1.file "cosh.s"
2
3
4// Copyright (c) 2000 - 2005, Intel Corporation
5// All rights reserved.
6//
7//
8// Redistribution and use in source and binary forms, with or without
9// modification, are permitted provided that the following conditions are
10// met:
11//
12// * Redistributions of source code must retain the above copyright
13// notice, this list of conditions and the following disclaimer.
14//
15// * Redistributions in binary form must reproduce the above copyright
16// notice, this list of conditions and the following disclaimer in the
17// documentation and/or other materials provided with the distribution.
18//
19// * The name of Intel Corporation may not be used to endorse or promote
20// products derived from this software without specific prior written
21// permission.
22
23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34//
35// Intel Corporation is the author of this code, and requests that all
36// problem reports or change requests be submitted to it directly at
37// http://www.intel.com/software/products/opensource/libraries/num.htm.
38//
39// History
40//==============================================================
41// 02/02/00 Initial version
42// 04/04/00 Unwind support added
43// 08/15/00 Bundle added after call to __libm_error_support to properly
44//          set [the previously overwritten] GR_Parameter_RESULT.
45// 05/07/01 Reworked to improve speed of all paths
46// 05/20/02 Cleaned up namespace and sf0 syntax
47// 11/15/02 Improved speed with new algorithm
48// 03/31/05 Reformatted delimiters between data tables
49
50// API
51//==============================================================
52// double cosh(double)
53
54// Overview of operation
55//==============================================================
56// Case 1:  0 < |x| < 0.25
57//  Evaluate cosh(x) by a 12th order polynomial
58//  Care is take for the order of multiplication; and A2 is not exactly 1/4!,
59//  A3 is not exactly 1/6!, etc.
60//  cosh(x) = 1 + (A1*x^2 + A2*x^4 + A3*x^6 + A4*x^8 + A5*x^10 + A6*x^12)
61//
62// Case 2:  0.25 < |x| < 710.47586
63//  Algorithm is based on the identity cosh(x) = ( exp(x) + exp(-x) ) / 2.
64//  The algorithm for exp is described as below.  There are a number of
65//  economies from evaluating both exp(x) and exp(-x).  Although we
66//  are evaluating both quantities, only where the quantities diverge do we
67//  duplicate the computations.  The basic algorithm for exp(x) is described
68//  below.
69//
70// Take the input x. w is "how many log2/128 in x?"
71//  w = x * 128/log2
72//  n = int(w)
73//  x = n log2/128 + r + delta
74
75//  n = 128M + index_1 + 2^4 index_2
76//  x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
77
78//  exp(x) = 2^M  2^(index_1/128)  2^(index_2/8) exp(r) exp(delta)
79//       Construct 2^M
80//       Get 2^(index_1/128) from table_1;
81//       Get 2^(index_2/8)   from table_2;
82//       Calculate exp(r) by 5th order polynomial
83//          r = x - n (log2/128)_high
84//          delta = - n (log2/128)_low
85//       Calculate exp(delta) as 1 + delta
86
87
88// Special values
89//==============================================================
90// cosh(+0)    = 1.0
91// cosh(-0)    = 1.0
92
93// cosh(+qnan) = +qnan
94// cosh(-qnan) = -qnan
95// cosh(+snan) = +qnan
96// cosh(-snan) = -qnan
97
98// cosh(-inf)  = +inf
99// cosh(+inf)  = +inf
100
101// Overflow and Underflow
102//=======================
103// cosh(x) = largest double normal when
104//     x = 710.47586 = 0x408633ce8fb9f87d
105//
106// There is no underflow.
107
108// Registers used
109//==============================================================
110// Floating Point registers used:
111// f8, input, output
112// f6 -> f15,  f32 -> f61
113
114// General registers used:
115// r14 -> r40
116
117// Predicate registers used:
118// p6 -> p15
119
120// Assembly macros
121//==============================================================
122
123rRshf                 = r14
124rN_neg                = r14
125rAD_TB1               = r15
126rAD_TB2               = r16
127rAD_P                 = r17
128rN                    = r18
129rIndex_1              = r19
130rIndex_2_16           = r20
131rM                    = r21
132rBiased_M             = r21
133rSig_inv_ln2          = r22
134rIndex_1_neg          = r22
135rExp_bias             = r23
136rExp_bias_minus_1     = r23
137rExp_mask             = r24
138rTmp                  = r24
139rGt_ln                = r24
140rIndex_2_16_neg       = r24
141rM_neg                = r25
142rBiased_M_neg         = r25
143rRshf_2to56           = r26
144rAD_T1_neg            = r26
145rExp_2tom56           = r28
146rAD_T2_neg            = r28
147rAD_T1                = r29
148rAD_T2                = r30
149rSignexp_x            = r31
150rExp_x                = r31
151
152GR_SAVE_B0            = r33
153GR_SAVE_PFS           = r34
154GR_SAVE_GP            = r35
155GR_SAVE_SP            = r36
156
157GR_Parameter_X        = r37
158GR_Parameter_Y        = r38
159GR_Parameter_RESULT   = r39
160GR_Parameter_TAG      = r40
161
162
163FR_X                  = f10
164FR_Y                  = f1
165FR_RESULT             = f8
166
167fRSHF_2TO56           = f6
168fINV_LN2_2TO63        = f7
169fW_2TO56_RSH          = f9
170f2TOM56               = f11
171fP5                   = f12
172fP4                   = f13
173fP3                   = f14
174fP2                   = f15
175
176fLn2_by_128_hi        = f33
177fLn2_by_128_lo        = f34
178
179fRSHF                 = f35
180fNfloat               = f36
181fNormX                = f37
182fR                    = f38
183fF                    = f39
184
185fRsq                  = f40
186f2M                   = f41
187fS1                   = f42
188fT1                   = f42
189fS2                   = f43
190fT2                   = f43
191fS                    = f43
192fWre_urm_f8           = f44
193fAbsX                 = f44
194
195fMIN_DBL_OFLOW_ARG    = f45
196fMAX_DBL_NORM_ARG     = f46
197fXsq                  = f47
198fX4                   = f48
199fGt_pln               = f49
200fTmp                  = f49
201
202fP54                  = f50
203fP5432                = f50
204fP32                  = f51
205fP                    = f52
206fP54_neg              = f53
207fP5432_neg            = f53
208fP32_neg              = f54
209fP_neg                = f55
210fF_neg                = f56
211
212f2M_neg               = f57
213fS1_neg               = f58
214fT1_neg               = f58
215fS2_neg               = f59
216fT2_neg               = f59
217fS_neg                = f59
218fExp                  = f60
219fExp_neg              = f61
220
221fA6                   = f50
222fA65                  = f50
223fA6543                = f50
224fA654321              = f50
225fA5                   = f51
226fA4                   = f52
227fA43                  = f52
228fA3                   = f53
229fA2                   = f54
230fA21                  = f54
231fA1                   = f55
232
233// Data tables
234//==============================================================
235
236RODATA
237.align 16
238
239// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
240
241// double-extended 1/ln(2)
242// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
243// 3fff b8aa 3b29 5c17 f0bc
244// For speed the significand will be loaded directly with a movl and setf.sig
245//   and the exponent will be bias+63 instead of bias+0.  Thus subsequent
246//   computations need to scale appropriately.
247// The constant 128/ln(2) is needed for the computation of w.  This is also
248//   obtained by scaling the computations.
249//
250// Two shifting constants are loaded directly with movl and setf.d.
251//   1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
252//        This constant is added to x*1/ln2 to shift the integer part of
253//        x*128/ln2 into the rightmost bits of the significand.
254//        The result of this fma is fW_2TO56_RSH.
255//   2. fRSHF       = 1.1000..00 * 2^(63)
256//        This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
257//        the integer part of w, n, as a floating-point number.
258//        The result of this fms is fNfloat.
259
260
261LOCAL_OBJECT_START(exp_table_1)
262data8 0x408633ce8fb9f87e // smallest dbl overflow arg
263data8 0x408633ce8fb9f87d // largest dbl arg to give normal dbl result
264data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
265data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
266//
267// Table 1 is 2^(index_1/128) where
268// index_1 goes from 0 to 15
269//
270data8 0x8000000000000000 , 0x00003FFF
271data8 0x80B1ED4FD999AB6C , 0x00003FFF
272data8 0x8164D1F3BC030773 , 0x00003FFF
273data8 0x8218AF4373FC25EC , 0x00003FFF
274data8 0x82CD8698AC2BA1D7 , 0x00003FFF
275data8 0x8383594EEFB6EE37 , 0x00003FFF
276data8 0x843A28C3ACDE4046 , 0x00003FFF
277data8 0x84F1F656379C1A29 , 0x00003FFF
278data8 0x85AAC367CC487B15 , 0x00003FFF
279data8 0x8664915B923FBA04 , 0x00003FFF
280data8 0x871F61969E8D1010 , 0x00003FFF
281data8 0x87DB357FF698D792 , 0x00003FFF
282data8 0x88980E8092DA8527 , 0x00003FFF
283data8 0x8955EE03618E5FDD , 0x00003FFF
284data8 0x8A14D575496EFD9A , 0x00003FFF
285data8 0x8AD4C6452C728924 , 0x00003FFF
286LOCAL_OBJECT_END(exp_table_1)
287
288// Table 2 is 2^(index_1/8) where
289// index_2 goes from 0 to 7
290LOCAL_OBJECT_START(exp_table_2)
291data8 0x8000000000000000 , 0x00003FFF
292data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
293data8 0x9837F0518DB8A96F , 0x00003FFF
294data8 0xA5FED6A9B15138EA , 0x00003FFF
295data8 0xB504F333F9DE6484 , 0x00003FFF
296data8 0xC5672A115506DADD , 0x00003FFF
297data8 0xD744FCCAD69D6AF4 , 0x00003FFF
298data8 0xEAC0C6E7DD24392F , 0x00003FFF
299LOCAL_OBJECT_END(exp_table_2)
300
301LOCAL_OBJECT_START(exp_p_table)
302data8 0x3f8111116da21757 //P5
303data8 0x3fa55555d787761c //P4
304data8 0x3fc5555555555414 //P3
305data8 0x3fdffffffffffd6a //P2
306LOCAL_OBJECT_END(exp_p_table)
307
308LOCAL_OBJECT_START(cosh_p_table)
309data8 0x8FA02AC65BCBD5BC, 0x00003FE2  // A6
310data8 0xD00D00D1021D7370, 0x00003FEF  // A4
311data8 0xAAAAAAAAAAAAAB80, 0x00003FFA  // A2
312data8 0x93F27740C0C2F1CC, 0x00003FE9  // A5
313data8 0xB60B60B60B4FE884, 0x00003FF5  // A3
314data8 0x8000000000000000, 0x00003FFE  // A1
315LOCAL_OBJECT_END(cosh_p_table)
316
317
318.section .text
319GLOBAL_IEEE754_ENTRY(cosh)
320
321{ .mlx
322      getf.exp        rSignexp_x = f8  // Must recompute if x unorm
323      movl            rSig_inv_ln2 = 0xb8aa3b295c17f0bc  // significand of 1/ln2
324}
325{ .mlx
326      addl            rAD_TB1    = @ltoff(exp_table_1), gp
327      movl            rRshf_2to56 = 0x4768000000000000   // 1.10000 2^(63+56)
328}
329;;
330
331{ .mfi
332      ld8             rAD_TB1    = [rAD_TB1]
333      fclass.m        p6,p0 = f8,0x0b  // Test for x=unorm
334      mov             rExp_mask = 0x1ffff
335}
336{ .mfi
337      mov             rExp_bias = 0xffff
338      fnorm.s1        fNormX   = f8
339      mov             rExp_2tom56 = 0xffff-56
340}
341;;
342
343// Form two constants we need
344//  1/ln2 * 2^63  to compute  w = x * 1/ln2 * 128
345//  1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
346
347{ .mfi
348      setf.sig        fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
349      fclass.m        p8,p0 = f8,0x07  // Test for x=0
350      nop.i 999
351}
352{ .mlx
353      setf.d          fRSHF_2TO56 = rRshf_2to56 // Form const 1.100 * 2^(63+56)
354      movl            rRshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
355}
356;;
357
358{ .mfi
359      ldfpd           fMIN_DBL_OFLOW_ARG, fMAX_DBL_NORM_ARG = [rAD_TB1],16
360      fclass.m        p10,p0 = f8,0x1e3  // Test for x=inf, nan, NaT
361      nop.i           0
362}
363{ .mfb
364      setf.exp        f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
365      nop.f           0
366(p6)  br.cond.spnt    COSH_UNORM            // Branch if x=unorm
367}
368;;
369
370COSH_COMMON:
371{ .mfi
372      ldfe            fLn2_by_128_hi  = [rAD_TB1],16
373      nop.f           0
374      nop.i           0
375}
376{ .mfb
377      setf.d          fRSHF = rRshf // Form right shift const 1.100 * 2^63
378(p8)  fma.d.s0        f8 = f1,f1,f0           // quick exit for x=0
379(p8)  br.ret.spnt     b0
380}
381;;
382
383{ .mfi
384      ldfe            fLn2_by_128_lo  = [rAD_TB1],16
385      nop.f           0
386      nop.i           0
387}
388{ .mfb
389      and             rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
390(p10) fma.d.s0        f8 = f8,f8,f0  // Result if x=inf, nan, NaT
391(p10) br.ret.spnt     b0               // quick exit for x=inf, nan, NaT
392}
393;;
394
395// After that last load rAD_TB1 points to the beginning of table 1
396{ .mfi
397      nop.m           0
398      fcmp.eq.s0      p6,p0 = f8, f0       // Dummy to set D
399      sub             rExp_x = rExp_x, rExp_bias // True exponent of x
400}
401;;
402
403{ .mfi
404      nop.m           0
405      fmerge.s        fAbsX = f0, fNormX   // Form |x|
406      nop.i           0
407}
408{ .mfb
409      cmp.gt          p7, p0 = -2, rExp_x      // Test |x| < 2^(-2)
410      fma.s1          fXsq = fNormX, fNormX, f0  // x*x for small path
411(p7)  br.cond.spnt    COSH_SMALL               // Branch if 0 < |x| < 2^-2
412}
413;;
414
415// W = X * Inv_log2_by_128
416// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
417// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
418
419{ .mfi
420      add             rAD_P = 0x180, rAD_TB1
421      fma.s1          fW_2TO56_RSH  = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
422      add             rAD_TB2 = 0x100, rAD_TB1
423}
424;;
425
426// Divide arguments into the following categories:
427//  Certain Safe                - 0.25 <= |x| <= MAX_DBL_NORM_ARG
428//  Possible Overflow       p14 - MAX_DBL_NORM_ARG < |x| < MIN_DBL_OFLOW_ARG
429//  Certain Overflow        p15 - MIN_DBL_OFLOW_ARG <= |x| < +inf
430//
431// If the input is really a double arg, then there will never be
432// "Possible Overflow" arguments.
433//
434
435{ .mfi
436      ldfpd           fP5, fP4  = [rAD_P] ,16
437      fcmp.ge.s1      p15,p14 = fAbsX,fMIN_DBL_OFLOW_ARG
438      nop.i           0
439}
440;;
441
442// Nfloat = round_int(W)
443// The signficand of fW_2TO56_RSH contains the rounded integer part of W,
444// as a twos complement number in the lower bits (that is, it may be negative).
445// That twos complement number (called N) is put into rN.
446
447// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
448// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
449// Thus, fNfloat contains the floating point version of N
450
451{ .mfi
452      ldfpd           fP3, fP2  = [rAD_P]
453(p14) fcmp.gt.unc.s1  p14,p0 = fAbsX,fMAX_DBL_NORM_ARG
454      nop.i           0
455}
456{ .mfb
457      nop.m           0
458      fms.s1          fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
459(p15) br.cond.spnt    COSH_CERTAIN_OVERFLOW
460}
461;;
462
463{ .mfi
464      getf.sig        rN        = fW_2TO56_RSH
465      nop.f           0
466      mov             rExp_bias_minus_1 = 0xfffe
467}
468;;
469
470// rIndex_1 has index_1
471// rIndex_2_16 has index_2 * 16
472// rBiased_M has M
473
474// rM has true M
475// r = x - Nfloat * ln2_by_128_hi
476// f = 1 - Nfloat * ln2_by_128_lo
477{ .mfi
478      and             rIndex_1 = 0x0f, rN
479      fnma.s1         fR   = fNfloat, fLn2_by_128_hi, fNormX
480      shr             rM = rN,  0x7
481}
482{ .mfi
483      and             rIndex_2_16 = 0x70, rN
484      fnma.s1         fF   = fNfloat, fLn2_by_128_lo, f1
485      sub             rN_neg = r0, rN
486}
487;;
488
489{ .mmi
490      and             rIndex_1_neg = 0x0f, rN_neg
491      add             rBiased_M = rExp_bias_minus_1, rM
492      shr             rM_neg = rN_neg,  0x7
493}
494{ .mmi
495      and             rIndex_2_16_neg = 0x70, rN_neg
496      add             rAD_T2 = rAD_TB2, rIndex_2_16
497      shladd          rAD_T1 = rIndex_1, 4, rAD_TB1
498}
499;;
500
501// rAD_T1 has address of T1
502// rAD_T2 has address if T2
503
504{ .mmi
505      setf.exp        f2M = rBiased_M
506      ldfe            fT2  = [rAD_T2]
507      nop.i           0
508}
509{ .mmi
510      add             rBiased_M_neg = rExp_bias_minus_1, rM_neg
511      add             rAD_T2_neg = rAD_TB2, rIndex_2_16_neg
512      shladd          rAD_T1_neg = rIndex_1_neg, 4, rAD_TB1
513}
514;;
515
516// Create Scale = 2^M
517// Load T1 and T2
518{ .mmi
519      ldfe            fT1  = [rAD_T1]
520      nop.m           0
521      nop.i           0
522}
523{ .mmf
524      setf.exp        f2M_neg = rBiased_M_neg
525      ldfe            fT2_neg  = [rAD_T2_neg]
526      fma.s1          fF_neg   = fNfloat, fLn2_by_128_lo, f1
527}
528;;
529
530{ .mfi
531      nop.m           0
532      fma.s1          fRsq = fR, fR, f0
533      nop.i           0
534}
535{ .mfi
536      ldfe            fT1_neg  = [rAD_T1_neg]
537      fma.s1          fP54 = fR, fP5, fP4
538      nop.i           0
539}
540;;
541
542{ .mfi
543      nop.m           0
544      fma.s1          fP32 = fR, fP3, fP2
545      nop.i           0
546}
547{ .mfi
548      nop.m           0
549      fnma.s1         fP54_neg = fR, fP5, fP4
550      nop.i           0
551}
552;;
553
554{ .mfi
555      nop.m           0
556      fnma.s1         fP32_neg = fR, fP3, fP2
557      nop.i           0
558}
559;;
560
561{ .mfi
562      nop.m           0
563      fma.s1          fP5432  = fRsq, fP54, fP32
564      nop.i           0
565}
566{ .mfi
567      nop.m           0
568      fma.s1          fS2  = fF,fT2,f0
569      nop.i           0
570}
571;;
572
573{ .mfi
574      nop.m           0
575      fma.s1          fS1  = f2M,fT1,f0
576      nop.i           0
577}
578{ .mfi
579      nop.m           0
580      fma.s1          fP5432_neg  = fRsq, fP54_neg, fP32_neg
581      nop.i           0
582}
583;;
584
585{ .mfi
586      nop.m           0
587      fma.s1          fS1_neg  = f2M_neg,fT1_neg,f0
588      nop.i           0
589}
590{ .mfi
591      nop.m           0
592      fma.s1          fS2_neg  = fF_neg,fT2_neg,f0
593      nop.i           0
594}
595;;
596
597{ .mfi
598      nop.m           0
599      fma.s1          fP     = fRsq, fP5432, fR
600      nop.i           0
601}
602{ .mfi
603      nop.m           0
604      fma.s1          fS   = fS1,fS2,f0
605      nop.i           0
606}
607;;
608
609{ .mfi
610      nop.m           0
611      fms.s1          fP_neg     = fRsq, fP5432_neg, fR
612      nop.i           0
613}
614{ .mfi
615      nop.m           0
616      fma.s1          fS_neg   = fS1_neg,fS2_neg,f0
617      nop.i           0
618}
619;;
620
621{ .mfb
622      nop.m           0
623      fmpy.s0         fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
624(p14) br.cond.spnt    COSH_POSSIBLE_OVERFLOW
625}
626;;
627
628{ .mfi
629      nop.m           0
630      fma.s1          fExp = fS, fP, fS
631      nop.i           0
632}
633{ .mfi
634      nop.m           0
635      fma.s1          fExp_neg = fS_neg, fP_neg, fS_neg
636      nop.i           0
637}
638;;
639
640{ .mfb
641      nop.m           0
642      fma.d.s0        f8 = fExp, f1, fExp_neg
643      br.ret.sptk     b0                  // Normal path exit
644}
645;;
646
647// Here if 0 < |x| < 0.25
648COSH_SMALL:
649{ .mmf
650      add             rAD_T1 = 0x1a0, rAD_TB1
651      add             rAD_T2 = 0x1d0, rAD_TB1
652}
653;;
654
655{ .mmf
656      ldfe            fA6 = [rAD_T1],16
657      ldfe            fA5 = [rAD_T2],16
658      nop.f           0
659}
660;;
661
662{ .mmi
663      ldfe            fA4 = [rAD_T1],16
664      ldfe            fA3 = [rAD_T2],16
665      nop.i           0
666}
667;;
668
669{ .mmi
670      ldfe            fA2 = [rAD_T1],16
671      ldfe            fA1 = [rAD_T2],16
672      nop.i           0
673}
674;;
675
676{ .mfi
677      nop.m           0
678      fma.s1          fX4 = fXsq, fXsq, f0
679      nop.i           0
680}
681;;
682
683{ .mfi
684      nop.m           0
685      fma.s1          fA65 = fXsq, fA6, fA5
686      nop.i           0
687}
688{ .mfi
689      nop.m           0
690      fma.s1          fA43 = fXsq, fA4, fA3
691      nop.i           0
692}
693;;
694
695{ .mfi
696      nop.m           0
697      fma.s1          fA21 = fXsq, fA2, fA1
698      nop.i           0
699}
700;;
701
702{ .mfi
703      nop.m           0
704      fma.s1          fA6543 = fX4, fA65, fA43
705      nop.i           0
706}
707;;
708
709{ .mfi
710      nop.m           0
711      fma.s1          fA654321 = fX4, fA6543, fA21
712      nop.i           0
713}
714;;
715
716// Dummy multiply to generate inexact
717{ .mfi
718      nop.m           0
719      fmpy.s0         fTmp = fA6, fA6
720      nop.i           0
721}
722{ .mfb
723      nop.m           0
724      fma.d.s0        f8 = fA654321, fXsq, f1
725      br.ret.sptk     b0                // Exit if 0 < |x| < 0.25
726}
727;;
728
729
730COSH_POSSIBLE_OVERFLOW:
731
732// Here if fMAX_DBL_NORM_ARG < |x| < fMIN_DBL_OFLOW_ARG
733// This cannot happen if input is a double, only if input higher precision.
734// Overflow is a possibility, not a certainty.
735
736// Recompute result using status field 2 with user's rounding mode,
737// and wre set.  If result is larger than largest double, then we have
738// overflow
739
740{ .mfi
741      mov             rGt_ln  = 0x103ff // Exponent for largest dbl + 1 ulp
742      fsetc.s2        0x7F,0x42         // Get user's round mode, set wre
743      nop.i           0
744}
745;;
746
747{ .mfi
748      setf.exp        fGt_pln = rGt_ln  // Create largest double + 1 ulp
749      fma.d.s2        fWre_urm_f8 = fS, fP, fS    // Result with wre set
750      nop.i           0
751}
752;;
753
754{ .mfi
755      nop.m           0
756      fsetc.s2        0x7F,0x40                   // Turn off wre in sf2
757      nop.i           0
758}
759;;
760
761{ .mfi
762      nop.m           0
763      fcmp.ge.s1      p6, p0 =  fWre_urm_f8, fGt_pln // Test for overflow
764      nop.i           0
765}
766;;
767
768{ .mfb
769      nop.m           0
770      nop.f           0
771(p6)  br.cond.spnt    COSH_CERTAIN_OVERFLOW // Branch if overflow
772}
773;;
774
775{ .mfb
776      nop.m           0
777      fma.d.s0        f8 = fS, fP, fS
778      br.ret.sptk     b0                     // Exit if really no overflow
779}
780;;
781
782COSH_CERTAIN_OVERFLOW:
783{ .mmi
784      sub             rTmp = rExp_mask, r0, 1
785;;
786      setf.exp        fTmp = rTmp
787      nop.i           0
788}
789;;
790
791{ .mfi
792      alloc           r32=ar.pfs,1,4,4,0
793      fmerge.s        FR_X = f8,f8
794      nop.i           0
795}
796{ .mfb
797      mov             GR_Parameter_TAG = 64
798      fma.d.s0        FR_RESULT = fTmp, fTmp, f0    // Set I,O and +INF result
799      br.cond.sptk    __libm_error_region
800}
801;;
802
803// Here if x unorm
804COSH_UNORM:
805{ .mfb
806      getf.exp        rSignexp_x = fNormX    // Must recompute if x unorm
807      fcmp.eq.s0      p6, p0 = f8, f0        // Set D flag
808      br.cond.sptk    COSH_COMMON
809}
810;;
811
812GLOBAL_IEEE754_END(cosh)
813libm_alias_double_other (__cosh, cosh)
814
815
816LOCAL_LIBM_ENTRY(__libm_error_region)
817.prologue
818{ .mfi
819        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
820        nop.f 0
821.save   ar.pfs,GR_SAVE_PFS
822        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
823}
824{ .mfi
825.fframe 64
826        add sp=-64,sp                           // Create new stack
827        nop.f 0
828        mov GR_SAVE_GP=gp                       // Save gp
829};;
830{ .mmi
831        stfd [GR_Parameter_Y] = FR_Y,16         // STORE Parameter 2 on stack
832        add GR_Parameter_X = 16,sp              // Parameter 1 address
833.save   b0, GR_SAVE_B0
834        mov GR_SAVE_B0=b0                       // Save b0
835};;
836.body
837{ .mib
838        stfd [GR_Parameter_X] = FR_X            // STORE Parameter 1 on stack
839        add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address
840        nop.b 0
841}
842{ .mib
843        stfd [GR_Parameter_Y] = FR_RESULT       // STORE Parameter 3 on stack
844        add   GR_Parameter_Y = -16,GR_Parameter_Y
845        br.call.sptk b0=__libm_error_support#   // Call error handling function
846};;
847{ .mmi
848        add   GR_Parameter_RESULT = 48,sp
849        nop.m 0
850        nop.i 0
851};;
852{ .mmi
853        ldfd  f8 = [GR_Parameter_RESULT]       // Get return result off stack
854.restore sp
855        add   sp = 64,sp                       // Restore stack pointer
856        mov   b0 = GR_SAVE_B0                  // Restore return address
857};;
858{ .mib
859        mov   gp = GR_SAVE_GP                  // Restore gp
860        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
861        br.ret.sptk     b0                     // Return
862};;
863
864LOCAL_LIBM_END(__libm_error_region)
865.type   __libm_error_support#,@function
866.global __libm_error_support#
867