1.file "exp10.s" 2 3 4// Copyright (c) 2000 - 2005, Intel Corporation 5// All rights reserved. 6// 7// 8// Redistribution and use in source and binary forms, with or without 9// modification, are permitted provided that the following conditions are 10// met: 11// 12// * Redistributions of source code must retain the above copyright 13// notice, this list of conditions and the following disclaimer. 14// 15// * Redistributions in binary form must reproduce the above copyright 16// notice, this list of conditions and the following disclaimer in the 17// documentation and/or other materials provided with the distribution. 18// 19// * The name of Intel Corporation may not be used to endorse or promote 20// products derived from this software without specific prior written 21// permission. 22 23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS 27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 28// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 31// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING 32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34// 35// Intel Corporation is the author of this code, and requests that all 36// problem reports or change requests be submitted to it directly at 37// http://www.intel.com/software/products/opensource/libraries/num.htm. 38// 39// History 40//============================================================== 41// 08/25/00 Initial version 42// 05/20/02 Cleaned up namespace and sf0 syntax 43// 09/06/02 Improved performance; no inexact flags on exact cases 44// 01/29/03 Added missing } to bundle templates 45// 12/16/04 Call error handling on underflow. 46// 03/31/05 Reformatted delimiters between data tables 47// 48// API 49//============================================================== 50// double exp10(double) 51// 52// Overview of operation 53//============================================================== 54// Background 55// 56// Implementation 57// 58// Let x= (K + fh + fl + r)/log2(10), where 59// K is an integer, fh= 0.b1 b2 b3 b4 b5, 60// fl= 2^{-5}* 0.b6 b7 b8 b8 b10 (fh, fl >= 0), 61// and |r|<2^{-11} 62// Th is a table that stores 2^fh (32 entries) rounded to 63// double extended precision (only mantissa is stored) 64// Tl is a table that stores 2^fl (32 entries) rounded to 65// double extended precision (only mantissa is stored) 66// 67// 10^x is approximated as 68// 2^K * Th [ f ] * Tl [ f ] * (1+c1*e+c1*r+c2*r^2+c3*r^3+c4*r^4), 69// where e= (x*log2(10)_hi-RN(x*log2(10)_hi))+log2(10)_lo*x 70 71// Note there are only 22 non-zero values that produce an exact result: 72// 1.0, 2.0, ... 22.0. 73// We test for these cases and use s1 to avoid setting the inexact flag. 74 75// Special values 76//============================================================== 77// exp10(0)= 1 78// exp10(+inf)= inf 79// exp10(-inf)= 0 80// 81 82// Registers used 83//============================================================== 84// r2-r3, r14-r40 85// f6-f15, f32-f52 86// p6-p12 87// 88 89#include <shlib-compat.h> 90 91 92GR_TBL_START = r2 93GR_LOG_TBL = r3 94 95GR_OF_LIMIT = r14 96GR_UF_LIMIT = r15 97GR_EXP_CORR = r16 98GR_F_low = r17 99GR_F_high = r18 100GR_K = r19 101GR_Flow_ADDR = r20 102 103GR_BIAS = r21 104GR_Fh = r22 105GR_Fh_ADDR = r23 106GR_EXPMAX = r24 107GR_BIAS53 = r25 108 109GR_ROUNDVAL = r26 110GR_SNORM_LIMIT = r26 111GR_MASK = r27 112GR_KF0 = r28 113GR_MASK_low = r29 114GR_COEFF_START = r30 115GR_exact_limit = r31 116 117GR_SAVE_B0 = r33 118GR_SAVE_PFS = r34 119GR_SAVE_GP = r35 120GR_SAVE_SP = r36 121 122GR_Parameter_X = r37 123GR_Parameter_Y = r38 124GR_Parameter_RESULT = r39 125GR_Parameter_TAG = r40 126 127 128FR_X = f10 129FR_Y = f1 130FR_RESULT = f8 131 132 133FR_COEFF1 = f6 134FR_COEFF2 = f7 135FR_R = f9 136FR_LOG2_10 = f10 137 138FR_2P53 = f11 139FR_KF0 = f12 140FR_COEFF3 = f13 141FR_COEFF4 = f14 142FR_UF_LIMIT = f15 143 144FR_OF_LIMIT = f32 145FR_DX_L210 = f33 146FR_ROUNDVAL = f34 147FR_KF = f35 148 149FR_2_TO_K = f36 150FR_T_low = f37 151FR_T_high = f38 152FR_P34 = f39 153FR_R2 = f40 154 155FR_P12 = f41 156FR_T_low_K = f42 157FR_P14 = f43 158FR_T = f44 159FR_P = f45 160 161FR_L2_10_low = f46 162FR_L2_10_high = f47 163FR_E0 = f48 164FR_E = f49 165FR_exact_limit = f50 166 167FR_int_x = f51 168FR_SNORM_LIMIT = f52 169 170 171// Data tables 172//============================================================== 173 174RODATA 175 176.align 16 177 178LOCAL_OBJECT_START(poly_coeffs) 179 180data8 0xd49a784bcd1b8afe, 0x00003fcb // log2(10)*2^(10-63) 181data8 0x9257edfe9b5fb698, 0x3fbf // log2(10)_low (bits 64...127) 182data8 0x3fac6b08d704a0c0, 0x3f83b2ab6fba4e77 // C_3 and C_4 183data8 0xb17217f7d1cf79ab, 0x00003ffe // C_1 184data8 0xf5fdeffc162c7541, 0x00003ffc // C_2 185LOCAL_OBJECT_END(poly_coeffs) 186 187 188LOCAL_OBJECT_START(T_table) 189 190// 2^{0.00000 b6 b7 b8 b9 b10} 191data8 0x8000000000000000, 0x8016302f17467628 192data8 0x802c6436d0e04f50, 0x80429c17d77c18ed 193data8 0x8058d7d2d5e5f6b0, 0x806f17687707a7af 194data8 0x80855ad965e88b83, 0x809ba2264dada76a 195data8 0x80b1ed4fd999ab6c, 0x80c83c56b50cf77f 196data8 0x80de8f3b8b85a0af, 0x80f4e5ff089f763e 197data8 0x810b40a1d81406d4, 0x81219f24a5baa59d 198data8 0x813801881d886f7b, 0x814e67cceb90502c 199data8 0x8164d1f3bc030773, 0x817b3ffd3b2f2e47 200data8 0x8191b1ea15813bfd, 0x81a827baf7838b78 201data8 0x81bea1708dde6055, 0x81d51f0b8557ec1c 202data8 0x81eba08c8ad4536f, 0x820225f44b55b33b 203data8 0x8218af4373fc25eb, 0x822f3c7ab205c89a 204data8 0x8245cd9ab2cec048, 0x825c62a423d13f0c 205data8 0x8272fb97b2a5894c, 0x828998760d01faf3 206data8 0x82a0393fe0bb0ca8, 0x82b6ddf5dbc35906 207// 208// 2^{0.b1 b2 b3 b4 b5} 209data8 0x8000000000000000, 0x82cd8698ac2ba1d7 210data8 0x85aac367cc487b14, 0x88980e8092da8527 211data8 0x8b95c1e3ea8bd6e6, 0x8ea4398b45cd53c0 212data8 0x91c3d373ab11c336, 0x94f4efa8fef70961 213data8 0x9837f0518db8a96f, 0x9b8d39b9d54e5538 214data8 0x9ef5326091a111ad, 0xa27043030c496818 215data8 0xa5fed6a9b15138ea, 0xa9a15ab4ea7c0ef8 216data8 0xad583eea42a14ac6, 0xb123f581d2ac258f 217data8 0xb504f333f9de6484, 0xb8fbaf4762fb9ee9 218data8 0xbd08a39f580c36be, 0xc12c4cca66709456 219data8 0xc5672a115506dadd, 0xc9b9bd866e2f27a2 220data8 0xce248c151f8480e3, 0xd2a81d91f12ae45a 221data8 0xd744fccad69d6af4, 0xdbfbb797daf23755 222data8 0xe0ccdeec2a94e111, 0xe5b906e77c8348a8 223data8 0xeac0c6e7dd24392e, 0xefe4b99bdcdaf5cb 224data8 0xf5257d152486cc2c, 0xfa83b2db722a033a 225LOCAL_OBJECT_END(T_table) 226 227 228 229.section .text 230GLOBAL_IEEE754_ENTRY(exp10) 231 232 233{.mfi 234 alloc r32= ar.pfs, 1, 4, 4, 0 235 // will continue only for non-zero normal/denormal numbers 236 fclass.nm.unc p12, p7= f8, 0x1b 237 mov GR_BIAS53= 0xffff+63-10 238} 239{.mlx 240 // GR_TBL_START= pointer to log2(10), C_1...C_4 followed by T_table 241 addl GR_TBL_START= @ltoff(poly_coeffs), gp 242 movl GR_ROUNDVAL= 0x3fc00000 // 1.5 (SP) 243} 244;; 245 246{.mfi 247 ld8 GR_COEFF_START= [ GR_TBL_START ] // Load pointer to coeff table 248 fcmp.lt.s1 p6, p8= f8, f0 // X<0 ? 249 nop.i 0 250} 251;; 252 253{.mlx 254 setf.exp FR_2P53= GR_BIAS53 // 2^{63-10} 255 movl GR_UF_LIMIT= 0xc07439b746e36b52 // (-2^10-51) / log2(10) 256} 257{.mlx 258 setf.s FR_ROUNDVAL= GR_ROUNDVAL 259 movl GR_OF_LIMIT= 0x40734413509f79fe // Overflow threshold 260} 261;; 262 263{.mlx 264 ldfe FR_LOG2_10= [ GR_COEFF_START ], 16 // load log2(10)*2^(10-63) 265 movl GR_SNORM_LIMIT= 0xc0733a7146f72a41 // Smallest normal threshold 266} 267{.mib 268 nop.m 0 269 nop.i 0 270 (p12) br.cond.spnt SPECIAL_exp10 // Branch if nan, inf, zero 271} 272;; 273 274{.mmf 275 ldfe FR_L2_10_low= [ GR_COEFF_START ], 16 // load log2(10)_low 276 setf.d FR_OF_LIMIT= GR_OF_LIMIT // Set overflow limit 277 fma.s0 f8= f8, f1, f0 // normalize x 278} 279;; 280 281{.mfi 282 ldfpd FR_COEFF3, FR_COEFF4= [ GR_COEFF_START ], 16 // load C_3, C_4 283 (p8) fcvt.fx.s1 FR_int_x = f8 // Convert x to integer 284 nop.i 0 285} 286{.mfi 287 setf.d FR_UF_LIMIT= GR_UF_LIMIT // Set underflow limit 288 fma.s1 FR_KF0= f8, FR_LOG2_10, FR_ROUNDVAL // y= (x*log2(10)*2^10 + 289 // 1.5*2^63) * 2^(-63) 290 mov GR_EXP_CORR= 0xffff-126 291} 292;; 293 294{.mfi 295 setf.d FR_SNORM_LIMIT= GR_SNORM_LIMIT // Set smallest normal limit 296 fma.s1 FR_L2_10_high= FR_LOG2_10, FR_2P53, f0 // FR_LOG2_10= log2(10)_hi 297 nop.i 0 298} 299;; 300 301{.mfi 302 ldfe FR_COEFF1= [ GR_COEFF_START ], 16 // load C_1 303 fms.s1 FR_KF= FR_KF0, f1, FR_ROUNDVAL // (K+f)*2^(10-63) 304 mov GR_MASK= 1023 305} 306;; 307 308{.mfi 309 ldfe FR_COEFF2= [ GR_COEFF_START ], 16 // load C_2 310 fma.s1 FR_LOG2_10= f8, FR_L2_10_high, f0 // y0= x*log2(10)_hi 311 mov GR_MASK_low= 31 312} 313;; 314 315{.mlx 316 getf.sig GR_KF0= FR_KF0 // (K+f)*2^10= round_to_int(y) 317 (p8) movl GR_exact_limit= 0x41b00000 // Largest x for exact result, 318 // +22.0 319} 320;; 321 322{.mfi 323 add GR_LOG_TBL= 256, GR_COEFF_START // Pointer to high T_table 324 fcmp.gt.s1 p12, p7= f8, FR_OF_LIMIT // x>overflow threshold ? 325 nop.i 0 326} 327;; 328 329{.mfi 330 (p8) setf.s FR_exact_limit = GR_exact_limit // Largest x for exact result 331 (p8) fcvt.xf FR_int_x = FR_int_x // Integral part of x 332 shr GR_K= GR_KF0, 10 // K 333} 334{.mfi 335 and GR_F_high= GR_MASK, GR_KF0 // f_high*32 336 fnma.s1 FR_R= FR_KF, FR_2P53, FR_LOG2_10 // r= x*log2(10)-2^{63-10}* 337 // [ (K+f)*2^{10-63} ] 338 and GR_F_low= GR_KF0, GR_MASK_low // f_low 339} 340;; 341 342{.mmi 343 shladd GR_Flow_ADDR= GR_F_low, 3, GR_COEFF_START // address of 2^{f_low} 344 add GR_BIAS= GR_K, GR_EXP_CORR // K= bias-2*63 345 shr GR_Fh= GR_F_high, 5 // f_high 346} 347;; 348 349{.mfi 350 setf.exp FR_2_TO_K= GR_BIAS // 2^{K-126} 351 (p7) fcmp.lt.s1 p12, p7= f8, FR_UF_LIMIT // x<underflow threshold ? 352 shladd GR_Fh_ADDR= GR_Fh, 3, GR_LOG_TBL // address of 2^{f_high} 353} 354{.mfi 355 ldf8 FR_T_low= [ GR_Flow_ADDR ] // load T_low= 2^{f_low} 356 fms.s1 FR_DX_L210= f8, FR_L2_10_high, FR_LOG2_10 // x*log2(10)_hi- 357 // RN(x*log2(10)_hi) 358 nop.i 0 359} 360;; 361 362{.mfi 363 ldf8 FR_T_high= [ GR_Fh_ADDR ] // load T_high= 2^{f_high} 364 fma.s1 FR_P34= FR_COEFF4, FR_R, FR_COEFF3 // P34= C_3+C_4*r 365 nop.i 0 366} 367{.mfb 368 nop.m 0 369 fma.s1 FR_R2= FR_R, FR_R, f0 // r*r 370 (p12) br.cond.spnt OUT_RANGE_exp10 371} 372;; 373 374{.mfi 375 nop.m 0 376 // e= (x*log2(10)_hi-RN(x*log2(10)_hi))+log2(10)_lo*x 377 fma.s1 FR_E0= f8, FR_L2_10_low, FR_DX_L210 378 cmp.eq p7,p9= r0,r0 // Assume inexact result 379} 380{.mfi 381 nop.m 0 382 fma.s1 FR_P12= FR_COEFF2, FR_R, FR_COEFF1 // P12= C_1+C_2*r 383 nop.i 0 384} 385;; 386 387{.mfi 388 nop.m 0 389 (p8) fcmp.eq.s1 p9,p7= FR_int_x, f8 // Test x positive integer 390 nop.i 0 391} 392{.mfi 393 nop.m 0 394 fma.s1 FR_T_low_K= FR_T_low, FR_2_TO_K, f0 // T= 2^{K-126}*T_low 395 nop.i 0 396} 397;; 398 399{.mfi 400 nop.m 0 401 fcmp.ge.s1 p11,p0= f8, FR_SNORM_LIMIT // Test x for normal range 402 nop.i 0 403} 404;; 405 406{.mfi 407 nop.m 0 408 fma.s1 FR_E= FR_E0, FR_COEFF1, f0 // E= C_1*e 409 nop.i 0 410} 411{.mfi 412 nop.m 0 413 fma.s1 FR_P14= FR_R2, FR_P34, FR_P12 // P14= P12+r2*P34 414 nop.i 0 415} 416;; 417 418// If x a positive integer, will it produce an exact result? 419// p7 result will be inexact 420// p9 result will be exact 421{.mfi 422 nop.m 0 423 (p9) fcmp.le.s1 p9,p7= f8, FR_exact_limit // Test x gives exact result 424 nop.i 0 425} 426{.mfi 427 nop.m 0 428 fma.s1 FR_T= FR_T_low_K, FR_T_high, f0 // T= T*T_high 429 nop.i 0 430} 431;; 432 433{.mfi 434 nop.m 0 435 fma.s1 FR_P= FR_P14, FR_R, FR_E // P= P14*r+E 436 nop.i 0 437} 438;; 439 440.pred.rel "mutex",p7,p9 441{.mfi 442 nop.m 0 443 (p7) fma.d.s0 f8= FR_P, FR_T, FR_T // result= T+T*P, inexact set 444 nop.i 0 445} 446{.mfb 447 nop.m 0 448 (p9) fma.d.s1 f8= FR_P, FR_T, FR_T // result= T+T*P, exact use s1 449 (p11) br.ret.sptk b0 // return, if result normal 450} 451;; 452 453// Here if result in denormal range (and not zero) 454{.mib 455 nop.m 0 456 mov GR_Parameter_TAG= 265 457 br.cond.sptk __libm_error_region // Branch to error handling 458} 459;; 460 461SPECIAL_exp10: 462{.mfi 463 nop.m 0 464 fclass.m p6, p0= f8, 0x22 // x= -Infinity ? 465 nop.i 0 466} 467;; 468 469{.mfi 470 nop.m 0 471 fclass.m p7, p0= f8, 0x21 // x= +Infinity ? 472 nop.i 0 473} 474;; 475 476{.mfi 477 nop.m 0 478 fclass.m p8, p0= f8, 0x7 // x= +/-Zero ? 479 nop.i 0 480} 481{.mfb 482 nop.m 0 483 (p6) mov f8= f0 // exp10(-Infinity)= 0 484 (p6) br.ret.spnt b0 485} 486;; 487 488{.mfb 489 nop.m 0 490 nop.f 0 491 (p7) br.ret.spnt b0 // exp10(+Infinity)= +Infinity 492} 493;; 494 495{.mfb 496 nop.m 0 497 (p8) mov f8= f1 // exp10(+/-0)= 1 498 (p8) br.ret.spnt b0 499} 500;; 501 502{.mfb 503 nop.m 0 504 fma.d.s0 f8= f8, f1, f0 // Remaining cases: NaNs 505 br.ret.sptk b0 506} 507;; 508 509 510OUT_RANGE_exp10: 511 512// underflow: p6= 1 513// overflow: p8= 1 514 515.pred.rel "mutex",p6,p8 516{.mmi 517 (p8) mov GR_EXPMAX= 0x1fffe 518 (p6) mov GR_EXPMAX= 1 519 nop.i 0 520} 521;; 522 523{.mii 524 setf.exp FR_R= GR_EXPMAX 525 (p8) mov GR_Parameter_TAG= 166 526 (p6) mov GR_Parameter_TAG= 265 527} 528;; 529 530{.mfb 531 nop.m 0 532 fma.d.s0 f8= FR_R, FR_R, f0 // Create overflow/underflow 533 br.cond.sptk __libm_error_region // Branch to error handling 534} 535;; 536 537GLOBAL_IEEE754_END(exp10) 538libm_alias_double_other (__exp10, exp10) 539#if SHLIB_COMPAT (libm, GLIBC_2_1, GLIBC_2_27) 540compat_symbol (libm, exp10, pow10, GLIBC_2_2) 541#endif 542 543 544LOCAL_LIBM_ENTRY(__libm_error_region) 545 546.prologue 547{.mfi 548 add GR_Parameter_Y= -32, sp // Parameter 2 value 549 nop.f 0 550.save ar.pfs, GR_SAVE_PFS 551 mov GR_SAVE_PFS= ar.pfs // Save ar.pfs 552} 553 554{.mfi 555.fframe 64 556 add sp= -64, sp // Create new stack 557 nop.f 0 558 mov GR_SAVE_GP= gp // Save gp 559} 560;; 561 562{.mmi 563 stfd [ GR_Parameter_Y ]= FR_Y, 16 // STORE Parameter 2 on stack 564 add GR_Parameter_X= 16, sp // Parameter 1 address 565.save b0, GR_SAVE_B0 566 mov GR_SAVE_B0= b0 // Save b0 567} 568;; 569 570.body 571{.mib 572 stfd [ GR_Parameter_X ]= FR_X // STORE Parameter 1 on stack 573 add GR_Parameter_RESULT= 0, GR_Parameter_Y // Parameter 3 address 574 nop.b 0 575} 576{.mib 577 stfd [ GR_Parameter_Y ]= FR_RESULT // STORE Parameter 3 on stack 578 add GR_Parameter_Y= -16, GR_Parameter_Y 579 br.call.sptk b0= __libm_error_support# // Call error handling function 580} 581;; 582 583{.mmi 584 add GR_Parameter_RESULT= 48, sp 585 nop.m 0 586 nop.i 0 587} 588;; 589 590{.mmi 591 ldfd f8= [ GR_Parameter_RESULT ] // Get return result off stack 592.restore sp 593 add sp= 64, sp // Restore stack pointer 594 mov b0= GR_SAVE_B0 // Restore return address 595} 596;; 597 598{.mib 599 mov gp= GR_SAVE_GP // Restore gp 600 mov ar.pfs= GR_SAVE_PFS // Restore ar.pfs 601 br.ret.sptk b0 // Return 602} 603;; 604 605 606LOCAL_LIBM_END(__libm_error_region) 607 608.type __libm_error_support#, @function 609.global __libm_error_support# 610