1.file "erfcf.s"
2
3
4// Copyright (c) 2002 - 2005, Intel Corporation
5// All rights reserved.
6//
7//
8// Redistribution and use in source and binary forms, with or without
9// modification, are permitted provided that the following conditions are
10// met:
11//
12// * Redistributions of source code must retain the above copyright
13// notice, this list of conditions and the following disclaimer.
14//
15// * Redistributions in binary form must reproduce the above copyright
16// notice, this list of conditions and the following disclaimer in the
17// documentation and/or other materials provided with the distribution.
18//
19// * The name of Intel Corporation may not be used to endorse or promote
20// products derived from this software without specific prior written
21// permission.
22
23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34//
35// Intel Corporation is the author of this code, and requests that all
36// problem reports or change requests be submitted to it directly at
37// http://www.intel.com/software/products/opensource/libraries/num.htm.
38//
39// History
40//==============================================================
41// 01/17/02  Initial version
42// 05/20/02  Cleaned up namespace and sf0 syntax
43// 02/06/03  Reordered header: .section, .global, .proc, .align
44// 03/31/05  Reformatted delimiters between data tables
45//
46// API
47//==============================================================
48// float erfcf(float)
49//
50// Overview of operation
51//==============================================================
52// 1. 0 <= x <= 10.06
53//
54//    erfcf(x)  = P15(x) * exp( -x^2 )
55//
56//    Comment:
57//
58//    Let x(0)=0, x(i) = 2^(i), i=1,...3, x(4)= 10.06
59//
60//    Let x(i)<= x < x(i+1).
61//    We can find i as exponent of argument x (let i = 0 for 0<= x < 2  )
62//
63//    Let P15(x) - polynomial approximation of degree 15 for function
64//    erfcf(x) * exp( x^2) and x(i) <= x <= x(i+1), i = 0,1,2,3
65//    Polynomial coefficients we have in the table erfc_p_table.
66//
67//    So we can find result for erfcf(x) as above.
68//    Algorithm description for exp function see below.
69//
70// 2. -4.4 <= x < 0
71//
72//    erfcf(x)  = 2.0 - erfcf(-x)
73//
74// 3. x > 10.06
75//
76//    erfcf(x)  ~=~ 0.0
77//
78// 4. x < -4.4
79//
80//    erfcf(x)  ~=~ 2.0
81
82// Special values
83//==============================================================
84// erfcf(+0)    = 1.0
85// erfcf(-0)    = 1.0
86
87// erfcf(+qnan) = +qnan
88// erfcf(-qnan) = -qnan
89// erfcf(+snan) = +qnan
90// erfcf(-snan) = -qnan
91
92// erfcf(-inf)  = 2.0
93// erfcf(+inf)  = +0
94
95//==============================================================
96// Take double exp(double) from libm_64.
97//
98// Overview of operation
99//==============================================================
100// Take the input x. w is "how many log2/128 in x?"
101//  w = x * 128/log2
102//  n = int(w)
103//  x = n log2/128 + r + delta
104
105//  n = 128M + index_1 + 2^4 index_2
106//  x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
107
108//  exp(x) = 2^M  2^(index_1/128)  2^(index_2/8) exp(r) exp(delta)
109//       Construct 2^M
110//       Get 2^(index_1/128) from table_1;
111//       Get 2^(index_2/8)   from table_2;
112//       Calculate exp(r) by series
113//          r = x - n (log2/128)_high
114//          delta = - n (log2/128)_low
115//       Calculate exp(delta) as 1 + delta
116//
117// Comment for erfcf:
118//
119// Let exp(r) = 1 + x + 0.5*x^2 + (1/6)*x^3
120// Let delta  = 0.
121//==============================================================
122//
123// Registers used
124//==============================================================
125// Floating Point registers used:
126// f8, input
127// f6,f7,f9 -> f11,  f32 -> f92
128
129// General registers used:
130// r14 -> r22,r32 -> r50
131
132// Predicate registers used:
133// p6 -> p15
134
135// Assembly macros
136//==============================================================
137EXP_AD_TB1             = r14
138exp_GR_sig_inv_ln2     = r15
139exp_TB1_size           = r16
140exp_GR_rshf_2to56      = r17
141exp_GR_exp_2tom56      = r18
142
143exp_GR_rshf            = r33
144EXP_AD_TB2             = r34
145EXP_AD_P               = r35
146exp_GR_N               = r36
147exp_GR_index_1         = r37
148exp_GR_index_2_16      = r38
149exp_GR_biased_M        = r39
150EXP_AD_T1              = r40
151EXP_AD_T2              = r41
152exp_TB2_size           = r42
153
154// GR for erfcf(x)
155//==============================================================
156GR_IndxPlusBias        = r19
157GR_ExpMask             = r20
158GR_BIAS                = r21
159GR_ShftPi_bias         = r22
160
161GR_P_POINT_1           = r43
162GR_P_POINT_2           = r44
163GR_P_POINT_3           = r45
164GR_P_POINT_4           = r46
165
166GR_ShftPi              = r47
167GR_EpsNorm             = r48
168
169GR_05                  = r49
170GR_1_by_6              = r50
171
172// GR for __libm_support call
173//==============================================================
174
175GR_SAVE_B0             = r43
176GR_SAVE_PFS            = r44
177GR_SAVE_GP             = r45
178GR_SAVE_SP             = r46
179
180GR_Parameter_X         = r47
181GR_Parameter_Y         = r48
182GR_Parameter_RESULT    = r49
183GR_Parameter_TAG       = r50
184
185
186// FR for exp(-x^2)
187//==============================================================
188FR_X                   = f10
189FR_Y                   = f1
190FR_RESULT              = f8
191
192EXP_2TOM56             = f6
193EXP_INV_LN2_2TO63      = f7
194EXP_W_2TO56_RSH        = f9
195exp_ln2_by_128_hi      = f11
196
197EXP_RSHF_2TO56         = f32
198exp_ln2_by_128_lo      = f33
199EXP_RSHF               = f34
200EXP_Nfloat             = f35
201exp_r                  = f36
202exp_rsq                = f37
203EXP_2M                 = f38
204exp_S1                 = f39
205exp_T1                 = f40
206exp_P                  = f41
207exp_S                  = f42
208EXP_NORM_f8            = f43
209exp_S2                 = f44
210exp_T2                 = f45
211
212// FR for erfcf(x)
213//==============================================================
214FR_AbsArg              = f46
215FR_Tmp                 = f47
216FR_Tmp1                = f48
217FR_Tmpf                = f49
218FR_NormX               = f50
219
220FR_A15                 = f51
221FR_A14                 = f52
222
223FR_A13                 = f53
224FR_A12                 = f54
225
226FR_A11                 = f55
227FR_A10                 = f56
228
229FR_A9                  = f57
230FR_A8                  = f58
231
232FR_A7                  = f59
233FR_A6                  = f60
234
235FR_A5                  = f61
236FR_A4                  = f62
237
238FR_A3                  = f63
239FR_A2                  = f64
240
241FR_A1                  = f65
242FR_A0                  = f66
243
244FR_P15_0_1             = f67
245FR_P15_1_1             = f68
246FR_P15_1_2             = f69
247FR_P15_2_1             = f70
248FR_P15_2_2             = f71
249FR_P15_3_1             = f72
250FR_P15_3_2             = f73
251FR_P15_4_1             = f74
252FR_P15_4_2             = f75
253FR_P15_7_1             = f76
254FR_P15_7_2             = f77
255FR_P15_8_1             = f78
256FR_P15_9_1             = f79
257FR_P15_9_2             = f80
258FR_P15_13_1            = f81
259FR_P15_14_1            = f82
260FR_P15_14_2            = f83
261
262FR_2                   = f84
263FR_05                  = f85
264FR_1_by_6              = f86
265FR_Pol                 = f87
266FR_Exp                 = f88
267
268FR_POS_ARG_ASYMP       = f89
269FR_NEG_ARG_ASYMP       = f90
270
271FR_UnfBound            = f91
272FR_EpsNorm             = f92
273
274// Data tables
275//==============================================================
276RODATA
277.align 16
278
279// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
280
281// double-extended 1/ln(2)
282// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
283// 3fff b8aa 3b29 5c17 f0bc
284// For speed the significand will be loaded directly with a movl and setf.sig
285//   and the exponent will be bias+63 instead of bias+0.  Thus subsequent
286//   computations need to scale appropriately.
287// The constant 128/ln(2) is needed for the computation of w.  This is also
288//   obtained by scaling the computations.
289//
290// Two shifting constants are loaded directly with movl and setf.d.
291//   1. EXP_RSHF_2TO56 = 1.1000..00 * 2^(63-7)
292//        This constant is added to x*1/ln2 to shift the integer part of
293//        x*128/ln2 into the rightmost bits of the significand.
294//        The result of this fma is EXP_W_2TO56_RSH.
295//   2. EXP_RSHF       = 1.1000..00 * 2^(63)
296//        This constant is subtracted from EXP_W_2TO56_RSH * 2^(-56) to give
297//        the integer part of w, n, as a floating-point number.
298//        The result of this fms is EXP_Nfloat.
299
300
301LOCAL_OBJECT_START(exp_table_1)
302
303data4 0x4120f5c3, 0x408ccccd      //POS_ARG_ASYMP = 10.06, NEG_ARG_ASYMP = 4.4
304data4 0x41131Cdf, 0x00800000     //UnfBound ~=~ 9.1, EpsNorm ~=~ 1.1754944e-38
305//
306data8 0xb17217f7d1cf79ab , 0x00003ff7                            // ln2/128 hi
307data8 0xc9e3b39803f2f6af , 0x00003fb7                            // ln2/128 lo
308//
309// Table 1 is 2^(index_1/128) where
310// index_1 goes from 0 to 15
311//
312data8 0x8000000000000000 , 0x00003FFF
313data8 0x80B1ED4FD999AB6C , 0x00003FFF
314data8 0x8164D1F3BC030773 , 0x00003FFF
315data8 0x8218AF4373FC25EC , 0x00003FFF
316data8 0x82CD8698AC2BA1D7 , 0x00003FFF
317data8 0x8383594EEFB6EE37 , 0x00003FFF
318data8 0x843A28C3ACDE4046 , 0x00003FFF
319data8 0x84F1F656379C1A29 , 0x00003FFF
320data8 0x85AAC367CC487B15 , 0x00003FFF
321data8 0x8664915B923FBA04 , 0x00003FFF
322data8 0x871F61969E8D1010 , 0x00003FFF
323data8 0x87DB357FF698D792 , 0x00003FFF
324data8 0x88980E8092DA8527 , 0x00003FFF
325data8 0x8955EE03618E5FDD , 0x00003FFF
326data8 0x8A14D575496EFD9A , 0x00003FFF
327data8 0x8AD4C6452C728924 , 0x00003FFF
328LOCAL_OBJECT_END(exp_table_1)
329
330// Table 2 is 2^(index_1/8) where
331// index_2 goes from 0 to 7
332
333LOCAL_OBJECT_START(exp_table_2)
334
335data8 0x8000000000000000 , 0x00003FFF
336data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
337data8 0x9837F0518DB8A96F , 0x00003FFF
338data8 0xA5FED6A9B15138EA , 0x00003FFF
339data8 0xB504F333F9DE6484 , 0x00003FFF
340data8 0xC5672A115506DADD , 0x00003FFF
341data8 0xD744FCCAD69D6AF4 , 0x00003FFF
342data8 0xEAC0C6E7DD24392F , 0x00003FFF
343LOCAL_OBJECT_END(exp_table_2)
344
345LOCAL_OBJECT_START(erfc_p_table)
346
347// Pol_0
348data8 0xBEA3260C63CB0446             //A15 = -5.70673541831883454676e-07
349data8 0x3EE63D6178077654             //A14 = +1.06047480138940182343e-05
350data8 0xBF18646BC5FC70A7             //A13 = -9.30491237309283694347e-05
351data8 0x3F40F92F909117FE             //A12 = +5.17986512144075019133e-04
352data8 0xBF611344289DE1E6             //A11 = -2.08438217390159994419e-03
353data8 0x3F7AF9FE6AD16DC0             //A10 = +6.58606893292862351928e-03
354data8 0xBF91D219E196CBA7             //A9 = -1.74030345858217321001e-02
355data8 0x3FA4AFDDA355854C             //A8 = +4.04042493708041968315e-02
356data8 0xBFB5D465BB7025AE             //A7 = -8.52721769916999425445e-02
357data8 0x3FC54C15A95B717D             //A6 = +1.66384418195672549029e-01
358data8 0xBFD340A75B4B1AB5             //A5 = -3.00821150926292166899e-01
359data8 0x3FDFFFC0BFCD247F             //A4 = +4.99984919839853542841e-01
360data8 0xBFE81270C361852B             //A3 = -7.52251035312075583309e-01
361data8 0x3FEFFFFFC67295FC             //A2 = +9.99999892800303301771e-01
362data8 0xBFF20DD74F8CD2BF             //A1 = -1.12837916445020868099e+00
363data8 0x3FEFFFFFFFFE7C1D             //A0 = +9.99999999988975570714e-01
364// Pol_1
365data8 0xBDE8EC4BDD953B56             //A15 = -1.81338928934942767144e-10
366data8 0x3E43607F269E2A1C             //A14 = +9.02309090272196442358e-09
367data8 0xBE8C4D9E69C10E02             //A13 = -2.10875261143659275328e-07
368data8 0x3EC9CF2F84566725             //A12 = +3.07671055805877356583e-06
369data8 0xBF007980B1B46A4D             //A11 = -3.14228438702169818945e-05
370data8 0x3F2F4C3AD6DEF24A             //A10 = +2.38783056770846320260e-04
371data8 0xBF56F5129F8D30FA             //A9 = -1.40120333363130546426e-03
372data8 0x3F7AA6C7ABFC38EE             //A8 = +6.50671002200751820429e-03
373data8 0xBF98E7522CB84BEF             //A7 = -2.43199195666185511109e-02
374data8 0x3FB2F68EB1C3D073             //A6 = +7.40746673580490638637e-02
375data8 0xBFC7C16055AC6385             //A5 = -1.85588876564704611769e-01
376data8 0x3FD8A707AEF5A440             //A4 = +3.85194702967570635211e-01
377data8 0xBFE547BFE39AE2EA             //A3 = -6.65008492032112467310e-01
378data8 0x3FEE7C91BDF13578             //A2 = +9.52706213932898128515e-01
379data8 0xBFF1CB5B61F8C589             //A1 = -1.11214769621105541214e+00
380data8 0x3FEFEA56BC81FD37             //A0 = +9.97355812243688815239e-01
381// Pol_2
382data8 0xBD302724A12F46E0             //A15 = -5.73866382814058809406e-14
383data8 0x3D98889B75D3102E             //A14 = +5.57829983681360947356e-12
384data8 0xBDF16EA15074A1E9             //A13 = -2.53671153922423457844e-10
385data8 0x3E3EC6E688CFEE5F             //A12 = +7.16581828336436419561e-09
386data8 0xBE82E5ED44C52609             //A11 = -1.40802202239825487803e-07
387data8 0x3EC120BE5CE42353             //A10 = +2.04180535157522081699e-06
388data8 0xBEF7B8B0311A1911             //A9 = -2.26225266204633600888e-05
389data8 0x3F29A281F43FC238             //A8 = +1.95577968156184077632e-04
390data8 0xBF55E19858B3B7A4             //A7 = -1.33552434527526534043e-03
391data8 0x3F7DAC8C3D12E5FD             //A6 = +7.24463253680473816303e-03
392data8 0xBF9FF9C04613FB47             //A5 = -3.12261622211693854028e-02
393data8 0x3FBB3D5DBF9D9366             //A4 = +1.06405123978743883370e-01
394data8 0xBFD224DE9F62C258             //A3 = -2.83500342989133623476e-01
395data8 0x3FE28A95CB8C6D3E             //A2 = +5.79417131000276437708e-01
396data8 0xBFEC21205D358672             //A1 = -8.79043752717008257224e-01
397data8 0x3FEDAE44D5EDFE5B             //A0 = +9.27523057776805771830e-01
398// Pol_3
399data8 0xBCA3BCA734AC82F1             //A15 = -1.36952437983096410260e-16
400data8 0x3D16740DC3990612             //A14 = +1.99425676175410093285e-14
401data8 0xBD77F4353812C46A             //A13 = -1.36162367755616790260e-12
402data8 0x3DCFD0BE13C73DB4             //A12 = +5.78718761040355136007e-11
403data8 0xBE1D728DF71189B4             //A11 = -1.71406885583934105120e-09
404data8 0x3E64252C8CB710B5             //A10 = +3.75233795940731111303e-08
405data8 0xBEA514B93180F33D             //A9 = -6.28261292774310809962e-07
406data8 0x3EE1381118CC7151             //A8 = +8.21066421390821904504e-06
407data8 0xBF1634404FB0FA72             //A7 = -8.47019436358372148764e-05
408data8 0x3F46B2CBBCF0EB32             //A6 = +6.92700845213200923490e-04
409data8 0xBF725C2B445E6D81             //A5 = -4.48243046949004063741e-03
410data8 0x3F974E7CFA4D89D9             //A4 = +2.27603462002522228717e-02
411data8 0xBFB6D7BAC2E342D1             //A3 = -8.92292714882032736443e-02
412data8 0x3FD0D156AD9CE2A6             //A2 = +2.62777013343603696631e-01
413data8 0xBFE1C228572AADB0             //A1 = -5.54950876471982857725e-01
414data8 0x3FE8A739F48B9A3B             //A0 = +7.70413377406675619766e-01
415LOCAL_OBJECT_END(erfc_p_table)
416
417
418.section .text
419GLOBAL_LIBM_ENTRY(erfcf)
420
421// Form index i for table erfc_p_table as exponent of x
422// We use i + bias in real calculations
423{ .mlx
424      getf.exp       GR_IndxPlusBias = f8          // (sign + exp + bias) of x
425      movl           exp_GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc //signif.of 1/ln2
426}
427{ .mlx
428      addl           EXP_AD_TB1    = @ltoff(exp_table_1), gp
429      movl           exp_GR_rshf_2to56 = 0x4768000000000000 // 1.100 2^(63+56)
430}
431;;
432
433// Form argument EXP_NORM_f8 for exp(-x^2)
434{ .mfi
435      ld8            EXP_AD_TB1    = [EXP_AD_TB1]
436      fcmp.ge.s1     p6,p7 = f8, f0                     // p6: x >= 0 ,p7: x<0
437      mov            GR_BIAS = 0x0FFFF
438}
439{ .mfi
440      mov            exp_GR_exp_2tom56 = 0xffff-56
441      fnma.s1        EXP_NORM_f8   = f8, f8, f0                       //  -x^2
442      mov            GR_ExpMask  = 0x1ffff
443}
444;;
445
446// Form two constants we need
447//  1/ln2 * 2^63  to compute  w = x * 1/ln2 * 128
448//  1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
449
450// p9:  x = 0,+inf,-inf,nan,unnorm.
451// p10: x!= 0,+inf,-inf,nan,unnorm.
452{ .mfi
453      setf.sig       EXP_INV_LN2_2TO63 = exp_GR_sig_inv_ln2 // Form 1/ln2*2^63
454      fclass.m       p9,p10 = f8,0xef
455      shl            GR_ShftPi_bias = GR_BIAS, 7
456}
457{ .mfi
458      setf.d         EXP_RSHF_2TO56 = exp_GR_rshf_2to56 //Const 1.10*2^(63+56)
459      nop.f          0
460      and            GR_IndxPlusBias = GR_IndxPlusBias, GR_ExpMask // i + bias
461}
462;;
463
464{ .mfi
465      alloc          r32 = ar.pfs, 0, 15, 4, 0
466(p6)  fma.s1         FR_AbsArg = f1, f0, f8                  // |x| if x >= 0
467      cmp.lt         p15,p0 = GR_IndxPlusBias, GR_BIAS//p15: i < 0 (for |x|<1)
468}
469{ .mlx
470      setf.exp       EXP_2TOM56 = exp_GR_exp_2tom56 //2^-56 for scaling Nfloat
471      movl           exp_GR_rshf = 0x43e8000000000000 //1.10 2^63,right shift.
472}
473;;
474
475{ .mfi
476      ldfps          FR_POS_ARG_ASYMP, FR_NEG_ARG_ASYMP = [EXP_AD_TB1],8
477      nop.f          0
478(p15) mov            GR_IndxPlusBias = GR_BIAS            //Let i = 0 if i < 0
479}
480{ .mlx
481      mov            GR_P_POINT_3 = 0x1A0
482      movl           GR_05 = 0x3fe0000000000000
483}
484;;
485
486// Form shift GR_ShftPi from the beginning of erfc_p_table
487// to the polynomial with number i
488{ .mfi
489      ldfps          FR_UnfBound, FR_EpsNorm = [EXP_AD_TB1],8
490      nop.f          0
491      shl            GR_ShftPi = GR_IndxPlusBias, 7
492}
493{ .mfi
494      setf.d         EXP_RSHF = exp_GR_rshf   // Form right shift 1.100 * 2^63
495(p7)  fms.s1         FR_AbsArg = f1, f0, f8                   // |x|  if x < 0
496      mov            exp_TB1_size  = 0x100
497}
498;;
499
500// Form pointer GR_P_POINT_3 to the beginning of erfc_p_table
501{ .mfi
502      setf.d         FR_05 = GR_05
503      nop.f          0
504      sub            GR_ShftPi = GR_ShftPi,GR_ShftPi_bias
505}
506{ .mfb
507      add            GR_P_POINT_3 = GR_P_POINT_3, EXP_AD_TB1
508      nop.f          0
509(p9)  br.cond.spnt   SPECIAL                  // For x = 0,+inf,-inf,nan,unnorm
510}
511;;
512
513{ .mfi
514      add            GR_P_POINT_1 = GR_P_POINT_3, GR_ShftPi
515      nop.f          0
516      add            GR_P_POINT_2 = GR_P_POINT_3, GR_ShftPi
517}
518{ .mfi
519      ldfe           exp_ln2_by_128_hi  = [EXP_AD_TB1],16
520      fma.s1         FR_NormX = f8,f1,f0
521      add            GR_P_POINT_3 = GR_P_POINT_3, GR_ShftPi
522}
523;;
524
525// Load coefficients for polynomial P15(x)
526{ .mfi
527      ldfpd          FR_A15, FR_A14 = [GR_P_POINT_1], 16
528      nop.f          0
529      add            GR_P_POINT_3 = 0x30, GR_P_POINT_3
530}
531{ .mfi
532      ldfe           exp_ln2_by_128_lo  = [EXP_AD_TB1], 16
533      nop.f          0
534      add            GR_P_POINT_2 = 0x20, GR_P_POINT_2
535}
536;;
537
538// Now EXP_AD_TB1 points to the beginning of table 1
539{ .mlx
540      ldfpd          FR_A13, FR_A12 = [GR_P_POINT_1]
541      movl           GR_1_by_6 = 0x3FC5555555555555
542}
543{ .mfi
544      add            GR_P_POINT_4 = 0x30, GR_P_POINT_2
545      nop.f          0
546      nop.i          0
547}
548;;
549
550{ .mfi
551      ldfpd          FR_A11, FR_A10 = [GR_P_POINT_2]
552      fma.s1         FR_2 = f1, f1, f1
553      mov            exp_TB2_size  = 0x80
554}
555{ .mfi
556      ldfpd          FR_A9, FR_A8 = [GR_P_POINT_3],16
557      nop.f          0
558      add            GR_P_POINT_1 = 0x60 ,GR_P_POINT_1
559}
560;;
561
562// W = X * Inv_log2_by_128
563// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
564// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
565{ .mfi
566      ldfpd          FR_A7, FR_A6 = [GR_P_POINT_3]
567      fma.s1     EXP_W_2TO56_RSH = EXP_NORM_f8,EXP_INV_LN2_2TO63,EXP_RSHF_2TO56
568      add            EXP_AD_TB2 = exp_TB1_size, EXP_AD_TB1
569
570}
571{ .mfi
572      ldfpd          FR_A5, FR_A4 = [GR_P_POINT_4], 16
573      nop.f          0
574      nop.i          0
575}
576;;
577
578{ .mfi
579      ldfpd          FR_A3, FR_A2 = [GR_P_POINT_4]
580      fmerge.s       FR_X = f8,f8
581      nop.i          0
582}
583{ .mfi
584      ldfpd          FR_A1, FR_A0 = [GR_P_POINT_1]
585      nop.f          0
586      nop.i          0
587}
588;;
589
590//p14: x < - NEG_ARG_ASYMP = -4.4 -> erfcf(x) ~=~ 2.0
591{ .mfi
592      setf.d         FR_1_by_6  = GR_1_by_6
593(p7)  fcmp.gt.unc.s1 p14,p0 = FR_AbsArg, FR_NEG_ARG_ASYMP          //p7: x < 0
594      nop.i          0
595}
596;;
597
598//p15: x > POS_ARG_ASYMP = 10.06 -> erfcf(x) ~=~ 0.0
599{ .mfi
600      nop.m          0
601(p6)  fcmp.gt.unc.s1 p15,p0 = FR_AbsArg, FR_POS_ARG_ASYMP          //p6: x > 0
602      nop.i          0
603}
604;;
605
606{ .mfi
607      nop.m          0
608      fcmp.le.s1     p8,p0 = FR_NormX, FR_UnfBound        // p8: x <= UnfBound
609      nop.i          0
610}
611{ .mfb
612      nop.m          0
613(p14) fnma.s.s0      FR_RESULT = FR_EpsNorm, FR_EpsNorm, FR_2//y = 2 if x <-4.4
614(p14) br.ret.spnt    b0
615}
616;;
617
618// Nfloat = round_int(W)
619// The signficand of EXP_W_2TO56_RSH contains the rounded integer part of W,
620// as a twos complement number in the lower bits (that is, it may be negative).
621// That twos complement number (called N) is put into exp_GR_N.
622
623// Since EXP_W_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
624// before the shift constant 1.10000 * 2^63 is subtracted to yield EXP_Nfloat.
625// Thus, EXP_Nfloat contains the floating point version of N
626
627{ .mfi
628      nop.m          0
629      fms.s1         EXP_Nfloat = EXP_W_2TO56_RSH, EXP_2TOM56, EXP_RSHF
630      nop.i          0
631}
632{ .mfb
633(p15) mov            GR_Parameter_TAG = 209
634(p15) fma.s.s0       FR_RESULT = FR_EpsNorm,FR_EpsNorm,f0 //Result.for x>10.06
635(p15) br.cond.spnt   __libm_error_region
636}
637;;
638
639// Now we can calculate polynomial P15(x)
640{ .mfi
641      nop.m          0
642      fma.s1         FR_P15_1_1 = FR_AbsArg, FR_AbsArg, f0             // x ^2
643      nop.i          0
644}
645{ .mfi
646      nop.m          0
647      fma.s1         FR_P15_0_1 = FR_A15, FR_AbsArg, FR_A14
648      nop.i          0
649}
650;;
651
652{ .mfi
653      nop.m          0
654      fma.s1         FR_P15_1_2 = FR_A13, FR_AbsArg, FR_A12
655      nop.i          0
656}
657;;
658
659{ .mfi
660      getf.sig       exp_GR_N        = EXP_W_2TO56_RSH
661      fma.s1         FR_P15_2_1 = FR_A9, FR_AbsArg, FR_A8
662      nop.i          0
663}
664{ .mfi
665      nop.m          0
666      fma.s1         FR_P15_2_2 = FR_A11, FR_AbsArg, FR_A10
667      nop.i          0
668}
669;;
670
671{ .mfi
672      nop.m          0
673      fma.s1         FR_P15_3_1 = FR_A5, FR_AbsArg, FR_A4
674      nop.i          0
675}
676{ .mfi
677      nop.m          0
678      fma.s1         FR_P15_3_2 = FR_A7, FR_AbsArg, FR_A6
679      nop.i          0
680}
681;;
682
683// exp_GR_index_1 has index_1
684// exp_GR_index_2_16 has index_2 * 16
685// exp_GR_biased_M has M
686// exp_GR_index_1_16 has index_1 * 16
687
688// r2 has true M
689{ .mfi
690      and            exp_GR_index_1 = 0x0f, exp_GR_N
691      fma.s1         FR_P15_4_1 = FR_A1, FR_AbsArg, FR_A0
692      shr            r2 = exp_GR_N,  0x7
693
694}
695{ .mfi
696      and            exp_GR_index_2_16 = 0x70, exp_GR_N
697      fma.s1         FR_P15_4_2 = FR_A3, FR_AbsArg, FR_A2
698      nop.i          0
699}
700;;
701
702// EXP_AD_T1 has address of T1
703// EXP_AD_T2 has address if T2
704
705{ .mfi
706      add            EXP_AD_T2 = EXP_AD_TB2, exp_GR_index_2_16
707      nop.f          0
708      shladd         EXP_AD_T1 = exp_GR_index_1, 4, EXP_AD_TB1
709}
710{ .mfi
711      addl           exp_GR_biased_M = 0xffff, r2
712      fnma.s1        exp_r   = EXP_Nfloat, exp_ln2_by_128_hi, EXP_NORM_f8
713      nop.i          0
714}
715;;
716
717// Create Scale = 2^M
718// r = x - Nfloat * ln2_by_128_hi
719
720{ .mfi
721      setf.exp       EXP_2M = exp_GR_biased_M
722      fma.s1         FR_P15_7_1 = FR_P15_0_1, FR_P15_1_1, FR_P15_1_2
723      nop.i          0
724}
725{ .mfi
726      ldfe           exp_T2  = [EXP_AD_T2]
727      nop.f          0
728      nop.i          0
729}
730;;
731
732// Load T1 and T2
733
734{ .mfi
735      ldfe           exp_T1  = [EXP_AD_T1]
736      fma.s1         FR_P15_7_2 = FR_P15_1_1, FR_P15_1_1, f0            // x^4
737      nop.i          0
738}
739{ .mfi
740      nop.m          0
741      fma.s1         FR_P15_8_1 = FR_P15_1_1, FR_P15_2_2, FR_P15_2_1
742      nop.i          0
743}
744;;
745
746{ .mfi
747      nop.m          0
748      fma.s1         FR_P15_9_1 = FR_P15_1_1, FR_P15_4_2, FR_P15_4_1
749      nop.i          0
750}
751{ .mfi
752      nop.m          0
753      fma.s1         FR_P15_9_2 = FR_P15_1_1, FR_P15_3_2, FR_P15_3_1
754      nop.i          0
755}
756;;
757
758{ .mfi
759      nop.m          0
760      fma.s1         exp_P = FR_1_by_6, exp_r, FR_05
761      nop.i          0
762}
763{ .mfi
764      nop.m          0
765      fma.s1         exp_rsq = exp_r, exp_r, f0
766      nop.i          0
767}
768;;
769
770{ .mfi
771      nop.m          0
772      fma.s1         FR_P15_13_1 = FR_P15_7_2, FR_P15_7_1, FR_P15_8_1
773      nop.i          0
774}
775;;
776
777{ .mfi
778      nop.m          0
779      fma.s1         FR_P15_14_1 = FR_P15_7_2, FR_P15_9_2, FR_P15_9_1
780      nop.i          0
781}
782{ .mfi
783      nop.m          0
784      fma.s1         FR_P15_14_2 = FR_P15_7_2, FR_P15_7_2, f0           // x^8
785      nop.i          0
786}
787;;
788
789{ .mfi
790      nop.m          0
791      fma.s1         exp_P     = exp_P, exp_rsq, exp_r
792      nop.i          0
793}
794{ .mfi
795      nop.m          0
796      fma.s1         exp_S1  = EXP_2M, exp_T2, f0
797      nop.i          0
798}
799;;
800
801{ .mfi
802      nop.m          0
803      fma.s1         FR_Pol = FR_P15_14_2, FR_P15_13_1, FR_P15_14_1  // P15(x)
804      nop.i          0
805}
806;;
807
808{ .mfi
809      nop.m          0
810      fma.s1         exp_S   = exp_S1, exp_T1, f0
811      nop.i          0
812}
813;;
814
815{ .mfi
816      nop.m          0
817      fma.s1         FR_Exp = exp_S, exp_P, exp_S                 // exp(-x^2)
818      nop.i          0
819}
820;;
821
822{ .mfi
823      nop.m          0
824      fma.s.s0       FR_Tmpf = f8, f1, f0                          //  Flag  d
825      nop.i          0
826}
827;;
828
829//p6: result for     0 < x < = POS_ARG_ASYMP
830//p7: result for   - NEG_ARG_ASYMP  <= x < 0
831//p8: exit   for   - NEG_ARG_ASYMP <= x <= UnfBound, x!=0
832.pred.rel "mutex",p6,p7
833{ .mfi
834      nop.m          0
835(p6)  fma.s.s0       f8 = FR_Exp, FR_Pol, f0
836      nop.i          0
837}
838{ .mfb
839      mov            GR_Parameter_TAG = 209
840(p7)  fnma.s.s0      f8 = FR_Exp, FR_Pol, FR_2
841(p8)  br.ret.sptk    b0
842}
843;;
844
845//p10: branch for  UnfBound < x < = POS_ARG_ASYMP
846{ .mfb
847      nop.m          0
848      nop.f          0
849(p10) br.cond.spnt   __libm_error_region
850}
851;;
852
853//Only via (p9)  br.cond.spnt   SPECIAL  for x = 0,+inf,-inf,nan,unnorm
854SPECIAL:
855
856{ .mfi
857      nop.m          0
858      fclass.m.unc   p10,p0 = f8,0x07                            // p10: x = 0
859      nop.i          0
860}
861;;
862
863{ .mfi
864      nop.m          0
865      fclass.m.unc   p11,p0 = f8,0x21                         // p11: x = +inf
866      nop.i          0
867}
868;;
869
870{ .mfi
871      nop.m          0
872      fclass.m.unc   p12,p0 = f8,0x22                          // p12 x = -inf
873      nop.i          0
874}
875{ .mfb
876      nop.m          0
877(p10) fma.s.s0       f8 = f1, f1, f0
878(p10) br.ret.sptk    b0                                // Quick exit for x = 0
879}
880;;
881
882{ .mfi
883      nop.m          0
884      fclass.m.unc   p13,p0 = f8,0xc3                          // p13: x = nan
885      nop.i          0
886}
887{ .mfb
888      nop.m          0
889(p11) fma.s.s0       f8 = f0, f1, f0
890(p11) br.ret.spnt    b0                             // Quick exit for x = +inf
891}
892;;
893{ .mfi
894      nop.m          0
895      fclass.m.unc   p14,p0 = f8,0x0b                 // P14: x = unnormalized
896      nop.i          0
897}
898{ .mfb
899      nop.m          0
900(p12) fma.s.s0       f8 = f1, f1, f1
901(p12) br.ret.spnt    b0                             // Quick exit for x = -inf
902}
903;;
904
905{ .mfb
906      nop.m          0
907(p13) fma.s.s0       f8 = f8, f1, f0
908(p13) br.ret.sptk    b0                              // Quick exit for x = nan
909}
910;;
911
912{ .mfb
913      nop.m          0
914(p14) fnma.s.s0      f8 = f8, f1, f1
915(p14) br.ret.sptk    b0                     // Quick exit for x = unnormalized
916}
917;;
918
919GLOBAL_LIBM_END(erfcf)
920libm_alias_float_other (erfc, erfc)
921
922
923// Call via (p10) br.cond.spnt   __libm_error_region
924//          for  UnfBound < x < = POS_ARG_ASYMP
925// and
926//
927// call via (p15) br.cond.spnt   __libm_error_region
928//          for  x > POS_ARG_ASYMP
929
930LOCAL_LIBM_ENTRY(__libm_error_region)
931.prologue
932{ .mfi
933        add   GR_Parameter_Y=-32,sp                       // Parameter 2 value
934        nop.f 0
935.save   ar.pfs,GR_SAVE_PFS
936        mov  GR_SAVE_PFS=ar.pfs                                 // Save ar.pfs
937}
938{ .mfi
939.fframe 64
940        add sp=-64,sp                                      // Create new stack
941        nop.f 0
942        mov GR_SAVE_GP=gp                                           // Save gp
943};;
944{ .mmi
945        stfs [GR_Parameter_Y] = FR_Y,16          // STORE Parameter 2 on stack
946        add GR_Parameter_X = 16,sp                      // Parameter 1 address
947.save   b0, GR_SAVE_B0
948        mov GR_SAVE_B0=b0                                           // Save b0
949};;
950.body
951{ .mib
952        stfs [GR_Parameter_X] = FR_X             // STORE Parameter 1 on stack
953        add   GR_Parameter_RESULT = 0,GR_Parameter_Y    // Parameter 3 address
954        nop.b 0
955}
956{ .mib
957        stfs [GR_Parameter_Y] = FR_RESULT        // STORE Parameter 3 on stack
958        add   GR_Parameter_Y = -16,GR_Parameter_Y
959        br.call.sptk b0=__libm_error_support#  // Call error handling function
960};;
961{ .mmi
962        nop.m 0
963        nop.m 0
964        add   GR_Parameter_RESULT = 48,sp
965};;
966{ .mmi
967        ldfs  f8 = [GR_Parameter_RESULT]        // Get return result off stack
968.restore sp
969        add   sp = 64,sp                              // Restore stack pointer
970        mov   b0 = GR_SAVE_B0                        // Restore return address
971};;
972{ .mib
973        mov   gp = GR_SAVE_GP                                    // Restore gp
974        mov   ar.pfs = GR_SAVE_PFS                           // Restore ar.pfs
975        br.ret.sptk     b0                                           // Return
976};;
977
978LOCAL_LIBM_END(__libm_error_region)
979.type   __libm_error_support#,@function
980.global __libm_error_support#
981