1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5double: 1
6float128: 1
7
8Function: "acos_downward":
9double: 1
10float: 1
11float128: 1
12
13Function: "acos_towardzero":
14double: 1
15float: 1
16float128: 1
17
18Function: "acos_upward":
19double: 1
20float: 1
21float128: 1
22ldouble: 1
23
24Function: "acosh":
25double: 1
26float128: 4
27ldouble: 1
28
29Function: "acosh_downward":
30float128: 3
31
32Function: "acosh_towardzero":
33float128: 2
34
35Function: "acosh_upward":
36float128: 3
37
38Function: "asin":
39float128: 1
40
41Function: "asin_downward":
42double: 1
43float: 1
44float128: 2
45ldouble: 1
46
47Function: "asin_towardzero":
48double: 1
49float: 1
50float128: 1
51ldouble: 1
52
53Function: "asin_upward":
54double: 1
55float: 1
56float128: 2
57ldouble: 1
58
59Function: "asinh":
60double: 1
61float128: 4
62
63Function: "asinh_downward":
64float128: 4
65
66Function: "asinh_towardzero":
67float128: 2
68
69Function: "asinh_upward":
70float128: 4
71
72Function: "atan":
73float128: 1
74
75Function: "atan2":
76float128: 2
77
78Function: "atan2_downward":
79double: 1
80float: 1
81float128: 2
82ldouble: 1
83
84Function: "atan2_towardzero":
85float: 1
86float128: 3
87ldouble: 1
88
89Function: "atan2_upward":
90double: 1
91float: 1
92float128: 2
93ldouble: 1
94
95Function: "atan_downward":
96double: 1
97float: 1
98float128: 2
99ldouble: 1
100
101Function: "atan_towardzero":
102float: 1
103float128: 1
104ldouble: 1
105
106Function: "atan_upward":
107double: 1
108float: 1
109float128: 2
110ldouble: 1
111
112Function: "atanh":
113float128: 4
114
115Function: "atanh_downward":
116float: 1
117float128: 4
118
119Function: "atanh_towardzero":
120float: 1
121float128: 2
122
123Function: "atanh_upward":
124float: 1
125float128: 4
126
127Function: "cabs":
128float128: 1
129
130Function: "cabs_downward":
131double: 1
132float: 1
133float128: 1
134ldouble: 1
135
136Function: "cabs_towardzero":
137double: 1
138float: 1
139float128: 1
140ldouble: 1
141
142Function: "cabs_upward":
143double: 1
144float: 1
145float128: 1
146ldouble: 1
147
148Function: Real part of "cacos":
149double: 1
150float: 2
151float128: 2
152ldouble: 1
153
154Function: Imaginary part of "cacos":
155double: 2
156float: 2
157float128: 2
158ldouble: 2
159
160Function: Real part of "cacos_downward":
161double: 1
162float: 1
163float128: 3
164ldouble: 2
165
166Function: Imaginary part of "cacos_downward":
167double: 5
168float: 6
169float128: 6
170ldouble: 5
171
172Function: Real part of "cacos_towardzero":
173double: 1
174float: 1
175float128: 3
176ldouble: 2
177
178Function: Imaginary part of "cacos_towardzero":
179double: 4
180float: 5
181float128: 5
182ldouble: 4
183
184Function: Real part of "cacos_upward":
185double: 2
186float: 2
187float128: 3
188ldouble: 2
189
190Function: Imaginary part of "cacos_upward":
191double: 5
192float: 5
193float128: 7
194ldouble: 5
195
196Function: Real part of "cacosh":
197double: 2
198float: 2
199float128: 2
200ldouble: 2
201
202Function: Imaginary part of "cacosh":
203double: 1
204float: 2
205float128: 2
206ldouble: 1
207
208Function: Real part of "cacosh_downward":
209double: 4
210float: 5
211float128: 5
212ldouble: 4
213
214Function: Imaginary part of "cacosh_downward":
215double: 2
216float: 2
217float128: 4
218ldouble: 3
219
220Function: Real part of "cacosh_towardzero":
221double: 4
222float: 5
223float128: 5
224ldouble: 4
225
226Function: Imaginary part of "cacosh_towardzero":
227double: 1
228float: 1
229float128: 3
230ldouble: 2
231
232Function: Real part of "cacosh_upward":
233double: 4
234float: 3
235float128: 6
236ldouble: 4
237
238Function: Imaginary part of "cacosh_upward":
239double: 3
240float: 2
241float128: 4
242ldouble: 3
243
244Function: "carg":
245float128: 2
246
247Function: "carg_downward":
248double: 1
249float: 1
250float128: 2
251ldouble: 1
252
253Function: "carg_towardzero":
254float: 1
255float128: 3
256ldouble: 1
257
258Function: "carg_upward":
259double: 1
260float: 1
261float128: 2
262ldouble: 1
263
264Function: Real part of "casin":
265double: 1
266float: 1
267float128: 2
268ldouble: 1
269
270Function: Imaginary part of "casin":
271double: 2
272float: 2
273float128: 2
274ldouble: 2
275
276Function: Real part of "casin_downward":
277double: 3
278float: 2
279float128: 3
280ldouble: 3
281
282Function: Imaginary part of "casin_downward":
283double: 5
284float: 6
285float128: 6
286ldouble: 5
287
288Function: Real part of "casin_towardzero":
289double: 3
290float: 2
291float128: 3
292ldouble: 3
293
294Function: Imaginary part of "casin_towardzero":
295double: 4
296float: 5
297float128: 5
298ldouble: 4
299
300Function: Real part of "casin_upward":
301double: 2
302float: 1
303float128: 3
304ldouble: 2
305
306Function: Imaginary part of "casin_upward":
307double: 5
308float: 5
309float128: 7
310ldouble: 5
311
312Function: Real part of "casinh":
313double: 2
314float: 2
315float128: 2
316ldouble: 2
317
318Function: Imaginary part of "casinh":
319double: 1
320float: 1
321float128: 2
322ldouble: 1
323
324Function: Real part of "casinh_downward":
325double: 5
326float: 6
327float128: 6
328ldouble: 5
329
330Function: Imaginary part of "casinh_downward":
331double: 3
332float: 2
333float128: 3
334ldouble: 3
335
336Function: Real part of "casinh_towardzero":
337double: 4
338float: 5
339float128: 5
340ldouble: 4
341
342Function: Imaginary part of "casinh_towardzero":
343double: 3
344float: 2
345float128: 3
346ldouble: 3
347
348Function: Real part of "casinh_upward":
349double: 5
350float: 5
351float128: 7
352ldouble: 5
353
354Function: Imaginary part of "casinh_upward":
355double: 2
356float: 1
357float128: 3
358ldouble: 2
359
360Function: Real part of "catan":
361double: 1
362float128: 1
363
364Function: Imaginary part of "catan":
365double: 1
366float: 1
367float128: 1
368ldouble: 1
369
370Function: Real part of "catan_downward":
371double: 1
372float: 1
373float128: 2
374ldouble: 1
375
376Function: Imaginary part of "catan_downward":
377double: 2
378float: 1
379float128: 2
380ldouble: 2
381
382Function: Real part of "catan_towardzero":
383double: 1
384float: 1
385float128: 2
386ldouble: 1
387
388Function: Imaginary part of "catan_towardzero":
389double: 1
390float: 1
391float128: 2
392ldouble: 2
393
394Function: Real part of "catan_upward":
395double: 1
396float: 1
397float128: 2
398ldouble: 1
399
400Function: Imaginary part of "catan_upward":
401double: 2
402float: 2
403float128: 3
404ldouble: 3
405
406Function: Real part of "catanh":
407double: 1
408float: 1
409float128: 1
410ldouble: 1
411
412Function: Imaginary part of "catanh":
413double: 1
414float128: 1
415
416Function: Real part of "catanh_downward":
417double: 2
418float: 1
419float128: 2
420ldouble: 2
421
422Function: Imaginary part of "catanh_downward":
423double: 1
424float: 1
425float128: 2
426ldouble: 1
427
428Function: Real part of "catanh_towardzero":
429double: 1
430float: 1
431float128: 2
432ldouble: 2
433
434Function: Imaginary part of "catanh_towardzero":
435double: 1
436float: 1
437float128: 2
438ldouble: 1
439
440Function: Real part of "catanh_upward":
441double: 4
442float: 4
443float128: 4
444ldouble: 4
445
446Function: Imaginary part of "catanh_upward":
447double: 1
448float: 1
449float128: 2
450ldouble: 1
451
452Function: "cbrt":
453float128: 1
454
455Function: "cbrt_downward":
456double: 1
457float128: 1
458ldouble: 1
459
460Function: "cbrt_towardzero":
461float: 1
462float128: 1
463
464Function: "cbrt_upward":
465float: 1
466float128: 1
467ldouble: 1
468
469Function: Real part of "ccos":
470double: 1
471float128: 1
472ldouble: 1
473
474Function: Imaginary part of "ccos":
475double: 1
476float: 1
477float128: 1
478ldouble: 1
479
480Function: Real part of "ccos_downward":
481double: 3
482float: 1
483float128: 2
484ldouble: 3
485
486Function: Imaginary part of "ccos_downward":
487double: 3
488float: 3
489float128: 2
490ldouble: 3
491
492Function: Real part of "ccos_towardzero":
493double: 3
494float: 1
495float128: 2
496ldouble: 3
497
498Function: Imaginary part of "ccos_towardzero":
499double: 3
500float: 3
501float128: 2
502ldouble: 3
503
504Function: Real part of "ccos_upward":
505double: 1
506float: 2
507float128: 3
508ldouble: 2
509
510Function: Imaginary part of "ccos_upward":
511double: 2
512float: 2
513float128: 2
514ldouble: 2
515
516Function: Real part of "ccosh":
517double: 1
518float: 1
519float128: 1
520
521Function: Imaginary part of "ccosh":
522double: 1
523float: 1
524float128: 1
525ldouble: 1
526
527Function: Real part of "ccosh_downward":
528double: 3
529float: 2
530float128: 2
531ldouble: 3
532
533Function: Imaginary part of "ccosh_downward":
534double: 3
535float: 3
536float128: 2
537ldouble: 3
538
539Function: Real part of "ccosh_towardzero":
540double: 3
541float: 2
542float128: 2
543ldouble: 3
544
545Function: Imaginary part of "ccosh_towardzero":
546double: 3
547float: 3
548float128: 2
549ldouble: 3
550
551Function: Real part of "ccosh_upward":
552double: 1
553float: 2
554float128: 3
555ldouble: 2
556
557Function: Imaginary part of "ccosh_upward":
558double: 2
559float: 2
560float128: 2
561ldouble: 2
562
563Function: Real part of "cexp":
564double: 2
565float: 1
566float128: 1
567ldouble: 1
568
569Function: Imaginary part of "cexp":
570double: 1
571float: 2
572float128: 1
573ldouble: 1
574
575Function: Real part of "cexp_downward":
576double: 4
577float: 2
578float128: 2
579ldouble: 3
580
581Function: Imaginary part of "cexp_downward":
582double: 3
583float: 3
584float128: 2
585ldouble: 3
586
587Function: Real part of "cexp_towardzero":
588double: 4
589float: 2
590float128: 2
591ldouble: 3
592
593Function: Imaginary part of "cexp_towardzero":
594double: 3
595float: 3
596float128: 2
597ldouble: 3
598
599Function: Real part of "cexp_upward":
600double: 2
601float: 2
602float128: 3
603ldouble: 2
604
605Function: Imaginary part of "cexp_upward":
606double: 3
607float: 2
608float128: 3
609ldouble: 2
610
611Function: Real part of "clog":
612double: 2
613float: 3
614float128: 2
615ldouble: 2
616
617Function: Imaginary part of "clog":
618double: 1
619float128: 1
620ldouble: 1
621
622Function: Real part of "clog10":
623double: 3
624float: 4
625float128: 2
626ldouble: 2
627
628Function: Imaginary part of "clog10":
629double: 2
630float: 1
631float128: 2
632ldouble: 1
633
634Function: Real part of "clog10_downward":
635double: 4
636float: 4
637float128: 3
638ldouble: 4
639
640Function: Imaginary part of "clog10_downward":
641double: 2
642float: 2
643float128: 3
644ldouble: 2
645
646Function: Real part of "clog10_towardzero":
647double: 5
648float: 5
649float128: 4
650ldouble: 4
651
652Function: Imaginary part of "clog10_towardzero":
653double: 2
654float: 2
655float128: 3
656ldouble: 2
657
658Function: Real part of "clog10_upward":
659double: 4
660float: 5
661float128: 4
662ldouble: 4
663
664Function: Imaginary part of "clog10_upward":
665double: 2
666float: 2
667float128: 3
668ldouble: 2
669
670Function: Real part of "clog_downward":
671double: 3
672float: 3
673float128: 3
674ldouble: 3
675
676Function: Imaginary part of "clog_downward":
677double: 1
678float: 1
679float128: 2
680ldouble: 1
681
682Function: Real part of "clog_towardzero":
683double: 3
684float: 4
685float128: 3
686ldouble: 3
687
688Function: Imaginary part of "clog_towardzero":
689double: 1
690float: 1
691float128: 2
692ldouble: 1
693
694Function: Real part of "clog_upward":
695double: 2
696float: 3
697float128: 4
698ldouble: 3
699
700Function: Imaginary part of "clog_upward":
701double: 1
702float: 1
703float128: 2
704ldouble: 1
705
706Function: "cos":
707double: 1
708float: 1
709float128: 2
710
711Function: "cos_downward":
712double: 1
713float: 1
714float128: 3
715ldouble: 1
716
717Function: "cos_towardzero":
718double: 1
719float: 1
720float128: 1
721ldouble: 1
722
723Function: "cos_upward":
724double: 1
725float128: 2
726ldouble: 1
727
728Function: "cosh":
729float128: 2
730
731Function: "cosh_downward":
732float128: 3
733
734Function: "cosh_towardzero":
735float128: 3
736
737Function: "cosh_upward":
738float128: 3
739
740Function: Real part of "cpow":
741double: 2
742float: 5
743float128: 4
744ldouble: 3
745
746Function: Imaginary part of "cpow":
747float: 2
748float128: 1
749ldouble: 4
750
751Function: Real part of "cpow_downward":
752double: 5
753float: 8
754float128: 6
755ldouble: 7
756
757Function: Imaginary part of "cpow_downward":
758double: 2
759float: 2
760float128: 2
761ldouble: 1
762
763Function: Real part of "cpow_towardzero":
764double: 5
765float: 8
766float128: 6
767ldouble: 7
768
769Function: Imaginary part of "cpow_towardzero":
770double: 2
771float: 2
772float128: 2
773ldouble: 1
774
775Function: Real part of "cpow_upward":
776double: 4
777float: 1
778float128: 3
779ldouble: 2
780
781Function: Imaginary part of "cpow_upward":
782double: 2
783float: 2
784float128: 2
785ldouble: 2
786
787Function: Real part of "csin":
788double: 1
789float: 1
790float128: 1
791ldouble: 1
792
793Function: Imaginary part of "csin":
794float: 1
795float128: 1
796
797Function: Real part of "csin_downward":
798double: 3
799float: 3
800float128: 2
801ldouble: 3
802
803Function: Imaginary part of "csin_downward":
804double: 3
805float: 1
806float128: 2
807ldouble: 3
808
809Function: Real part of "csin_towardzero":
810double: 3
811float: 3
812float128: 2
813ldouble: 3
814
815Function: Imaginary part of "csin_towardzero":
816double: 3
817float: 1
818float128: 2
819ldouble: 3
820
821Function: Real part of "csin_upward":
822double: 2
823float: 2
824float128: 2
825ldouble: 2
826
827Function: Imaginary part of "csin_upward":
828double: 1
829float: 2
830float128: 3
831ldouble: 1
832
833Function: Real part of "csinh":
834double: 1
835float: 1
836float128: 1
837ldouble: 1
838
839Function: Imaginary part of "csinh":
840double: 1
841float: 1
842float128: 1
843ldouble: 1
844
845Function: Real part of "csinh_downward":
846double: 3
847float: 1
848float128: 2
849ldouble: 3
850
851Function: Imaginary part of "csinh_downward":
852double: 3
853float: 3
854float128: 2
855ldouble: 3
856
857Function: Real part of "csinh_towardzero":
858double: 3
859float: 1
860float128: 2
861ldouble: 3
862
863Function: Imaginary part of "csinh_towardzero":
864double: 3
865float: 3
866float128: 2
867ldouble: 3
868
869Function: Real part of "csinh_upward":
870double: 1
871float: 2
872float128: 3
873ldouble: 1
874
875Function: Imaginary part of "csinh_upward":
876double: 2
877float: 2
878float128: 2
879ldouble: 2
880
881Function: Real part of "csqrt":
882double: 2
883float: 2
884float128: 2
885ldouble: 2
886
887Function: Imaginary part of "csqrt":
888double: 2
889float: 2
890float128: 2
891ldouble: 2
892
893Function: Real part of "csqrt_downward":
894double: 4
895float: 4
896float128: 4
897ldouble: 4
898
899Function: Imaginary part of "csqrt_downward":
900double: 3
901float: 3
902float128: 3
903ldouble: 3
904
905Function: Real part of "csqrt_towardzero":
906double: 3
907float: 3
908float128: 3
909ldouble: 3
910
911Function: Imaginary part of "csqrt_towardzero":
912double: 3
913float: 3
914float128: 3
915ldouble: 3
916
917Function: Real part of "csqrt_upward":
918double: 4
919float: 4
920float128: 4
921ldouble: 4
922
923Function: Imaginary part of "csqrt_upward":
924double: 3
925float: 2
926float128: 3
927ldouble: 3
928
929Function: Real part of "ctan":
930double: 1
931float: 1
932float128: 3
933ldouble: 2
934
935Function: Imaginary part of "ctan":
936double: 2
937float: 1
938float128: 3
939ldouble: 2
940
941Function: Real part of "ctan_downward":
942double: 4
943float: 4
944float128: 4
945ldouble: 2
946
947Function: Imaginary part of "ctan_downward":
948double: 3
949float: 2
950float128: 5
951ldouble: 2
952
953Function: Real part of "ctan_towardzero":
954double: 2
955float: 2
956float128: 4
957ldouble: 2
958
959Function: Imaginary part of "ctan_towardzero":
960double: 3
961float: 2
962float128: 5
963ldouble: 4
964
965Function: Real part of "ctan_upward":
966double: 2
967float: 3
968float128: 5
969ldouble: 5
970
971Function: Imaginary part of "ctan_upward":
972double: 6
973float: 2
974float128: 5
975ldouble: 7
976
977Function: Real part of "ctanh":
978double: 2
979float: 1
980float128: 3
981ldouble: 1
982
983Function: Imaginary part of "ctanh":
984double: 2
985float: 1
986float128: 3
987ldouble: 2
988
989Function: Real part of "ctanh_downward":
990double: 3
991float: 2
992float128: 5
993ldouble: 1
994
995Function: Imaginary part of "ctanh_downward":
996double: 4
997float: 4
998float128: 4
999ldouble: 2
1000
1001Function: Real part of "ctanh_towardzero":
1002double: 3
1003float: 2
1004float128: 5
1005ldouble: 4
1006
1007Function: Imaginary part of "ctanh_towardzero":
1008double: 2
1009float: 1
1010float128: 3
1011ldouble: 1
1012
1013Function: Real part of "ctanh_upward":
1014double: 6
1015float: 2
1016float128: 5
1017ldouble: 7
1018
1019Function: Imaginary part of "ctanh_upward":
1020double: 2
1021float: 3
1022float128: 5
1023ldouble: 5
1024
1025Function: "erf":
1026float128: 1
1027
1028Function: "erf_downward":
1029float128: 2
1030
1031Function: "erf_towardzero":
1032float128: 1
1033
1034Function: "erf_upward":
1035float128: 2
1036
1037Function: "erfc":
1038float128: 4
1039
1040Function: "erfc_downward":
1041double: 1
1042float128: 5
1043
1044Function: "erfc_towardzero":
1045double: 1
1046float128: 4
1047
1048Function: "erfc_upward":
1049double: 1
1050float128: 5
1051
1052Function: "exp":
1053float: 1
1054float128: 1
1055
1056Function: "exp10":
1057float: 1
1058float128: 2
1059
1060Function: "exp10_downward":
1061float: 1
1062float128: 3
1063
1064Function: "exp10_towardzero":
1065float: 1
1066float128: 3
1067
1068Function: "exp10_upward":
1069float: 1
1070float128: 3
1071
1072Function: "exp2":
1073double: 1
1074float128: 1
1075ldouble: 1
1076
1077Function: "exp2_downward":
1078double: 1
1079float128: 1
1080ldouble: 1
1081
1082Function: "exp2_towardzero":
1083double: 1
1084float128: 1
1085ldouble: 1
1086
1087Function: "exp2_upward":
1088double: 1
1089float128: 2
1090ldouble: 1
1091
1092Function: "expm1":
1093double: 1
1094float128: 2
1095ldouble: 1
1096
1097Function: "expm1_downward":
1098float128: 2
1099ldouble: 1
1100
1101Function: "expm1_towardzero":
1102float128: 4
1103
1104Function: "expm1_upward":
1105float128: 3
1106
1107Function: "gamma":
1108float: 1
1109
1110Function: "gamma_downward":
1111double: 1
1112float: 1
1113
1114Function: "gamma_towardzero":
1115double: 1
1116float: 1
1117
1118Function: "gamma_upward":
1119double: 1
1120float: 1
1121
1122Function: "hypot":
1123float128: 1
1124
1125Function: "hypot_downward":
1126double: 1
1127float: 1
1128float128: 1
1129ldouble: 1
1130
1131Function: "hypot_towardzero":
1132double: 1
1133float: 1
1134float128: 1
1135ldouble: 1
1136
1137Function: "hypot_upward":
1138double: 1
1139float: 1
1140float128: 1
1141ldouble: 1
1142
1143Function: "j0":
1144double: 3
1145float: 9
1146float128: 2
1147ldouble: 8
1148
1149Function: "j0_downward":
1150double: 9
1151float: 9
1152float128: 9
1153ldouble: 4
1154
1155Function: "j0_towardzero":
1156double: 5
1157float: 9
1158float128: 9
1159ldouble: 9
1160
1161Function: "j0_upward":
1162double: 4
1163float: 8
1164float128: 7
1165ldouble: 5
1166
1167Function: "j1":
1168double: 4
1169float: 9
1170float128: 4
1171ldouble: 6
1172
1173Function: "j1_downward":
1174double: 7
1175float: 8
1176float128: 4
1177ldouble: 4
1178
1179Function: "j1_towardzero":
1180double: 3
1181float: 8
1182float128: 4
1183ldouble: 4
1184
1185Function: "j1_upward":
1186double: 6
1187float: 9
1188float128: 3
1189ldouble: 5
1190
1191Function: "jn":
1192double: 4
1193float: 4
1194float128: 7
1195ldouble: 4
1196
1197Function: "jn_downward":
1198double: 4
1199float: 5
1200float128: 8
1201ldouble: 4
1202
1203Function: "jn_towardzero":
1204double: 4
1205float: 5
1206float128: 8
1207ldouble: 5
1208
1209Function: "jn_upward":
1210double: 5
1211float: 4
1212float128: 7
1213ldouble: 5
1214
1215Function: "lgamma":
1216float: 1
1217float128: 5
1218
1219Function: "lgamma_downward":
1220double: 1
1221float: 1
1222float128: 8
1223
1224Function: "lgamma_towardzero":
1225double: 1
1226float: 1
1227float128: 5
1228
1229Function: "lgamma_upward":
1230double: 1
1231float: 1
1232float128: 8
1233
1234Function: "log":
1235float128: 1
1236
1237Function: "log10":
1238float128: 2
1239
1240Function: "log10_downward":
1241double: 1
1242float128: 1
1243ldouble: 1
1244
1245Function: "log10_towardzero":
1246double: 1
1247float128: 1
1248ldouble: 1
1249
1250Function: "log10_upward":
1251double: 1
1252float: 1
1253float128: 1
1254ldouble: 1
1255
1256Function: "log1p":
1257float128: 3
1258
1259Function: "log1p_downward":
1260double: 1
1261float128: 3
1262
1263Function: "log1p_towardzero":
1264double: 1
1265float128: 3
1266
1267Function: "log1p_upward":
1268double: 1
1269float128: 2
1270
1271Function: "log2":
1272float128: 3
1273
1274Function: "log2_downward":
1275float128: 3
1276
1277Function: "log2_towardzero":
1278float128: 1
1279
1280Function: "log2_upward":
1281float128: 1
1282
1283Function: "log_downward":
1284double: 1
1285float128: 1
1286
1287Function: "log_towardzero":
1288double: 1
1289float128: 2
1290
1291Function: "log_upward":
1292double: 1
1293float128: 1
1294
1295Function: "pow":
1296float128: 2
1297
1298Function: "pow_downward":
1299double: 1
1300float: 1
1301float128: 2
1302ldouble: 1
1303
1304Function: "pow_towardzero":
1305double: 1
1306float: 1
1307float128: 2
1308ldouble: 1
1309
1310Function: "pow_upward":
1311double: 1
1312float: 1
1313float128: 2
1314ldouble: 1
1315
1316Function: "sin":
1317double: 1
1318float128: 2
1319
1320Function: "sin_downward":
1321double: 1
1322float: 1
1323float128: 3
1324ldouble: 1
1325
1326Function: "sin_towardzero":
1327double: 1
1328float: 1
1329float128: 2
1330ldouble: 1
1331
1332Function: "sin_upward":
1333double: 1
1334float: 1
1335float128: 3
1336ldouble: 1
1337
1338Function: "sincos":
1339double: 1
1340float128: 1
1341
1342Function: "sincos_downward":
1343double: 1
1344float: 1
1345float128: 3
1346
1347Function: "sincos_towardzero":
1348double: 1
1349float: 1
1350float128: 2
1351
1352Function: "sincos_upward":
1353double: 1
1354float: 1
1355float128: 3
1356
1357Function: "sinh":
1358float128: 2
1359
1360Function: "sinh_downward":
1361float128: 3
1362
1363Function: "sinh_towardzero":
1364float128: 3
1365
1366Function: "sinh_upward":
1367float128: 4
1368
1369Function: "tan":
1370float128: 1
1371ldouble: 1
1372
1373Function: "tan_downward":
1374float128: 1
1375ldouble: 1
1376
1377Function: "tan_towardzero":
1378float128: 1
1379ldouble: 1
1380
1381Function: "tan_upward":
1382float128: 1
1383ldouble: 1
1384
1385Function: "tanh":
1386float128: 2
1387
1388Function: "tanh_downward":
1389float128: 4
1390
1391Function: "tanh_towardzero":
1392float128: 3
1393
1394Function: "tanh_upward":
1395float128: 3
1396
1397Function: "tgamma":
1398float128: 4
1399ldouble: 1
1400
1401Function: "tgamma_downward":
1402double: 1
1403float: 1
1404float128: 5
1405ldouble: 1
1406
1407Function: "tgamma_towardzero":
1408double: 1
1409float: 1
1410float128: 5
1411ldouble: 1
1412
1413Function: "tgamma_upward":
1414double: 1
1415float: 1
1416float128: 4
1417ldouble: 1
1418
1419Function: "y0":
1420double: 2
1421float: 8
1422float128: 3
1423ldouble: 1
1424
1425Function: "y0_downward":
1426double: 4
1427float: 8
1428float128: 7
1429ldouble: 4
1430
1431Function: "y0_towardzero":
1432double: 3
1433float: 8
1434float128: 3
1435ldouble: 7
1436
1437Function: "y0_upward":
1438double: 4
1439float: 8
1440float128: 4
1441ldouble: 7
1442
1443Function: "y1":
1444double: 3
1445float: 9
1446float128: 5
1447ldouble: 5
1448
1449Function: "y1_downward":
1450double: 9
1451float: 8
1452float128: 5
1453ldouble: 3
1454
1455Function: "y1_towardzero":
1456double: 3
1457float: 9
1458float128: 2
1459ldouble: 3
1460
1461Function: "y1_upward":
1462double: 6
1463float: 9
1464float128: 5
1465ldouble: 7
1466
1467Function: "yn":
1468double: 3
1469float: 3
1470float128: 5
1471ldouble: 3
1472
1473Function: "yn_downward":
1474double: 4
1475float: 4
1476float128: 5
1477ldouble: 4
1478
1479Function: "yn_towardzero":
1480double: 3
1481float: 3
1482float128: 5
1483ldouble: 5
1484
1485Function: "yn_upward":
1486double: 4
1487float: 5
1488float128: 5
1489ldouble: 3
1490
1491# end of automatic generation
1492