1.file "exp10.s"
2
3
4// Copyright (c) 2000 - 2005, Intel Corporation
5// All rights reserved.
6//
7//
8// Redistribution and use in source and binary forms, with or without
9// modification, are permitted provided that the following conditions are
10// met:
11//
12// * Redistributions of source code must retain the above copyright
13// notice, this list of conditions and the following disclaimer.
14//
15// * Redistributions in binary form must reproduce the above copyright
16// notice, this list of conditions and the following disclaimer in the
17// documentation and/or other materials provided with the distribution.
18//
19// * The name of Intel Corporation may not be used to endorse or promote
20// products derived from this software without specific prior written
21// permission.
22
23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34//
35// Intel Corporation is the author of this code, and requests that all
36// problem reports or change requests be submitted to it directly at
37// http://www.intel.com/software/products/opensource/libraries/num.htm.
38//
39// History
40//==============================================================
41// 08/25/00 Initial version
42// 05/20/02 Cleaned up namespace and sf0 syntax
43// 09/06/02 Improved performance; no inexact flags on exact cases
44// 01/29/03 Added missing } to bundle templates
45// 12/16/04 Call error handling on underflow.
46// 03/31/05 Reformatted delimiters between data tables
47//
48// API
49//==============================================================
50// double exp10(double)
51//
52// Overview of operation
53//==============================================================
54// Background
55//
56// Implementation
57//
58// Let x= (K + fh + fl + r)/log2(10), where
59// K is an integer, fh= 0.b1 b2 b3 b4 b5,
60// fl= 2^{-5}* 0.b6 b7 b8 b8 b10 (fh, fl >= 0),
61// and |r|<2^{-11}
62// Th is a table that stores 2^fh (32 entries) rounded to
63// double extended precision (only mantissa is stored)
64// Tl is a table that stores 2^fl (32 entries) rounded to
65// double extended precision (only mantissa is stored)
66//
67// 10^x is approximated as
68// 2^K * Th [ f ] * Tl [ f ] * (1+c1*e+c1*r+c2*r^2+c3*r^3+c4*r^4),
69// where e= (x*log2(10)_hi-RN(x*log2(10)_hi))+log2(10)_lo*x
70
71// Note there are only 22 non-zero values that produce an exact result:
72//  1.0, 2.0, ... 22.0.
73// We test for these cases and use s1 to avoid setting the inexact flag.
74
75// Special values
76//==============================================================
77// exp10(0)= 1
78// exp10(+inf)= inf
79// exp10(-inf)= 0
80//
81
82// Registers used
83//==============================================================
84// r2-r3, r14-r40
85// f6-f15, f32-f52
86// p6-p12
87//
88
89#include <shlib-compat.h>
90
91
92GR_TBL_START        = r2
93GR_LOG_TBL          = r3
94
95GR_OF_LIMIT         = r14
96GR_UF_LIMIT         = r15
97GR_EXP_CORR         = r16
98GR_F_low            = r17
99GR_F_high           = r18
100GR_K                = r19
101GR_Flow_ADDR        = r20
102
103GR_BIAS             = r21
104GR_Fh               = r22
105GR_Fh_ADDR          = r23
106GR_EXPMAX           = r24
107GR_BIAS53           = r25
108
109GR_ROUNDVAL         = r26
110GR_SNORM_LIMIT      = r26
111GR_MASK             = r27
112GR_KF0              = r28
113GR_MASK_low         = r29
114GR_COEFF_START      = r30
115GR_exact_limit      = r31
116
117GR_SAVE_B0          = r33
118GR_SAVE_PFS         = r34
119GR_SAVE_GP          = r35
120GR_SAVE_SP          = r36
121
122GR_Parameter_X      = r37
123GR_Parameter_Y      = r38
124GR_Parameter_RESULT = r39
125GR_Parameter_TAG    = r40
126
127
128FR_X                = f10
129FR_Y                = f1
130FR_RESULT           = f8
131
132
133FR_COEFF1           = f6
134FR_COEFF2           = f7
135FR_R                = f9
136FR_LOG2_10          = f10
137
138FR_2P53             = f11
139FR_KF0              = f12
140FR_COEFF3           = f13
141FR_COEFF4           = f14
142FR_UF_LIMIT         = f15
143
144FR_OF_LIMIT         = f32
145FR_DX_L210          = f33
146FR_ROUNDVAL         = f34
147FR_KF               = f35
148
149FR_2_TO_K           = f36
150FR_T_low            = f37
151FR_T_high           = f38
152FR_P34              = f39
153FR_R2               = f40
154
155FR_P12              = f41
156FR_T_low_K          = f42
157FR_P14              = f43
158FR_T                = f44
159FR_P                = f45
160
161FR_L2_10_low        = f46
162FR_L2_10_high       = f47
163FR_E0               = f48
164FR_E                = f49
165FR_exact_limit      = f50
166
167FR_int_x            = f51
168FR_SNORM_LIMIT      = f52
169
170
171// Data tables
172//==============================================================
173
174RODATA
175
176.align 16
177
178LOCAL_OBJECT_START(poly_coeffs)
179
180data8 0xd49a784bcd1b8afe, 0x00003fcb // log2(10)*2^(10-63)
181data8 0x9257edfe9b5fb698, 0x3fbf // log2(10)_low (bits 64...127)
182data8 0x3fac6b08d704a0c0, 0x3f83b2ab6fba4e77 // C_3 and C_4
183data8 0xb17217f7d1cf79ab, 0x00003ffe // C_1
184data8 0xf5fdeffc162c7541, 0x00003ffc // C_2
185LOCAL_OBJECT_END(poly_coeffs)
186
187
188LOCAL_OBJECT_START(T_table)
189
190// 2^{0.00000 b6 b7 b8 b9 b10}
191data8 0x8000000000000000, 0x8016302f17467628
192data8 0x802c6436d0e04f50, 0x80429c17d77c18ed
193data8 0x8058d7d2d5e5f6b0, 0x806f17687707a7af
194data8 0x80855ad965e88b83, 0x809ba2264dada76a
195data8 0x80b1ed4fd999ab6c, 0x80c83c56b50cf77f
196data8 0x80de8f3b8b85a0af, 0x80f4e5ff089f763e
197data8 0x810b40a1d81406d4, 0x81219f24a5baa59d
198data8 0x813801881d886f7b, 0x814e67cceb90502c
199data8 0x8164d1f3bc030773, 0x817b3ffd3b2f2e47
200data8 0x8191b1ea15813bfd, 0x81a827baf7838b78
201data8 0x81bea1708dde6055, 0x81d51f0b8557ec1c
202data8 0x81eba08c8ad4536f, 0x820225f44b55b33b
203data8 0x8218af4373fc25eb, 0x822f3c7ab205c89a
204data8 0x8245cd9ab2cec048, 0x825c62a423d13f0c
205data8 0x8272fb97b2a5894c, 0x828998760d01faf3
206data8 0x82a0393fe0bb0ca8, 0x82b6ddf5dbc35906
207//
208// 2^{0.b1 b2 b3 b4 b5}
209data8 0x8000000000000000, 0x82cd8698ac2ba1d7
210data8 0x85aac367cc487b14, 0x88980e8092da8527
211data8 0x8b95c1e3ea8bd6e6, 0x8ea4398b45cd53c0
212data8 0x91c3d373ab11c336, 0x94f4efa8fef70961
213data8 0x9837f0518db8a96f, 0x9b8d39b9d54e5538
214data8 0x9ef5326091a111ad, 0xa27043030c496818
215data8 0xa5fed6a9b15138ea, 0xa9a15ab4ea7c0ef8
216data8 0xad583eea42a14ac6, 0xb123f581d2ac258f
217data8 0xb504f333f9de6484, 0xb8fbaf4762fb9ee9
218data8 0xbd08a39f580c36be, 0xc12c4cca66709456
219data8 0xc5672a115506dadd, 0xc9b9bd866e2f27a2
220data8 0xce248c151f8480e3, 0xd2a81d91f12ae45a
221data8 0xd744fccad69d6af4, 0xdbfbb797daf23755
222data8 0xe0ccdeec2a94e111, 0xe5b906e77c8348a8
223data8 0xeac0c6e7dd24392e, 0xefe4b99bdcdaf5cb
224data8 0xf5257d152486cc2c, 0xfa83b2db722a033a
225LOCAL_OBJECT_END(T_table)
226
227
228
229.section .text
230GLOBAL_IEEE754_ENTRY(exp10)
231
232
233{.mfi
234       alloc r32= ar.pfs, 1, 4, 4, 0
235       // will continue only for non-zero normal/denormal numbers
236       fclass.nm.unc p12, p7= f8, 0x1b
237       mov GR_BIAS53= 0xffff+63-10
238}
239{.mlx
240       // GR_TBL_START= pointer to log2(10), C_1...C_4 followed by T_table
241       addl GR_TBL_START= @ltoff(poly_coeffs), gp
242       movl GR_ROUNDVAL= 0x3fc00000             // 1.5 (SP)
243}
244;;
245
246{.mfi
247       ld8 GR_COEFF_START= [ GR_TBL_START ]     // Load pointer to coeff table
248       fcmp.lt.s1 p6, p8= f8, f0                // X<0 ?
249       nop.i 0
250}
251;;
252
253{.mlx
254       setf.exp FR_2P53= GR_BIAS53              // 2^{63-10}
255       movl GR_UF_LIMIT= 0xc07439b746e36b52     // (-2^10-51) / log2(10)
256}
257{.mlx
258       setf.s FR_ROUNDVAL= GR_ROUNDVAL
259       movl GR_OF_LIMIT= 0x40734413509f79fe     // Overflow threshold
260}
261;;
262
263{.mlx
264       ldfe FR_LOG2_10= [ GR_COEFF_START ], 16  // load log2(10)*2^(10-63)
265       movl GR_SNORM_LIMIT= 0xc0733a7146f72a41  // Smallest normal threshold
266}
267{.mib
268       nop.m 0
269       nop.i 0
270 (p12) br.cond.spnt SPECIAL_exp10               // Branch if nan, inf, zero
271}
272;;
273
274{.mmf
275       ldfe FR_L2_10_low= [ GR_COEFF_START ], 16 // load log2(10)_low
276       setf.d FR_OF_LIMIT= GR_OF_LIMIT           // Set overflow limit
277       fma.s0 f8= f8, f1, f0                     // normalize x
278}
279;;
280
281{.mfi
282       ldfpd FR_COEFF3, FR_COEFF4= [ GR_COEFF_START ], 16 // load C_3, C_4
283 (p8)  fcvt.fx.s1 FR_int_x = f8                   // Convert x to integer
284       nop.i 0
285}
286{.mfi
287       setf.d FR_UF_LIMIT= GR_UF_LIMIT            // Set underflow limit
288       fma.s1 FR_KF0= f8, FR_LOG2_10, FR_ROUNDVAL // y= (x*log2(10)*2^10 +
289                                                  //    1.5*2^63) * 2^(-63)
290       mov GR_EXP_CORR= 0xffff-126
291}
292;;
293
294{.mfi
295       setf.d FR_SNORM_LIMIT= GR_SNORM_LIMIT      // Set smallest normal limit
296       fma.s1 FR_L2_10_high= FR_LOG2_10, FR_2P53, f0 // FR_LOG2_10= log2(10)_hi
297       nop.i 0
298}
299;;
300
301{.mfi
302       ldfe FR_COEFF1= [ GR_COEFF_START ], 16    // load C_1
303       fms.s1 FR_KF= FR_KF0, f1, FR_ROUNDVAL     // (K+f)*2^(10-63)
304       mov GR_MASK= 1023
305}
306;;
307
308{.mfi
309       ldfe FR_COEFF2= [ GR_COEFF_START ], 16    // load C_2
310       fma.s1 FR_LOG2_10= f8, FR_L2_10_high, f0  // y0= x*log2(10)_hi
311       mov GR_MASK_low= 31
312}
313;;
314
315{.mlx
316       getf.sig GR_KF0= FR_KF0                   // (K+f)*2^10= round_to_int(y)
317 (p8)  movl GR_exact_limit= 0x41b00000           // Largest x for exact result,
318                                                 //  +22.0
319}
320;;
321
322{.mfi
323       add GR_LOG_TBL= 256, GR_COEFF_START       // Pointer to high T_table
324       fcmp.gt.s1 p12, p7= f8, FR_OF_LIMIT       // x>overflow threshold ?
325       nop.i 0
326}
327;;
328
329{.mfi
330 (p8)  setf.s FR_exact_limit = GR_exact_limit    // Largest x for exact result
331 (p8)  fcvt.xf FR_int_x = FR_int_x               // Integral part of x
332       shr GR_K= GR_KF0, 10                      // K
333}
334{.mfi
335       and GR_F_high= GR_MASK, GR_KF0            // f_high*32
336       fnma.s1 FR_R= FR_KF, FR_2P53, FR_LOG2_10  // r= x*log2(10)-2^{63-10}*
337                                                 //    [ (K+f)*2^{10-63} ]
338       and GR_F_low= GR_KF0, GR_MASK_low         // f_low
339}
340;;
341
342{.mmi
343       shladd GR_Flow_ADDR= GR_F_low, 3, GR_COEFF_START // address of 2^{f_low}
344       add GR_BIAS= GR_K, GR_EXP_CORR            // K= bias-2*63
345       shr GR_Fh= GR_F_high, 5                   // f_high
346}
347;;
348
349{.mfi
350       setf.exp FR_2_TO_K= GR_BIAS               // 2^{K-126}
351 (p7)  fcmp.lt.s1 p12, p7= f8, FR_UF_LIMIT       // x<underflow threshold ?
352       shladd GR_Fh_ADDR= GR_Fh, 3, GR_LOG_TBL   // address of 2^{f_high}
353}
354{.mfi
355       ldf8 FR_T_low= [ GR_Flow_ADDR ]           // load T_low= 2^{f_low}
356       fms.s1 FR_DX_L210= f8, FR_L2_10_high, FR_LOG2_10 // x*log2(10)_hi-
357                                                 //        RN(x*log2(10)_hi)
358       nop.i 0
359}
360;;
361
362{.mfi
363       ldf8 FR_T_high= [ GR_Fh_ADDR ]            // load T_high= 2^{f_high}
364       fma.s1 FR_P34= FR_COEFF4, FR_R, FR_COEFF3 // P34= C_3+C_4*r
365       nop.i 0
366}
367{.mfb
368       nop.m 0
369       fma.s1 FR_R2= FR_R, FR_R, f0              // r*r
370 (p12) br.cond.spnt OUT_RANGE_exp10
371}
372;;
373
374{.mfi
375       nop.m 0
376       // e= (x*log2(10)_hi-RN(x*log2(10)_hi))+log2(10)_lo*x
377       fma.s1 FR_E0= f8, FR_L2_10_low, FR_DX_L210
378       cmp.eq p7,p9= r0,r0                       // Assume inexact result
379}
380{.mfi
381       nop.m 0
382       fma.s1 FR_P12= FR_COEFF2, FR_R, FR_COEFF1 // P12= C_1+C_2*r
383       nop.i 0
384}
385;;
386
387{.mfi
388       nop.m 0
389 (p8)  fcmp.eq.s1 p9,p7= FR_int_x, f8            // Test x positive integer
390       nop.i 0
391}
392{.mfi
393       nop.m 0
394       fma.s1 FR_T_low_K= FR_T_low, FR_2_TO_K, f0 // T= 2^{K-126}*T_low
395       nop.i 0
396}
397;;
398
399{.mfi
400       nop.m 0
401       fcmp.ge.s1 p11,p0= f8, FR_SNORM_LIMIT      // Test x for normal range
402       nop.i 0
403}
404;;
405
406{.mfi
407       nop.m 0
408       fma.s1 FR_E= FR_E0, FR_COEFF1, f0          // E= C_1*e
409       nop.i 0
410}
411{.mfi
412       nop.m 0
413       fma.s1 FR_P14= FR_R2, FR_P34, FR_P12       // P14= P12+r2*P34
414       nop.i 0
415}
416;;
417
418// If x a positive integer, will it produce an exact result?
419//   p7 result will be inexact
420//   p9 result will be exact
421{.mfi
422       nop.m 0
423 (p9)  fcmp.le.s1 p9,p7= f8, FR_exact_limit       // Test x gives exact result
424       nop.i 0
425}
426{.mfi
427       nop.m 0
428       fma.s1 FR_T= FR_T_low_K, FR_T_high, f0     // T= T*T_high
429       nop.i 0
430}
431;;
432
433{.mfi
434       nop.m 0
435       fma.s1 FR_P= FR_P14, FR_R, FR_E            // P= P14*r+E
436       nop.i 0
437}
438;;
439
440.pred.rel "mutex",p7,p9
441{.mfi
442       nop.m 0
443 (p7)  fma.d.s0 f8= FR_P, FR_T, FR_T              // result= T+T*P, inexact set
444       nop.i 0
445}
446{.mfb
447       nop.m 0
448 (p9)  fma.d.s1 f8= FR_P, FR_T, FR_T              // result= T+T*P, exact use s1
449 (p11) br.ret.sptk b0                             // return, if result normal
450}
451;;
452
453// Here if result in denormal range (and not zero)
454{.mib
455       nop.m 0
456       mov GR_Parameter_TAG= 265
457       br.cond.sptk __libm_error_region           // Branch to error handling
458}
459;;
460
461SPECIAL_exp10:
462{.mfi
463       nop.m 0
464       fclass.m p6, p0= f8, 0x22                  // x= -Infinity ?
465       nop.i 0
466}
467;;
468
469{.mfi
470       nop.m 0
471       fclass.m p7, p0= f8, 0x21                  // x= +Infinity ?
472       nop.i 0
473}
474;;
475
476{.mfi
477       nop.m 0
478       fclass.m p8, p0= f8, 0x7                   // x= +/-Zero ?
479       nop.i 0
480}
481{.mfb
482       nop.m 0
483 (p6)  mov f8= f0                                 // exp10(-Infinity)= 0
484 (p6)  br.ret.spnt b0
485}
486;;
487
488{.mfb
489       nop.m 0
490       nop.f 0
491 (p7)  br.ret.spnt b0                             // exp10(+Infinity)= +Infinity
492}
493;;
494
495{.mfb
496       nop.m 0
497 (p8)  mov f8= f1                                 // exp10(+/-0)= 1
498 (p8)  br.ret.spnt b0
499}
500;;
501
502{.mfb
503       nop.m 0
504       fma.d.s0 f8= f8, f1, f0                    // Remaining cases: NaNs
505       br.ret.sptk b0
506}
507;;
508
509
510OUT_RANGE_exp10:
511
512// underflow: p6= 1
513// overflow: p8= 1
514
515.pred.rel "mutex",p6,p8
516{.mmi
517 (p8)  mov GR_EXPMAX= 0x1fffe
518 (p6)  mov GR_EXPMAX= 1
519       nop.i 0
520}
521;;
522
523{.mii
524       setf.exp FR_R= GR_EXPMAX
525 (p8)  mov GR_Parameter_TAG= 166
526 (p6)  mov GR_Parameter_TAG= 265
527}
528;;
529
530{.mfb
531       nop.m 0
532       fma.d.s0 f8= FR_R, FR_R, f0                // Create overflow/underflow
533       br.cond.sptk __libm_error_region           // Branch to error handling
534}
535;;
536
537GLOBAL_IEEE754_END(exp10)
538libm_alias_double_other (__exp10, exp10)
539#if SHLIB_COMPAT (libm, GLIBC_2_1, GLIBC_2_27)
540compat_symbol (libm, exp10, pow10, GLIBC_2_2)
541#endif
542
543
544LOCAL_LIBM_ENTRY(__libm_error_region)
545
546.prologue
547{.mfi
548       add GR_Parameter_Y= -32, sp                // Parameter 2 value
549       nop.f 0
550.save ar.pfs, GR_SAVE_PFS
551       mov GR_SAVE_PFS= ar.pfs                    // Save ar.pfs
552}
553
554{.mfi
555.fframe 64
556       add sp= -64, sp                            // Create new stack
557       nop.f 0
558       mov GR_SAVE_GP= gp                         // Save gp
559}
560;;
561
562{.mmi
563       stfd [ GR_Parameter_Y ]= FR_Y, 16          // STORE Parameter 2 on stack
564       add GR_Parameter_X= 16, sp                 // Parameter 1 address
565.save b0, GR_SAVE_B0
566       mov GR_SAVE_B0= b0                         // Save b0
567}
568;;
569
570.body
571{.mib
572       stfd [ GR_Parameter_X ]= FR_X              // STORE Parameter 1 on stack
573       add GR_Parameter_RESULT= 0, GR_Parameter_Y // Parameter 3 address
574       nop.b 0
575}
576{.mib
577       stfd [ GR_Parameter_Y ]= FR_RESULT         // STORE Parameter 3 on stack
578       add GR_Parameter_Y= -16, GR_Parameter_Y
579       br.call.sptk b0= __libm_error_support#    // Call error handling function
580}
581;;
582
583{.mmi
584       add GR_Parameter_RESULT= 48, sp
585       nop.m 0
586       nop.i 0
587}
588;;
589
590{.mmi
591       ldfd f8= [ GR_Parameter_RESULT ]          // Get return result off stack
592.restore sp
593       add sp= 64, sp                            // Restore stack pointer
594       mov b0= GR_SAVE_B0                        // Restore return address
595}
596;;
597
598{.mib
599       mov gp= GR_SAVE_GP                        // Restore gp
600       mov ar.pfs= GR_SAVE_PFS                   // Restore ar.pfs
601       br.ret.sptk b0                            // Return
602}
603;;
604
605
606LOCAL_LIBM_END(__libm_error_region)
607
608.type __libm_error_support#, @function
609.global __libm_error_support#
610