1.file "acosl.s"
2
3
4// Copyright (c) 2001 - 2003, Intel Corporation
5// All rights reserved.
6//
7//
8// Redistribution and use in source and binary forms, with or without
9// modification, are permitted provided that the following conditions are
10// met:
11//
12// * Redistributions of source code must retain the above copyright
13// notice, this list of conditions and the following disclaimer.
14//
15// * Redistributions in binary form must reproduce the above copyright
16// notice, this list of conditions and the following disclaimer in the
17// documentation and/or other materials provided with the distribution.
18//
19// * The name of Intel Corporation may not be used to endorse or promote
20// products derived from this software without specific prior written
21// permission.
22
23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34//
35// Intel Corporation is the author of this code, and requests that all
36// problem reports or change requests be submitted to it directly at
37// http://www.intel.com/software/products/opensource/libraries/num.htm.
38//
39// History
40//==============================================================
41// 08/28/01 New version
42// 05/20/02 Cleaned up namespace and sf0 syntax
43// 02/06/03 Reordered header: .section, .global, .proc, .align
44//
45// API
46//==============================================================
47// long double acosl(long double)
48//
49// Overview of operation
50//==============================================================
51// Background
52//
53// Implementation
54//
55// For |s| in [2^{-4}, sqrt(2)/2]:
56// Let t= 2^k*1.b1 b2..b6 1, where s= 2^k*1.b1 b2.. b52
57// acos(s)= pi/2-asin(t)-asin(r), where r= s*sqrt(1-t^2)-t*sqrt(1-s^2), i.e.
58// r= (s-t)*sqrt(1-t^2)-t*sqrt(1-t^2)*(sqrt((1-s^2)/(1-t^2))-1)
59// asin(r)-r evaluated as 9-degree polynomial (c3*r^3+c5*r^5+c7*r^7+c9*r^9)
60// The 64-bit significands of sqrt(1-t^2), 1/(1-t^2) are read from the table,
61// along with the high and low parts of asin(t) (stored as two double precision
62// values)
63//
64// |s| in (sqrt(2)/2, sqrt(255/256)):
65// Let t= 2^k*1.b1 b2..b6 1, where (1-s^2)*frsqrta(1-s^2)= 2^k*1.b1 b2..b6..
66// acos(|s|)= asin(t)-asin(r)
67// acos(-|s|)=pi-asin(t)+asin(r),   r= s*t-sqrt(1-s^2)*sqrt(1-t^2)
68// To minimize accumulated errors, r is computed as
69// r= (t*s)_s-t^2*y*z+z*y*(t^2-1+s^2)_s+z*y*(1-s^2)_s*x+z'*y*(1-s^2)*PS29+
70// +(t*s-(t*s)_s)+z*y*((t^2-1-(t^2-1+s^2)_s)+s^2)+z*y*(1-s^2-(1-s^2)_s)+
71// +ez*z'*y*(1-s^2)*(1-x),
72// where y= frsqrta(1-s^2), z= (sqrt(1-t^2))_s (rounded to 24 significant bits)
73// z'= sqrt(1-t^2), x= ((1-s^2)*y^2-1)/2
74//
75// |s|<2^{-4}: evaluate asin(s) as 17-degree polynomial, return pi/2-asin(s)
76// (or simply return pi/2-s, if|s|<2^{-64})
77//
78// |s| in [sqrt(255/256), 1): acos(|s|)= asin(sqrt(1-s^2))
79// acos(-|s|)= pi-asin(sqrt(1-s^2))
80// use 17-degree polynomial for asin(sqrt(1-s^2)),
81// 9-degree polynomial to evaluate sqrt(1-s^2)
82// High order term is (pi)_high-(y*(1-s^2))_high, for s<0,
83// or y*(1-s^2)_s, for s>0
84//
85
86
87
88// Registers used
89//==============================================================
90// f6-f15, f32-f36
91// r2-r3, r23-r23
92// p6, p7, p8, p12
93//
94
95
96       GR_SAVE_B0= r33
97       GR_SAVE_PFS= r34
98       GR_SAVE_GP= r35 // This reg. can safely be used
99       GR_SAVE_SP= r36
100
101       GR_Parameter_X= r37
102       GR_Parameter_Y= r38
103       GR_Parameter_RESULT= r39
104       GR_Parameter_TAG= r40
105
106       FR_X= f10
107       FR_Y= f1
108       FR_RESULT= f8
109
110
111
112RODATA
113
114.align 16
115
116LOCAL_OBJECT_START(T_table)
117
118// stores 64-bit significand of 1/(1-t^2), 64-bit significand of sqrt(1-t^2),
119// asin(t)_high (double precision), asin(t)_low (double precision)
120
121data8 0x80828692b71c4391, 0xff7ddcec2d87e879
122data8 0x3fb022bc0ae531a0, 0x3c9f599c7bb42af6
123data8 0x80869f0163d0b082, 0xff79cad2247914d3
124data8 0x3fb062dd26afc320, 0x3ca4eff21bd49c5c
125data8 0x808ac7d5a8690705, 0xff75a89ed6b626b9
126data8 0x3fb0a2ff4a1821e0, 0x3cb7e33b58f164cc
127data8 0x808f0112ad8ad2e0, 0xff7176517c2cc0cb
128data8 0x3fb0e32279319d80, 0x3caee31546582c43
129data8 0x80934abba8a1da0a, 0xff6d33e949b1ed31
130data8 0x3fb12346b8101da0, 0x3cb8bfe463d087cd
131data8 0x8097a4d3dbe63d8f, 0xff68e16571015c63
132data8 0x3fb1636c0ac824e0, 0x3c8870a7c5a3556f
133data8 0x809c0f5e9662b3dd, 0xff647ec520bca0f0
134data8 0x3fb1a392756ed280, 0x3c964f1a927461ae
135data8 0x80a08a5f33fadc66, 0xff600c07846a6830
136data8 0x3fb1e3b9fc19e580, 0x3c69eb3576d56332
137data8 0x80a515d91d71acd4, 0xff5b892bc475affa
138data8 0x3fb223e2a2dfbe80, 0x3c6a4e19fd972fb6
139data8 0x80a9b1cfc86ff7cd, 0xff56f631062cf93d
140data8 0x3fb2640c6dd76260, 0x3c62041160e0849e
141data8 0x80ae5e46b78b0d68, 0xff5253166bc17794
142data8 0x3fb2a43761187c80, 0x3cac61651af678c0
143data8 0x80b31b417a4b756b, 0xff4d9fdb14463dc8
144data8 0x3fb2e46380bb6160, 0x3cb06ef23eeba7a1
145data8 0x80b7e8c3ad33c369, 0xff48dc7e1baf6738
146data8 0x3fb32490d0d910c0, 0x3caa05f480b300d5
147data8 0x80bcc6d0f9c784d6, 0xff4408fe9ad13e37
148data8 0x3fb364bf558b3820, 0x3cb01e7e403aaab9
149data8 0x80c1b56d1692492d, 0xff3f255ba75f5f4e
150data8 0x3fb3a4ef12ec3540, 0x3cb4fe8fcdf5f5f1
151data8 0x80c6b49bc72ec446, 0xff3a319453ebd961
152data8 0x3fb3e5200d171880, 0x3caf2dc089b2b7e2
153data8 0x80cbc460dc4e0ae8, 0xff352da7afe64ac6
154data8 0x3fb425524827a720, 0x3cb75a855e7c6053
155data8 0x80d0e4c033bee9c4, 0xff301994c79afb32
156data8 0x3fb46585c83a5e00, 0x3cb3264981c019ab
157data8 0x80d615bdb87556db, 0xff2af55aa431f291
158data8 0x3fb4a5ba916c73c0, 0x3c994251d94427b5
159data8 0x80db575d6291fd8a, 0xff25c0f84bae0cb9
160data8 0x3fb4e5f0a7dbdb20, 0x3cbee2fcc4c786cb
161data8 0x80e0a9a33769e535, 0xff207c6cc0ec09fd
162data8 0x3fb526280fa74620, 0x3c940656e5549b91
163data8 0x80e60c93498e32cd, 0xff1b27b703a19c98
164data8 0x3fb56660ccee2740, 0x3ca7082374d7b2cd
165data8 0x80eb8031b8d4052d, 0xff15c2d6105c72f8
166data8 0x3fb5a69ae3d0b520, 0x3c7c4d46e09ac68a
167data8 0x80f10482b25c6c8a, 0xff104dc8e0813ed4
168data8 0x3fb5e6d6586fec20, 0x3c9aa84ffd9b4958
169data8 0x80f6998a709c7cfb, 0xff0ac88e6a4ab926
170data8 0x3fb627132eed9140, 0x3cbced2cbbbe7d16
171data8 0x80fc3f4d3b657c44, 0xff053325a0c8a2ec
172data8 0x3fb667516b6c34c0, 0x3c6489c5fc68595a
173data8 0x8101f5cf67ed2af8, 0xfeff8d8d73dec2bb
174data8 0x3fb6a791120f33a0, 0x3cbe12acf159dfad
175data8 0x8107bd1558d6291f, 0xfef9d7c4d043df29
176data8 0x3fb6e7d226fabba0, 0x3ca386d099cd0dc7
177data8 0x810d95237e38766a, 0xfef411ca9f80b5f7
178data8 0x3fb72814ae53cc20, 0x3cb9f35731e71dd6
179data8 0x81137dfe55aa0e29, 0xfeee3b9dc7eef009
180data8 0x3fb76858ac403a00, 0x3c74df3dd959141a
181data8 0x811977aa6a479f0f, 0xfee8553d2cb8122c
182data8 0x3fb7a89e24e6b0e0, 0x3ca6034406ee42bc
183data8 0x811f822c54bd5ef8, 0xfee25ea7add46a91
184data8 0x3fb7e8e51c6eb6a0, 0x3cb82f8f78e68ed7
185data8 0x81259d88bb4ffac1, 0xfedc57dc2809fb1d
186data8 0x3fb8292d9700ad60, 0x3cbebb73c0e653f9
187data8 0x812bc9c451e5a257, 0xfed640d974eb6068
188data8 0x3fb8697798c5d620, 0x3ca2feee76a9701b
189data8 0x813206e3da0f3124, 0xfed0199e6ad6b585
190data8 0x3fb8a9c325e852e0, 0x3cb9e88f2f4d0efe
191data8 0x813854ec231172f9, 0xfec9e229dcf4747d
192data8 0x3fb8ea1042932a00, 0x3ca5ff40d81f66fd
193data8 0x813eb3e209ee858f, 0xfec39a7a9b36538b
194data8 0x3fb92a5ef2f247c0, 0x3cb5e3bece4d6b07
195data8 0x814523ca796f56ce, 0xfebd428f72561efe
196data8 0x3fb96aaf3b3281a0, 0x3cb7b9e499436d7c
197data8 0x814ba4aa6a2d3ff9, 0xfeb6da672bd48fe4
198data8 0x3fb9ab011f819860, 0x3cb9168143cc1a7f
199data8 0x81523686e29bbdd7, 0xfeb062008df81f50
200data8 0x3fb9eb54a40e3ac0, 0x3cb6e544197eb1e1
201data8 0x8158d964f7124614, 0xfea9d95a5bcbd65a
202data8 0x3fba2ba9cd080800, 0x3ca9a717be8f7446
203data8 0x815f8d49c9d639e4, 0xfea34073551e1ac8
204data8 0x3fba6c009e9f9260, 0x3c741e989a60938a
205data8 0x8166523a8b24f626, 0xfe9c974a367f785c
206data8 0x3fbaac591d0661a0, 0x3cb2c1290107e57d
207data8 0x816d283c793e0114, 0xfe95ddddb94166cb
208data8 0x3fbaecb34c6ef600, 0x3c9c7d5fbaec405d
209data8 0x81740f54e06d55bd, 0xfe8f142c93750c50
210data8 0x3fbb2d0f310cca00, 0x3cbc09479a9cbcfb
211data8 0x817b07891b15cd5e, 0xfe883a3577e9fceb
212data8 0x3fbb6d6ccf1455e0, 0x3cb9450bff4ee307
213data8 0x818210de91bba6c8, 0xfe814ff7162cf62f
214data8 0x3fbbadcc2abb1180, 0x3c9227fda12a8d24
215data8 0x81892b5abb0f2bf9, 0xfe7a55701a8697b1
216data8 0x3fbbee2d48377700, 0x3cb6fad72acfe356
217data8 0x819057031bf7760e, 0xfe734a9f2dfa1810
218data8 0x3fbc2e902bc10600, 0x3cb4465b588d16ad
219data8 0x819793dd479d4fbe, 0xfe6c2f82f643f68b
220data8 0x3fbc6ef4d9904580, 0x3c8b9ac54823960d
221data8 0x819ee1eedf76367a, 0xfe65041a15d8a92c
222data8 0x3fbcaf5b55dec6a0, 0x3ca2b8d28a954db2
223data8 0x81a6413d934f7a66, 0xfe5dc8632be3477f
224data8 0x3fbcefc3a4e727a0, 0x3c9380da83713ab4
225data8 0x81adb1cf21597d4b, 0xfe567c5cd44431d5
226data8 0x3fbd302dcae51600, 0x3ca995b83421756a
227data8 0x81b533a9563310b8, 0xfe4f2005a78fb50f
228data8 0x3fbd7099cc155180, 0x3caefa2f7a817d5f
229data8 0x81bcc6d20cf4f373, 0xfe47b35c3b0caaeb
230data8 0x3fbdb107acb5ae80, 0x3cb455fc372dd026
231data8 0x81c46b4f2f3d6e68, 0xfe40365f20b316d6
232data8 0x3fbdf177710518c0, 0x3cbee3dcc5b01434
233data8 0x81cc2126b53c1144, 0xfe38a90ce72abf36
234data8 0x3fbe31e91d439620, 0x3cb3e131c950aebd
235data8 0x81d3e85ea5bd8ee2, 0xfe310b6419c9c33a
236data8 0x3fbe725cb5b24900, 0x3c01d3fac6029027
237data8 0x81dbc0fd1637b9c1, 0xfe295d6340932d15
238data8 0x3fbeb2d23e937300, 0x3c6304cc44aeedd1
239data8 0x81e3ab082ad5a0a4, 0xfe219f08e03580b3
240data8 0x3fbef349bc2a77e0, 0x3cac1d2d6abe9c72
241data8 0x81eba6861683cb97, 0xfe19d0537a0946e2
242data8 0x3fbf33c332bbe020, 0x3ca0909dba4e96ca
243data8 0x81f3b37d1afc9979, 0xfe11f1418c0f94e2
244data8 0x3fbf743ea68d5b60, 0x3c937fc12a2a779a
245data8 0x81fbd1f388d4be45, 0xfe0a01d190f09063
246data8 0x3fbfb4bc1be5c340, 0x3cbf51a504b55813
247data8 0x820401efbf87e248, 0xfe020201fff9efea
248data8 0x3fbff53b970d1e80, 0x3ca625444b260078
249data8 0x82106ad2ffdca049, 0xfdf5e3940a49135e
250data8 0x3fc02aff52065460, 0x3c9125d113e22a57
251data8 0x8221343d6ea1d3e2, 0xfde581a45429b0a0
252data8 0x3fc06b84f8e03220, 0x3caccf362295894b
253data8 0x82324434adbf99c2, 0xfdd4de1a001fb775
254data8 0x3fc0ac0ed1fe7240, 0x3cc22f676096b0af
255data8 0x82439aee8d0c7747, 0xfdc3f8e8269d1f03
256data8 0x3fc0ec9cee9e4820, 0x3cca147e2886a628
257data8 0x825538a1d0fcb2f0, 0xfdb2d201a9b1ba66
258data8 0x3fc12d2f6006f0a0, 0x3cc72b36633bc2d4
259data8 0x82671d86345c5cee, 0xfda1695934d723e7
260data8 0x3fc16dc63789de60, 0x3cb11f9c47c7b83f
261data8 0x827949d46a121770, 0xfd8fbee13cbbb823
262data8 0x3fc1ae618682e620, 0x3cce1b59020cef8e
263data8 0x828bbdc61eeab9ba, 0xfd7dd28bff0c9f34
264data8 0x3fc1ef015e586c40, 0x3cafec043e0225ee
265data8 0x829e7995fb6de9e1, 0xfd6ba44b823ee1ca
266data8 0x3fc22fa5d07b90c0, 0x3cba905409caf8e3
267data8 0x82b17d7fa5bbc982, 0xfd5934119557883a
268data8 0x3fc2704eee685da0, 0x3cb5ef21838a823e
269data8 0x82c4c9bfc373d276, 0xfd4681cfcfb2c161
270data8 0x3fc2b0fcc9a5f3e0, 0x3ccc7952c5e0e312
271data8 0x82d85e93fba50136, 0xfd338d7790ca0f41
272data8 0x3fc2f1af73c6ba00, 0x3cbecf5f977d1ca9
273data8 0x82ec3c3af8c76b32, 0xfd2056f9fff97727
274data8 0x3fc33266fe6889a0, 0x3c9d329c022ebdb5
275data8 0x830062f46abf6022, 0xfd0cde480c43b327
276data8 0x3fc373237b34de60, 0x3cc95806d4928adb
277data8 0x8314d30108ea35f0, 0xfcf923526c1562b2
278data8 0x3fc3b3e4fbe10520, 0x3cbc299fe7223d54
279data8 0x83298ca29434df97, 0xfce526099d0737ed
280data8 0x3fc3f4ab922e4a60, 0x3cb59d8bb8fdbccc
281data8 0x833e901bd93c7009, 0xfcd0e65de39f1f7c
282data8 0x3fc435774fea2a60, 0x3c9ec18b43340914
283data8 0x8353ddb0b278aad8, 0xfcbc643f4b106055
284data8 0x3fc4764846ee80a0, 0x3cb90402efd87ed6
285data8 0x836975a60a70c52e, 0xfca79f9da4fab13a
286data8 0x3fc4b71e8921b860, 0xbc58f23449ed6365
287data8 0x837f5841ddfa7a46, 0xfc92986889284148
288data8 0x3fc4f7fa2876fca0, 0xbc6294812bf43acd
289data8 0x839585cb3e839773, 0xfc7d4e8f554ab12f
290data8 0x3fc538db36ee6960, 0x3cb910b773d4c578
291data8 0x83abfe8a5466246f, 0xfc67c2012cb6fa68
292data8 0x3fc579c1c6953cc0, 0x3cc5ede909fc47fc
293data8 0x83c2c2c861474d91, 0xfc51f2acf82041d5
294data8 0x3fc5baade9860880, 0x3cac63cdfc3588e5
295data8 0x83d9d2cfc2813637, 0xfc3be08165519325
296data8 0x3fc5fb9fb1e8e3a0, 0x3cbf7c8466578c29
297data8 0x83f12eebf397daac, 0xfc258b6ce6e6822f
298data8 0x3fc63c9731f39d40, 0x3cb6d2a7ffca3e9e
299data8 0x8408d76990b9296e, 0xfc0ef35db402af94
300data8 0x3fc67d947be9eec0, 0x3cb1980da09e6566
301data8 0x8420cc9659487cd7, 0xfbf81841c8082dc4
302data8 0x3fc6be97a21daf00, 0x3cc2ac8330e59aa5
303data8 0x84390ec132759ecb, 0xfbe0fa06e24cc390
304data8 0x3fc6ffa0b6ef05e0, 0x3ccc1a030fee56c4
305data8 0x84519e3a29df811a, 0xfbc9989a85ce0954
306data8 0x3fc740afcccca000, 0x3cc19692a5301ca6
307data8 0x846a7b527842d61b, 0xfbb1f3e9f8e45dc4
308data8 0x3fc781c4f633e2c0, 0x3cc0e98f3868a508
309data8 0x8483a65c8434b5f0, 0xfb9a0be244f4af45
310data8 0x3fc7c2e045b12140, 0x3cb2a8d309754420
311data8 0x849d1fabe4e97dd7, 0xfb81e070362116d1
312data8 0x3fc80401cddfd120, 0x3ca7a44544aa4ce6
313data8 0x84b6e795650817ea, 0xfb6971805af8411e
314data8 0x3fc84529a16ac020, 0x3c9e3b709c7d6f94
315data8 0x84d0fe6f0589da92, 0xfb50beff0423a2f5
316data8 0x3fc88657d30c49e0, 0x3cc60d65a7f0a278
317data8 0x84eb649000a73014, 0xfb37c8d84414755c
318data8 0x3fc8c78c758e8e80, 0x3cc94b2ee984c2b7
319data8 0x85061a50ccd13781, 0xfb1e8ef7eeaf764b
320data8 0x3fc908c79bcba900, 0x3cc8540ae794a2fe
321data8 0x8521200b1fb8916e, 0xfb05114998f76a83
322data8 0x3fc94a0958ade6c0, 0x3ca127f49839fa9c
323data8 0x853c7619f1618bf6, 0xfaeb4fb898b65d19
324data8 0x3fc98b51bf2ffee0, 0x3c8c9ba7a803909a
325data8 0x85581cd97f45e274, 0xfad14a3004259931
326data8 0x3fc9cca0e25d4ac0, 0x3cba458e91d3bf54
327data8 0x857414a74f8446b4, 0xfab7009ab1945a54
328data8 0x3fca0df6d551fe80, 0x3cc78ea1d329d2b2
329data8 0x85905de2341dea46, 0xfa9c72e3370d2fbc
330data8 0x3fca4f53ab3b6200, 0x3ccf60dca86d57ef
331data8 0x85acf8ea4e423ff8, 0xfa81a0f3e9fa0ee9
332data8 0x3fca90b777580aa0, 0x3ca4c4e2ec8a867e
333data8 0x85c9e62111a92e7d, 0xfa668ab6dec711b1
334data8 0x3fcad2224cf814e0, 0x3c303de5980d071c
335data8 0x85e725e947fbee97, 0xfa4b3015e883dbfe
336data8 0x3fcb13943f7d5f80, 0x3cc29d4eefa5cb1e
337data8 0x8604b8a7144cd054, 0xfa2f90fa9883a543
338data8 0x3fcb550d625bc6a0, 0x3c9e01a746152daf
339data8 0x86229ebff69e2415, 0xfa13ad4e3dfbe1c1
340data8 0x3fcb968dc9195ea0, 0x3ccc091bd73ae518
341data8 0x8640d89acf78858c, 0xf9f784f9e5a1877b
342data8 0x3fcbd815874eb160, 0x3cb5f4b89875e187
343data8 0x865f669fe390c7f5, 0xf9db17e65944eacf
344data8 0x3fcc19a4b0a6f9c0, 0x3cc5c0bc2b0bbf14
345data8 0x867e4938df7dc45f, 0xf9be65fc1f6c2e6e
346data8 0x3fcc5b3b58e061e0, 0x3cc1ca70df8f57e7
347data8 0x869d80d0db7e4c0c, 0xf9a16f237aec427a
348data8 0x3fcc9cd993cc4040, 0x3cbae93acc85eccf
349data8 0x86bd0dd45f4f8265, 0xf98433446a806e70
350data8 0x3fccde7f754f5660, 0x3cb22f70e64568d0
351data8 0x86dcf0b16613e37a, 0xf966b246a8606170
352data8 0x3fcd202d11620fa0, 0x3c962030e5d4c849
353data8 0x86fd29d7624b3d5d, 0xf948ec11a9d4c45b
354data8 0x3fcd61e27c10c0a0, 0x3cc7083c91d59217
355data8 0x871db9b741dbe44a, 0xf92ae08c9eca4941
356data8 0x3fcda39fc97be7c0, 0x3cc9258579e57211
357data8 0x873ea0c3722d6af2, 0xf90c8f9e71633363
358data8 0x3fcde5650dd86d60, 0x3ca4755a9ea582a9
359data8 0x875fdf6fe45529e8, 0xf8edf92dc5875319
360data8 0x3fce27325d6fe520, 0x3cbc1e2b6c1954f9
361data8 0x878176321154e2bc, 0xf8cf1d20f87270b8
362data8 0x3fce6907cca0d060, 0x3cb6ca4804750830
363data8 0x87a36580fe6bccf5, 0xf8affb5e20412199
364data8 0x3fceaae56fdee040, 0x3cad6b310d6fd46c
365data8 0x87c5add5417a5cb9, 0xf89093cb0b7c0233
366data8 0x3fceeccb5bb33900, 0x3cc16e99cedadb20
367data8 0x87e84fa9057914ca, 0xf870e64d40a15036
368data8 0x3fcf2eb9a4bcb600, 0x3cc75ee47c8b09e9
369data8 0x880b4b780f02b709, 0xf850f2c9fdacdf78
370data8 0x3fcf70b05fb02e20, 0x3cad6350d379f41a
371data8 0x882ea1bfc0f228ac, 0xf830b926379e6465
372data8 0x3fcfb2afa158b8a0, 0x3cce0ccd9f829985
373data8 0x885252ff21146108, 0xf810394699fe0e8e
374data8 0x3fcff4b77e97f3e0, 0x3c9b30faa7a4c703
375data8 0x88765fb6dceebbb3, 0xf7ef730f865f6df0
376data8 0x3fd01b6406332540, 0x3cdc5772c9e0b9bd
377data8 0x88ad1f69be2cc730, 0xf7bdc59bc9cfbd97
378data8 0x3fd04cf8ad203480, 0x3caeef44fe21a74a
379data8 0x88f763f70ae2245e, 0xf77a91c868a9c54e
380data8 0x3fd08f23ce0162a0, 0x3cd6290ab3fe5889
381data8 0x89431fc7bc0c2910, 0xf73642973c91298e
382data8 0x3fd0d1610f0c1ec0, 0x3cc67401a01f08cf
383data8 0x8990573407c7738e, 0xf6f0d71d1d7a2dd6
384data8 0x3fd113b0c65d88c0, 0x3cc7aa4020fe546f
385data8 0x89df0eb108594653, 0xf6aa4e6a05cfdef2
386data8 0x3fd156134ada6fe0, 0x3cc87369da09600c
387data8 0x8a2f4ad16e0ed78a, 0xf662a78900c35249
388data8 0x3fd19888f43427a0, 0x3cc62b220f38e49c
389data8 0x8a811046373e0819, 0xf619e180181d97cc
390data8 0x3fd1db121aed7720, 0x3ca3ede7490b52f4
391data8 0x8ad463df6ea0fa2c, 0xf5cffb504190f9a2
392data8 0x3fd21daf185fa360, 0x3caafad98c1d6c1b
393data8 0x8b294a8cf0488daf, 0xf584f3f54b8604e6
394data8 0x3fd2606046bf95a0, 0x3cdb2d704eeb08fa
395data8 0x8b7fc95f35647757, 0xf538ca65c960b582
396data8 0x3fd2a32601231ec0, 0x3cc661619fa2f126
397data8 0x8bd7e588272276f8, 0xf4eb7d92ff39fccb
398data8 0x3fd2e600a3865760, 0x3c8a2a36a99aca4a
399data8 0x8c31a45bf8e9255e, 0xf49d0c68cd09b689
400data8 0x3fd328f08ad12000, 0x3cb9efaf1d7ab552
401data8 0x8c8d0b520a35eb18, 0xf44d75cd993cfad2
402data8 0x3fd36bf614dcc040, 0x3ccacbb590bef70d
403data8 0x8cea2005d068f23d, 0xf3fcb8a23ab4942b
404data8 0x3fd3af11a079a6c0, 0x3cd9775872cf037d
405data8 0x8d48e837c8cd5027, 0xf3aad3c1e2273908
406data8 0x3fd3f2438d754b40, 0x3ca03304f667109a
407data8 0x8da969ce732f3ac7, 0xf357c60202e2fd7e
408data8 0x3fd4358c3ca032e0, 0x3caecf2504ff1a9d
409data8 0x8e0baad75555e361, 0xf3038e323ae9463a
410data8 0x3fd478ec0fd419c0, 0x3cc64bdc3d703971
411data8 0x8e6fb18807ba877e, 0xf2ae2b1c3a6057f7
412data8 0x3fd4bc6369fa40e0, 0x3cbb7122ec245cf2
413data8 0x8ed5843f4bda74d5, 0xf2579b83aa556f0c
414data8 0x3fd4fff2af11e2c0, 0x3c9cfa2dc792d394
415data8 0x8f3d29862c861fef, 0xf1ffde2612ca1909
416data8 0x3fd5439a4436d000, 0x3cc38d46d310526b
417data8 0x8fa6a81128940b2d, 0xf1a6f1bac0075669
418data8 0x3fd5875a8fa83520, 0x3cd8bf59b8153f8a
419data8 0x901206c1686317a6, 0xf14cd4f2a730d480
420data8 0x3fd5cb33f8cf8ac0, 0x3c9502b5c4d0e431
421data8 0x907f4ca5fe9cf739, 0xf0f186784a125726
422data8 0x3fd60f26e847b120, 0x3cc8a1a5e0acaa33
423data8 0x90ee80fd34aeda5e, 0xf09504ef9a212f18
424data8 0x3fd65333c7e43aa0, 0x3cae5b029cb1f26e
425data8 0x915fab35e37421c6, 0xf0374ef5daab5c45
426data8 0x3fd6975b02b8e360, 0x3cd5aa1c280c45e6
427data8 0x91d2d2f0d894d73c, 0xefd86321822dbb51
428data8 0x3fd6db9d05213b20, 0x3cbecf2c093ccd8b
429data8 0x9248000249200009, 0xef7840021aca5a72
430data8 0x3fd71ffa3cc87fc0, 0x3cb8d273f08d00d9
431data8 0x92bf3a7351f081d2, 0xef16e42021d7cbd5
432data8 0x3fd7647318b1ad20, 0x3cbce099d79cdc46
433data8 0x93388a8386725713, 0xeeb44dfce6820283
434data8 0x3fd7a908093fc1e0, 0x3ccb033ec17a30d9
435data8 0x93b3f8aa8e653812, 0xee507c126774fa45
436data8 0x3fd7edb9803e3c20, 0x3cc10aedb48671eb
437data8 0x94318d99d341ade4, 0xedeb6cd32f891afb
438data8 0x3fd83287f0e9cf80, 0x3c994c0c1505cd2a
439data8 0x94b1523e3dedc630, 0xed851eaa3168f43c
440data8 0x3fd87773cff956e0, 0x3cda3b7bce6a6b16
441data8 0x95334fc20577563f, 0xed1d8ffaa2279669
442data8 0x3fd8bc7d93a70440, 0x3cd4922edc792ce2
443data8 0x95b78f8e8f92f274, 0xecb4bf1fd2be72da
444data8 0x3fd901a5b3b9cf40, 0x3cd3fea1b00f9d0d
445data8 0x963e1b4e63a87c3f, 0xec4aaa6d08694cc1
446data8 0x3fd946eca98f2700, 0x3cdba4032d968ff1
447data8 0x96c6fcef314074fc, 0xebdf502d53d65fea
448data8 0x3fd98c52f024e800, 0x3cbe7be1ab8c95c9
449data8 0x97523ea3eab028b2, 0xeb72aea36720793e
450data8 0x3fd9d1d904239860, 0x3cd72d08a6a22b70
451data8 0x97dfeae6f4ee4a9a, 0xeb04c4096a884e94
452data8 0x3fda177f63e8ef00, 0x3cd818c3c1ebfac7
453data8 0x98700c7c6d85d119, 0xea958e90cfe1efd7
454data8 0x3fda5d468f92a540, 0x3cdf45fbfaa080fe
455data8 0x9902ae7487a9caa1, 0xea250c6224aab21a
456data8 0x3fdaa32f090998e0, 0x3cd715a9353cede4
457data8 0x9997dc2e017a9550, 0xe9b33b9ce2bb7638
458data8 0x3fdae939540d3f00, 0x3cc545c014943439
459data8 0x9a2fa158b29b649b, 0xe9401a573f8aa706
460data8 0x3fdb2f65f63f6c60, 0x3cd4a63c2f2ca8e2
461data8 0x9aca09f835466186, 0xe8cba69df9f0bf35
462data8 0x3fdb75b5773075e0, 0x3cda310ce1b217ec
463data8 0x9b672266ab1e0136, 0xe855de74266193d4
464data8 0x3fdbbc28606babc0, 0x3cdc84b75cca6c44
465data8 0x9c06f7579f0b7bd5, 0xe7debfd2f98c060b
466data8 0x3fdc02bf3d843420, 0x3cd225d967ffb922
467data8 0x9ca995db058cabdc, 0xe76648a991511c6e
468data8 0x3fdc497a9c224780, 0x3cde08101c5b825b
469data8 0x9d4f0b605ce71e88, 0xe6ec76dcbc02d9a7
470data8 0x3fdc905b0c10d420, 0x3cb1abbaa3edf120
471data8 0x9df765b9eecad5e6, 0xe6714846bdda7318
472data8 0x3fdcd7611f4b8a00, 0x3cbf6217ae80aadf
473data8 0x9ea2b320350540fe, 0xe5f4bab71494cd6b
474data8 0x3fdd1e8d6a0d56c0, 0x3cb726e048cc235c
475data8 0x9f51023562fc5676, 0xe576cbf239235ecb
476data8 0x3fdd65e082df5260, 0x3cd9e66872bd5250
477data8 0xa002620915c2a2f6, 0xe4f779b15f5ec5a7
478data8 0x3fddad5b02a82420, 0x3c89743b0b57534b
479data8 0xa0b6e21c2caf9992, 0xe476c1a233a7873e
480data8 0x3fddf4fd84bbe160, 0x3cbf7adea9ee3338
481data8 0xa16e9264cc83a6b2, 0xe3f4a16696608191
482data8 0x3fde3cc8a6ec6ee0, 0x3cce46f5a51f49c6
483data8 0xa22983528f3d8d49, 0xe3711694552da8a8
484data8 0x3fde84bd099a6600, 0x3cdc78f6490a2d31
485data8 0xa2e7c5d2e2e69460, 0xe2ec1eb4e1e0a5fb
486data8 0x3fdeccdb4fc685c0, 0x3cdd3aedb56a4825
487data8 0xa3a96b5599bd2532, 0xe265b74506fbe1c9
488data8 0x3fdf15241f23b3e0, 0x3cd440f3c6d65f65
489data8 0xa46e85d1ae49d7de, 0xe1ddddb499b3606f
490data8 0x3fdf5d98202994a0, 0x3cd6c44bd3fb745a
491data8 0xa53727ca3e11b99e, 0xe1548f662951b00d
492data8 0x3fdfa637fe27bf60, 0x3ca8ad1cd33054dd
493data8 0xa6036453bdc20186, 0xe0c9c9aeabe5e481
494data8 0x3fdfef0467599580, 0x3cc0f1ac0685d78a
495data8 0xa6d34f1969dda338, 0xe03d89d5281e4f81
496data8 0x3fe01bff067d6220, 0x3cc0731e8a9ef057
497data8 0xa7a6fc62f7246ff3, 0xdfafcd125c323f54
498data8 0x3fe04092d1ae3b40, 0x3ccabda24b59906d
499data8 0xa87e811a861df9b9, 0xdf20909061bb9760
500data8 0x3fe0653df0fd9fc0, 0x3ce94c8dcc722278
501data8 0xa959f2d2dd687200, 0xde8fd16a4e5f88bd
502data8 0x3fe08a00c1cae320, 0x3ce6b888bb60a274
503data8 0xaa3967cdeea58bda, 0xddfd8cabd1240d22
504data8 0x3fe0aedba3221c00, 0x3ced5941cd486e46
505data8 0xab904fd587263c84, 0xdd1f4472e1cf64ed
506data8 0x3fe0e651e85229c0, 0x3cdb6701042299b1
507data8 0xad686d44dd5a74bb, 0xdbf173e1f6b46e92
508data8 0x3fe1309cbf4cdb20, 0x3cbf1be7bb3f0ec5
509data8 0xaf524e15640ebee4, 0xdabd54896f1029f6
510data8 0x3fe17b4ee1641300, 0x3ce81dd055b792f1
511data8 0xb14eca24ef7db3fa, 0xd982cb9ae2f47e41
512data8 0x3fe1c66b9ffd6660, 0x3cd98ea31eb5ddc7
513data8 0xb35ec807669920ce, 0xd841bd1b8291d0b6
514data8 0x3fe211f66db3a5a0, 0x3ca480c35a27b4a2
515data8 0xb5833e4755e04dd1, 0xd6fa0bd3150b6930
516data8 0x3fe25df2e05b6c40, 0x3ca4bc324287a351
517data8 0xb7bd34c8000b7bd3, 0xd5ab9939a7d23aa1
518data8 0x3fe2aa64b32f7780, 0x3cba67314933077c
519data8 0xba0dc64d126cc135, 0xd4564563ce924481
520data8 0x3fe2f74fc9289ac0, 0x3cec1a1dc0efc5ec
521data8 0xbc76222cbbfa74a6, 0xd2f9eeed501125a8
522data8 0x3fe344b82f859ac0, 0x3ceeef218de413ac
523data8 0xbef78e31985291a9, 0xd19672e2182f78be
524data8 0x3fe392a22087b7e0, 0x3cd2619ba201204c
525data8 0xc19368b2b0629572, 0xd02baca5427e436a
526data8 0x3fe3e11206694520, 0x3cb5d0b3143fe689
527data8 0xc44b2ae8c6733e51, 0xceb975d60b6eae5d
528data8 0x3fe4300c7e945020, 0x3cbd367143da6582
529data8 0xc7206b894212dfef, 0xcd3fa6326ff0ac9a
530data8 0x3fe47f965d201d60, 0x3ce797c7a4ec1d63
531data8 0xca14e1b0622de526, 0xcbbe13773c3c5338
532data8 0x3fe4cfb4b09d1a20, 0x3cedfadb5347143c
533data8 0xcd2a6825eae65f82, 0xca34913d425a5ae9
534data8 0x3fe5206cc637e000, 0x3ce2798b38e54193
535data8 0xd06301095e1351ee, 0xc8a2f0d3679c08c0
536data8 0x3fe571c42e3d0be0, 0x3ccd7cb9c6c2ca68
537data8 0xd3c0d9f50057adda, 0xc70901152d59d16b
538data8 0x3fe5c3c0c108f940, 0x3ceb6c13563180ab
539data8 0xd74650a98cc14789, 0xc5668e3d4cbf8828
540data8 0x3fe61668a46ffa80, 0x3caa9092e9e3c0e5
541data8 0xdaf5f8579dcc8f8f, 0xc3bb61b3eed42d02
542data8 0x3fe669c251ad69e0, 0x3cccf896ef3b4fee
543data8 0xded29f9f9a6171b4, 0xc20741d7f8e8e8af
544data8 0x3fe6bdd49bea05c0, 0x3cdc6b29937c575d
545data8 0xe2df5765854ccdb0, 0xc049f1c2d1b8014b
546data8 0x3fe712a6b76c6e80, 0x3ce1ddc6f2922321
547data8 0xe71f7a9b94fcb4c3, 0xbe833105ec291e91
548data8 0x3fe76840418978a0, 0x3ccda46e85432c3d
549data8 0xeb96b72d3374b91e, 0xbcb2bb61493b28b3
550data8 0x3fe7bea9496d5a40, 0x3ce37b42ec6e17d3
551data8 0xf049183c3f53c39b, 0xbad848720223d3a8
552data8 0x3fe815ea59dab0a0, 0x3cb03ad41bfc415b
553data8 0xf53b11ec7f415f15, 0xb8f38b57c53c9c48
554data8 0x3fe86e0c84010760, 0x3cc03bfcfb17fe1f
555data8 0xfa718f05adbf2c33, 0xb70432500286b185
556data8 0x3fe8c7196b9225c0, 0x3ced99fcc6866ba9
557data8 0xfff200c3f5489608, 0xb509e6454dca33cc
558data8 0x3fe9211b54441080, 0x3cb789cb53515688
559// The following table entries are not used
560//data8 0x82e138a0fac48700, 0xb3044a513a8e6132
561//data8 0x3fe97c1d30f5b7c0, 0x3ce1eb765612d1d0
562//data8 0x85f4cc7fc670d021, 0xb0f2fb2ea6cbbc88
563//data8 0x3fe9d82ab4b5fde0, 0x3ced3fe6f27e8039
564//data8 0x89377c1387d5b908, 0xaed58e9a09014d5c
565//data8 0x3fea355065f87fa0, 0x3cbef481d25f5b58
566//data8 0x8cad7a2c98dec333, 0xacab929ce114d451
567//data8 0x3fea939bb451e2a0, 0x3c8e92b4fbf4560f
568//data8 0x905b7dfc99583025, 0xaa748cc0dbbbc0ec
569//data8 0x3feaf31b11270220, 0x3cdced8c61bd7bd5
570//data8 0x9446d8191f80dd42, 0xa82ff92687235baf
571//data8 0x3feb53de0bcffc20, 0x3cbe1722fb47509e
572//data8 0x98758ba086e4000a, 0xa5dd497a9c184f58
573//data8 0x3febb5f571cb0560, 0x3ce0c7774329a613
574//data8 0x9cee6c7bf18e4e24, 0xa37be3c3cd1de51b
575//data8 0x3fec197373bc7be0, 0x3ce08ebdb55c3177
576//data8 0xa1b944000a1b9440, 0xa10b2101b4f27e03
577//data8 0x3fec7e6bd023da60, 0x3ce5fc5fd4995959
578//data8 0xa6defd8ba04d3e38, 0x9e8a4b93cad088ec
579//data8 0x3fece4f404e29b20, 0x3cea3413401132b5
580//data8 0xac69dd408a10c62d, 0x9bf89d5d17ddae8c
581//data8 0x3fed4d2388f63600, 0x3cd5a7fb0d1d4276
582//data8 0xb265c39cbd80f97a, 0x99553d969fec7beb
583//data8 0x3fedb714101e0a00, 0x3cdbda21f01193f2
584//data8 0xb8e081a16ae4ae73, 0x969f3e3ed2a0516c
585//data8 0x3fee22e1da97bb00, 0x3ce7231177f85f71
586//data8 0xbfea427678945732, 0x93d5990f9ee787af
587//data8 0x3fee90ac13b18220, 0x3ce3c8a5453363a5
588//data8 0xc79611399b8c90c5, 0x90f72bde80febc31
589//data8 0x3fef009542b712e0, 0x3ce218fd79e8cb56
590//data8 0xcffa8425040624d7, 0x8e02b4418574ebed
591//data8 0x3fef72c3d2c57520, 0x3cd32a717f82203f
592//data8 0xd93299cddcf9cf23, 0x8af6ca48e9c44024
593//data8 0x3fefe762b77744c0, 0x3ce53478a6bbcf94
594//data8 0xe35eda760af69ad9, 0x87d1da0d7f45678b
595//data8 0x3ff02f511b223c00, 0x3ced6e11782c28fc
596//data8 0xeea6d733421da0a6, 0x84921bbe64ae029a
597//data8 0x3ff06c5c6f8ce9c0, 0x3ce71fc71c1ffc02
598//data8 0xfb3b2c73fc6195cc, 0x813589ba3a5651b6
599//data8 0x3ff0aaf2613700a0, 0x3cf2a72d2fd94ef3
600//data8 0x84ac1fcec4203245, 0xfb73a828893df19e
601//data8 0x3ff0eb367c3fd600, 0x3cf8054c158610de
602//data8 0x8ca50621110c60e6, 0xf438a14c158d867c
603//data8 0x3ff12d51caa6b580, 0x3ce6bce9748739b6
604//data8 0x95b8c2062d6f8161, 0xecb3ccdd37b369da
605//data8 0x3ff1717418520340, 0x3ca5c2732533177c
606//data8 0xa0262917caab4ad1, 0xe4dde4ddc81fd119
607//data8 0x3ff1b7d59dd40ba0, 0x3cc4c7c98e870ff5
608//data8 0xac402c688b72f3f4, 0xdcae469be46d4c8d
609//data8 0x3ff200b93cc5a540, 0x3c8dd6dc1bfe865a
610//data8 0xba76968b9eabd9ab, 0xd41a8f3df1115f7f
611//data8 0x3ff24c6f8f6affa0, 0x3cf1acb6d2a7eff7
612//data8 0xcb63c87c23a71dc5, 0xcb161074c17f54ec
613//data8 0x3ff29b5b338b7c80, 0x3ce9b5845f6ec746
614//data8 0xdfe323b8653af367, 0xc19107d99ab27e42
615//data8 0x3ff2edf6fac7f5a0, 0x3cf77f961925fa02
616//data8 0xf93746caaba3e1f1, 0xb777744a9df03bff
617//data8 0x3ff344df237486c0, 0x3cf6ddf5f6ddda43
618//data8 0x8ca77052f6c340f0, 0xacaf476f13806648
619//data8 0x3ff3a0dfa4bb4ae0, 0x3cfee01bbd761bff
620//data8 0xa1a48604a81d5c62, 0xa11575d30c0aae50
621//data8 0x3ff4030b73c55360, 0x3cf1cf0e0324d37c
622//data8 0xbe45074b05579024, 0x9478e362a07dd287
623//data8 0x3ff46ce4c738c4e0, 0x3ce3179555367d12
624//data8 0xe7a08b5693d214ec, 0x8690e3575b8a7c3b
625//data8 0x3ff4e0a887c40a80, 0x3cfbd5d46bfefe69
626//data8 0x94503d69396d91c7, 0xedd2ce885ff04028
627//data8 0x3ff561ebd9c18cc0, 0x3cf331bd176b233b
628//data8 0xced1d96c5bb209e6, 0xc965278083808702
629//data8 0x3ff5f71d7ff42c80, 0x3ce3301cc0b5a48c
630//data8 0xabac2cee0fc24e20, 0x9c4eb1136094cbbd
631//data8 0x3ff6ae4c63222720, 0x3cf5ff46874ee51e
632//data8 0x8040201008040201, 0xb4d7ac4d9acb1bf4
633//data8 0x3ff7b7d33b928c40, 0x3cfacdee584023bb
634LOCAL_OBJECT_END(T_table)
635
636
637
638.align 16
639
640LOCAL_OBJECT_START(poly_coeffs)
641       // C_3
642data8 0xaaaaaaaaaaaaaaab, 0x0000000000003ffc
643       // C_5
644data8 0x999999999999999a, 0x0000000000003ffb
645       // C_7, C_9
646data8 0x3fa6db6db6db6db7, 0x3f9f1c71c71c71c8
647       // pi/2 (low, high)
648data8 0x3C91A62633145C07, 0x3FF921FB54442D18
649       // C_11, C_13
650data8 0x3f96e8ba2e8ba2e9, 0x3f91c4ec4ec4ec4e
651       // C_15, C_17
652data8 0x3f8c99999999999a, 0x3f87a87878787223
653       // pi (low, high)
654data8 0x3CA1A62633145C07, 0x400921FB54442D18
655LOCAL_OBJECT_END(poly_coeffs)
656
657
658R_DBL_S = r21
659R_EXP0 = r22
660R_EXP = r15
661R_SGNMASK = r23
662R_TMP = r24
663R_TMP2 = r25
664R_INDEX = r26
665R_TMP3 = r27
666R_TMP03 = r27
667R_TMP4 = r28
668R_TMP5 = r23
669R_TMP6 = r22
670R_TMP7 = r21
671R_T = r29
672R_BIAS = r20
673
674F_T = f6
675F_1S2 = f7
676F_1S2_S = f9
677F_INV_1T2 = f10
678F_SQRT_1T2 = f11
679F_S2T2 = f12
680F_X = f13
681F_D = f14
682F_2M64 = f15
683
684F_CS2 = f32
685F_CS3 = f33
686F_CS4 = f34
687F_CS5 = f35
688F_CS6 = f36
689F_CS7 = f37
690F_CS8 = f38
691F_CS9 = f39
692F_S23 = f40
693F_S45 = f41
694F_S67 = f42
695F_S89 = f43
696F_S25 = f44
697F_S69 = f45
698F_S29 = f46
699F_X2 = f47
700F_X4 = f48
701F_TSQRT = f49
702F_DTX = f50
703F_R = f51
704F_R2 = f52
705F_R3 = f53
706F_R4 = f54
707
708F_C3 = f55
709F_C5 = f56
710F_C7 = f57
711F_C9 = f58
712F_P79 = f59
713F_P35 = f60
714F_P39 = f61
715
716F_ATHI = f62
717F_ATLO = f63
718
719F_T1 = f64
720F_Y = f65
721F_Y2 = f66
722F_ANDMASK = f67
723F_ORMASK = f68
724F_S = f69
725F_05 = f70
726F_SQRT_1S2 = f71
727F_DS = f72
728F_Z = f73
729F_1T2 = f74
730F_DZ = f75
731F_ZE = f76
732F_YZ = f77
733F_Y1S2 = f78
734F_Y1S2X = f79
735F_1X = f80
736F_ST = f81
737F_1T2_ST = f82
738F_TSS = f83
739F_Y1S2X2 = f84
740F_DZ_TERM = f85
741F_DTS = f86
742F_DS2X = f87
743F_T2 = f88
744F_ZY1S2S = f89
745F_Y1S2_1X = f90
746F_TS = f91
747F_PI2_LO = f92
748F_PI2_HI = f93
749F_S19 = f94
750F_INV1T2_2 = f95
751F_CORR = f96
752F_DZ0 = f97
753
754F_C11 = f98
755F_C13 = f99
756F_C15 = f100
757F_C17 = f101
758F_P1113 = f102
759F_P1517 = f103
760F_P1117 = f104
761F_P317 = f105
762F_R8 = f106
763F_HI = f107
764F_1S2_HI = f108
765F_DS2 = f109
766F_Y2_2 = f110
767//F_S2 = f111
768//F_S_DS2 = f112
769F_S_1S2S = f113
770F_XL = f114
771F_2M128 = f115
772F_1AS = f116
773F_AS = f117
774
775
776
777.section .text
778GLOBAL_LIBM_ENTRY(acosl)
779
780{.mfi
781       // get exponent, mantissa (rounded to double precision) of s
782       getf.d R_DBL_S = f8
783       // 1-s^2
784       fnma.s1 F_1S2 = f8, f8, f1
785       // r2 = pointer to T_table
786       addl r2 = @ltoff(T_table), gp
787}
788
789{.mfi
790       // sign mask
791       mov R_SGNMASK = 0x20000
792       nop.f 0
793       // bias-63-1
794       mov R_TMP03 = 0xffff-64;;
795}
796
797
798{.mfi
799       // get exponent of s
800       getf.exp R_EXP = f8
801       nop.f 0
802       // R_TMP4 = 2^45
803       shl R_TMP4 = R_SGNMASK, 45-17
804}
805
806{.mlx
807       // load bias-4
808       mov R_TMP = 0xffff-4
809       // load RU(sqrt(2)/2) to integer register (in double format, shifted left by 1)
810       movl R_TMP2 = 0x7fcd413cccfe779a;;
811}
812
813
814{.mfi
815       // load 2^{-64} in FP register
816       setf.exp F_2M64 = R_TMP03
817       nop.f 0
818       // index = (0x7-exponent)|b1 b2.. b6
819       extr.u R_INDEX = R_DBL_S, 46, 9
820}
821
822{.mfi
823       // get t = sign|exponent|b1 b2.. b6 1 x.. x
824       or R_T = R_DBL_S, R_TMP4
825       nop.f 0
826       // R_TMP4 = 2^45-1
827       sub R_TMP4 = R_TMP4, r0, 1;;
828}
829
830
831{.mfi
832       // get t = sign|exponent|b1 b2.. b6 1 0.. 0
833       andcm R_T = R_T, R_TMP4
834       nop.f 0
835       // eliminate sign from R_DBL_S (shift left by 1)
836       shl R_TMP3 = R_DBL_S, 1
837}
838
839{.mfi
840       // R_BIAS = 3*2^6
841       mov R_BIAS = 0xc0
842       nop.f 0
843       // eliminate sign from R_EXP
844       andcm R_EXP0 = R_EXP, R_SGNMASK;;
845}
846
847
848
849{.mfi
850       // load start address for T_table
851       ld8 r2 = [r2]
852       nop.f 0
853       // p8 = 1 if |s|> = sqrt(2)/2
854       cmp.geu p8, p0 = R_TMP3, R_TMP2
855}
856
857{.mlx
858       // p7 = 1 if |s|<2^{-4} (exponent of s<bias-4)
859       cmp.lt p7, p0 = R_EXP0, R_TMP
860       // sqrt coefficient cs8 = -33*13/128
861       movl R_TMP2 = 0xc0568000;;
862}
863
864
865
866{.mbb
867       // load t in FP register
868       setf.d F_T = R_T
869       // if |s|<2^{-4}, take alternate path
870 (p7) br.cond.spnt SMALL_S
871       // if |s|> = sqrt(2)/2, take alternate path
872 (p8) br.cond.sptk LARGE_S
873}
874
875{.mlx
876       // index = (4-exponent)|b1 b2.. b6
877       sub R_INDEX = R_INDEX, R_BIAS
878       // sqrt coefficient cs9 = 55*13/128
879       movl R_TMP = 0x40b2c000;;
880}
881
882
883{.mfi
884       // sqrt coefficient cs8 = -33*13/128
885       setf.s F_CS8 = R_TMP2
886       nop.f 0
887       // shift R_INDEX by 5
888       shl R_INDEX = R_INDEX, 5
889}
890
891{.mfi
892       // sqrt coefficient cs3 = 0.5 (set exponent = bias-1)
893       mov R_TMP4 = 0xffff - 1
894       nop.f 0
895       // sqrt coefficient cs6 = -21/16
896       mov R_TMP6 = 0xbfa8;;
897}
898
899
900{.mlx
901       // table index
902       add r2 = r2, R_INDEX
903       // sqrt coefficient cs7 = 33/16
904       movl R_TMP2 = 0x40040000;;
905}
906
907
908{.mmi
909       // load cs9 = 55*13/128
910       setf.s F_CS9 = R_TMP
911       // sqrt coefficient cs5 = 7/8
912       mov R_TMP3 = 0x3f60
913       // sqrt coefficient cs6 = 21/16
914       shl R_TMP6 = R_TMP6, 16;;
915}
916
917
918{.mmi
919       // load significand of 1/(1-t^2)
920       ldf8 F_INV_1T2 = [r2], 8
921       // sqrt coefficient cs7 = 33/16
922       setf.s F_CS7 = R_TMP2
923       // sqrt coefficient cs4 = -5/8
924       mov R_TMP5 = 0xbf20;;
925}
926
927
928{.mmi
929       // load significand of sqrt(1-t^2)
930       ldf8 F_SQRT_1T2 = [r2], 8
931       // sqrt coefficient cs6 = 21/16
932       setf.s F_CS6 = R_TMP6
933       // sqrt coefficient cs5 = 7/8
934       shl R_TMP3 = R_TMP3, 16;;
935}
936
937
938{.mmi
939       // sqrt coefficient cs3 = 0.5 (set exponent = bias-1)
940       setf.exp F_CS3 = R_TMP4
941       // r3 = pointer to polynomial coefficients
942       addl r3 = @ltoff(poly_coeffs), gp
943       // sqrt coefficient cs4 = -5/8
944       shl R_TMP5 = R_TMP5, 16;;
945}
946
947
948{.mfi
949       // sqrt coefficient cs5 = 7/8
950       setf.s F_CS5 = R_TMP3
951       // d = s-t
952       fms.s1 F_D = f8, f1, F_T
953       // set p6 = 1 if s<0, p11 = 1 if s> = 0
954       cmp.ge p6, p11 = R_EXP, R_DBL_S
955}
956
957{.mfi
958       // r3 = load start address to polynomial coefficients
959       ld8 r3 = [r3]
960       // s+t
961       fma.s1 F_S2T2 = f8, f1, F_T
962       nop.i 0;;
963}
964
965
966{.mfi
967       // sqrt coefficient cs4 = -5/8
968       setf.s F_CS4 = R_TMP5
969       // s^2-t^2
970       fma.s1 F_S2T2 = F_S2T2, F_D, f0
971       nop.i 0;;
972}
973
974
975{.mfi
976       // load C3
977       ldfe F_C3 = [r3], 16
978       // 0.5/(1-t^2) = 2^{-64}*(2^63/(1-t^2))
979       fma.s1 F_INV_1T2 = F_INV_1T2, F_2M64, f0
980       nop.i 0;;
981}
982
983{.mfi
984       // load C_5
985       ldfe F_C5 = [r3], 16
986       // set correct exponent for sqrt(1-t^2)
987       fma.s1 F_SQRT_1T2 = F_SQRT_1T2, F_2M64, f0
988       nop.i 0;;
989}
990
991
992{.mfi
993       // load C_7, C_9
994       ldfpd F_C7, F_C9 = [r3], 16
995       // x = -(s^2-t^2)/(1-t^2)/2
996       fnma.s1 F_X = F_INV_1T2, F_S2T2, f0
997       nop.i 0;;
998}
999
1000
1001{.mmf
1002       // load asin(t)_high, asin(t)_low
1003       ldfpd F_ATHI, F_ATLO = [r2]
1004	   // load pi/2
1005	   ldfpd F_PI2_LO, F_PI2_HI = [r3]
1006       // t*sqrt(1-t^2)
1007       fma.s1 F_TSQRT = F_T, F_SQRT_1T2, f0;;
1008}
1009
1010
1011{.mfi
1012       nop.m 0
1013       // cs9*x+cs8
1014       fma.s1 F_S89 = F_CS9, F_X, F_CS8
1015       nop.i 0
1016}
1017
1018{.mfi
1019       nop.m 0
1020       // cs7*x+cs6
1021       fma.s1 F_S67 = F_CS7, F_X, F_CS6
1022       nop.i 0;;
1023}
1024
1025{.mfi
1026       nop.m 0
1027       // cs5*x+cs4
1028       fma.s1 F_S45 = F_CS5, F_X, F_CS4
1029       nop.i 0
1030}
1031
1032{.mfi
1033       nop.m 0
1034       // x*x
1035       fma.s1 F_X2 = F_X, F_X, f0
1036       nop.i 0;;
1037}
1038
1039
1040{.mfi
1041       nop.m 0
1042       // (s-t)-t*x
1043       fnma.s1 F_DTX = F_T, F_X, F_D
1044       nop.i 0
1045}
1046
1047{.mfi
1048       nop.m 0
1049       // cs3*x+cs2 (cs2 = -0.5 = -cs3)
1050       fms.s1 F_S23 = F_CS3, F_X, F_CS3
1051       nop.i 0;;
1052}
1053
1054{.mfi
1055  nop.m 0
1056  // if sign is negative, negate table values: asin(t)_low
1057  (p6) fnma.s1 F_ATLO = F_ATLO, f1, f0
1058  nop.i 0
1059}
1060
1061{.mfi
1062  nop.m 0
1063  // if sign is negative, negate table values: asin(t)_high
1064  (p6) fnma.s1 F_ATHI = F_ATHI, f1, f0
1065  nop.i 0;;
1066}
1067
1068
1069{.mfi
1070       nop.m 0
1071       // cs9*x^3+cs8*x^2+cs7*x+cs6
1072       fma.s1 F_S69 = F_S89, F_X2, F_S67
1073       nop.i 0
1074}
1075
1076{.mfi
1077       nop.m 0
1078       // x^4
1079       fma.s1 F_X4 = F_X2, F_X2, f0
1080       nop.i 0;;
1081}
1082
1083
1084{.mfi
1085       nop.m 0
1086       // t*sqrt(1-t^2)*x^2
1087       fma.s1 F_TSQRT = F_TSQRT, F_X2, f0
1088       nop.i 0
1089}
1090
1091{.mfi
1092       nop.m 0
1093       // cs5*x^3+cs4*x^2+cs3*x+cs2
1094       fma.s1 F_S25 = F_S45, F_X2, F_S23
1095       nop.i 0;;
1096}
1097
1098
1099{.mfi
1100       nop.m 0
1101       // ((s-t)-t*x)*sqrt(1-t^2)
1102       fma.s1 F_DTX = F_DTX, F_SQRT_1T2, f0
1103       nop.i 0;;
1104}
1105
1106{.mfi
1107       nop.m 0
1108       // (pi/2)_high - asin(t)_high
1109       fnma.s1 F_ATHI = F_ATHI, f1, F_PI2_HI
1110       nop.i 0
1111}
1112
1113{.mfi
1114       nop.m 0
1115       // asin(t)_low - (pi/2)_low
1116       fnma.s1 F_ATLO = F_PI2_LO, f1, F_ATLO
1117	   nop.i 0;;
1118}
1119
1120
1121{.mfi
1122       nop.m 0
1123       // PS29 = cs9*x^7+..+cs5*x^3+cs4*x^2+cs3*x+cs2
1124       fma.s1 F_S29 = F_S69, F_X4, F_S25
1125       nop.i 0;;
1126}
1127
1128
1129
1130{.mfi
1131       nop.m 0
1132       // R = ((s-t)-t*x)*sqrt(1-t^2)-t*sqrt(1-t^2)*x^2*PS29
1133       fnma.s1 F_R = F_S29, F_TSQRT, F_DTX
1134       nop.i 0;;
1135}
1136
1137
1138{.mfi
1139       nop.m 0
1140       // R^2
1141       fma.s1 F_R2 = F_R, F_R, f0
1142       nop.i 0;;
1143}
1144
1145
1146{.mfi
1147       nop.m 0
1148       // c7+c9*R^2
1149       fma.s1 F_P79 = F_C9, F_R2, F_C7
1150       nop.i 0
1151}
1152
1153{.mfi
1154       nop.m 0
1155       // c3+c5*R^2
1156       fma.s1 F_P35 = F_C5, F_R2, F_C3
1157       nop.i 0;;
1158}
1159
1160{.mfi
1161       nop.m 0
1162       // R^3
1163       fma.s1 F_R4 = F_R2, F_R2, f0
1164       nop.i 0;;
1165}
1166
1167{.mfi
1168       nop.m 0
1169       // R^3
1170       fma.s1 F_R3 = F_R2, F_R, f0
1171       nop.i 0;;
1172}
1173
1174
1175
1176{.mfi
1177       nop.m 0
1178       // c3+c5*R^2+c7*R^4+c9*R^6
1179       fma.s1 F_P39 = F_P79, F_R4, F_P35
1180       nop.i 0;;
1181}
1182
1183
1184{.mfi
1185       nop.m 0
1186       // asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
1187       fma.s1 F_P39 = F_P39, F_R3, F_ATLO
1188       nop.i 0;;
1189}
1190
1191
1192{.mfi
1193       nop.m 0
1194       // R+asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
1195       fma.s1 F_P39 = F_P39, f1, F_R
1196       nop.i 0;;
1197}
1198
1199
1200{.mfb
1201       nop.m 0
1202       // result = (pi/2)-asin(t)_high+R+asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
1203       fnma.s0 f8 = F_P39, f1, F_ATHI
1204       // return
1205       br.ret.sptk b0;;
1206}
1207
1208
1209
1210
1211LARGE_S:
1212
1213{.mfi
1214       // bias-1
1215       mov R_TMP3 = 0xffff - 1
1216       // y ~ 1/sqrt(1-s^2)
1217       frsqrta.s1 F_Y, p7 = F_1S2
1218       // c9 = 55*13*17/128
1219       mov R_TMP4 = 0x10af7b
1220}
1221
1222{.mlx
1223       // c8 = -33*13*15/128
1224       mov R_TMP5 = 0x184923
1225       movl R_TMP2 = 0xff00000000000000;;
1226}
1227
1228{.mfi
1229       // set p6 = 1 if s<0, p11 = 1 if s>0
1230       cmp.ge p6, p11 = R_EXP, R_DBL_S
1231       // 1-s^2
1232       fnma.s1 F_1S2 = f8, f8, f1
1233       // set p9 = 1
1234       cmp.eq p9, p0 = r0, r0;;
1235}
1236
1237
1238{.mfi
1239       // load 0.5
1240       setf.exp F_05 = R_TMP3
1241       // (1-s^2) rounded to single precision
1242       fnma.s.s1 F_1S2_S = f8, f8, f1
1243       // c9 = 55*13*17/128
1244       shl R_TMP4 = R_TMP4, 10
1245}
1246
1247{.mlx
1248       // AND mask for getting t ~ sqrt(1-s^2)
1249       setf.sig F_ANDMASK = R_TMP2
1250       // OR mask
1251       movl R_TMP2 = 0x0100000000000000;;
1252}
1253
1254.pred.rel "mutex", p6, p11
1255{.mfi
1256       nop.m 0
1257	   // 1-|s|
1258 (p6)  fma.s1 F_1AS = f8, f1, f1
1259       nop.i 0
1260}
1261
1262{.mfi
1263       nop.m 0
1264       // 1-|s|
1265 (p11) fnma.s1 F_1AS = f8, f1, f1
1266       nop.i 0;;
1267}
1268
1269
1270{.mfi
1271       // c9 = 55*13*17/128
1272       setf.s F_CS9 = R_TMP4
1273	   // |s|
1274 (p6)  fnma.s1 F_AS = f8, f1, f0
1275       // c8 = -33*13*15/128
1276       shl R_TMP5 = R_TMP5, 11
1277}
1278
1279{.mfi
1280       // c7 = 33*13/16
1281       mov R_TMP4 = 0x41d68
1282	   // |s|
1283 (p11) fma.s1 F_AS = f8, f1, f0
1284       nop.i 0;;
1285}
1286
1287
1288{.mfi
1289       setf.sig F_ORMASK = R_TMP2
1290       // y^2
1291       fma.s1 F_Y2 = F_Y, F_Y, f0
1292       // c7 = 33*13/16
1293       shl R_TMP4 = R_TMP4, 12
1294}
1295
1296{.mfi
1297       // c6 = -33*7/16
1298       mov R_TMP6 = 0xc1670
1299       // y' ~ sqrt(1-s^2)
1300       fma.s1 F_T1 = F_Y, F_1S2, f0
1301       // c5 = 63/8
1302       mov R_TMP7 = 0x40fc;;
1303}
1304
1305
1306{.mlx
1307       // load c8 = -33*13*15/128
1308       setf.s F_CS8 = R_TMP5
1309       // c4 = -35/8
1310       movl R_TMP5 = 0xc08c0000;;
1311}
1312
1313{.mfi
1314       // r3 = pointer to polynomial coefficients
1315       addl r3 = @ltoff(poly_coeffs), gp
1316       // 1-s-(1-s^2)_s
1317       fnma.s1 F_DS = F_1S2_S, f1, F_1AS
1318       // p9 = 0 if p7 = 1 (p9 = 1 for special cases only)
1319 (p7) cmp.ne p9, p0 = r0, r0
1320}
1321
1322{.mlx
1323       // load c7 = 33*13/16
1324       setf.s F_CS7 = R_TMP4
1325       // c3 = 5/2
1326       movl R_TMP4 = 0x40200000;;
1327}
1328
1329
1330{.mlx
1331       // load c4 = -35/8
1332       setf.s F_CS4 = R_TMP5
1333       // c2 = -3/2
1334       movl R_TMP5 = 0xbfc00000;;
1335}
1336
1337
1338{.mfi
1339       // load c3 = 5/2
1340       setf.s F_CS3 = R_TMP4
1341       // x = (1-s^2)_s*y^2-1
1342       fms.s1 F_X = F_1S2_S, F_Y2, f1
1343       // c6 = -33*7/16
1344       shl R_TMP6 = R_TMP6, 12
1345}
1346
1347{.mfi
1348       nop.m 0
1349       // y^2/2
1350       fma.s1 F_Y2_2 = F_Y2, F_05, f0
1351       nop.i 0;;
1352}
1353
1354
1355{.mfi
1356       // load c6 = -33*7/16
1357       setf.s F_CS6 = R_TMP6
1358       // eliminate lower bits from y'
1359       fand F_T = F_T1, F_ANDMASK
1360       // c5 = 63/8
1361       shl R_TMP7 = R_TMP7, 16
1362}
1363
1364
1365{.mfb
1366       // r3 = load start address to polynomial coefficients
1367       ld8 r3 = [r3]
1368       // 1-(1-s^2)_s-s^2
1369       fma.s1 F_DS = F_AS, F_1AS, F_DS
1370       // p9 = 1 if s is a special input (NaN, or |s|> = 1)
1371 (p9) br.cond.spnt acosl_SPECIAL_CASES;;
1372}
1373
1374{.mmf
1375       // get exponent, significand of y' (in single prec.)
1376       getf.s R_TMP = F_T1
1377       // load c3 = -3/2
1378       setf.s F_CS2 = R_TMP5
1379       // y*(1-s^2)
1380       fma.s1 F_Y1S2 = F_Y, F_1S2, f0;;
1381}
1382
1383
1384
1385{.mfi
1386       nop.m 0
1387       // if s<0, set s = -s
1388 (p6) fnma.s1 f8 = f8, f1, f0
1389       nop.i 0;;
1390}
1391
1392
1393{.mfi
1394       // load c5 = 63/8
1395       setf.s F_CS5 = R_TMP7
1396       // x = (1-s^2)_s*y^2-1+(1-(1-s^2)_s-s^2)*y^2
1397       fma.s1 F_X = F_DS, F_Y2, F_X
1398       // for t = 2^k*1.b1 b2.., get 7-k|b1.. b6
1399       extr.u R_INDEX = R_TMP, 17, 9;;
1400}
1401
1402
1403{.mmi
1404       // index = (4-exponent)|b1 b2.. b6
1405       sub R_INDEX = R_INDEX, R_BIAS
1406       nop.m 0
1407       // get exponent of y
1408       shr.u R_TMP2 = R_TMP, 23;;
1409}
1410
1411{.mmi
1412       // load C3
1413       ldfe F_C3 = [r3], 16
1414       // set p8 = 1 if y'<2^{-4}
1415       cmp.gt p8, p0 = 0x7b, R_TMP2
1416       // shift R_INDEX by 5
1417       shl R_INDEX = R_INDEX, 5;;
1418}
1419
1420
1421{.mfb
1422       // get table index for sqrt(1-t^2)
1423       add r2 = r2, R_INDEX
1424       // get t = 2^k*1.b1 b2.. b7 1
1425       for F_T = F_T, F_ORMASK
1426 (p8) br.cond.spnt VERY_LARGE_INPUT;;
1427}
1428
1429
1430
1431{.mmf
1432       // load C5
1433       ldfe F_C5 = [r3], 16
1434       // load 1/(1-t^2)
1435       ldfp8 F_INV_1T2, F_SQRT_1T2 = [r2], 16
1436       // x = ((1-s^2)*y^2-1)/2
1437       fma.s1 F_X = F_X, F_05, f0;;
1438}
1439
1440
1441
1442{.mmf
1443       nop.m 0
1444       // C7, C9
1445       ldfpd F_C7, F_C9 = [r3], 16
1446       // set correct exponent for t
1447       fmerge.se F_T = F_T1, F_T;;
1448}
1449
1450
1451
1452{.mfi
1453       // get address for loading pi
1454	   add r3 = 48, r3
1455       // c9*x+c8
1456       fma.s1 F_S89 = F_X, F_CS9, F_CS8
1457       nop.i 0
1458}
1459
1460{.mfi
1461       nop.m 0
1462       // x^2
1463       fma.s1 F_X2 = F_X, F_X, f0
1464       nop.i 0;;
1465}
1466
1467
1468{.mfi
1469       // pi (low, high)
1470       ldfpd F_PI2_LO, F_PI2_HI = [r3]
1471       // y*(1-s^2)*x
1472       fma.s1 F_Y1S2X = F_Y1S2, F_X, f0
1473       nop.i 0
1474}
1475
1476{.mfi
1477       nop.m 0
1478       // c7*x+c6
1479       fma.s1 F_S67 = F_X, F_CS7, F_CS6
1480       nop.i 0;;
1481}
1482
1483
1484{.mfi
1485       nop.m 0
1486       // 1-x
1487       fnma.s1 F_1X = F_X, f1, f1
1488       nop.i 0
1489}
1490
1491{.mfi
1492       nop.m 0
1493       // c3*x+c2
1494       fma.s1 F_S23 = F_X, F_CS3, F_CS2
1495       nop.i 0;;
1496}
1497
1498
1499{.mfi
1500       nop.m 0
1501       // 1-t^2
1502       fnma.s1 F_1T2 = F_T, F_T, f1
1503       nop.i 0
1504}
1505
1506{.mfi
1507       // load asin(t)_high, asin(t)_low
1508       ldfpd F_ATHI, F_ATLO = [r2]
1509       // c5*x+c4
1510       fma.s1 F_S45 = F_X, F_CS5, F_CS4
1511       nop.i 0;;
1512}
1513
1514
1515
1516{.mfi
1517       nop.m 0
1518       // t*s
1519       fma.s1 F_TS = F_T, f8, f0
1520       nop.i 0
1521}
1522
1523{.mfi
1524       nop.m 0
1525       // 0.5/(1-t^2)
1526       fma.s1 F_INV_1T2 = F_INV_1T2, F_2M64, f0
1527       nop.i 0;;
1528}
1529
1530{.mfi
1531       nop.m 0
1532       // z~sqrt(1-t^2), rounded to 24 significant bits
1533       fma.s.s1 F_Z = F_SQRT_1T2, F_2M64, f0
1534       nop.i 0
1535}
1536
1537{.mfi
1538       nop.m 0
1539       // sqrt(1-t^2)
1540       fma.s1 F_SQRT_1T2 = F_SQRT_1T2, F_2M64, f0
1541       nop.i 0;;
1542}
1543
1544
1545{.mfi
1546       nop.m 0
1547       // y*(1-s^2)*x^2
1548       fma.s1 F_Y1S2X2 = F_Y1S2, F_X2, f0
1549       nop.i 0
1550}
1551
1552{.mfi
1553       nop.m 0
1554       // x^4
1555       fma.s1 F_X4 = F_X2, F_X2, f0
1556       nop.i 0;;
1557}
1558
1559
1560{.mfi
1561       nop.m 0
1562       // s*t rounded to 24 significant bits
1563       fma.s.s1 F_TSS = F_T, f8, f0
1564       nop.i 0
1565}
1566
1567{.mfi
1568       nop.m 0
1569       // c9*x^3+..+c6
1570       fma.s1 F_S69 = F_X2, F_S89, F_S67
1571       nop.i 0;;
1572}
1573
1574
1575{.mfi
1576       nop.m 0
1577       // ST = (t^2-1+s^2) rounded to 24 significant bits
1578       fms.s.s1 F_ST = f8, f8, F_1T2
1579       nop.i 0
1580}
1581
1582{.mfi
1583       nop.m 0
1584       // c5*x^3+..+c2
1585       fma.s1 F_S25 = F_X2, F_S45, F_S23
1586       nop.i 0;;
1587}
1588
1589
1590{.mfi
1591       nop.m 0
1592       // 0.25/(1-t^2)
1593       fma.s1 F_INV1T2_2 = F_05, F_INV_1T2, f0
1594       nop.i 0
1595}
1596
1597{.mfi
1598       nop.m 0
1599       // t*s-sqrt(1-t^2)*(1-s^2)*y
1600       fnma.s1 F_TS = F_Y1S2, F_SQRT_1T2, F_TS
1601       nop.i 0;;
1602}
1603
1604
1605{.mfi
1606       nop.m 0
1607       // z*0.5/(1-t^2)
1608       fma.s1 F_ZE = F_INV_1T2, F_SQRT_1T2, f0
1609       nop.i 0
1610}
1611
1612{.mfi
1613       nop.m 0
1614       // z^2+t^2-1
1615       fms.s1 F_DZ0 = F_Z, F_Z, F_1T2
1616       nop.i 0;;
1617}
1618
1619
1620{.mfi
1621       nop.m 0
1622       // (1-s^2-(1-s^2)_s)*x
1623       fma.s1 F_DS2X = F_X, F_DS, f0
1624       nop.i 0;;
1625}
1626
1627
1628{.mfi
1629       nop.m 0
1630       // t*s-(t*s)_s
1631       fms.s1 F_DTS = F_T, f8, F_TSS
1632       nop.i 0
1633}
1634
1635{.mfi
1636       nop.m 0
1637       // c9*x^7+..+c2
1638       fma.s1 F_S29 = F_X4, F_S69, F_S25
1639       nop.i 0;;
1640}
1641
1642
1643{.mfi
1644       nop.m 0
1645       // y*z
1646       fma.s1 F_YZ = F_Z, F_Y, f0
1647       nop.i 0
1648}
1649
1650{.mfi
1651       nop.m 0
1652       // t^2
1653       fma.s1 F_T2 = F_T, F_T, f0
1654       nop.i 0;;
1655}
1656
1657
1658{.mfi
1659       nop.m 0
1660       // 1-t^2+ST
1661       fma.s1 F_1T2_ST = F_ST, f1, F_1T2
1662       nop.i 0;;
1663}
1664
1665
1666{.mfi
1667       nop.m 0
1668       // y*(1-s^2)(1-x)
1669       fma.s1 F_Y1S2_1X = F_Y1S2, F_1X, f0
1670       nop.i 0
1671}
1672
1673{.mfi
1674       nop.m 0
1675       // dz ~ sqrt(1-t^2)-z
1676       fma.s1 F_DZ = F_DZ0, F_ZE, f0
1677       nop.i 0;;
1678}
1679
1680
1681{.mfi
1682       nop.m 0
1683       // -1+correction for sqrt(1-t^2)-z
1684       fnma.s1 F_CORR = F_INV1T2_2, F_DZ0, f0
1685       nop.i 0;;
1686}
1687
1688
1689{.mfi
1690       nop.m 0
1691       // (PS29*x^2+x)*y*(1-s^2)
1692       fma.s1 F_S19 = F_Y1S2X2, F_S29, F_Y1S2X
1693       nop.i 0;;
1694}
1695
1696{.mfi
1697       nop.m 0
1698       // z*y*(1-s^2)_s
1699       fma.s1 F_ZY1S2S = F_YZ, F_1S2_S, f0
1700       nop.i 0
1701}
1702
1703{.mfi
1704       nop.m 0
1705       // s^2-(1-t^2+ST)
1706       fms.s1 F_1T2_ST = f8, f8, F_1T2_ST
1707       nop.i 0;;
1708}
1709
1710
1711{.mfi
1712       nop.m 0
1713       // (t*s-(t*s)_s)+z*y*(1-s^2-(1-s^2)_s)*x
1714       fma.s1 F_DTS = F_YZ, F_DS2X, F_DTS
1715       nop.i 0
1716}
1717
1718{.mfi
1719       nop.m 0
1720       // dz*y*(1-s^2)*(1-x)
1721       fma.s1 F_DZ_TERM = F_DZ, F_Y1S2_1X, f0
1722       nop.i 0;;
1723}
1724
1725
1726{.mfi
1727       nop.m 0
1728       // R = t*s-sqrt(1-t^2)*(1-s^2)*y+sqrt(1-t^2)*(1-s^2)*y*PS19
1729       // (used for polynomial evaluation)
1730       fma.s1 F_R = F_S19, F_SQRT_1T2, F_TS
1731       nop.i 0;;
1732}
1733
1734
1735{.mfi
1736       nop.m 0
1737       // (PS29*x^2)*y*(1-s^2)
1738       fma.s1 F_S29 = F_Y1S2X2, F_S29, f0
1739       nop.i 0
1740}
1741
1742{.mfi
1743       nop.m 0
1744       // apply correction to dz*y*(1-s^2)*(1-x)
1745       fma.s1 F_DZ_TERM = F_DZ_TERM, F_CORR, F_DZ_TERM
1746       nop.i 0;;
1747}
1748
1749
1750{.mfi
1751       nop.m 0
1752       // R^2
1753       fma.s1 F_R2 = F_R, F_R, f0
1754       nop.i 0;;
1755}
1756
1757
1758{.mfi
1759       nop.m 0
1760       // (t*s-(t*s)_s)+z*y*(1-s^2-(1-s^2)_s)*x+dz*y*(1-s^2)*(1-x)
1761       fma.s1 F_DZ_TERM = F_DZ_TERM, f1, F_DTS
1762       nop.i 0;;
1763}
1764
1765
1766{.mfi
1767       nop.m 0
1768       // c7+c9*R^2
1769       fma.s1 F_P79 = F_C9, F_R2, F_C7
1770       nop.i 0
1771}
1772
1773{.mfi
1774       nop.m 0
1775       // c3+c5*R^2
1776       fma.s1 F_P35 = F_C5, F_R2, F_C3
1777       nop.i 0;;
1778}
1779
1780{.mfi
1781       nop.m 0
1782       // asin(t)_low-(pi)_low (if s<0)
1783 (p6)  fms.s1 F_ATLO = F_ATLO, f1, F_PI2_LO
1784       nop.i 0
1785}
1786
1787{.mfi
1788       nop.m 0
1789       // R^4
1790       fma.s1 F_R4 = F_R2, F_R2, f0
1791       nop.i 0;;
1792}
1793
1794{.mfi
1795       nop.m 0
1796       // R^3
1797       fma.s1 F_R3 = F_R2, F_R, f0
1798       nop.i 0;;
1799}
1800
1801
1802{.mfi
1803       nop.m 0
1804       // (t*s)_s-t^2*y*z
1805       fnma.s1 F_TSS = F_T2, F_YZ, F_TSS
1806       nop.i 0
1807}
1808
1809{.mfi
1810       nop.m 0
1811       // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST)
1812       fma.s1 F_DZ_TERM = F_YZ, F_1T2_ST, F_DZ_TERM
1813       nop.i 0;;
1814}
1815
1816
1817{.mfi
1818       nop.m 0
1819       // (pi)_hi-asin(t)_hi (if s<0)
1820 (p6)  fms.s1 F_ATHI = F_PI2_HI, f1, F_ATHI
1821       nop.i 0
1822}
1823
1824{.mfi
1825       nop.m 0
1826       // c3+c5*R^2+c7*R^4+c9*R^6
1827       fma.s1 F_P39 = F_P79, F_R4, F_P35
1828       nop.i 0;;
1829}
1830
1831
1832{.mfi
1833       nop.m 0
1834       // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST)+
1835       // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29
1836       fma.s1 F_DZ_TERM = F_SQRT_1T2, F_S29, F_DZ_TERM
1837       nop.i 0;;
1838}
1839
1840
1841{.mfi
1842       nop.m 0
1843       // (t*s)_s-t^2*y*z+z*y*ST
1844       fma.s1 F_TSS = F_YZ, F_ST, F_TSS
1845       nop.i 0
1846}
1847
1848{.mfi
1849       nop.m 0
1850       // -asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
1851       fms.s1 F_P39 = F_P39, F_R3, F_ATLO
1852       nop.i 0;;
1853}
1854
1855
1856{.mfi
1857       nop.m 0
1858       // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
1859       // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 +
1860       // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
1861       fma.s1 F_DZ_TERM = F_P39, f1, F_DZ_TERM
1862       nop.i 0;;
1863}
1864
1865
1866{.mfi
1867       nop.m 0
1868       // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
1869       // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 + z*y*(1-s^2)_s*x +
1870       // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
1871       fma.s1 F_DZ_TERM = F_ZY1S2S, F_X, F_DZ_TERM
1872       nop.i 0;;
1873}
1874
1875
1876{.mfi
1877       nop.m 0
1878       // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
1879       // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 + z*y*(1-s^2)_s*x +
1880       // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6) +
1881       // + (t*s)_s-t^2*y*z+z*y*ST
1882       fma.s1 F_DZ_TERM = F_TSS, f1, F_DZ_TERM
1883       nop.i 0;;
1884}
1885
1886
1887.pred.rel "mutex", p6, p11
1888{.mfi
1889       nop.m 0
1890       // result: add high part of table value
1891       // s>0 in this case
1892 (p11) fnma.s0 f8 = F_DZ_TERM, f1, F_ATHI
1893       nop.i 0
1894}
1895
1896{.mfb
1897       nop.m 0
1898       // result: add high part of pi-table value
1899       // if s<0
1900 (p6)  fma.s0 f8 = F_DZ_TERM, f1, F_ATHI
1901       br.ret.sptk b0;;
1902}
1903
1904
1905
1906
1907
1908
1909SMALL_S:
1910
1911       // use 15-term polynomial approximation
1912
1913{.mmi
1914       // r3 = pointer to polynomial coefficients
1915       addl r3 = @ltoff(poly_coeffs), gp;;
1916       // load start address for coefficients
1917       ld8 r3 = [r3]
1918       mov R_TMP = 0x3fbf;;
1919}
1920
1921
1922{.mmi
1923       add r2 = 64, r3
1924       ldfe F_C3 = [r3], 16
1925       // p7 = 1 if |s|<2^{-64} (exponent of s<bias-64)
1926       cmp.lt p7, p0 = R_EXP0, R_TMP;;
1927}
1928
1929{.mmf
1930       ldfe F_C5 = [r3], 16
1931       ldfpd F_C11, F_C13 = [r2], 16
1932	   nop.f 0;;
1933}
1934
1935{.mmf
1936       ldfpd F_C7, F_C9 = [r3], 16
1937       ldfpd F_C15, F_C17 = [r2]
1938       nop.f 0;;
1939}
1940
1941
1942
1943{.mfb
1944       // load pi/2
1945       ldfpd F_PI2_LO, F_PI2_HI = [r3]
1946       // s^2
1947       fma.s1 F_R2 = f8, f8, f0
1948	   // |s|<2^{-64}
1949  (p7) br.cond.spnt  RETURN_PI2;;
1950}
1951
1952
1953{.mfi
1954       nop.m 0
1955       // s^3
1956       fma.s1 F_R3 = f8, F_R2, f0
1957       nop.i 0
1958}
1959
1960{.mfi
1961       nop.m 0
1962       // s^4
1963       fma.s1 F_R4 = F_R2, F_R2, f0
1964       nop.i 0;;
1965}
1966
1967
1968{.mfi
1969       nop.m 0
1970       // c3+c5*s^2
1971       fma.s1 F_P35 = F_C5, F_R2, F_C3
1972       nop.i 0
1973}
1974
1975{.mfi
1976       nop.m 0
1977       // c11+c13*s^2
1978       fma.s1 F_P1113 = F_C13, F_R2, F_C11
1979       nop.i 0;;
1980}
1981
1982
1983{.mfi
1984       nop.m 0
1985       // c7+c9*s^2
1986       fma.s1 F_P79 = F_C9, F_R2, F_C7
1987       nop.i 0
1988}
1989
1990{.mfi
1991       nop.m 0
1992       // c15+c17*s^2
1993       fma.s1 F_P1517 = F_C17, F_R2, F_C15
1994       nop.i 0;;
1995}
1996
1997{.mfi
1998       nop.m 0
1999	   // (pi/2)_high-s_high
2000	   fnma.s1 F_T = f8, f1, F_PI2_HI
2001	   nop.i 0
2002}
2003{.mfi
2004       nop.m 0
2005       // s^8
2006       fma.s1 F_R8 = F_R4, F_R4, f0
2007       nop.i 0;;
2008}
2009
2010
2011{.mfi
2012       nop.m 0
2013       // c3+c5*s^2+c7*s^4+c9*s^6
2014       fma.s1 F_P39 = F_P79, F_R4, F_P35
2015       nop.i 0
2016}
2017
2018{.mfi
2019       nop.m 0
2020       // c11+c13*s^2+c15*s^4+c17*s^6
2021       fma.s1 F_P1117 = F_P1517, F_R4, F_P1113
2022       nop.i 0;;
2023}
2024
2025{.mfi
2026       nop.m 0
2027	   // -s_high
2028	   fms.s1 F_S = F_T, f1, F_PI2_HI
2029	   nop.i 0;;
2030}
2031
2032{.mfi
2033       nop.m 0
2034       // c3+..+c17*s^14
2035       fma.s1 F_P317 = F_R8, F_P1117, F_P39
2036       nop.i 0;;
2037}
2038
2039{.mfi
2040       nop.m 0
2041	   // s_low
2042	   fma.s1 F_DS = f8, f1, F_S
2043	   nop.i 0;;
2044}
2045
2046{.mfi
2047       nop.m 0
2048       // (pi/2)_low-s^3*(c3+..+c17*s^14)
2049       fnma.s0 F_P317 = F_P317, F_R3, F_PI2_LO
2050	   nop.i 0;;
2051}
2052
2053{.mfi
2054       nop.m 0
2055	   // (pi/2)_low-s_low-s^3*(c3+..+c17*s^14)
2056	   fms.s1 F_P317 = F_P317, f1, F_DS
2057	   nop.i 0;;
2058}
2059
2060{.mfb
2061       nop.m 0
2062	   // result: pi/2-s-c3*s^3-..-c17*s^17
2063	   fma.s0 f8 = F_T, f1, F_P317
2064       br.ret.sptk b0;;
2065}
2066
2067
2068
2069
2070
2071RETURN_PI2:
2072
2073{.mfi
2074       nop.m 0
2075       // (pi/2)_low-s
2076	   fms.s0 F_PI2_LO = F_PI2_LO, f1, f8
2077	   nop.i 0;;
2078}
2079
2080{.mfb
2081       nop.m 0
2082	   // (pi/2)-s
2083	   fma.s0 f8 = F_PI2_HI, f1, F_PI2_LO
2084	   br.ret.sptk b0;;
2085}
2086
2087
2088
2089
2090
2091VERY_LARGE_INPUT:
2092
2093
2094{.mmf
2095       // pointer to pi_low, pi_high
2096	   add r2 = 80, r3
2097       // load C5
2098       ldfe F_C5 = [r3], 16
2099       // x = ((1-(s^2)_s)*y^2-1)/2-(s^2-(s^2)_s)*y^2/2
2100       fma.s1 F_X = F_X, F_05, f0;;
2101}
2102
2103.pred.rel "mutex", p6, p11
2104{.mmf
2105       // load pi (low, high), if s<0
2106 (p6)  ldfpd F_PI2_LO, F_PI2_HI = [r2]
2107       // C7, C9
2108       ldfpd F_C7, F_C9 = [r3], 16
2109	   // if s>0, set F_PI2_LO=0
2110 (p11) fma.s1 F_PI2_HI = f0, f0, f0;;
2111}
2112
2113{.mfi
2114       nop.m 0
2115 (p11) fma.s1 F_PI2_LO = f0, f0, f0
2116       nop.i 0;;
2117}
2118
2119{.mfi
2120       // adjust address for C_11
2121	   add r3 = 16, r3
2122       // c9*x+c8
2123       fma.s1 F_S89 = F_X, F_CS9, F_CS8
2124       nop.i 0
2125}
2126
2127{.mfi
2128       nop.m 0
2129       // x^2
2130       fma.s1 F_X2 = F_X, F_X, f0
2131       nop.i 0;;
2132}
2133
2134
2135{.mfi
2136       nop.m 0
2137       // y*(1-s^2)*x
2138       fma.s1 F_Y1S2X = F_Y1S2, F_X, f0
2139       nop.i 0
2140}
2141
2142{.mfi
2143       // C11, C13
2144       ldfpd F_C11, F_C13 = [r3], 16
2145       // c7*x+c6
2146       fma.s1 F_S67 = F_X, F_CS7, F_CS6
2147       nop.i 0;;
2148}
2149
2150
2151{.mfi
2152       // C15, C17
2153       ldfpd F_C15, F_C17 = [r3], 16
2154       // c3*x+c2
2155       fma.s1 F_S23 = F_X, F_CS3, F_CS2
2156       nop.i 0;;
2157}
2158
2159
2160{.mfi
2161       nop.m 0
2162       // c5*x+c4
2163       fma.s1 F_S45 = F_X, F_CS5, F_CS4
2164       nop.i 0;;
2165}
2166
2167
2168
2169
2170{.mfi
2171       nop.m 0
2172       // y*(1-s^2)*x^2
2173       fma.s1 F_Y1S2X2 = F_Y1S2, F_X2, f0
2174       nop.i 0
2175}
2176
2177{.mfi
2178       nop.m 0
2179       // x^4
2180       fma.s1 F_X4 = F_X2, F_X2, f0
2181       nop.i 0;;
2182}
2183
2184
2185{.mfi
2186       nop.m 0
2187       // c9*x^3+..+c6
2188       fma.s1 F_S69 = F_X2, F_S89, F_S67
2189       nop.i 0;;
2190}
2191
2192
2193{.mfi
2194       nop.m 0
2195       // c5*x^3+..+c2
2196       fma.s1 F_S25 = F_X2, F_S45, F_S23
2197       nop.i 0;;
2198}
2199
2200
2201
2202{.mfi
2203       nop.m 0
2204       // (pi)_high-y*(1-s^2)_s
2205       fnma.s1 F_HI = F_Y, F_1S2_S, F_PI2_HI
2206       nop.i 0;;
2207}
2208
2209
2210{.mfi
2211       nop.m 0
2212       // c9*x^7+..+c2
2213       fma.s1 F_S29 = F_X4, F_S69, F_S25
2214       nop.i 0;;
2215}
2216
2217
2218{.mfi
2219       nop.m 0
2220       // -(y*(1-s^2)_s)_high
2221       fms.s1 F_1S2_HI = F_HI, f1, F_PI2_HI
2222       nop.i 0;;
2223}
2224
2225
2226{.mfi
2227       nop.m 0
2228       // (PS29*x^2+x)*y*(1-s^2)
2229       fma.s1 F_S19 = F_Y1S2X2, F_S29, F_Y1S2X
2230       nop.i 0;;
2231}
2232
2233
2234{.mfi
2235       nop.m 0
2236       // y*(1-s^2)_s-(y*(1-s^2))_high
2237       fma.s1 F_DS2 = F_Y, F_1S2_S, F_1S2_HI
2238       nop.i 0;;
2239}
2240
2241
2242
2243{.mfi
2244       nop.m 0
2245       // R ~ sqrt(1-s^2)
2246       // (used for polynomial evaluation)
2247       fnma.s1 F_R = F_S19, f1, F_Y1S2
2248       nop.i 0;;
2249}
2250
2251
2252{.mfi
2253       nop.m 0
2254       // y*(1-s^2)-(y*(1-s^2))_high
2255       fma.s1 F_DS2 = F_Y, F_DS, F_DS2
2256       nop.i 0
2257}
2258
2259{.mfi
2260       nop.m 0
2261       // (pi)_low+(PS29*x^2)*y*(1-s^2)
2262       fma.s1 F_S29 = F_Y1S2X2, F_S29, F_PI2_LO
2263       nop.i 0;;
2264}
2265
2266
2267{.mfi
2268       nop.m 0
2269       // R^2
2270       fma.s1 F_R2 = F_R, F_R, f0
2271       nop.i 0;;
2272}
2273
2274
2275{.mfi
2276       nop.m 0
2277	   // if s<0
2278       // (pi)_low+(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-(y*(1-s^2))_high)
2279       fms.s1 F_S29 = F_S29, f1, F_DS2
2280       nop.i 0;;
2281}
2282
2283
2284{.mfi
2285       nop.m 0
2286       // c7+c9*R^2
2287       fma.s1 F_P79 = F_C9, F_R2, F_C7
2288       nop.i 0
2289}
2290
2291{.mfi
2292       nop.m 0
2293       // c3+c5*R^2
2294       fma.s1 F_P35 = F_C5, F_R2, F_C3
2295       nop.i 0;;
2296}
2297
2298
2299
2300{.mfi
2301       nop.m 0
2302       // R^4
2303       fma.s1 F_R4 = F_R2, F_R2, f0
2304       nop.i 0
2305}
2306
2307{.mfi
2308       nop.m 0
2309       // R^3
2310       fma.s1 F_R3 = F_R2, F_R, f0
2311       nop.i 0;;
2312}
2313
2314
2315{.mfi
2316       nop.m 0
2317       // c11+c13*R^2
2318       fma.s1 F_P1113 = F_C13, F_R2, F_C11
2319       nop.i 0
2320}
2321
2322{.mfi
2323       nop.m 0
2324       // c15+c17*R^2
2325       fma.s1 F_P1517 = F_C17, F_R2, F_C15
2326       nop.i 0;;
2327}
2328
2329
2330{.mfi
2331       nop.m 0
2332       // (pi)_low+(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-(y*(1-s^2))_high)+y*(1-s^2)*x
2333       fma.s1 F_S29 = F_Y1S2, F_X, F_S29
2334       nop.i 0;;
2335}
2336
2337
2338{.mfi
2339       nop.m 0
2340       // c11+c13*R^2+c15*R^4+c17*R^6
2341       fma.s1 F_P1117 = F_P1517, F_R4, F_P1113
2342       nop.i 0
2343}
2344
2345{.mfi
2346       nop.m 0
2347       // c3+c5*R^2+c7*R^4+c9*R^6
2348       fma.s1 F_P39 = F_P79, F_R4, F_P35
2349       nop.i 0;;
2350}
2351
2352
2353
2354{.mfi
2355       nop.m 0
2356       // R^8
2357       fma.s1 F_R8 = F_R4, F_R4, f0
2358       nop.i 0;;
2359}
2360
2361
2362{.mfi
2363       nop.m 0
2364       // c3+c5*R^2+c7*R^4+c9*R^6+..+c17*R^14
2365       fma.s1 F_P317 = F_P1117, F_R8, F_P39
2366       nop.i 0;;
2367}
2368
2369
2370{.mfi
2371       nop.m 0
2372       // (pi)_low-(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-
2373       // -(y*(1-s^2))_high)+y*(1-s^2)*x - P3, 17
2374       fnma.s1 F_S29 = F_P317, F_R3, F_S29
2375       nop.i 0;;
2376}
2377
2378.pred.rel "mutex", p6, p11
2379{.mfi
2380       nop.m 0
2381       // Result (if s<0):
2382       // (pi)_low-(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-
2383       // -(y*(1-s^2))_high)+y*(1-s^2)*x - P3, 17
2384       // +(pi)_high-(y*(1-s^2))_high
2385 (p6)  fma.s0 f8 = F_S29, f1, F_HI
2386       nop.i 0
2387}
2388
2389{.mfb
2390       nop.m 0
2391	   // Result (if s>0):
2392       // (PS29*x^2)*y*(1-s^2)-
2393       // -y*(1-s^2)*x + P3, 17
2394       // +(y*(1-s^2))
2395 (p11) fms.s0 f8 = F_Y, F_1S2_S, F_S29
2396       br.ret.sptk b0;;
2397}
2398
2399
2400
2401
2402
2403
2404acosl_SPECIAL_CASES:
2405
2406{.mfi
2407       alloc r32 = ar.pfs, 1, 4, 4, 0
2408       // check if the input is a NaN, or unsupported format
2409       // (i.e. not infinity or normal/denormal)
2410       fclass.nm p7, p8 = f8, 0x3f
2411       // pointer to pi/2
2412       add r3 = 96, r3;;
2413}
2414
2415
2416{.mfi
2417       // load pi/2
2418       ldfpd F_PI2_HI, F_PI2_LO = [r3]
2419       // get |s|
2420       fmerge.s F_S = f0, f8
2421       nop.i 0
2422}
2423
2424{.mfb
2425       nop.m 0
2426       // if NaN, quietize it, and return
2427 (p7) fma.s0 f8 = f8, f1, f0
2428 (p7) br.ret.spnt b0;;
2429}
2430
2431
2432{.mfi
2433       nop.m 0
2434       // |s| = 1 ?
2435       fcmp.eq.s0 p9, p10 = F_S, f1
2436       nop.i 0
2437}
2438
2439{.mfi
2440       nop.m 0
2441       // load FR_X
2442       fma.s1 FR_X = f8, f1, f0
2443       // load error tag
2444       mov GR_Parameter_TAG = 57;;
2445}
2446
2447
2448{.mfi
2449       nop.m 0
2450       // if s = 1, result is 0
2451 (p9)  fma.s0 f8 = f0, f0, f0
2452       // set p6=0 for |s|>1
2453 (p10) cmp.ne p6, p0 = r0, r0;;
2454}
2455
2456
2457{.mfb
2458       nop.m 0
2459       //  if s = -1, result is pi
2460 (p6) fma.s0 f8 = F_PI2_HI, f1, F_PI2_LO
2461       // return if |s| = 1
2462 (p9) br.ret.sptk b0;;
2463}
2464
2465
2466{.mfi
2467       nop.m 0
2468       // get Infinity
2469       frcpa.s1 FR_RESULT, p0 = f1, f0
2470       nop.i 0;;
2471}
2472
2473
2474{.mfb
2475       nop.m 0
2476       // return QNaN indefinite (0*Infinity)
2477       fma.s0 FR_RESULT = f0, FR_RESULT, f0
2478       nop.b 0;;
2479}
2480
2481
2482GLOBAL_LIBM_END(acosl)
2483libm_alias_ldouble_other (acos, acos)
2484
2485
2486LOCAL_LIBM_ENTRY(__libm_error_region)
2487.prologue
2488// (1)
2489{ .mfi
2490        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
2491        nop.f 0
2492.save   ar.pfs,GR_SAVE_PFS
2493        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
2494}
2495{ .mfi
2496.fframe 64
2497        add sp=-64,sp                          // Create new stack
2498        nop.f 0
2499        mov GR_SAVE_GP=gp                      // Save gp
2500};;
2501
2502
2503// (2)
2504{ .mmi
2505        stfe [GR_Parameter_Y] = f1,16         // Store Parameter 2 on stack
2506        add GR_Parameter_X = 16,sp            // Parameter 1 address
2507.save   b0, GR_SAVE_B0
2508        mov GR_SAVE_B0=b0                     // Save b0
2509};;
2510
2511.body
2512// (3)
2513{ .mib
2514        stfe [GR_Parameter_X] = FR_X              // Store Parameter 1 on stack
2515        add   GR_Parameter_RESULT = 0,GR_Parameter_Y
2516        nop.b 0                                 // Parameter 3 address
2517}
2518{ .mib
2519        stfe [GR_Parameter_Y] = FR_RESULT             // Store Parameter 3 on stack
2520        add   GR_Parameter_Y = -16,GR_Parameter_Y
2521        br.call.sptk b0=__libm_error_support#   // Call error handling function
2522};;
2523{ .mmi
2524        nop.m 0
2525        nop.m 0
2526        add   GR_Parameter_RESULT = 48,sp
2527};;
2528
2529// (4)
2530{ .mmi
2531        ldfe  f8 = [GR_Parameter_RESULT]       // Get return result off stack
2532.restore sp
2533        add   sp = 64,sp                       // Restore stack pointer
2534        mov   b0 = GR_SAVE_B0                  // Restore return address
2535};;
2536
2537{ .mib
2538        mov   gp = GR_SAVE_GP                  // Restore gp
2539        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
2540        br.ret.sptk     b0                     // Return
2541};;
2542
2543LOCAL_LIBM_END(__libm_error_region)
2544
2545.type   __libm_error_support#,@function
2546.global __libm_error_support#
2547