1.file "sinh.s"
2
3
4// Copyright (c) 2000 - 2005, Intel Corporation
5// All rights reserved.
6//
7//
8// Redistribution and use in source and binary forms, with or without
9// modification, are permitted provided that the following conditions are
10// met:
11//
12// * Redistributions of source code must retain the above copyright
13// notice, this list of conditions and the following disclaimer.
14//
15// * Redistributions in binary form must reproduce the above copyright
16// notice, this list of conditions and the following disclaimer in the
17// documentation and/or other materials provided with the distribution.
18//
19// * The name of Intel Corporation may not be used to endorse or promote
20// products derived from this software without specific prior written
21// permission.
22
23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34//
35// Intel Corporation is the author of this code, and requests that all
36// problem reports or change requests be submitted to it directly at
37// http://www.intel.com/software/products/opensource/libraries/num.htm.
38//
39// History
40//==============================================================
41// 02/02/00 Initial version
42// 04/04/00 Unwind support added
43// 08/15/00 Bundle added after call to __libm_error_support to properly
44//          set [the previously overwritten] GR_Parameter_RESULT.
45// 10/12/00 Update to set denormal operand and underflow flags
46// 01/22/01 Fixed to set inexact flag for small args.
47// 05/02/01 Reworked to improve speed of all paths
48// 05/20/02 Cleaned up namespace and sf0 syntax
49// 11/20/02 Improved speed with new algorithm
50// 03/31/05 Reformatted delimiters between data tables
51
52// API
53//==============================================================
54// double sinh(double)
55
56// Overview of operation
57//==============================================================
58// Case 1:  0 < |x| < 2^-60
59//  Result = x, computed by x+sgn(x)*x^2) to handle flags and rounding
60//
61// Case 2:  2^-60 < |x| < 0.25
62//  Evaluate sinh(x) by a 13th order polynomial
63//  Care is take for the order of multiplication; and A1 is not exactly 1/3!,
64//  A2 is not exactly 1/5!, etc.
65//  sinh(x) = x + (A1*x^3 + A2*x^5 + A3*x^7 + A4*x^9 + A5*x^11 + A6*x^13)
66//
67// Case 3:  0.25 < |x| < 710.47586
68//  Algorithm is based on the identity sinh(x) = ( exp(x) - exp(-x) ) / 2.
69//  The algorithm for exp is described as below.  There are a number of
70//  economies from evaluating both exp(x) and exp(-x).  Although we
71//  are evaluating both quantities, only where the quantities diverge do we
72//  duplicate the computations.  The basic algorithm for exp(x) is described
73//  below.
74//
75// Take the input x. w is "how many log2/128 in x?"
76//  w = x * 128/log2
77//  n = int(w)
78//  x = n log2/128 + r + delta
79
80//  n = 128M + index_1 + 2^4 index_2
81//  x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
82
83//  exp(x) = 2^M  2^(index_1/128)  2^(index_2/8) exp(r) exp(delta)
84//       Construct 2^M
85//       Get 2^(index_1/128) from table_1;
86//       Get 2^(index_2/8)   from table_2;
87//       Calculate exp(r) by 5th order polynomial
88//          r = x - n (log2/128)_high
89//          delta = - n (log2/128)_low
90//       Calculate exp(delta) as 1 + delta
91
92
93// Special values
94//==============================================================
95// sinh(+0)    = +0
96// sinh(-0)    = -0
97
98// sinh(+qnan) = +qnan
99// sinh(-qnan) = -qnan
100// sinh(+snan) = +qnan
101// sinh(-snan) = -qnan
102
103// sinh(-inf)  = -inf
104// sinh(+inf)  = +inf
105
106// Overflow and Underflow
107//=======================
108// sinh(x) = largest double normal when
109//     |x| = 710.47586 = 0x408633ce8fb9f87d
110//
111// Underflow is handled as described in case 1 above
112
113// Registers used
114//==============================================================
115// Floating Point registers used:
116// f8, input, output
117// f6 -> f15,  f32 -> f61
118
119// General registers used:
120// r14 -> r40
121
122// Predicate registers used:
123// p6 -> p15
124
125// Assembly macros
126//==============================================================
127
128rRshf                 = r14
129rN_neg                = r14
130rAD_TB1               = r15
131rAD_TB2               = r16
132rAD_P                 = r17
133rN                    = r18
134rIndex_1              = r19
135rIndex_2_16           = r20
136rM                    = r21
137rBiased_M             = r21
138rSig_inv_ln2          = r22
139rIndex_1_neg          = r22
140rExp_bias             = r23
141rExp_bias_minus_1     = r23
142rExp_mask             = r24
143rTmp                  = r24
144rGt_ln                = r24
145rIndex_2_16_neg       = r24
146rM_neg                = r25
147rBiased_M_neg         = r25
148rRshf_2to56           = r26
149rAD_T1_neg            = r26
150rExp_2tom56           = r28
151rAD_T2_neg            = r28
152rAD_T1                = r29
153rAD_T2                = r30
154rSignexp_x            = r31
155rExp_x                = r31
156
157GR_SAVE_B0            = r33
158GR_SAVE_PFS           = r34
159GR_SAVE_GP            = r35
160
161GR_Parameter_X        = r37
162GR_Parameter_Y        = r38
163GR_Parameter_RESULT   = r39
164GR_Parameter_TAG      = r40
165
166
167FR_X                  = f10
168FR_Y                  = f1
169FR_RESULT             = f8
170
171fRSHF_2TO56           = f6
172fINV_LN2_2TO63        = f7
173fW_2TO56_RSH          = f9
174f2TOM56               = f11
175fP5                   = f12
176fP4                   = f13
177fP3                   = f14
178fP2                   = f15
179
180fLn2_by_128_hi        = f33
181fLn2_by_128_lo        = f34
182
183fRSHF                 = f35
184fNfloat               = f36
185fNormX                = f37
186fR                    = f38
187fF                    = f39
188
189fRsq                  = f40
190f2M                   = f41
191fS1                   = f42
192fT1                   = f42
193fS2                   = f43
194fT2                   = f43
195fS                    = f43
196fWre_urm_f8           = f44
197fAbsX                 = f44
198
199fMIN_DBL_OFLOW_ARG    = f45
200fMAX_DBL_NORM_ARG     = f46
201fXsq                  = f47
202fX4                   = f48
203fGt_pln               = f49
204fTmp                  = f49
205
206fP54                  = f50
207fP5432                = f50
208fP32                  = f51
209fP                    = f52
210fP54_neg              = f53
211fP5432_neg            = f53
212fP32_neg              = f54
213fP_neg                = f55
214fF_neg                = f56
215
216f2M_neg               = f57
217fS1_neg               = f58
218fT1_neg               = f58
219fS2_neg               = f59
220fT2_neg               = f59
221fS_neg                = f59
222fExp                  = f60
223fExp_neg              = f61
224
225fA6                   = f50
226fA65                  = f50
227fA6543                = f50
228fA654321              = f50
229fA5                   = f51
230fA4                   = f52
231fA43                  = f52
232fA3                   = f53
233fA2                   = f54
234fA21                  = f54
235fA1                   = f55
236fX3                   = f56
237
238// Data tables
239//==============================================================
240
241RODATA
242.align 16
243
244// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
245
246// double-extended 1/ln(2)
247// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
248// 3fff b8aa 3b29 5c17 f0bc
249// For speed the significand will be loaded directly with a movl and setf.sig
250//   and the exponent will be bias+63 instead of bias+0.  Thus subsequent
251//   computations need to scale appropriately.
252// The constant 128/ln(2) is needed for the computation of w.  This is also
253//   obtained by scaling the computations.
254//
255// Two shifting constants are loaded directly with movl and setf.d.
256//   1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
257//        This constant is added to x*1/ln2 to shift the integer part of
258//        x*128/ln2 into the rightmost bits of the significand.
259//        The result of this fma is fW_2TO56_RSH.
260//   2. fRSHF       = 1.1000..00 * 2^(63)
261//        This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
262//        the integer part of w, n, as a floating-point number.
263//        The result of this fms is fNfloat.
264
265
266LOCAL_OBJECT_START(exp_table_1)
267data8 0x408633ce8fb9f87e // smallest dbl overflow arg
268data8 0x408633ce8fb9f87d // largest dbl arg to give normal dbl result
269data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
270data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
271//
272// Table 1 is 2^(index_1/128) where
273// index_1 goes from 0 to 15
274//
275data8 0x8000000000000000 , 0x00003FFF
276data8 0x80B1ED4FD999AB6C , 0x00003FFF
277data8 0x8164D1F3BC030773 , 0x00003FFF
278data8 0x8218AF4373FC25EC , 0x00003FFF
279data8 0x82CD8698AC2BA1D7 , 0x00003FFF
280data8 0x8383594EEFB6EE37 , 0x00003FFF
281data8 0x843A28C3ACDE4046 , 0x00003FFF
282data8 0x84F1F656379C1A29 , 0x00003FFF
283data8 0x85AAC367CC487B15 , 0x00003FFF
284data8 0x8664915B923FBA04 , 0x00003FFF
285data8 0x871F61969E8D1010 , 0x00003FFF
286data8 0x87DB357FF698D792 , 0x00003FFF
287data8 0x88980E8092DA8527 , 0x00003FFF
288data8 0x8955EE03618E5FDD , 0x00003FFF
289data8 0x8A14D575496EFD9A , 0x00003FFF
290data8 0x8AD4C6452C728924 , 0x00003FFF
291LOCAL_OBJECT_END(exp_table_1)
292
293// Table 2 is 2^(index_1/8) where
294// index_2 goes from 0 to 7
295LOCAL_OBJECT_START(exp_table_2)
296data8 0x8000000000000000 , 0x00003FFF
297data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
298data8 0x9837F0518DB8A96F , 0x00003FFF
299data8 0xA5FED6A9B15138EA , 0x00003FFF
300data8 0xB504F333F9DE6484 , 0x00003FFF
301data8 0xC5672A115506DADD , 0x00003FFF
302data8 0xD744FCCAD69D6AF4 , 0x00003FFF
303data8 0xEAC0C6E7DD24392F , 0x00003FFF
304LOCAL_OBJECT_END(exp_table_2)
305
306
307LOCAL_OBJECT_START(exp_p_table)
308data8 0x3f8111116da21757 //P5
309data8 0x3fa55555d787761c //P4
310data8 0x3fc5555555555414 //P3
311data8 0x3fdffffffffffd6a //P2
312LOCAL_OBJECT_END(exp_p_table)
313
314LOCAL_OBJECT_START(sinh_p_table)
315data8 0xB08AF9AE78C1239F, 0x00003FDE  // A6
316data8 0xB8EF1D28926D8891, 0x00003FEC  // A4
317data8 0x8888888888888412, 0x00003FF8  // A2
318data8 0xD732377688025BE9, 0x00003FE5  // A5
319data8 0xD00D00D00D4D39F2, 0x00003FF2  // A3
320data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC  // A1
321LOCAL_OBJECT_END(sinh_p_table)
322
323
324.section .text
325GLOBAL_IEEE754_ENTRY(sinh)
326
327{ .mlx
328      getf.exp        rSignexp_x = f8  // Must recompute if x unorm
329      movl            rSig_inv_ln2 = 0xb8aa3b295c17f0bc  // significand of 1/ln2
330}
331{ .mlx
332      addl            rAD_TB1    = @ltoff(exp_table_1), gp
333      movl            rRshf_2to56 = 0x4768000000000000   // 1.10000 2^(63+56)
334}
335;;
336
337{ .mfi
338      ld8             rAD_TB1    = [rAD_TB1]
339      fclass.m        p6,p0 = f8,0x0b  // Test for x=unorm
340      mov             rExp_mask = 0x1ffff
341}
342{ .mfi
343      mov             rExp_bias = 0xffff
344      fnorm.s1        fNormX   = f8
345      mov             rExp_2tom56 = 0xffff-56
346}
347;;
348
349// Form two constants we need
350//  1/ln2 * 2^63  to compute  w = x * 1/ln2 * 128
351//  1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
352
353{ .mfi
354      setf.sig        fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
355      fclass.m        p8,p0 = f8,0x07  // Test for x=0
356      nop.i 999
357}
358{ .mlx
359      setf.d          fRSHF_2TO56 = rRshf_2to56 // Form const 1.100 * 2^(63+56)
360      movl            rRshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
361}
362;;
363
364{ .mfi
365      ldfpd           fMIN_DBL_OFLOW_ARG, fMAX_DBL_NORM_ARG = [rAD_TB1],16
366      fclass.m        p10,p0 = f8,0x1e3  // Test for x=inf, nan, NaT
367      nop.i           0
368}
369{ .mfb
370      setf.exp        f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
371      nop.f           0
372(p6)  br.cond.spnt    SINH_UNORM            // Branch if x=unorm
373}
374;;
375
376SINH_COMMON:
377{ .mfi
378      ldfe            fLn2_by_128_hi  = [rAD_TB1],16
379      nop.f           0
380      nop.i           0
381}
382{ .mfb
383      setf.d          fRSHF = rRshf // Form right shift const 1.100 * 2^63
384      nop.f           0
385(p8)  br.ret.spnt     b0                    // Exit for x=0, result=x
386}
387;;
388
389{ .mfi
390      ldfe            fLn2_by_128_lo  = [rAD_TB1],16
391      nop.f           0
392      nop.i           0
393}
394{ .mfb
395      and             rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
396(p10) fma.d.s0        f8 = f8,f1,f0  // Result if x=inf, nan, NaT
397(p10) br.ret.spnt     b0               // quick exit for x=inf, nan, NaT
398}
399;;
400
401// After that last load rAD_TB1 points to the beginning of table 1
402{ .mfi
403      nop.m           0
404      fcmp.eq.s0      p6,p0 = f8, f0       // Dummy to set D
405      sub             rExp_x = rExp_x, rExp_bias // True exponent of x
406}
407;;
408
409{ .mfi
410      nop.m           0
411      fmerge.s        fAbsX = f0, fNormX   // Form |x|
412      nop.i           0
413}
414{ .mfb
415      cmp.gt          p7, p0 = -2, rExp_x      // Test |x| < 2^(-2)
416      fma.s1          fXsq = fNormX, fNormX, f0  // x*x for small path
417(p7)  br.cond.spnt    SINH_SMALL               // Branch if 0 < |x| < 2^-2
418}
419;;
420
421// W = X * Inv_log2_by_128
422// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
423// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
424
425{ .mfi
426      add             rAD_P = 0x180, rAD_TB1
427      fma.s1          fW_2TO56_RSH  = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
428      add             rAD_TB2 = 0x100, rAD_TB1
429}
430;;
431
432// Divide arguments into the following categories:
433//  Certain Safe                - 0.25 <= |x| <= MAX_DBL_NORM_ARG
434//  Possible Overflow       p14 - MAX_DBL_NORM_ARG < |x| < MIN_DBL_OFLOW_ARG
435//  Certain Overflow        p15 - MIN_DBL_OFLOW_ARG <= |x| < +inf
436//
437// If the input is really a double arg, then there will never be
438// "Possible Overflow" arguments.
439//
440
441{ .mfi
442      ldfpd           fP5, fP4  = [rAD_P] ,16
443      fcmp.ge.s1      p15,p14 = fAbsX,fMIN_DBL_OFLOW_ARG
444      nop.i           0
445}
446;;
447
448// Nfloat = round_int(W)
449// The signficand of fW_2TO56_RSH contains the rounded integer part of W,
450// as a twos complement number in the lower bits (that is, it may be negative).
451// That twos complement number (called N) is put into rN.
452
453// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
454// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
455// Thus, fNfloat contains the floating point version of N
456
457{ .mfi
458      ldfpd           fP3, fP2  = [rAD_P]
459(p14) fcmp.gt.unc.s1  p14,p0 = fAbsX,fMAX_DBL_NORM_ARG
460      nop.i           0
461}
462{ .mfb
463      nop.m           0
464      fms.s1          fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
465(p15) br.cond.spnt    SINH_CERTAIN_OVERFLOW
466}
467;;
468
469{ .mfi
470      getf.sig        rN        = fW_2TO56_RSH
471      nop.f           0
472      mov             rExp_bias_minus_1 = 0xfffe
473}
474;;
475
476// rIndex_1 has index_1
477// rIndex_2_16 has index_2 * 16
478// rBiased_M has M
479
480// rM has true M
481// r = x - Nfloat * ln2_by_128_hi
482// f = 1 - Nfloat * ln2_by_128_lo
483{ .mfi
484      and             rIndex_1 = 0x0f, rN
485      fnma.s1         fR   = fNfloat, fLn2_by_128_hi, fNormX
486      shr             rM = rN,  0x7
487}
488{ .mfi
489      and             rIndex_2_16 = 0x70, rN
490      fnma.s1         fF   = fNfloat, fLn2_by_128_lo, f1
491      sub             rN_neg = r0, rN
492}
493;;
494
495{ .mmi
496      and             rIndex_1_neg = 0x0f, rN_neg
497      add             rBiased_M = rExp_bias_minus_1, rM
498      shr             rM_neg = rN_neg,  0x7
499}
500{ .mmi
501      and             rIndex_2_16_neg = 0x70, rN_neg
502      add             rAD_T2 = rAD_TB2, rIndex_2_16
503      shladd          rAD_T1 = rIndex_1, 4, rAD_TB1
504}
505;;
506
507// rAD_T1 has address of T1
508// rAD_T2 has address if T2
509
510{ .mmi
511      setf.exp        f2M = rBiased_M
512      ldfe            fT2  = [rAD_T2]
513      nop.i           0
514}
515{ .mmi
516      add             rBiased_M_neg = rExp_bias_minus_1, rM_neg
517      add             rAD_T2_neg = rAD_TB2, rIndex_2_16_neg
518      shladd          rAD_T1_neg = rIndex_1_neg, 4, rAD_TB1
519}
520;;
521
522// Create Scale = 2^M
523// Load T1 and T2
524{ .mmi
525      ldfe            fT1  = [rAD_T1]
526      nop.m           0
527      nop.i           0
528}
529{ .mmf
530      setf.exp        f2M_neg = rBiased_M_neg
531      ldfe            fT2_neg  = [rAD_T2_neg]
532      fma.s1          fF_neg   = fNfloat, fLn2_by_128_lo, f1
533}
534;;
535
536{ .mfi
537      nop.m           0
538      fma.s1          fRsq = fR, fR, f0
539      nop.i           0
540}
541{ .mfi
542      ldfe            fT1_neg  = [rAD_T1_neg]
543      fma.s1          fP54 = fR, fP5, fP4
544      nop.i           0
545}
546;;
547
548{ .mfi
549      nop.m           0
550      fma.s1          fP32 = fR, fP3, fP2
551      nop.i           0
552}
553{ .mfi
554      nop.m           0
555      fnma.s1         fP54_neg = fR, fP5, fP4
556      nop.i           0
557}
558;;
559
560{ .mfi
561      nop.m           0
562      fnma.s1         fP32_neg = fR, fP3, fP2
563      nop.i           0
564}
565;;
566
567{ .mfi
568      nop.m           0
569      fma.s1          fP5432  = fRsq, fP54, fP32
570      nop.i           0
571}
572{ .mfi
573      nop.m           0
574      fma.s1          fS2  = fF,fT2,f0
575      nop.i           0
576}
577;;
578
579{ .mfi
580      nop.m           0
581      fma.s1          fS1  = f2M,fT1,f0
582      nop.i           0
583}
584{ .mfi
585      nop.m           0
586      fma.s1          fP5432_neg  = fRsq, fP54_neg, fP32_neg
587      nop.i           0
588}
589;;
590
591{ .mfi
592      nop.m           0
593      fma.s1          fS1_neg  = f2M_neg,fT1_neg,f0
594      nop.i           0
595}
596{ .mfi
597      nop.m           0
598      fma.s1          fS2_neg  = fF_neg,fT2_neg,f0
599      nop.i           0
600}
601;;
602
603{ .mfi
604      nop.m           0
605      fma.s1          fP     = fRsq, fP5432, fR
606      nop.i           0
607}
608{ .mfi
609      nop.m           0
610      fma.s1          fS   = fS1,fS2,f0
611      nop.i           0
612}
613;;
614
615{ .mfi
616      nop.m           0
617      fms.s1          fP_neg     = fRsq, fP5432_neg, fR
618      nop.i           0
619}
620{ .mfi
621      nop.m           0
622      fma.s1          fS_neg   = fS1_neg,fS2_neg,f0
623      nop.i           0
624}
625;;
626
627{ .mfb
628      nop.m           0
629      fmpy.s0         fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
630(p14) br.cond.spnt    SINH_POSSIBLE_OVERFLOW
631}
632;;
633
634{ .mfi
635      nop.m           0
636      fma.s1          fExp = fS, fP, fS
637      nop.i           0
638}
639{ .mfi
640      nop.m           0
641      fma.s1          fExp_neg = fS_neg, fP_neg, fS_neg
642      nop.i           0
643}
644;;
645
646{ .mfb
647      nop.m           0
648      fms.d.s0        f8 = fExp, f1, fExp_neg
649      br.ret.sptk     b0                  // Normal path exit
650}
651;;
652
653// Here if 0 < |x| < 0.25
654SINH_SMALL:
655{ .mfi
656      add             rAD_T1 = 0x1a0, rAD_TB1
657      fcmp.lt.s1      p7, p8 = fNormX, f0       // Test sign of x
658      cmp.gt          p6, p0 = -60, rExp_x      // Test |x| < 2^(-60)
659}
660{ .mfi
661      add             rAD_T2 = 0x1d0, rAD_TB1
662      nop.f           0
663      nop.i           0
664}
665;;
666
667{ .mmb
668      ldfe            fA6 = [rAD_T1],16
669      ldfe            fA5 = [rAD_T2],16
670(p6)  br.cond.spnt    SINH_VERY_SMALL           // Branch if |x| < 2^(-60)
671}
672;;
673
674{ .mmi
675      ldfe            fA4 = [rAD_T1],16
676      ldfe            fA3 = [rAD_T2],16
677      nop.i           0
678}
679;;
680
681{ .mmi
682      ldfe            fA2 = [rAD_T1]
683      ldfe            fA1 = [rAD_T2]
684      nop.i           0
685}
686;;
687
688{ .mfi
689      nop.m           0
690      fma.s1          fX3 = fNormX, fXsq, f0
691      nop.i           0
692}
693{ .mfi
694      nop.m           0
695      fma.s1          fX4 = fXsq, fXsq, f0
696      nop.i           0
697}
698;;
699
700{ .mfi
701      nop.m           0
702      fma.s1          fA65 = fXsq, fA6, fA5
703      nop.i           0
704}
705{ .mfi
706      nop.m           0
707      fma.s1          fA43 = fXsq, fA4, fA3
708      nop.i           0
709}
710;;
711
712{ .mfi
713      nop.m           0
714      fma.s1          fA21 = fXsq, fA2, fA1
715      nop.i           0
716}
717;;
718
719{ .mfi
720      nop.m           0
721      fma.s1          fA6543 = fX4, fA65, fA43
722      nop.i           0
723}
724;;
725
726{ .mfi
727      nop.m           0
728      fma.s1          fA654321 = fX4, fA6543, fA21
729      nop.i           0
730}
731;;
732
733// Dummy multiply to generate inexact
734{ .mfi
735      nop.m           0
736      fmpy.s0         fTmp = fA6, fA6
737      nop.i           0
738}
739{ .mfb
740      nop.m           0
741      fma.d.s0        f8 = fA654321, fX3, fNormX
742      br.ret.sptk     b0                // Exit if 2^-60 < |x| < 0.25
743}
744;;
745
746SINH_VERY_SMALL:
747// Here if 0 < |x| < 2^-60
748// Compute result by x + sgn(x)*x^2 to get properly rounded result
749.pred.rel "mutex",p7,p8
750{ .mfi
751      nop.m           0
752(p7)  fnma.d.s0       f8 = fNormX, fNormX, fNormX // If x<0 result ~ x-x^2
753      nop.i           0
754}
755{ .mfb
756      nop.m           0
757(p8)  fma.d.s0        f8 = fNormX, fNormX, fNormX // If x>0 result ~ x+x^2
758      br.ret.sptk     b0                          // Exit if |x| < 2^-60
759}
760;;
761
762
763SINH_POSSIBLE_OVERFLOW:
764
765// Here if fMAX_DBL_NORM_ARG < |x| < fMIN_DBL_OFLOW_ARG
766// This cannot happen if input is a double, only if input higher precision.
767// Overflow is a possibility, not a certainty.
768
769// Recompute result using status field 2 with user's rounding mode,
770// and wre set.  If result is larger than largest double, then we have
771// overflow
772
773{ .mfi
774      mov             rGt_ln  = 0x103ff // Exponent for largest dbl + 1 ulp
775      fsetc.s2        0x7F,0x42         // Get user's round mode, set wre
776      nop.i           0
777}
778;;
779
780{ .mfi
781      setf.exp        fGt_pln = rGt_ln  // Create largest double + 1 ulp
782      fma.d.s2        fWre_urm_f8 = fS, fP, fS    // Result with wre set
783      nop.i           0
784}
785;;
786
787{ .mfi
788      nop.m           0
789      fsetc.s2        0x7F,0x40                   // Turn off wre in sf2
790      nop.i           0
791}
792;;
793
794{ .mfi
795      nop.m           0
796      fcmp.ge.s1      p6, p0 =  fWre_urm_f8, fGt_pln // Test for overflow
797      nop.i           0
798}
799;;
800
801{ .mfb
802      nop.m           0
803      nop.f           0
804(p6)  br.cond.spnt    SINH_CERTAIN_OVERFLOW // Branch if overflow
805}
806;;
807
808{ .mfb
809      nop.m           0
810      fma.d.s0        f8 = fS, fP, fS
811      br.ret.sptk     b0                     // Exit if really no overflow
812}
813;;
814
815SINH_CERTAIN_OVERFLOW:
816{ .mfi
817      sub             rTmp = rExp_mask, r0, 1
818      fcmp.lt.s1      p6, p7 = fNormX, f0    // Test for x < 0
819      nop.i           0
820}
821;;
822
823{ .mmf
824      alloc           r32=ar.pfs,1,4,4,0
825      setf.exp        fTmp = rTmp
826      fmerge.s        FR_X = f8,f8
827}
828;;
829
830{ .mfi
831      mov             GR_Parameter_TAG = 127
832(p6)  fnma.d.s0       FR_RESULT = fTmp, fTmp, f0    // Set I,O and -INF result
833      nop.i           0
834}
835{ .mfb
836      nop.m           0
837(p7)  fma.d.s0        FR_RESULT = fTmp, fTmp, f0    // Set I,O and +INF result
838      br.cond.sptk    __libm_error_region
839}
840;;
841
842// Here if x unorm
843SINH_UNORM:
844{ .mfb
845      getf.exp        rSignexp_x = fNormX    // Must recompute if x unorm
846      fcmp.eq.s0      p6, p0 = f8, f0        // Set D flag
847      br.cond.sptk    SINH_COMMON
848}
849;;
850
851GLOBAL_IEEE754_END(sinh)
852libm_alias_double_other (__sinh, sinh)
853
854
855LOCAL_LIBM_ENTRY(__libm_error_region)
856.prologue
857{ .mfi
858        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
859        nop.f 0
860.save   ar.pfs,GR_SAVE_PFS
861        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
862}
863{ .mfi
864.fframe 64
865        add sp=-64,sp                           // Create new stack
866        nop.f 0
867        mov GR_SAVE_GP=gp                       // Save gp
868};;
869{ .mmi
870        stfd [GR_Parameter_Y] = FR_Y,16         // STORE Parameter 2 on stack
871        add GR_Parameter_X = 16,sp              // Parameter 1 address
872.save   b0, GR_SAVE_B0
873        mov GR_SAVE_B0=b0                       // Save b0
874};;
875.body
876{ .mib
877        stfd [GR_Parameter_X] = FR_X            // STORE Parameter 1 on stack
878        add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address
879        nop.b 0
880}
881{ .mib
882        stfd [GR_Parameter_Y] = FR_RESULT       // STORE Parameter 3 on stack
883        add   GR_Parameter_Y = -16,GR_Parameter_Y
884        br.call.sptk b0=__libm_error_support#   // Call error handling function
885};;
886{ .mmi
887        add   GR_Parameter_RESULT = 48,sp
888        nop.m 0
889        nop.i 0
890};;
891{ .mmi
892        ldfd  f8 = [GR_Parameter_RESULT]       // Get return result off stack
893.restore sp
894        add   sp = 64,sp                       // Restore stack pointer
895        mov   b0 = GR_SAVE_B0                  // Restore return address
896};;
897{ .mib
898        mov   gp = GR_SAVE_GP                  // Restore gp
899        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
900        br.ret.sptk     b0                     // Return
901};;
902
903LOCAL_LIBM_END(__libm_error_region)
904.type   __libm_error_support#,@function
905.global __libm_error_support#
906