614B, 0x0000BFF4 //A1 = -7.12085701486669872724e-04L
1093data8 0xCB52D9DBAC16FE82, 0x00003FEF //A2 = +2.42380662859334411743e-05L
1094data8 0xDD214359DBBCE7D1, 0x0000BFEA //A3 = -8.23773197624244883859e-07L
1095data8 0xF01E8E968139524C, 0x00003FE5 //A4 = +2.79535729459988509676e-08L
1096data8 0x82286A057E0916CE, 0x0000BFE1 //A5 = -9.47023128967039348510e-10L
1097data8 0x8CDDDC4E8D013365, 0x00003FDC //A6 = +3.20293663356974901319e-11L
1098data8 0x982FEEE90D4E8751, 0x0000BFD7 //A7 = -1.08135537312234452657e-12L
1099data8 0xA41D1E84083B8FD6, 0x00003FD2 //A8 = +3.64405720894915411836e-14L
1100data8 0xB0A1B6111B72E159, 0x0000BFCD //A9 = -1.22562851790685744085e-15L
1101data8 0xBDB77DE6B650FFA2, 0x00003FC8 //A10 = +4.11382657214908334175e-17L
1102data8 0xCB54E95CDB66978A, 0x0000BFC3 //A11 = -1.37782909696752432371e-18L
1103data8 0xD959E428A62B1B6C, 0x00003FBE //A12 = +4.60258936838597812582e-20L
1104data8 0xE7D49EC23F1A16A0, 0x0000BFB9 //A13 = -1.53412587409583783059e-21L
1105data8 0xFDE429BC9947B2BE, 0x00003FB4 //A14 = +5.25034823750902928092e-23L
1106data8 0x872137A062C042EF, 0x0000BFB0 //A15 = -1.74651114923000080365e-24L
1107// Pol20
1108data8 0x8B9B185C6A2659AC, 0x00003FEF //A0 = +1.66423130594825442963e-05L
1109data8 0x84503AD52588A1E8, 0x0000BFF4 //A1 = -5.04735556466270303549e-04L
1110data8 0xF26C7C2B566388E1, 0x00003FEE //A2 = +1.44495826764677427386e-05L
1111data8 0xDDDA15FEE262BB47, 0x0000BFE9 //A3 = -4.13231361893675488873e-07L
1112data8 0xCACEBC73C90C2FE0, 0x00003FE4 //A4 = +1.18049538609157282958e-08L
1113data8 0xB9314D00022B41DD, 0x0000BFDF //A5 = -3.36863342776746896664e-10L
1114data8 0xA8E9FBDC714638B9, 0x00003FDA //A6 = +9.60164921624768038366e-12L
1115data8 0x99E246C0CC8CA6F6, 0x0000BFD5 //A7 = -2.73352704217713596798e-13L
1116data8 0x8C04E7B5DF372EA1, 0x00003FD0 //A8 = +7.77262480048865685174e-15L
1117data8 0xFE7B90CAA0B6D5F7, 0x0000BFCA //A9 = -2.20728537958846147109e-16L
1118data8 0xE6F40BAD4EC6CB4F, 0x00003FC5 //A10 = +6.26000182616999972048e-18L
1119data8 0xD14F4E0538F0F992, 0x0000BFC0 //A11 = -1.77292283439752259258e-19L
1120data8 0xBD5A7FAA548CC749, 0x00003FBB //A12 = +5.01214569023722089225e-21L
1121data8 0xAB15D69425373A67, 0x0000BFB6 //A13 = -1.41518447770061562822e-22L
1122data8 0x9EF95456F75B4DF4, 0x00003FB1 //A14 = +4.10938011540250142351e-24L
1123data8 0x8FADCC45E81433E7, 0x0000BFAC //A15 = -1.16062889679749879834e-25L
1124// Pol21
1125data8 0xB47A917B0F7B50AE, 0x00003FEF //A0 = +2.15147474240529518138e-05L
1126data8 0xBB77DC3BA0C937B3, 0x0000BFF3 //A1 = -3.57567223048598672970e-04L
1127data8 0x90694DFF4EBF7370, 0x00003FEE //A2 = +8.60758700336677694536e-06L
1128data8 0xDE5379AA90A98F3F, 0x0000BFE8 //A3 = -2.07057292787309736495e-07L
1129data8 0xAB0322293F1F9CA0, 0x00003FE3 //A4 = +4.97711123919916694625e-09L
1130data8 0x837119E59D3B7AC2, 0x0000BFDE //A5 = -1.19545621970063369582e-10L
1131data8 0xC9E5B74A38ECF3FC, 0x00003FD8 //A6 = +2.86913359605586285967e-12L
1132data8 0x9AEF5110C6885352, 0x0000BFD3 //A7 = -6.88048865490621757799e-14L
1133data8 0xED988D52189CE6A3, 0x00003FCD //A8 = +1.64865278639132278935e-15L
1134data8 0xB6063CECD8012B6D, 0x0000BFC8 //A9 = -3.94702428606368525374e-17L
1135data8 0x8B541EB15E79CEEC, 0x00003FC3 //A10 = +9.44127272399408815784e-19L
1136data8 0xD51A136D8C75BC25, 0x0000BFBD //A11 = -2.25630369561137931232e-20L
1137data8 0xA2C1C5E19CC79E6F, 0x00003FB8 //A12 = +5.38517493921589837361e-22L
1138data8 0xF86F9772306F56C1, 0x0000BFB2 //A13 = -1.28438352359240135735e-23L
1139data8 0xC32F6FEEDE86528E, 0x00003FAD //A14 = +3.15338862172962186458e-25L
1140data8 0x9534ED189744D7D4, 0x0000BFA8 //A15 = -7.53301543611470014315e-27L
1141// Pol22
1142data8 0xCBA0A2DB94A2C494, 0x00003FEF //A0 = +2.42742878212752702946e-05L
1143data8 0x84C089154A49E0E8, 0x0000BFF3 //A1 = -2.53204520651046300034e-04L
1144data8 0xABF5665BD0D8B0CD, 0x00003FED //A2 = +5.12476542947092361490e-06L
1145data8 0xDEA1C518E3EEE872, 0x0000BFE7 //A3 = -1.03671063536324831083e-07L
1146data8 0x900B77F271559AE8, 0x00003FE2 //A4 = +2.09612770408581408652e-09L
1147data8 0xBA4C74A262BE3E4E, 0x0000BFDC //A5 = -4.23594098489216166935e-11L
1148data8 0xF0D1680FCC1EAF97, 0x00003FD6 //A6 = +8.55557381760467917779e-13L
1149data8 0x9B8F8E033BB83A24, 0x0000BFD1 //A7 = -1.72707138247091685914e-14L
1150data8 0xC8DCA6A691DB8335, 0x00003FCB //A8 = +3.48439884388851942939e-16L
1151data8 0x819A6CB9CEA5E9BD, 0x0000BFC6 //A9 = -7.02580471688245511753e-18L
1152data8 0xA726B4F622585BEA, 0x00003FC0 //A10 = +1.41582572516648501043e-19L
1153data8 0xD7727648A4095986, 0x0000BFBA //A11 = -2.85141885626054217632e-21L
1154data8 0x8AB627E09CF45997, 0x00003FB5 //A12 = +5.73697507862703019314e-23L
1155data8 0xB28C15C117CC604F, 0x0000BFAF //A13 = -1.15383428132352407085e-24L
1156data8 0xECB8428626DA072C, 0x00003FA9 //A14 = +2.39025879246942839796e-26L
1157data8 0x98B731BCFA2CE2B2, 0x0000BFA4 //A15 = -4.81885474332093262902e-28L
1158// Pol23
1159data8 0xC6D013811314D31B, 0x00003FED //A0 = +5.92508308918577687876e-06L
1160data8 0xBBF3057B8DBACBCF, 0x0000BFF2 //A1 = -1.79242422493281965934e-04L
1161data8 0xCCADECA501162313, 0x00003FEC //A2 = +3.04996061562356504918e-06L
1162data8 0xDED1FDBE8CCAF3DB, 0x0000BFE6 //A3 = -5.18793887648024117154e-08L
1163data8 0xF27B74EDDCA65859, 0x00003FE0 //A4 = +8.82145297317787820675e-10L
1164data8 0x83E4415687F01A0C, 0x0000BFDB //A5 = -1.49943414247603665601e-11L
1165data8 0x8F6CB350861CE446, 0x00003FD5 //A6 = +2.54773288906376920377e-13L
1166data8 0x9BE8456A30CBFC02, 0x0000BFCF //A7 = -4.32729710913845745148e-15L
1167data8 0xA9694F7E1033977D, 0x00003FC9 //A8 = +7.34704698157502347441e-17L
1168data8 0xB8035A3D5AF82D85, 0x0000BFC3 //A9 = -1.24692123826025468001e-18L
1169data8 0xC7CB4B3ACB905FDA, 0x00003FBD //A10 = +2.11540249352095943317e-20L
1170data8 0xD8D70AEB2E58D729, 0x0000BFB7 //A11 = -3.58731705184186608576e-22L
1171data8 0xEB27A61B1D5C7697, 0x00003FB1 //A12 = +6.07861113430709162243e-24L
1172data8 0xFEF9ED74D4F4C9B0, 0x0000BFAB //A13 = -1.02984099170876754831e-25L
1173data8 0x8E6F410068C12043, 0x00003FA6 //A14 = +1.79777721804459361762e-27L
1174data8 0x9AE2F6705481630E, 0x0000BFA0 //A15 = -3.05459905177379058768e-29L
1175// Pol24
1176data8 0xD2D858D5B01C9434, 0x00003FEE //A0 = +1.25673476165670766128e-05L
1177data8 0x8505330F8B4FDE49, 0x0000BFF2 //A1 = -1.26858053564784963985e-04L
1178data8 0xF39171C8B1D418C2, 0x00003FEB //A2 = +1.81472407620770441249e-06L
1179data8 0xDEF065C3D7BFD26E, 0x0000BFE5 //A3 = -2.59535215807652675043e-08L
1180data8 0xCC0199EA6ACA630C, 0x00003FDF //A4 = +3.71085215769339916703e-10L
1181data8 0xBAA25319F01ED248, 0x0000BFD9 //A5 = -5.30445960650683029105e-12L
1182data8 0xAAB28A84F8CFE4D1, 0x00003FD3 //A6 = +7.58048850973457592162e-14L
1183data8 0x9C14B931AEB311A8, 0x0000BFCD //A7 = -1.08302915828084288776e-15L
1184data8 0x8EADA745715A0714, 0x00003FC7 //A8 = +1.54692159263197000533e-17L
1185data8 0x82643F3F722CE6B5, 0x0000BFC1 //A9 = -2.20891945694400066611e-19L
1186data8 0xEE42ECDE465A99E4, 0x00003FBA //A10 = +3.15336372779307614198e-21L
1187data8 0xD99FC74326ACBFC0, 0x0000BFB4 //A11 = -4.50036161691276556269e-23L
1188data8 0xC6A4DCACC554911E, 0x00003FAE //A12 = +6.41853356148678957077e-25L
1189data8 0xB550CEA09DA96F44, 0x0000BFA8 //A13 = -9.15410112414783078242e-27L
1190data8 0xAA9149317996F32F, 0x00003FA2 //A14 = +1.34554050666508391264e-28L
1191data8 0x9C3008EFE3F52F19, 0x0000BF9C //A15 = -1.92516125328592532359e-30L
1192// Pol25
1193data8 0xA68E78218806283F, 0x00003FEF //A0 = +1.98550844852103406280e-05L
1194data8 0xBC41423996DC8A37, 0x0000BFF1 //A1 = -8.97669395268764751516e-05L
1195data8 0x90E55AE31A2F8271, 0x00003FEB //A2 = +1.07955871580069359702e-06L
1196data8 0xDF022272DA4A3BEF, 0x0000BFE4 //A3 = -1.29807937275957214439e-08L
1197data8 0xAB95DCBFFB0BAAB8, 0x00003FDE //A4 = +1.56056011861921437794e-10L
1198data8 0x83FF2547BA9011FF, 0x0000BFD8 //A5 = -1.87578539510813332135e-12L
1199data8 0xCB0C353560EEDC45, 0x00003FD1 //A6 = +2.25428217090412574481e-14L
1200data8 0x9C24CEB86E76D2C5, 0x0000BFCB //A7 = -2.70866279585559299821e-16L
1201data8 0xF01AFA23DDFDAE0E, 0x00003FC4 //A8 = +3.25403467375734083376e-18L
1202data8 0xB892BDFBCF1D9740, 0x0000BFBE //A9 = -3.90848978133441513662e-20L
1203data8 0x8DDBBF34415AAECA, 0x00003FB8 //A10 = +4.69370027479731756829e-22L
1204data8 0xDA04170D07458C3B, 0x0000BFB1 //A11 = -5.63558091177482043435e-24L
1205data8 0xA76F391095A9563A, 0x00003FAB //A12 = +6.76262416498584003290e-26L
1206data8 0x8098FA125C18D8DB, 0x0000BFA5 //A13 = -8.11564737276592661642e-28L
1207data8 0xCB9E4D5C08923227, 0x00003F9E //A14 = +1.00391606269366059664e-29L
1208data8 0x9CEC3BF7A0BE2CAF, 0x0000BF98 //A15 = -1.20888920108938909316e-31L
1209// Pol26
1210data8 0xC17AB25E269272F7, 0x00003FEE //A0 = +1.15322640047234590651e-05L
1211data8 0x85310509E633FEF2, 0x0000BFF1 //A1 = -6.35106483144690768696e-05L
1212data8 0xAC5E4C4DCB2D940C, 0x00003FEA //A2 = +6.42122148740412561597e-07L
1213data8 0xDF0AAD0571FFDD48, 0x0000BFE3 //A3 = -6.49136789710824396482e-09L
1214data8 0x9049D8440AFD180F, 0x00003FDD //A4 = +6.56147932223174570008e-11L
1215data8 0xBAA936477C5FA9D7, 0x0000BFD6 //A5 = -6.63153032879993841863e-13L
1216data8 0xF17261294EAB1443, 0x00003FCF //A6 = +6.70149477756803680009e-15L
1217data8 0x9C22F87C31DB007A, 0x0000BFC9 //A7 = -6.77134581402030645534e-17L
1218data8 0xC9E98E633942AC12, 0x00003FC2 //A8 = +6.84105580182052870823e-19L
1219data8 0x828998181309642C, 0x0000BFBC //A9 = -6.91059649300859944955e-21L
1220data8 0xA8C3D4DCE1ECBAB6, 0x00003FB5 //A10 = +6.97995542988331257517e-23L
1221data8 0xDA288D52CC4C351A, 0x0000BFAE //A11 = -7.04907829139578377009e-25L
1222data8 0x8CEEACB790B5F374, 0x00003FA8 //A12 = +7.11526399101774993883e-27L
1223data8 0xB61C8A29D98F24C0, 0x0000BFA1 //A13 = -7.18303147470398859453e-29L
1224data8 0xF296F69FE45BDA7D, 0x00003F9A //A14 = +7.47537230021540031251e-31L
1225data8 0x9D4B25BF6FB7234B, 0x0000BF94 //A15 = -7.57340869663212138051e-33L
1226// Pol27
1227data8 0xC7772CC326D6FBB8, 0x00003FEE //A0 = +1.18890718679826004395e-05L
1228data8 0xE0F9D5410565D55D, 0x0000BFF0 //A1 = -5.36384368533203585378e-05L
1229data8 0x85C0BE825680E148, 0x00003FEA //A2 = +4.98268406609692971520e-07L
1230data8 0x9F058A389D7BA177, 0x0000BFE3 //A3 = -4.62813885933188677790e-09L
1231data8 0xBD0B751F0A6BAC7A, 0x00003FDC //A4 = +4.29838009673609430305e-11L
1232data8 0xE0B6823570502E9D, 0x0000BFD5 //A5 = -3.99170340031272728535e-13L
1233data8 0x858A9C52FC426D86, 0x00003FCF //A6 = +3.70651975271664045723e-15L
1234data8 0x9EB4438BFDF1928D, 0x0000BFC8 //A7 = -3.44134780748056488222e-17L
1235data8 0xBC968DCD8C06D74E, 0x00003FC1 //A8 = +3.19480670422195579127e-19L
1236data8 0xE0133A405F782125, 0x0000BFBA //A9 = -2.96560935615546392028e-21L
1237data8 0x851AFEBB70D07E79, 0x00003FB4 //A10 = +2.75255617931932536111e-23L
1238data8 0x9E1E21A841BF8738, 0x0000BFAD //A11 = -2.55452923487640676799e-25L
1239data8 0xBBCF2EF1C6E72327, 0x00003FA6 //A12 = +2.37048675755308004410e-27L
1240data8 0xDF0D320CF12B8BCB, 0x0000BF9F //A13 = -2.19945804585962185550e-29L
1241data8 0x8470A76DE5FCADD8, 0x00003F99 //A14 = +2.04056213851532266258e-31L
1242data8 0x9D41C15F6A6FBB04, 0x0000BF92 //A15 = -1.89291056020108587823e-33L
1243LOCAL_OBJECT_END(erfc_Q_table)
1244
1245
1246.section .text
1247GLOBAL_LIBM_ENTRY(erfcl)
1248
1249{ .mfi
1250      alloc          r32 = ar.pfs, 0, 36, 4, 0
1251      fma.s1         FR_Tmp = f1, f1, f8                   // |x|+1, if x >= 0
1252      nop.i          0
1253}
1254{ .mfi
1255      addl           GR_ad_Arg    = @ltoff(exp_table_1), gp
1256      fms.s1         FR_Tmp1 = f1, f1, f8                   // |x|+1, if x < 0
1257      mov            GR_rshf_2to51 = 0x4718         // begin 1.10000 2^(63+51)
1258}
1259;;
1260
1261{ .mfi
1262      ld8            GR_ad_Arg = [GR_ad_Arg]             // Point to Arg table
1263      fcmp.ge.s1     p6,p7 = f8, f0                     // p6: x >= 0 ,p7: x<0
1264      shl            GR_rshf_2to51 = GR_rshf_2to51,48 // end 1.10000 2^(63+51)
1265}
1266{ .mlx
1267      mov            GR_rshf = 0x43e8     // begin 1.1000 2^63 for right shift
1268      movl           GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc   // signif. of 1/ln2
1269}
1270;;
1271
1272{ .mfi
1273      mov            GR_exp_2tom51 = 0xffff-51
1274      fclass.m       p8,p0 = f8,0x07                            // p8:   x = 0
1275      shl            GR_rshf = GR_rshf,48   // end 1.1000 2^63 for right shift
1276}
1277{ .mfi
1278      nop.m          0
1279      fnma.s1        FR_norm_x   = f8, f8, f0             //high bits for -x^2
1280      nop.i          0
1281}
1282;;
1283
1284.pred.rel "mutex",p6,p7
1285{ .mfi
1286      setf.sig       FR_INV_LN2_2TO63 = GR_sig_inv_ln2    // form 1/ln2 * 2^63
1287(p6)  fma.s1         FR_AbsArg = f1, f0, f8                  // |x|, if x >= 0
1288      nop.i          0
1289}
1290{ .mfi
1291      setf.d         FR_RSHF_2TO51 = GR_rshf_2to51    //const 1.10 * 2^(63+51)
1292(p7)  fms.s1         FR_AbsArg = f1, f0, f8                   // |x|, if x < 0
1293      mov            GR_exp_mask = 0x1FFFF               // Form exponent mask
1294}
1295;;
1296
1297{ .mfi
1298      ldfe           FR_ch_dx = [GR_ad_Arg], 16
1299      fclass.m       p10,p0 = f8, 0x21                        // p10: x = +inf
1300      mov            GR_exp_bias = 0x0FFFF                // Set exponent bias
1301}
1302{ .mlx
1303      setf.d         FR_RSHF = GR_rshf      // Right shift const 1.1000 * 2^63
1304      movl           GR_ERFC_XC_TB = 0x650
1305}
1306;;
1307
1308.pred.rel "mutex",p6,p7
1309{ .mfi
1310      setf.exp       FR_2TOM51 = GR_exp_2tom51    // 2^-51 for scaling float_N
1311(p6)  fma.s1         FR_Tmp = FR_Tmp, FR_Tmp, f0            // (|x|+1)^2,x >=0
1312      nop.i          0
1313}
1314{ .mfi
1315      ldfpd          FR_POS_ARG_ASYMP,FR_NEG_ARG_ASYMP = [GR_ad_Arg], 16
1316(p7)  fma.s1         FR_Tmp = FR_Tmp1, FR_Tmp1, f0           // (|x|+1)^2, x<0
1317      mov            GR_0x1 = 0x1
1318}
1319;;
1320
1321//p8: y = 1.0, x = 0.0,quick exit
1322{ .mfi
1323      ldfpd          FR_dx,FR_dx1 = [GR_ad_Arg], 16
1324      fclass.m       p9,p0 = f8, 0x22                          // p9: x = -inf
1325      nop.i          0
1326
1327}
1328{ .mfb
1329      nop.m          0
1330(p8)  fma.s0         f8 = f1, f1, f0
1331(p8)  br.ret.spnt    b0
1332}
1333;;
1334
1335{ .mfi
1336      ldfe           FR_UnfBound = [GR_ad_Arg], 16
1337      fclass.m       p11,p0 = f8, 0xc3                        // p11: x = nan
1338      mov            GR_BIAS = 0x0FFFF
1339}
1340{ .mfi
1341      nop.m          0
1342      fma.s1         FR_NormX = f8,f1,f0
1343      nop.i          0
1344}
1345;;
1346
1347{ .mfi
1348      ldfe           FR_EpsNorm = [GR_ad_Arg], 16
1349      fmerge.s       FR_X = f8,f8
1350      nop.i          0
1351}
1352{ .mfi
1353      nop.m          0
1354      fma.s1         FR_xsq_lo = f8, f8, FR_norm_x        // low bits for -x^2
1355      nop.i          0
1356}
1357;;
1358
1359{ .mfi
1360      add            GR_ad_C = 0x20, GR_ad_Arg             // Point to C table
1361      nop.f          0
1362      add            GR_ad_T1 = 0x50, GR_ad_Arg           // Point to T1 table
1363}
1364{ .mfi
1365      add            GR_ad_T2 = 0x150, GR_ad_Arg          // Point to T2 table
1366      nop.f          0
1367      add            GR_ERFC_XC_TB = GR_ERFC_XC_TB, GR_ad_Arg //poin.to XB_TBL
1368}
1369;;
1370
1371{ .mfi
1372      getf.exp       GR_signexp_x = FR_norm_x  // Extr. sign and exponent of x
1373      fma.s1         FR_Tmp = FR_Tmp, FR_Tmp, f0                  // (|x|+1)^4
1374      add            GR_ad_W1 = 0x100, GR_ad_T2           // Point to W1 table
1375}
1376{ .mfi
1377      ldfe           FR_L_hi = [GR_ad_Arg],16                      // Get L_hi
1378      nop.f          0
1379      add            GR_ad_W2 = 0x300, GR_ad_T2           // Point to W2 table
1380}
1381;;
1382
1383// p9: y = 2.0, x = -inf, quick exit
1384{ .mfi
1385      sub            GR_mBIAS = r0, GR_BIAS
1386      fma.s1         FR_2 = f1, f1, f1
1387      nop.i          0
1388}
1389{ .mfb
1390      ldfe           FR_L_lo = [GR_ad_Arg],16                      // Get L_lo
1391(p9)  fma.s0         f8 = f1, f1, f1
1392(p9)  br.ret.spnt    b0
1393}
1394;;
1395
1396// p10: y = 0.0, x = +inf, quick exit
1397{ .mfi
1398      adds           GR_ERFC_P_TB = 0x380, GR_ERFC_XC_TB   // pointer to P_TBL
1399      fma.s1         FR_N_signif = FR_norm_x, FR_INV_LN2_2TO63, FR_RSHF_2TO51
1400      and            GR_exp_x = GR_signexp_x, GR_exp_mask
1401}
1402{ .mfb
1403      adds           GR_ERFC_S_TB = 0x1C0, GR_ERFC_XC_TB   // pointer to S_TBL
1404(p10) fma.s0         f8 = f0, f1, f0
1405(p10) br.ret.spnt    b0
1406}
1407;;
1408
1409// p12: |x| < 0.681...  ->  dx = 0.875 (else dx = 0.625 )
1410// p11: y = x, x = nan, quick exit
1411{ .mfi
1412      ldfe           FR_C3 = [GR_ad_C],16           // Get C3 for normal path
1413      fcmp.lt.s1     p12,p0 = FR_AbsArg, FR_ch_dx
1414      shl            GR_ShftPi_bias = GR_BIAS, 8                //  BIAS * 256
1415}
1416{ .mfb
1417      sub            GR_exp_x = GR_exp_x, GR_exp_bias          // Get exponent
1418(p11) fma.s0         f8 = f8, f1, f0
1419(p11) br.ret.spnt    b0
1420
1421}
1422;;
1423
1424{ .mfi
1425      ldfe           FR_C2 = [GR_ad_C],16              // Get A2 for main path
1426      nop.f          0
1427      nop.i          0
1428}
1429;;
1430
1431//p15: x > POS_ARG_ASYMP = 107.0 -> erfcl(x) ~=~ 0.0
1432{ .mfi
1433      ldfe           FR_C1 = [GR_ad_C],16              // Get C1 for main path
1434(p6)  fcmp.gt.unc.s1 p15,p0 = FR_AbsArg, FR_POS_ARG_ASYMP        // p6: x >= 0
1435      nop.i          0
1436}
1437{ .mfb
1438      nop.m          0
1439(p12) fma.s1         FR_dx = FR_dx1, f1, f0   //p12: dx = 0.875 for x < 0.681
1440      nop.b          0
1441}
1442;;
1443
1444//p14: x < - NEG_ARG_ASYMP = -6.5 -> erfcl(x) ~=~ 2.0
1445{ .mfi
1446      nop.m          0
1447(p7)  fcmp.gt.unc.s1 p14,p0 = FR_AbsArg,FR_NEG_ARG_ASYMP          // p7: x < 0
1448      shladd         GR_ShftXBi_bias = GR_mBIAS, 4, r0
1449}
1450;;
1451
1452{ .mfi
1453      nop.m          0
1454      fma.s0         FR_Tmpf = f1, f1, FR_EpsNorm                    // flag i
1455      nop.i          0
1456}
1457{ .mfi
1458      nop.m          0
1459      fms.s1         FR_float_N = FR_N_signif, FR_2TOM51, FR_RSHF
1460      nop.i          0
1461}
1462;;
1463
1464// p8: x < UnfBound ~=~ 106.53... -> result without underflow error
1465// p14: y ~=~ 2, x < -6.5,quick exit
1466{ .mfi
1467      getf.exp       GR_IndxPlusBias = FR_Tmp      // exp + bias for (|x|+1)^4
1468      fcmp.lt.s1     p8,p0 = FR_NormX,FR_UnfBound
1469      nop.i          0
1470}
1471{ .mfb
1472      nop.m          0
1473(p14) fnma.s0        FR_RESULT = FR_EpsNorm,FR_EpsNorm,FR_2
1474(p14) br.ret.spnt    b0
1475
1476}
1477;;
1478
1479// p15: y ~=~ 0.0 (result with underflow error), x > POS_ARG_ASYMP = 107.0,
1480// call __libm_error_region
1481{ .mfb
1482(p15) mov            GR_Parameter_TAG = 207
1483(p15) fma.s0         FR_RESULT = FR_EpsNorm,FR_EpsNorm,f0
1484(p15) br.cond.spnt   __libm_error_region
1485}
1486;;
1487
1488{ .mfi
1489      getf.sig       GR_N_fix = FR_N_signif          // Get N from significand
1490      nop.f          0
1491      shl            GR_ShftPi = GR_IndxPlusBias, 8
1492
1493}
1494{ .mfi
1495      shladd         GR_ShftXBi = GR_IndxPlusBias, 4, GR_ShftXBi_bias
1496      nop.f          0
1497      nop.i          0
1498}
1499;;
1500
1501{ .mmi
1502      add            GR_ERFC_S_TB = GR_ERFC_S_TB, GR_ShftXBi    //poin.to S[i]
1503      add            GR_ERFC_XC_TB = GR_ERFC_XC_TB, GR_ShftXBi //poin.to XC[i]
1504      sub            GR_ShftPi = GR_ShftPi, GR_ShftPi_bias            // 256*i
1505}
1506;;
1507
1508{ .mfi
1509      ldfe           FR_Xc  = [GR_ERFC_XC_TB]
1510      fma.s1         FR_Xpdx_hi = FR_AbsArg, f1, FR_dx              //  x + dx
1511      add            GR_ShftA14 = 0xE0, GR_ShftPi     // pointer shift for A14
1512
1513
1514}
1515{ .mfi
1516      ldfe           FR_S  = [GR_ERFC_S_TB]
1517      fnma.s1        FR_r = FR_L_hi, FR_float_N, FR_norm_x//r= -L_hi*float_N+x
1518      add            GR_ShftA15 = 0xF0, GR_ShftPi     // pointer shift for A15
1519}
1520;;
1521
1522{ .mfi
1523      add            GR_P_POINT_1 = GR_ERFC_P_TB, GR_ShftA14 // pointer to A14
1524      fcmp.gt.s1     p9,p10 = FR_AbsArg, FR_dx      //p9: x > dx, p10: x <= dx
1525      extr.u         GR_M1 = GR_N_fix, 6, 6               // Extract index M_1
1526}
1527{ .mfi
1528      add            GR_P_POINT_2 = GR_ERFC_P_TB, GR_ShftA15 // pointer to A15
1529      nop.f          0
1530      nop.i          0
1531
1532}
1533;;
1534
1535{ .mfi
1536      ldfe           FR_A14 = [GR_P_POINT_1], -32
1537      nop.f          0
1538      extr.u         GR_M2 = GR_N_fix, 0, 6               // Extract index M_2
1539}
1540{ .mfi
1541      ldfe           FR_A15 = [GR_P_POINT_2], -32
1542      nop.f          0
1543      shladd         GR_ad_W1 = GR_M1,3,GR_ad_W1                // Point to W1
1544}
1545;;
1546
1547{ .mfi
1548      ldfe           FR_A12 = [GR_P_POINT_1], -64
1549      nop.f          0
1550      extr           GR_K = GR_N_fix, 12, 32         // Extract limite range K
1551}
1552{ .mfi
1553      ldfe           FR_A13 = [GR_P_POINT_2], -64
1554      nop.f          0
1555      shladd         GR_ad_T1 = GR_M1,2,GR_ad_T1                // Point to T1
1556}
1557;;
1558
1559{ .mfi
1560      ldfe           FR_A8 = [GR_P_POINT_1], 32
1561      nop.f          0
1562      add            GR_exp_2_k = GR_exp_bias, GR_K    // Form exponent of 2^k
1563}
1564{ .mfi
1565      ldfe           FR_A9 = [GR_P_POINT_2], 32
1566      nop.f          0
1567      shladd         GR_ad_W2 = GR_M2,3,GR_ad_W2                // Point to W2
1568}
1569;;
1570
1571{ .mfi
1572      ldfe           FR_A10 = [GR_P_POINT_1], -96
1573      nop.f          0
1574      shladd         GR_ad_T2 = GR_M2,2,GR_ad_T2                // Point to T2
1575}
1576{ .mfi
1577      ldfe           FR_A11 = [GR_P_POINT_2], -96
1578      fnma.s1        FR_r = FR_L_lo, FR_float_N, FR_r //r = -L_lo*float_N + r
1579      nop.i          0
1580}
1581;;
1582
1583{ .mfi
1584      ldfe           FR_A4 = [GR_P_POINT_1], 32
1585(p10) fms.s1         FR_Tmp = FR_dx,f1, FR_Xpdx_hi   //for lo  of  x+dx, x<=dx
1586      nop.i          0
1587}
1588{ .mfi
1589      ldfe           FR_A5 = [GR_P_POINT_2], 32
1590(p9)  fms.s1         FR_Tmp = FR_AbsArg, f1, FR_Xpdx_hi //for lo of x+dx, x>dx
1591      nop.i          0
1592}
1593;;
1594
1595{ .mfi
1596      ldfe           FR_A6 = [GR_P_POINT_1], -64
1597      frcpa.s1       FR_U,p11 = f1, FR_Xpdx_hi          //  hi of  1 /(x + dx)
1598      nop.i          0
1599}
1600{ .mfi
1601      ldfe           FR_A7 = [GR_P_POINT_2], -64
1602      nop.f          0
1603      nop.i          0
1604}
1605;;
1606
1607{ .mfi
1608      ldfe           FR_A2 = [GR_P_POINT_1], -32
1609      nop.f          0
1610      nop.i          0
1611}
1612{ .mfi
1613      ldfe           FR_A3 = [GR_P_POINT_2], -32
1614      nop.f          0
1615      nop.i          0
1616}
1617;;
1618
1619{ .mfi
1620      ldfe           FR_A0 = [GR_P_POINT_1], 224
1621      nop.f          0
1622      nop.i          0
1623}
1624{ .mfi
1625      ldfe           FR_A1 = [GR_P_POINT_2]
1626      fms.s1         FR_LocArg = FR_AbsArg, f1, FR_Xc       // xloc = x - x[i]
1627      nop.i          0
1628}
1629;;
1630
1631{ .mfi
1632      ldfd           FR_W1 = [GR_ad_W1],0                            // Get W1
1633      nop.f          0
1634      nop.i          0
1635}
1636{ .mfi
1637      ldfd           FR_W2 = [GR_ad_W2],0                            // Get W2
1638      fma.s1         FR_poly = FR_r, FR_C3, FR_C2        // poly = r * A3 + A2
1639      nop.i          0
1640}
1641;;
1642
1643{ .mfi
1644      ldfs           FR_T1 = [GR_ad_T1],0                            // Get T1
1645(p10) fma.s1         FR_Xpdx_lo = FR_AbsArg,f1, FR_Tmp//lo of x + dx , x <= dx
1646      nop.i          0
1647}
1648{ .mfi
1649      ldfs           FR_T2 = [GR_ad_T2],0                            // Get T2
1650(p9)  fma.s1         FR_Xpdx_lo = FR_dx,f1, FR_Tmp   // lo  of  x + dx, x > dx
1651      nop.i          0
1652}
1653;;
1654
1655{ .mfi
1656      nop.m          0
1657      fnma.s1        FR_Tmp1 = FR_Xpdx_hi, FR_U, FR_2        //  N-R, iter. N1
1658      nop.i          0
1659}
1660{ .mfi
1661      nop.m          0
1662      fmpy.s1        FR_rsq = FR_r, FR_r                        // rsq = r * r
1663      nop.i          0
1664}
1665;;
1666
1667{ .mfi
1668      setf.exp       FR_scale = GR_exp_2_k                  // Set scale = 2^k
1669      fma.s1         FR_P15_1_1 = FR_LocArg, FR_LocArg, f0          // xloc ^2
1670      nop.i          0
1671}
1672{ .mfi
1673      nop.m          0
1674      fma.s1         FR_P15_0_1 = FR_A15, FR_LocArg, FR_A14
1675      nop.i          0
1676}
1677;;
1678
1679{ .mfi
1680      nop.m          0
1681      fma.s1         FR_P15_1_2 = FR_A13, FR_LocArg, FR_A12
1682      nop.i          0
1683}
1684{ .mfi
1685      nop.m          0
1686      fma.s1         FR_poly = FR_r, FR_poly, FR_C1    // poly = r * poly + A1
1687      nop.i          0
1688}
1689;;
1690
1691{ .mfi
1692      nop.m          0
1693      fma.s1         FR_P15_2_1 = FR_A9, FR_LocArg, FR_A8
1694      nop.i          0
1695}
1696{ .mfi
1697      nop.m          0
1698      fma.s1         FR_P15_2_2 = FR_A11, FR_LocArg, FR_A10
1699      nop.i          0
1700}
1701;;
1702
1703{ .mfi
1704      nop.m          0
1705      fma.s1         FR_U = FR_U, FR_Tmp1, f0                //  N-R, iter. N1
1706      nop.i          0
1707}
1708;;
1709
1710{ .mfi
1711      nop.m          0
1712      fma.s1         FR_P15_3_1 = FR_A5, FR_LocArg, FR_A4
1713      nop.i          0
1714}
1715{ .mfi
1716      nop.m          0
1717      fma.s1         FR_P15_3_2 = FR_A7, FR_LocArg, FR_A6
1718      nop.i          0
1719}
1720;;
1721
1722{ .mfi
1723      nop.m          0
1724      fma.s1         FR_P15_4_2 = FR_A3, FR_LocArg, FR_A2
1725      nop.i          0
1726}
1727{ .mfi
1728      nop.m          0
1729      fma.s1         FR_W = FR_W1, FR_W2, FR_W2            // W = W1 * W2 + W2
1730      nop.i          0
1731}
1732;;
1733
1734{ .mfi
1735      nop.m          0
1736      fmpy.s1        FR_T = FR_T1, FR_T2                        // T = T1 * T2
1737      nop.i          0
1738}
1739{ .mfi
1740      nop.m          0
1741      fma.s1         FR_P15_7_1 = FR_P15_0_1, FR_P15_1_1, FR_P15_1_2
1742      nop.i          0
1743}
1744;;
1745
1746{ .mfi
1747      nop.m          0
1748      fma.s1         FR_P15_7_2 = FR_P15_1_1, FR_P15_1_1, f0         // xloc^4
1749      nop.i          0
1750}
1751{ .mfi
1752      nop.m          0
1753      fma.s1         FR_P15_8_1 = FR_P15_1_1, FR_P15_2_2, FR_P15_2_1
1754      nop.i          0
1755}
1756;;
1757
1758{ .mfi
1759      nop.m          0
1760      fnma.s1        FR_Tmp = FR_Xpdx_hi, FR_U, FR_2         //  N-R, iter. N2
1761      nop.i          0
1762}
1763
1764{ .mfi
1765      nop.m          0
1766      fma.s1         FR_poly = FR_rsq, FR_poly, FR_r  // poly = rsq * poly + r
1767      nop.i          0
1768}
1769;;
1770
1771{ .mfi
1772      nop.m          0
1773      fma.s1         FR_P15_9_1 = FR_P15_1_1, FR_P15_4_2, FR_A0
1774      nop.i          0
1775}
1776{ .mfi
1777      nop.m          0
1778      fma.s1         FR_P15_9_2 = FR_P15_1_1, FR_P15_3_2, FR_P15_3_1
1779      nop.i          0
1780}
1781;;
1782
1783{ .mfi
1784      nop.m          0
1785      fma.s1         FR_W = FR_W, f1, FR_W1                      // W = W + W1
1786      nop.i          0
1787}
1788;;
1789
1790{ .mfi
1791      nop.m          0
1792      fma.s1         FR_T_scale = FR_T, FR_scale, f0    // T_scale = T * scale
1793      nop.i          0
1794}
1795;;
1796
1797{ .mfi
1798      nop.m          0
1799      fma.s1         FR_P15_13_1 = FR_P15_7_2, FR_P15_7_1, FR_P15_8_1
1800      nop.i          0
1801}
1802;;
1803
1804{ .mfi
1805      nop.m          0
1806      fma.s1         FR_U = FR_U, FR_Tmp, f0                 //  N-R, iter. N2
1807      nop.i          0
1808}
1809;;
1810
1811{ .mfi
1812      nop.m          0
1813      fma.s1         FR_P15_14_1 = FR_P15_7_2, FR_P15_9_2, FR_P15_9_1
1814      nop.i          0
1815}
1816{ .mfi
1817      nop.m          0
1818      fma.s1         FR_P15_14_2 = FR_P15_7_2, FR_P15_7_2, f0        // xloc^8
1819      nop.i          0
1820}
1821;;
1822
1823{ .mfi
1824      nop.m          0
1825      fma.s1         FR_M =  FR_T_scale, FR_S, f0
1826      nop.i          0
1827}
1828;;
1829
1830{ .mfi
1831      nop.m          0
1832      fnma.s1        FR_Tmp = FR_Xpdx_hi, FR_U, FR_2         //  N-R, iter. N3
1833      nop.i          0
1834}
1835;;
1836
1837{ .mfi
1838      nop.m          0
1839      fma.s1         FR_Q = FR_P15_14_2, FR_P15_13_1, FR_P15_14_1
1840      nop.i          0
1841}
1842;;
1843
1844{ .mfi
1845      nop.m          0
1846      fms.s1         FR_H = FR_W, f1, FR_xsq_lo              // H = W - xsq_lo
1847      nop.i          0
1848}
1849;;
1850
1851{ .mfi
1852      nop.m          0
1853      fma.s1         FR_U = FR_U, FR_Tmp, f0                 //  N-R, iter. N3
1854      nop.i          0
1855}
1856;;
1857
1858{ .mfi
1859      nop.m          0
1860      fma.s1         FR_Q = FR_A1, FR_LocArg, FR_Q
1861      nop.i          0
1862}
1863;;
1864
1865{ .mfi
1866      nop.m          0
1867      fnma.s1        FR_Tmp = FR_Xpdx_hi, FR_U, f1                   // for du
1868      nop.i          0
1869}
1870{ .mfi
1871      nop.m          0
1872      fma.s1         FR_R = FR_H, FR_poly, FR_poly
1873      nop.i          0
1874}
1875;;
1876
1877{ .mfi
1878      nop.m          0
1879      fma.s1         FR_res_pos_x_hi = FR_M, FR_U, f0                 //  M *U
1880      nop.i          0
1881
1882}
1883;;
1884
1885{ .mfi
1886      nop.m          0
1887      fma.s1         FR_R = FR_R, f1, FR_H            // R = H + P(r) + H*P(r)
1888      nop.i          0
1889}
1890;;
1891
1892{ .mfi
1893      nop.m          0
1894      fma.s0         FR_Tmpf = f8, f1, f0                          //  flag  d
1895      nop.i          0
1896}
1897;;
1898
1899{ .mfi
1900      nop.m          0
1901      fnma.s1        FR_dU = FR_Xpdx_lo, FR_U, FR_Tmp
1902      nop.i          0
1903}
1904;;
1905
1906// p7: we begin to calculate y(x) = 2 - erfcl(-x) in multi precision
1907// for -6.5 <= x < 0
1908{ .mfi
1909      nop.m          0
1910      fms.s1         FR_res_pos_x_lo = FR_M, FR_U, FR_res_pos_x_hi
1911      nop.i          0
1912
1913}
1914{ .mfi
1915      nop.m          0
1916(p7)  fnma.s1        FR_Tmp1 = FR_res_pos_x_hi, f1, FR_2           //p7: x < 0
1917      nop.i          0
1918
1919}
1920;;
1921
1922{ .mfi
1923      nop.m          0
1924      fma.s1         FR_G = FR_R, FR_Q, FR_Q
1925      nop.i          0
1926
1927}
1928;;
1929
1930{ .mfi
1931      nop.m          0
1932      fma.s1         FR_Tmp = FR_R, f1, FR_dU                       //  R + du
1933      nop.i          0
1934
1935}
1936;;
1937
1938{ .mfi
1939      nop.m          0
1940(p7)  fnma.s1        FR_Tmp2 = FR_Tmp1, f1, FR_2                   //p7: x < 0
1941      nop.i          0
1942
1943}
1944;;
1945
1946{ .mfi
1947      nop.m          0
1948      fma.s1         FR_G = FR_G, f1, FR_Tmp
1949      nop.i          0
1950
1951}
1952;;
1953
1954{ .mfi
1955      nop.m          0
1956(p7)  fnma.s1        FR_Tmp2 = FR_res_pos_x_hi, f1, FR_Tmp2        //p7: x < 0
1957      nop.i          0
1958
1959}
1960;;
1961
1962{ .mfi
1963      nop.m          0
1964      fma.s1         FR_V = FR_G, FR_res_pos_x_hi, f0          // V = G * M *U
1965      nop.i          0
1966
1967}
1968;;
1969
1970{ .mfi
1971      nop.m          0
1972(p7)  fma.s1         FR_res_pos_x_lo = FR_res_pos_x_lo, f1, FR_V   //p7: x < 0
1973      nop.i          0
1974
1975}
1976;;
1977
1978{ .mfi
1979      nop.m          0
1980(p7)  fnma.s1        FR_Tmp2 = FR_res_pos_x_lo, f1, FR_Tmp2        //p7: x < 0
1981      nop.i          0
1982
1983}
1984;;
1985
1986
1987//p6: result for     0 < x < = POS_ARG_ASYMP
1988//p7: result for   - NEG_ARG_ASYMP  <= x < 0
1989//p8: exit   for   - NEG_ARG_ASYMP  <=   x < UnfBound
1990
1991ERFC_RESULT:
1992.pred.rel "mutex",p6,p7
1993{ .mfi
1994      nop.m          0
1995(p6)  fma.s0         f8 = FR_M, FR_U, FR_V                       // p6: x >= 0
1996      nop.i          0
1997}
1998{ .mfb
1999      mov            GR_Parameter_TAG = 207
2000(p7)  fma.s0         f8 = FR_Tmp2, f1, FR_Tmp1                    // p7: x < 0
2001(p8)  br.ret.sptk    b0
2002};;
2003
2004GLOBAL_LIBM_END(erfcl)
2005libm_alias_ldouble_other (erfc, erfc)
2006
2007// call via (p15) br.cond.spnt   __libm_error_region
2008//          for  x > POS_ARG_ASYMP
2009// or
2010//
2011// after .endp erfcl for UnfBound < = x < = POS_ARG_ASYMP
2012
2013LOCAL_LIBM_ENTRY(__libm_error_region)
2014.prologue
2015{ .mfi
2016        add   GR_Parameter_Y=-32,sp                       // Parameter 2 value
2017        nop.f 0
2018.save   ar.pfs,GR_SAVE_PFS
2019        mov  GR_SAVE_PFS=ar.pfs                                 // Save ar.pfs
2020}
2021{ .mfi
2022.fframe 64
2023        add sp=-64,sp                                      // Create new stack
2024        nop.f 0
2025        mov GR_SAVE_GP=gp                                           // Save gp
2026};;
2027{ .mmi
2028        stfe [GR_Parameter_Y] = FR_Y,16          // STORE Parameter 2 on stack
2029        add GR_Parameter_X = 16,sp                      // Parameter 1 address
2030.save   b0, GR_SAVE_B0
2031        mov GR_SAVE_B0=b0                                           // Save b0
2032};;
2033.body
2034{ .mib
2035        stfe [GR_Parameter_X] = FR_X             // STORE Parameter 1 on stack
2036        add   GR_Parameter_RESULT = 0,GR_Parameter_Y    // Parameter 3 address
2037        nop.b 0
2038}
2039{ .mib
2040        stfe [GR_Parameter_Y] = FR_RESULT        // STORE Parameter 3 on stack
2041        add   GR_Parameter_Y = -16,GR_Parameter_Y
2042        br.call.sptk b0=__libm_error_support#  // Call error handling function
2043};;
2044{ .mmi
2045        nop.m 0
2046        nop.m 0
2047        add   GR_Parameter_RESULT = 48,sp
2048};;
2049{ .mmi
2050        ldfe  f8 = [GR_Parameter_RESULT]        // Get return result off stack
2051.restore sp
2052        add   sp = 64,sp                              // Restore stack pointer
2053        mov   b0 = GR_SAVE_B0                        // Restore return address
2054};;
2055{ .mib
2056        mov   gp = GR_SAVE_GP                                    // Restore gp
2057        mov   ar.pfs = GR_SAVE_PFS                           // Restore ar.pfs
2058        br.ret.sptk     b0                                           // Return
2059};;
2060
2061LOCAL_LIBM_END(__libm_error_region)
2062.type   __libm_error_support#,@function
2063.global __libm_error_support#
2064