1 /* Private function declarations for libm. 2 Copyright (C) 2011-2022 Free Software Foundation, Inc. 3 This file is part of the GNU C Library. 4 5 The GNU C Library is free software; you can redistribute it and/or 6 modify it under the terms of the GNU Lesser General Public 7 License as published by the Free Software Foundation; either 8 version 2.1 of the License, or (at your option) any later version. 9 10 The GNU C Library is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13 Lesser General Public License for more details. 14 15 You should have received a copy of the GNU Lesser General Public 16 License along with the GNU C Library; if not, see 17 <https://www.gnu.org/licenses/>. */ 18 19 #define __MSUF_X(x, suffix) x ## suffix 20 #define __MSUF_S(...) __MSUF_X (__VA_ARGS__) 21 #define __MSUF(x) __MSUF_S (x, _MSUF_) 22 23 #define __MSUF_R_X(x, suffix) x ## suffix ## _r 24 #define __MSUF_R_S(...) __MSUF_R_X (__VA_ARGS__) 25 #define __MSUF_R(x) __MSUF_R_S (x, _MSUF_) 26 27 /* IEEE style elementary functions. */ 28 extern _Mdouble_ __MSUF (__ieee754_acos) (_Mdouble_); 29 extern _Mdouble_ __MSUF (__ieee754_acosh) (_Mdouble_); 30 extern _Mdouble_ __MSUF (__ieee754_asin) (_Mdouble_); 31 extern _Mdouble_ __MSUF (__ieee754_atan2) (_Mdouble_, _Mdouble_); 32 extern _Mdouble_ __MSUF (__ieee754_atanh) (_Mdouble_); 33 extern _Mdouble_ __MSUF (__ieee754_cosh) (_Mdouble_); 34 extern _Mdouble_ __MSUF (__ieee754_exp) (_Mdouble_); 35 extern _Mdouble_ __MSUF (__ieee754_exp10) (_Mdouble_); 36 extern _Mdouble_ __MSUF (__ieee754_exp2) (_Mdouble_); 37 extern _Mdouble_ __MSUF (__ieee754_fmod) (_Mdouble_, _Mdouble_); 38 extern _Mdouble_ __MSUF (__ieee754_gamma) (_Mdouble_); 39 extern _Mdouble_ __MSUF_R (__ieee754_gamma) (_Mdouble_, int *); 40 extern _Mdouble_ __MSUF (__ieee754_hypot) (_Mdouble_, _Mdouble_); 41 extern _Mdouble_ __MSUF (__ieee754_j0) (_Mdouble_); 42 extern _Mdouble_ __MSUF (__ieee754_j1) (_Mdouble_); 43 extern _Mdouble_ __MSUF (__ieee754_jn) (int, _Mdouble_); 44 extern _Mdouble_ __MSUF (__ieee754_lgamma) (_Mdouble_); 45 extern _Mdouble_ __MSUF_R (__ieee754_lgamma) (_Mdouble_, int *); 46 extern _Mdouble_ __MSUF (__ieee754_log) (_Mdouble_); 47 extern _Mdouble_ __MSUF (__ieee754_log10) (_Mdouble_); 48 extern _Mdouble_ __MSUF (__ieee754_log2) (_Mdouble_); 49 extern _Mdouble_ __MSUF (__ieee754_pow) (_Mdouble_, _Mdouble_); 50 extern _Mdouble_ __MSUF (__ieee754_remainder) (_Mdouble_, _Mdouble_); 51 extern _Mdouble_ __MSUF (__ieee754_sinh) (_Mdouble_); 52 extern _Mdouble_ __MSUF (__ieee754_sqrt) (_Mdouble_); 53 extern _Mdouble_ __MSUF (__ieee754_y0) (_Mdouble_); 54 extern _Mdouble_ __MSUF (__ieee754_y1) (_Mdouble_); 55 extern _Mdouble_ __MSUF (__ieee754_yn) (int, _Mdouble_); 56 57 extern _Mdouble_ __MSUF (__ieee754_scalb) (_Mdouble_, _Mdouble_); 58 extern int __MSUF (__ieee754_ilogb) (_Mdouble_); 59 60 extern int32_t __MSUF (__ieee754_rem_pio2) (_Mdouble_, _Mdouble_ *); 61 62 /* fdlibm kernel functions. */ 63 extern _Mdouble_ __MSUF (__kernel_sin) (_Mdouble_, _Mdouble_, int); 64 extern _Mdouble_ __MSUF (__kernel_cos) (_Mdouble_, _Mdouble_); 65 extern _Mdouble_ __MSUF (__kernel_tan) (_Mdouble_, _Mdouble_, int); 66 67 #if defined __MATH_DECLARING_LONG_DOUBLE || defined __MATH_DECLARING_FLOATN 68 extern void __MSUF (__kernel_sincos) (_Mdouble_, _Mdouble_, 69 _Mdouble_ *, _Mdouble_ *, int); 70 #endif 71 72 #if !defined __MATH_DECLARING_LONG_DOUBLE || defined __MATH_DECLARING_FLOATN 73 extern int __MSUF (__kernel_rem_pio2) (_Mdouble_ *, _Mdouble_ *, int, 74 int, int, const int32_t *); 75 #endif 76 77 /* Internal functions. */ 78 79 /* Return X^2 + Y^2 - 1, computed without large cancellation error. 80 It is given that 1 > X >= Y >= epsilon / 2, and that X^2 + Y^2 >= 81 0.5. */ 82 extern _Mdouble_ __MSUF (__x2y2m1) (_Mdouble_ x, _Mdouble_ y); 83 84 /* Compute the product of X + X_EPS, X + X_EPS + 1, ..., X + X_EPS + N 85 - 1, in the form R * (1 + *EPS) where the return value R is an 86 approximation to the product and *EPS is set to indicate the 87 approximate error in the return value. X is such that all the 88 values X + 1, ..., X + N - 1 are exactly representable, and X_EPS / 89 X is small enough that factors quadratic in it can be 90 neglected. */ 91 extern _Mdouble_ __MSUF (__gamma_product) (_Mdouble_ x, _Mdouble_ x_eps, 92 int n, _Mdouble_ *eps); 93 94 /* Compute lgamma of a negative argument X, if it is in a range 95 (depending on the floating-point format) for which expansion around 96 zeros is used, setting *SIGNGAMP accordingly. */ 97 extern _Mdouble_ __MSUF (__lgamma_neg) (_Mdouble_ x, int *signgamp); 98 99 /* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS + 100 1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1. X is such that 101 all the values X + 1, ..., X + N - 1 are exactly representable, and 102 X_EPS / X is small enough that factors quadratic in it can be 103 neglected. */ 104 #if !defined __MATH_DECLARING_FLOAT 105 extern _Mdouble_ __MSUF (__lgamma_product) (_Mdouble_ t, _Mdouble_ x, 106 _Mdouble_ x_eps, int n); 107 #endif 108 109 #undef __MSUF_X 110 #undef __MSUF_S 111 #undef __MSUF 112 113 #undef __MSUF_R_X 114 #undef __MSUF_R_S 115 #undef __MSUF_R 116