1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acos": 5double: 1 6float128: 1 7 8Function: "acos_downward": 9double: 1 10float: 1 11float128: 1 12 13Function: "acos_towardzero": 14double: 1 15float: 1 16float128: 1 17 18Function: "acos_upward": 19double: 1 20float: 1 21float128: 1 22ldouble: 1 23 24Function: "acosh": 25double: 1 26float128: 4 27ldouble: 1 28 29Function: "acosh_downward": 30float128: 3 31 32Function: "acosh_towardzero": 33float128: 2 34 35Function: "acosh_upward": 36float128: 3 37 38Function: "asin": 39float128: 1 40 41Function: "asin_downward": 42double: 1 43float: 1 44float128: 2 45ldouble: 1 46 47Function: "asin_towardzero": 48double: 1 49float: 1 50float128: 1 51ldouble: 1 52 53Function: "asin_upward": 54double: 1 55float: 1 56float128: 2 57ldouble: 1 58 59Function: "asinh": 60double: 1 61float128: 4 62 63Function: "asinh_downward": 64float128: 4 65 66Function: "asinh_towardzero": 67float128: 2 68 69Function: "asinh_upward": 70float128: 4 71 72Function: "atan": 73float128: 1 74 75Function: "atan2": 76float128: 2 77 78Function: "atan2_downward": 79double: 1 80float: 1 81float128: 2 82ldouble: 1 83 84Function: "atan2_towardzero": 85float: 1 86float128: 3 87ldouble: 1 88 89Function: "atan2_upward": 90double: 1 91float: 1 92float128: 2 93ldouble: 1 94 95Function: "atan_downward": 96double: 1 97float: 1 98float128: 2 99ldouble: 1 100 101Function: "atan_towardzero": 102float: 1 103float128: 1 104ldouble: 1 105 106Function: "atan_upward": 107double: 1 108float: 1 109float128: 2 110ldouble: 1 111 112Function: "atanh": 113float128: 4 114 115Function: "atanh_downward": 116float: 1 117float128: 4 118 119Function: "atanh_towardzero": 120float: 1 121float128: 2 122 123Function: "atanh_upward": 124float: 1 125float128: 4 126 127Function: "cabs": 128float128: 1 129 130Function: "cabs_downward": 131double: 1 132float: 1 133float128: 1 134ldouble: 1 135 136Function: "cabs_towardzero": 137double: 1 138float: 1 139float128: 1 140ldouble: 1 141 142Function: "cabs_upward": 143double: 1 144float: 1 145float128: 1 146ldouble: 1 147 148Function: Real part of "cacos": 149double: 1 150float: 2 151float128: 2 152ldouble: 1 153 154Function: Imaginary part of "cacos": 155double: 2 156float: 2 157float128: 2 158ldouble: 2 159 160Function: Real part of "cacos_downward": 161double: 1 162float: 1 163float128: 3 164ldouble: 2 165 166Function: Imaginary part of "cacos_downward": 167double: 5 168float: 6 169float128: 6 170ldouble: 5 171 172Function: Real part of "cacos_towardzero": 173double: 1 174float: 1 175float128: 3 176ldouble: 2 177 178Function: Imaginary part of "cacos_towardzero": 179double: 4 180float: 5 181float128: 5 182ldouble: 4 183 184Function: Real part of "cacos_upward": 185double: 2 186float: 2 187float128: 3 188ldouble: 2 189 190Function: Imaginary part of "cacos_upward": 191double: 5 192float: 5 193float128: 7 194ldouble: 5 195 196Function: Real part of "cacosh": 197double: 2 198float: 2 199float128: 2 200ldouble: 2 201 202Function: Imaginary part of "cacosh": 203double: 1 204float: 2 205float128: 2 206ldouble: 1 207 208Function: Real part of "cacosh_downward": 209double: 4 210float: 5 211float128: 5 212ldouble: 4 213 214Function: Imaginary part of "cacosh_downward": 215double: 2 216float: 2 217float128: 4 218ldouble: 3 219 220Function: Real part of "cacosh_towardzero": 221double: 4 222float: 5 223float128: 5 224ldouble: 4 225 226Function: Imaginary part of "cacosh_towardzero": 227double: 1 228float: 1 229float128: 3 230ldouble: 2 231 232Function: Real part of "cacosh_upward": 233double: 4 234float: 3 235float128: 6 236ldouble: 4 237 238Function: Imaginary part of "cacosh_upward": 239double: 3 240float: 2 241float128: 4 242ldouble: 3 243 244Function: "carg": 245float128: 2 246 247Function: "carg_downward": 248double: 1 249float: 1 250float128: 2 251ldouble: 1 252 253Function: "carg_towardzero": 254float: 1 255float128: 3 256ldouble: 1 257 258Function: "carg_upward": 259double: 1 260float: 1 261float128: 2 262ldouble: 1 263 264Function: Real part of "casin": 265double: 1 266float: 1 267float128: 2 268ldouble: 1 269 270Function: Imaginary part of "casin": 271double: 2 272float: 2 273float128: 2 274ldouble: 2 275 276Function: Real part of "casin_downward": 277double: 3 278float: 2 279float128: 3 280ldouble: 3 281 282Function: Imaginary part of "casin_downward": 283double: 5 284float: 6 285float128: 6 286ldouble: 5 287 288Function: Real part of "casin_towardzero": 289double: 3 290float: 2 291float128: 3 292ldouble: 3 293 294Function: Imaginary part of "casin_towardzero": 295double: 4 296float: 5 297float128: 5 298ldouble: 4 299 300Function: Real part of "casin_upward": 301double: 2 302float: 1 303float128: 3 304ldouble: 2 305 306Function: Imaginary part of "casin_upward": 307double: 5 308float: 5 309float128: 7 310ldouble: 5 311 312Function: Real part of "casinh": 313double: 2 314float: 2 315float128: 2 316ldouble: 2 317 318Function: Imaginary part of "casinh": 319double: 1 320float: 1 321float128: 2 322ldouble: 1 323 324Function: Real part of "casinh_downward": 325double: 5 326float: 6 327float128: 6 328ldouble: 5 329 330Function: Imaginary part of "casinh_downward": 331double: 3 332float: 2 333float128: 3 334ldouble: 3 335 336Function: Real part of "casinh_towardzero": 337double: 4 338float: 5 339float128: 5 340ldouble: 4 341 342Function: Imaginary part of "casinh_towardzero": 343double: 3 344float: 2 345float128: 3 346ldouble: 3 347 348Function: Real part of "casinh_upward": 349double: 5 350float: 5 351float128: 7 352ldouble: 5 353 354Function: Imaginary part of "casinh_upward": 355double: 2 356float: 1 357float128: 3 358ldouble: 2 359 360Function: Real part of "catan": 361double: 1 362float128: 1 363 364Function: Imaginary part of "catan": 365double: 1 366float: 1 367float128: 1 368ldouble: 1 369 370Function: Real part of "catan_downward": 371double: 1 372float: 1 373float128: 2 374ldouble: 1 375 376Function: Imaginary part of "catan_downward": 377double: 2 378float: 1 379float128: 2 380ldouble: 2 381 382Function: Real part of "catan_towardzero": 383double: 1 384float: 1 385float128: 2 386ldouble: 1 387 388Function: Imaginary part of "catan_towardzero": 389double: 1 390float: 1 391float128: 2 392ldouble: 2 393 394Function: Real part of "catan_upward": 395double: 1 396float: 1 397float128: 2 398ldouble: 1 399 400Function: Imaginary part of "catan_upward": 401double: 2 402float: 2 403float128: 3 404ldouble: 3 405 406Function: Real part of "catanh": 407double: 1 408float: 1 409float128: 1 410ldouble: 1 411 412Function: Imaginary part of "catanh": 413double: 1 414float128: 1 415 416Function: Real part of "catanh_downward": 417double: 2 418float: 1 419float128: 2 420ldouble: 2 421 422Function: Imaginary part of "catanh_downward": 423double: 1 424float: 1 425float128: 2 426ldouble: 1 427 428Function: Real part of "catanh_towardzero": 429double: 1 430float: 1 431float128: 2 432ldouble: 2 433 434Function: Imaginary part of "catanh_towardzero": 435double: 1 436float: 1 437float128: 2 438ldouble: 1 439 440Function: Real part of "catanh_upward": 441double: 4 442float: 4 443float128: 4 444ldouble: 4 445 446Function: Imaginary part of "catanh_upward": 447double: 1 448float: 1 449float128: 2 450ldouble: 1 451 452Function: "cbrt": 453float128: 1 454 455Function: "cbrt_downward": 456double: 1 457float128: 1 458ldouble: 1 459 460Function: "cbrt_towardzero": 461float: 1 462float128: 1 463 464Function: "cbrt_upward": 465float: 1 466float128: 1 467ldouble: 1 468 469Function: Real part of "ccos": 470double: 1 471float128: 1 472ldouble: 1 473 474Function: Imaginary part of "ccos": 475double: 1 476float: 1 477float128: 1 478ldouble: 1 479 480Function: Real part of "ccos_downward": 481double: 3 482float: 1 483float128: 2 484ldouble: 3 485 486Function: Imaginary part of "ccos_downward": 487double: 3 488float: 3 489float128: 2 490ldouble: 3 491 492Function: Real part of "ccos_towardzero": 493double: 3 494float: 1 495float128: 2 496ldouble: 3 497 498Function: Imaginary part of "ccos_towardzero": 499double: 3 500float: 3 501float128: 2 502ldouble: 3 503 504Function: Real part of "ccos_upward": 505double: 1 506float: 2 507float128: 3 508ldouble: 2 509 510Function: Imaginary part of "ccos_upward": 511double: 2 512float: 2 513float128: 2 514ldouble: 2 515 516Function: Real part of "ccosh": 517double: 1 518float: 1 519float128: 1 520 521Function: Imaginary part of "ccosh": 522double: 1 523float: 1 524float128: 1 525ldouble: 1 526 527Function: Real part of "ccosh_downward": 528double: 3 529float: 2 530float128: 2 531ldouble: 3 532 533Function: Imaginary part of "ccosh_downward": 534double: 3 535float: 3 536float128: 2 537ldouble: 3 538 539Function: Real part of "ccosh_towardzero": 540double: 3 541float: 2 542float128: 2 543ldouble: 3 544 545Function: Imaginary part of "ccosh_towardzero": 546double: 3 547float: 3 548float128: 2 549ldouble: 3 550 551Function: Real part of "ccosh_upward": 552double: 1 553float: 2 554float128: 3 555ldouble: 2 556 557Function: Imaginary part of "ccosh_upward": 558double: 2 559float: 2 560float128: 2 561ldouble: 2 562 563Function: Real part of "cexp": 564double: 2 565float: 1 566float128: 1 567ldouble: 1 568 569Function: Imaginary part of "cexp": 570double: 1 571float: 2 572float128: 1 573ldouble: 1 574 575Function: Real part of "cexp_downward": 576double: 4 577float: 2 578float128: 2 579ldouble: 3 580 581Function: Imaginary part of "cexp_downward": 582double: 3 583float: 3 584float128: 2 585ldouble: 3 586 587Function: Real part of "cexp_towardzero": 588double: 4 589float: 2 590float128: 2 591ldouble: 3 592 593Function: Imaginary part of "cexp_towardzero": 594double: 3 595float: 3 596float128: 2 597ldouble: 3 598 599Function: Real part of "cexp_upward": 600double: 2 601float: 2 602float128: 3 603ldouble: 2 604 605Function: Imaginary part of "cexp_upward": 606double: 3 607float: 2 608float128: 3 609ldouble: 2 610 611Function: Real part of "clog": 612double: 2 613float: 3 614float128: 2 615ldouble: 2 616 617Function: Imaginary part of "clog": 618double: 1 619float128: 1 620ldouble: 1 621 622Function: Real part of "clog10": 623double: 3 624float: 4 625float128: 2 626ldouble: 2 627 628Function: Imaginary part of "clog10": 629double: 2 630float: 1 631float128: 2 632ldouble: 1 633 634Function: Real part of "clog10_downward": 635double: 4 636float: 4 637float128: 3 638ldouble: 4 639 640Function: Imaginary part of "clog10_downward": 641double: 2 642float: 2 643float128: 3 644ldouble: 2 645 646Function: Real part of "clog10_towardzero": 647double: 5 648float: 5 649float128: 4 650ldouble: 4 651 652Function: Imaginary part of "clog10_towardzero": 653double: 2 654float: 2 655float128: 3 656ldouble: 2 657 658Function: Real part of "clog10_upward": 659double: 4 660float: 5 661float128: 4 662ldouble: 4 663 664Function: Imaginary part of "clog10_upward": 665double: 2 666float: 2 667float128: 3 668ldouble: 2 669 670Function: Real part of "clog_downward": 671double: 3 672float: 3 673float128: 3 674ldouble: 3 675 676Function: Imaginary part of "clog_downward": 677double: 1 678float: 1 679float128: 2 680ldouble: 1 681 682Function: Real part of "clog_towardzero": 683double: 3 684float: 4 685float128: 3 686ldouble: 3 687 688Function: Imaginary part of "clog_towardzero": 689double: 1 690float: 1 691float128: 2 692ldouble: 1 693 694Function: Real part of "clog_upward": 695double: 2 696float: 3 697float128: 4 698ldouble: 3 699 700Function: Imaginary part of "clog_upward": 701double: 1 702float: 1 703float128: 2 704ldouble: 1 705 706Function: "cos": 707double: 1 708float: 1 709float128: 2 710 711Function: "cos_downward": 712double: 1 713float: 1 714float128: 3 715ldouble: 1 716 717Function: "cos_towardzero": 718double: 1 719float: 1 720float128: 1 721ldouble: 1 722 723Function: "cos_upward": 724double: 1 725float128: 2 726ldouble: 1 727 728Function: "cosh": 729float128: 2 730 731Function: "cosh_downward": 732float128: 3 733 734Function: "cosh_towardzero": 735float128: 3 736 737Function: "cosh_upward": 738float128: 3 739 740Function: Real part of "cpow": 741double: 2 742float: 5 743float128: 4 744ldouble: 3 745 746Function: Imaginary part of "cpow": 747float: 2 748float128: 1 749ldouble: 4 750 751Function: Real part of "cpow_downward": 752double: 5 753float: 8 754float128: 6 755ldouble: 7 756 757Function: Imaginary part of "cpow_downward": 758double: 2 759float: 2 760float128: 2 761ldouble: 1 762 763Function: Real part of "cpow_towardzero": 764double: 5 765float: 8 766float128: 6 767ldouble: 7 768 769Function: Imaginary part of "cpow_towardzero": 770double: 2 771float: 2 772float128: 2 773ldouble: 1 774 775Function: Real part of "cpow_upward": 776double: 4 777float: 1 778float128: 3 779ldouble: 2 780 781Function: Imaginary part of "cpow_upward": 782double: 2 783float: 2 784float128: 2 785ldouble: 2 786 787Function: Real part of "csin": 788double: 1 789float: 1 790float128: 1 791ldouble: 1 792 793Function: Imaginary part of "csin": 794float: 1 795float128: 1 796 797Function: Real part of "csin_downward": 798double: 3 799float: 3 800float128: 2 801ldouble: 3 802 803Function: Imaginary part of "csin_downward": 804double: 3 805float: 1 806float128: 2 807ldouble: 3 808 809Function: Real part of "csin_towardzero": 810double: 3 811float: 3 812float128: 2 813ldouble: 3 814 815Function: Imaginary part of "csin_towardzero": 816double: 3 817float: 1 818float128: 2 819ldouble: 3 820 821Function: Real part of "csin_upward": 822double: 2 823float: 2 824float128: 2 825ldouble: 2 826 827Function: Imaginary part of "csin_upward": 828double: 1 829float: 2 830float128: 3 831ldouble: 1 832 833Function: Real part of "csinh": 834double: 1 835float: 1 836float128: 1 837ldouble: 1 838 839Function: Imaginary part of "csinh": 840double: 1 841float: 1 842float128: 1 843ldouble: 1 844 845Function: Real part of "csinh_downward": 846double: 3 847float: 1 848float128: 2 849ldouble: 3 850 851Function: Imaginary part of "csinh_downward": 852double: 3 853float: 3 854float128: 2 855ldouble: 3 856 857Function: Real part of "csinh_towardzero": 858double: 3 859float: 1 860float128: 2 861ldouble: 3 862 863Function: Imaginary part of "csinh_towardzero": 864double: 3 865float: 3 866float128: 2 867ldouble: 3 868 869Function: Real part of "csinh_upward": 870double: 1 871float: 2 872float128: 3 873ldouble: 1 874 875Function: Imaginary part of "csinh_upward": 876double: 2 877float: 2 878float128: 2 879ldouble: 2 880 881Function: Real part of "csqrt": 882double: 2 883float: 2 884float128: 2 885ldouble: 2 886 887Function: Imaginary part of "csqrt": 888double: 2 889float: 2 890float128: 2 891ldouble: 2 892 893Function: Real part of "csqrt_downward": 894double: 4 895float: 4 896float128: 4 897ldouble: 4 898 899Function: Imaginary part of "csqrt_downward": 900double: 3 901float: 3 902float128: 3 903ldouble: 3 904 905Function: Real part of "csqrt_towardzero": 906double: 3 907float: 3 908float128: 3 909ldouble: 3 910 911Function: Imaginary part of "csqrt_towardzero": 912double: 3 913float: 3 914float128: 3 915ldouble: 3 916 917Function: Real part of "csqrt_upward": 918double: 4 919float: 4 920float128: 4 921ldouble: 4 922 923Function: Imaginary part of "csqrt_upward": 924double: 3 925float: 2 926float128: 3 927ldouble: 3 928 929Function: Real part of "ctan": 930double: 1 931float: 1 932float128: 3 933ldouble: 2 934 935Function: Imaginary part of "ctan": 936double: 2 937float: 1 938float128: 3 939ldouble: 2 940 941Function: Real part of "ctan_downward": 942double: 4 943float: 4 944float128: 4 945ldouble: 2 946 947Function: Imaginary part of "ctan_downward": 948double: 3 949float: 2 950float128: 5 951ldouble: 2 952 953Function: Real part of "ctan_towardzero": 954double: 2 955float: 2 956float128: 4 957ldouble: 2 958 959Function: Imaginary part of "ctan_towardzero": 960double: 3 961float: 2 962float128: 5 963ldouble: 4 964 965Function: Real part of "ctan_upward": 966double: 2 967float: 3 968float128: 5 969ldouble: 5 970 971Function: Imaginary part of "ctan_upward": 972double: 6 973float: 2 974float128: 5 975ldouble: 7 976 977Function: Real part of "ctanh": 978double: 2 979float: 1 980float128: 3 981ldouble: 1 982 983Function: Imaginary part of "ctanh": 984double: 2 985float: 1 986float128: 3 987ldouble: 2 988 989Function: Real part of "ctanh_downward": 990double: 3 991float: 2 992float128: 5 993ldouble: 1 994 995Function: Imaginary part of "ctanh_downward": 996double: 4 997float: 4 998float128: 4 999ldouble: 2 1000 1001Function: Real part of "ctanh_towardzero": 1002double: 3 1003float: 2 1004float128: 5 1005ldouble: 4 1006 1007Function: Imaginary part of "ctanh_towardzero": 1008double: 2 1009float: 1 1010float128: 3 1011ldouble: 1 1012 1013Function: Real part of "ctanh_upward": 1014double: 6 1015float: 2 1016float128: 5 1017ldouble: 7 1018 1019Function: Imaginary part of "ctanh_upward": 1020double: 2 1021float: 3 1022float128: 5 1023ldouble: 5 1024 1025Function: "erf": 1026float128: 1 1027 1028Function: "erf_downward": 1029float128: 2 1030 1031Function: "erf_towardzero": 1032float128: 1 1033 1034Function: "erf_upward": 1035float128: 2 1036 1037Function: "erfc": 1038float128: 4 1039 1040Function: "erfc_downward": 1041double: 1 1042float128: 5 1043 1044Function: "erfc_towardzero": 1045double: 1 1046float128: 4 1047 1048Function: "erfc_upward": 1049double: 1 1050float128: 5 1051 1052Function: "exp": 1053float: 1 1054float128: 1 1055 1056Function: "exp10": 1057float: 1 1058float128: 2 1059 1060Function: "exp10_downward": 1061float: 1 1062float128: 3 1063 1064Function: "exp10_towardzero": 1065float: 1 1066float128: 3 1067 1068Function: "exp10_upward": 1069float: 1 1070float128: 3 1071 1072Function: "exp2": 1073double: 1 1074float128: 1 1075ldouble: 1 1076 1077Function: "exp2_downward": 1078double: 1 1079float128: 1 1080ldouble: 1 1081 1082Function: "exp2_towardzero": 1083double: 1 1084float128: 1 1085ldouble: 1 1086 1087Function: "exp2_upward": 1088double: 1 1089float128: 2 1090ldouble: 1 1091 1092Function: "expm1": 1093double: 1 1094float128: 2 1095ldouble: 1 1096 1097Function: "expm1_downward": 1098float128: 2 1099ldouble: 1 1100 1101Function: "expm1_towardzero": 1102float128: 4 1103 1104Function: "expm1_upward": 1105float128: 3 1106 1107Function: "gamma": 1108float: 1 1109 1110Function: "gamma_downward": 1111double: 1 1112float: 1 1113 1114Function: "gamma_towardzero": 1115double: 1 1116float: 1 1117 1118Function: "gamma_upward": 1119double: 1 1120float: 1 1121 1122Function: "hypot": 1123float128: 1 1124 1125Function: "hypot_downward": 1126double: 1 1127float: 1 1128float128: 1 1129ldouble: 1 1130 1131Function: "hypot_towardzero": 1132double: 1 1133float: 1 1134float128: 1 1135ldouble: 1 1136 1137Function: "hypot_upward": 1138double: 1 1139float: 1 1140float128: 1 1141ldouble: 1 1142 1143Function: "j0": 1144double: 3 1145float: 9 1146float128: 2 1147ldouble: 8 1148 1149Function: "j0_downward": 1150double: 9 1151float: 9 1152float128: 9 1153ldouble: 4 1154 1155Function: "j0_towardzero": 1156double: 5 1157float: 9 1158float128: 9 1159ldouble: 9 1160 1161Function: "j0_upward": 1162double: 4 1163float: 8 1164float128: 7 1165ldouble: 5 1166 1167Function: "j1": 1168double: 4 1169float: 9 1170float128: 4 1171ldouble: 6 1172 1173Function: "j1_downward": 1174double: 7 1175float: 8 1176float128: 4 1177ldouble: 4 1178 1179Function: "j1_towardzero": 1180double: 3 1181float: 8 1182float128: 4 1183ldouble: 4 1184 1185Function: "j1_upward": 1186double: 6 1187float: 9 1188float128: 3 1189ldouble: 5 1190 1191Function: "jn": 1192double: 4 1193float: 4 1194float128: 7 1195ldouble: 4 1196 1197Function: "jn_downward": 1198double: 4 1199float: 5 1200float128: 8 1201ldouble: 4 1202 1203Function: "jn_towardzero": 1204double: 4 1205float: 5 1206float128: 8 1207ldouble: 5 1208 1209Function: "jn_upward": 1210double: 5 1211float: 4 1212float128: 7 1213ldouble: 5 1214 1215Function: "lgamma": 1216float: 1 1217float128: 5 1218 1219Function: "lgamma_downward": 1220double: 1 1221float: 1 1222float128: 8 1223 1224Function: "lgamma_towardzero": 1225double: 1 1226float: 1 1227float128: 5 1228 1229Function: "lgamma_upward": 1230double: 1 1231float: 1 1232float128: 8 1233 1234Function: "log": 1235float128: 1 1236 1237Function: "log10": 1238float128: 2 1239 1240Function: "log10_downward": 1241double: 1 1242float128: 1 1243ldouble: 1 1244 1245Function: "log10_towardzero": 1246double: 1 1247float128: 1 1248ldouble: 1 1249 1250Function: "log10_upward": 1251double: 1 1252float: 1 1253float128: 1 1254ldouble: 1 1255 1256Function: "log1p": 1257float128: 3 1258 1259Function: "log1p_downward": 1260double: 1 1261float128: 3 1262 1263Function: "log1p_towardzero": 1264double: 1 1265float128: 3 1266 1267Function: "log1p_upward": 1268double: 1 1269float128: 2 1270 1271Function: "log2": 1272float128: 3 1273 1274Function: "log2_downward": 1275float128: 3 1276 1277Function: "log2_towardzero": 1278float128: 1 1279 1280Function: "log2_upward": 1281float128: 1 1282 1283Function: "log_downward": 1284double: 1 1285float128: 1 1286 1287Function: "log_towardzero": 1288double: 1 1289float128: 2 1290 1291Function: "log_upward": 1292double: 1 1293float128: 1 1294 1295Function: "pow": 1296float128: 2 1297 1298Function: "pow_downward": 1299double: 1 1300float: 1 1301float128: 2 1302ldouble: 1 1303 1304Function: "pow_towardzero": 1305double: 1 1306float: 1 1307float128: 2 1308ldouble: 1 1309 1310Function: "pow_upward": 1311double: 1 1312float: 1 1313float128: 2 1314ldouble: 1 1315 1316Function: "sin": 1317double: 1 1318float128: 2 1319 1320Function: "sin_downward": 1321double: 1 1322float: 1 1323float128: 3 1324ldouble: 1 1325 1326Function: "sin_towardzero": 1327double: 1 1328float: 1 1329float128: 2 1330ldouble: 1 1331 1332Function: "sin_upward": 1333double: 1 1334float: 1 1335float128: 3 1336ldouble: 1 1337 1338Function: "sincos": 1339double: 1 1340float128: 1 1341 1342Function: "sincos_downward": 1343double: 1 1344float: 1 1345float128: 3 1346 1347Function: "sincos_towardzero": 1348double: 1 1349float: 1 1350float128: 2 1351 1352Function: "sincos_upward": 1353double: 1 1354float: 1 1355float128: 3 1356 1357Function: "sinh": 1358float128: 2 1359 1360Function: "sinh_downward": 1361float128: 3 1362 1363Function: "sinh_towardzero": 1364float128: 3 1365 1366Function: "sinh_upward": 1367float128: 4 1368 1369Function: "tan": 1370float128: 1 1371ldouble: 1 1372 1373Function: "tan_downward": 1374float128: 1 1375ldouble: 1 1376 1377Function: "tan_towardzero": 1378float128: 1 1379ldouble: 1 1380 1381Function: "tan_upward": 1382float128: 1 1383ldouble: 1 1384 1385Function: "tanh": 1386float128: 2 1387 1388Function: "tanh_downward": 1389float128: 4 1390 1391Function: "tanh_towardzero": 1392float128: 3 1393 1394Function: "tanh_upward": 1395float128: 3 1396 1397Function: "tgamma": 1398float128: 4 1399ldouble: 1 1400 1401Function: "tgamma_downward": 1402double: 1 1403float: 1 1404float128: 5 1405ldouble: 1 1406 1407Function: "tgamma_towardzero": 1408double: 1 1409float: 1 1410float128: 5 1411ldouble: 1 1412 1413Function: "tgamma_upward": 1414double: 1 1415float: 1 1416float128: 4 1417ldouble: 1 1418 1419Function: "y0": 1420double: 2 1421float: 8 1422float128: 3 1423ldouble: 1 1424 1425Function: "y0_downward": 1426double: 4 1427float: 8 1428float128: 7 1429ldouble: 4 1430 1431Function: "y0_towardzero": 1432double: 3 1433float: 8 1434float128: 3 1435ldouble: 7 1436 1437Function: "y0_upward": 1438double: 4 1439float: 8 1440float128: 4 1441ldouble: 7 1442 1443Function: "y1": 1444double: 3 1445float: 9 1446float128: 5 1447ldouble: 5 1448 1449Function: "y1_downward": 1450double: 9 1451float: 8 1452float128: 5 1453ldouble: 3 1454 1455Function: "y1_towardzero": 1456double: 3 1457float: 9 1458float128: 2 1459ldouble: 3 1460 1461Function: "y1_upward": 1462double: 6 1463float: 9 1464float128: 5 1465ldouble: 7 1466 1467Function: "yn": 1468double: 3 1469float: 3 1470float128: 5 1471ldouble: 3 1472 1473Function: "yn_downward": 1474double: 4 1475float: 4 1476float128: 5 1477ldouble: 4 1478 1479Function: "yn_towardzero": 1480double: 3 1481float: 3 1482float128: 5 1483ldouble: 5 1484 1485Function: "yn_upward": 1486double: 4 1487float: 5 1488float128: 5 1489ldouble: 3 1490 1491# end of automatic generation 1492