1/* ix87 specific implementation of pow function. 2 Copyright (C) 1996-2022 Free Software Foundation, Inc. 3 This file is part of the GNU C Library. 4 5 The GNU C Library is free software; you can redistribute it and/or 6 modify it under the terms of the GNU Lesser General Public 7 License as published by the Free Software Foundation; either 8 version 2.1 of the License, or (at your option) any later version. 9 10 The GNU C Library is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13 Lesser General Public License for more details. 14 15 You should have received a copy of the GNU Lesser General Public 16 License along with the GNU C Library; if not, see 17 <https://www.gnu.org/licenses/>. */ 18 19#include <machine/asm.h> 20#include <i386-math-asm.h> 21#include <libm-alias-finite.h> 22 23 .section .rodata.cst8,"aM",@progbits,8 24 25 .p2align 3 26 .type one,@object 27one: .double 1.0 28 ASM_SIZE_DIRECTIVE(one) 29 .type limit,@object 30limit: .double 0.29 31 ASM_SIZE_DIRECTIVE(limit) 32 .type p63,@object 33p63: .byte 0, 0, 0, 0, 0, 0, 0xe0, 0x43 34 ASM_SIZE_DIRECTIVE(p63) 35 .type p10,@object 36p10: .byte 0, 0, 0, 0, 0, 0, 0x90, 0x40 37 ASM_SIZE_DIRECTIVE(p10) 38 39 .section .rodata.cst16,"aM",@progbits,16 40 41 .p2align 3 42 .type infinity,@object 43inf_zero: 44infinity: 45 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f 46 ASM_SIZE_DIRECTIVE(infinity) 47 .type zero,@object 48zero: .double 0.0 49 ASM_SIZE_DIRECTIVE(zero) 50 .type minf_mzero,@object 51minf_mzero: 52minfinity: 53 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff 54mzero: 55 .byte 0, 0, 0, 0, 0, 0, 0, 0x80 56 ASM_SIZE_DIRECTIVE(minf_mzero) 57DEFINE_DBL_MIN 58 59#ifdef PIC 60# define MO(op) op##@GOTOFF(%ecx) 61# define MOX(op,x,f) op##@GOTOFF(%ecx,x,f) 62#else 63# define MO(op) op 64# define MOX(op,x,f) op(,x,f) 65#endif 66 67 .text 68ENTRY(__ieee754_pow) 69 fldl 12(%esp) // y 70 fxam 71 72#ifdef PIC 73 LOAD_PIC_REG (cx) 74#endif 75 76 fnstsw 77 movb %ah, %dl 78 andb $0x45, %ah 79 cmpb $0x40, %ah // is y == 0 ? 80 je 11f 81 82 cmpb $0x05, %ah // is y == ±inf ? 83 je 12f 84 85 cmpb $0x01, %ah // is y == NaN ? 86 je 30f 87 88 fldl 4(%esp) // x : y 89 90 subl $8,%esp 91 cfi_adjust_cfa_offset (8) 92 93 fxam 94 fnstsw 95 movb %ah, %dh 96 andb $0x45, %ah 97 cmpb $0x40, %ah 98 je 20f // x is ±0 99 100 cmpb $0x05, %ah 101 je 15f // x is ±inf 102 103 cmpb $0x01, %ah 104 je 32f // x is NaN 105 106 fxch // y : x 107 108 /* fistpll raises invalid exception for |y| >= 1L<<63. */ 109 fld %st // y : y : x 110 fabs // |y| : y : x 111 fcompl MO(p63) // y : x 112 fnstsw 113 sahf 114 jnc 2f 115 116 /* First see whether `y' is a natural number. In this case we 117 can use a more precise algorithm. */ 118 fld %st // y : y : x 119 fistpll (%esp) // y : x 120 fildll (%esp) // int(y) : y : x 121 fucomp %st(1) // y : x 122 fnstsw 123 sahf 124 jne 3f 125 126 /* OK, we have an integer value for y. If large enough that 127 errors may propagate out of the 11 bits excess precision, use 128 the algorithm for real exponent instead. */ 129 fld %st // y : y : x 130 fabs // |y| : y : x 131 fcompl MO(p10) // y : x 132 fnstsw 133 sahf 134 jnc 2f 135 popl %eax 136 cfi_adjust_cfa_offset (-4) 137 popl %edx 138 cfi_adjust_cfa_offset (-4) 139 orl $0, %edx 140 fstp %st(0) // x 141 jns 4f // y >= 0, jump 142 fdivrl MO(one) // 1/x (now referred to as x) 143 negl %eax 144 adcl $0, %edx 145 negl %edx 1464: fldl MO(one) // 1 : x 147 fxch 148 149 /* If y is even, take the absolute value of x. Otherwise, 150 ensure all intermediate values that might overflow have the 151 sign of x. */ 152 testb $1, %al 153 jnz 6f 154 fabs 155 1566: shrdl $1, %edx, %eax 157 jnc 5f 158 fxch 159 fabs 160 fmul %st(1) // x : ST*x 161 fxch 1625: fld %st // x : x : ST*x 163 fabs // |x| : x : ST*x 164 fmulp // |x|*x : ST*x 165 shrl $1, %edx 166 movl %eax, %ecx 167 orl %edx, %ecx 168 jnz 6b 169 fstp %st(0) // ST*x 170#ifdef PIC 171 LOAD_PIC_REG (cx) 172#endif 173 DBL_NARROW_EVAL_UFLOW_NONNAN 174 ret 175 176 /* y is ±NAN */ 17730: fldl 4(%esp) // x : y 178 fldl MO(one) // 1.0 : x : y 179 fucomp %st(1) // x : y 180 fnstsw 181 sahf 182 je 31f 183 fxch // y : x 18431: fstp %st(1) 185 ret 186 187 cfi_adjust_cfa_offset (8) 18832: addl $8, %esp 189 cfi_adjust_cfa_offset (-8) 190 fstp %st(1) 191 ret 192 193 cfi_adjust_cfa_offset (8) 194 .align ALIGNARG(4) 1952: // y is a large integer (absolute value at least 1L<<10), but 196 // may be odd unless at least 1L<<64. So it may be necessary 197 // to adjust the sign of a negative result afterwards. 198 fxch // x : y 199 fabs // |x| : y 200 fxch // y : x 201 .align ALIGNARG(4) 2023: /* y is a real number. */ 203 fxch // x : y 204 fldl MO(one) // 1.0 : x : y 205 fldl MO(limit) // 0.29 : 1.0 : x : y 206 fld %st(2) // x : 0.29 : 1.0 : x : y 207 fsub %st(2) // x-1 : 0.29 : 1.0 : x : y 208 fabs // |x-1| : 0.29 : 1.0 : x : y 209 fucompp // 1.0 : x : y 210 fnstsw 211 fxch // x : 1.0 : y 212 sahf 213 ja 7f 214 fsub %st(1) // x-1 : 1.0 : y 215 fyl2xp1 // log2(x) : y 216 jmp 8f 217 2187: fyl2x // log2(x) : y 2198: fmul %st(1) // y*log2(x) : y 220 fst %st(1) // y*log2(x) : y*log2(x) 221 frndint // int(y*log2(x)) : y*log2(x) 222 fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x)) 223 fxch // fract(y*log2(x)) : int(y*log2(x)) 224 f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x)) 225 faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x)) 226 227 // Before scaling, we must negate if x is negative and y is an 228 // odd integer. 229 testb $2, %dh 230 jz 291f 231 // x is negative. If y is an odd integer, negate the result. 232 fldl 20(%esp) // y : 2^fract(y*log2(x)) : int(y*log2(x)) 233 fld %st // y : y : 2^fract(y*log2(x)) : int(y*log2(x)) 234 fabs // |y| : y : 2^fract(y*log2(x)) : int(y*log2(x)) 235 fcompl MO(p63) // y : 2^fract(y*log2(x)) : int(y*log2(x)) 236 fnstsw 237 sahf 238 jnc 290f 239 240 // We must find out whether y is an odd integer. 241 fld %st // y : y : 2^fract(y*log2(x)) : int(y*log2(x)) 242 fistpll (%esp) // y : 2^fract(y*log2(x)) : int(y*log2(x)) 243 fildll (%esp) // int(y) : y : 2^fract(y*log2(x)) : int(y*log2(x)) 244 fucompp // 2^fract(y*log2(x)) : int(y*log2(x)) 245 fnstsw 246 sahf 247 jne 291f 248 249 // OK, the value is an integer, but is it odd? 250 popl %eax 251 cfi_adjust_cfa_offset (-4) 252 popl %edx 253 cfi_adjust_cfa_offset (-4) 254 andb $1, %al 255 jz 292f // jump if not odd 256 // It's an odd integer. 257 fchs 258 jmp 292f 259 260 cfi_adjust_cfa_offset (8) 261290: fstp %st(0) // 2^fract(y*log2(x)) : int(y*log2(x)) 262291: addl $8, %esp 263 cfi_adjust_cfa_offset (-8) 264292: fscale // +/- 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x)) 265 fstp %st(1) // +/- 2^fract(y*log2(x))*2^int(y*log2(x)) 266 DBL_NARROW_EVAL_UFLOW_NONNAN 267 ret 268 269 270 // pow(x,±0) = 1 271 .align ALIGNARG(4) 27211: fstp %st(0) // pop y 273 fldl MO(one) 274 ret 275 276 // y == ±inf 277 .align ALIGNARG(4) 27812: fstp %st(0) // pop y 279 fldl MO(one) // 1 280 fldl 4(%esp) // x : 1 281 fabs // abs(x) : 1 282 fucompp // < 1, == 1, or > 1 283 fnstsw 284 andb $0x45, %ah 285 cmpb $0x45, %ah 286 je 13f // jump if x is NaN 287 288 cmpb $0x40, %ah 289 je 14f // jump if |x| == 1 290 291 shlb $1, %ah 292 xorb %ah, %dl 293 andl $2, %edx 294 fldl MOX(inf_zero, %edx, 4) 295 ret 296 297 .align ALIGNARG(4) 29814: fldl MO(one) 299 ret 300 301 .align ALIGNARG(4) 30213: fldl 4(%esp) // load x == NaN 303 ret 304 305 cfi_adjust_cfa_offset (8) 306 .align ALIGNARG(4) 307 // x is ±inf 30815: fstp %st(0) // y 309 testb $2, %dh 310 jz 16f // jump if x == +inf 311 312 // fistpll raises invalid exception for |y| >= 1L<<63, so test 313 // that (in which case y is certainly even) before testing 314 // whether y is odd. 315 fld %st // y : y 316 fabs // |y| : y 317 fcompl MO(p63) // y 318 fnstsw 319 sahf 320 jnc 16f 321 322 // We must find out whether y is an odd integer. 323 fld %st // y : y 324 fistpll (%esp) // y 325 fildll (%esp) // int(y) : y 326 fucompp // <empty> 327 fnstsw 328 sahf 329 jne 17f 330 331 // OK, the value is an integer. 332 popl %eax 333 cfi_adjust_cfa_offset (-4) 334 popl %edx 335 cfi_adjust_cfa_offset (-4) 336 andb $1, %al 337 jz 18f // jump if not odd 338 // It's an odd integer. 339 shrl $31, %edx 340 fldl MOX(minf_mzero, %edx, 8) 341 ret 342 343 cfi_adjust_cfa_offset (8) 344 .align ALIGNARG(4) 34516: fcompl MO(zero) 346 addl $8, %esp 347 cfi_adjust_cfa_offset (-8) 348 fnstsw 349 shrl $5, %eax 350 andl $8, %eax 351 fldl MOX(inf_zero, %eax, 1) 352 ret 353 354 cfi_adjust_cfa_offset (8) 355 .align ALIGNARG(4) 35617: shll $30, %edx // sign bit for y in right position 357 addl $8, %esp 358 cfi_adjust_cfa_offset (-8) 35918: shrl $31, %edx 360 fldl MOX(inf_zero, %edx, 8) 361 ret 362 363 cfi_adjust_cfa_offset (8) 364 .align ALIGNARG(4) 365 // x is ±0 36620: fstp %st(0) // y 367 testb $2, %dl 368 jz 21f // y > 0 369 370 // x is ±0 and y is < 0. We must find out whether y is an odd integer. 371 testb $2, %dh 372 jz 25f 373 374 // fistpll raises invalid exception for |y| >= 1L<<63, so test 375 // that (in which case y is certainly even) before testing 376 // whether y is odd. 377 fld %st // y : y 378 fabs // |y| : y 379 fcompl MO(p63) // y 380 fnstsw 381 sahf 382 jnc 25f 383 384 fld %st // y : y 385 fistpll (%esp) // y 386 fildll (%esp) // int(y) : y 387 fucompp // <empty> 388 fnstsw 389 sahf 390 jne 26f 391 392 // OK, the value is an integer. 393 popl %eax 394 cfi_adjust_cfa_offset (-4) 395 popl %edx 396 cfi_adjust_cfa_offset (-4) 397 andb $1, %al 398 jz 27f // jump if not odd 399 // It's an odd integer. 400 // Raise divide-by-zero exception and get minus infinity value. 401 fldl MO(one) 402 fdivl MO(zero) 403 fchs 404 ret 405 406 cfi_adjust_cfa_offset (8) 40725: fstp %st(0) 40826: addl $8, %esp 409 cfi_adjust_cfa_offset (-8) 41027: // Raise divide-by-zero exception and get infinity value. 411 fldl MO(one) 412 fdivl MO(zero) 413 ret 414 415 cfi_adjust_cfa_offset (8) 416 .align ALIGNARG(4) 417 // x is ±0 and y is > 0. We must find out whether y is an odd integer. 41821: testb $2, %dh 419 jz 22f 420 421 // fistpll raises invalid exception for |y| >= 1L<<63, so test 422 // that (in which case y is certainly even) before testing 423 // whether y is odd. 424 fcoml MO(p63) // y 425 fnstsw 426 sahf 427 jnc 22f 428 429 fld %st // y : y 430 fistpll (%esp) // y 431 fildll (%esp) // int(y) : y 432 fucompp // <empty> 433 fnstsw 434 sahf 435 jne 23f 436 437 // OK, the value is an integer. 438 popl %eax 439 cfi_adjust_cfa_offset (-4) 440 popl %edx 441 cfi_adjust_cfa_offset (-4) 442 andb $1, %al 443 jz 24f // jump if not odd 444 // It's an odd integer. 445 fldl MO(mzero) 446 ret 447 448 cfi_adjust_cfa_offset (8) 44922: fstp %st(0) 45023: addl $8, %esp // Don't use 2 x pop 451 cfi_adjust_cfa_offset (-8) 45224: fldl MO(zero) 453 ret 454 455END(__ieee754_pow) 456libm_alias_finite (__ieee754_pow, __pow) 457