1 /* Private function declarations for libm.
2    Copyright (C) 2011-2022 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 #define __MSUF_X(x, suffix) x ## suffix
20 #define __MSUF_S(...) __MSUF_X (__VA_ARGS__)
21 #define __MSUF(x) __MSUF_S (x, _MSUF_)
22 
23 #define __MSUF_R_X(x, suffix) x ## suffix ## _r
24 #define __MSUF_R_S(...) __MSUF_R_X (__VA_ARGS__)
25 #define __MSUF_R(x) __MSUF_R_S (x, _MSUF_)
26 
27 /* IEEE style elementary functions.  */
28 extern _Mdouble_ __MSUF (__ieee754_acos) (_Mdouble_);
29 extern _Mdouble_ __MSUF (__ieee754_acosh) (_Mdouble_);
30 extern _Mdouble_ __MSUF (__ieee754_asin) (_Mdouble_);
31 extern _Mdouble_ __MSUF (__ieee754_atan2) (_Mdouble_, _Mdouble_);
32 extern _Mdouble_ __MSUF (__ieee754_atanh) (_Mdouble_);
33 extern _Mdouble_ __MSUF (__ieee754_cosh) (_Mdouble_);
34 extern _Mdouble_ __MSUF (__ieee754_exp) (_Mdouble_);
35 extern _Mdouble_ __MSUF (__ieee754_exp10) (_Mdouble_);
36 extern _Mdouble_ __MSUF (__ieee754_exp2) (_Mdouble_);
37 extern _Mdouble_ __MSUF (__ieee754_fmod) (_Mdouble_, _Mdouble_);
38 extern _Mdouble_ __MSUF (__ieee754_gamma) (_Mdouble_);
39 extern _Mdouble_ __MSUF_R (__ieee754_gamma) (_Mdouble_, int *);
40 extern _Mdouble_ __MSUF (__ieee754_hypot) (_Mdouble_, _Mdouble_);
41 extern _Mdouble_ __MSUF (__ieee754_j0) (_Mdouble_);
42 extern _Mdouble_ __MSUF (__ieee754_j1) (_Mdouble_);
43 extern _Mdouble_ __MSUF (__ieee754_jn) (int, _Mdouble_);
44 extern _Mdouble_ __MSUF (__ieee754_lgamma) (_Mdouble_);
45 extern _Mdouble_ __MSUF_R (__ieee754_lgamma) (_Mdouble_, int *);
46 extern _Mdouble_ __MSUF (__ieee754_log) (_Mdouble_);
47 extern _Mdouble_ __MSUF (__ieee754_log10) (_Mdouble_);
48 extern _Mdouble_ __MSUF (__ieee754_log2) (_Mdouble_);
49 extern _Mdouble_ __MSUF (__ieee754_pow) (_Mdouble_, _Mdouble_);
50 extern _Mdouble_ __MSUF (__ieee754_remainder) (_Mdouble_, _Mdouble_);
51 extern _Mdouble_ __MSUF (__ieee754_sinh) (_Mdouble_);
52 extern _Mdouble_ __MSUF (__ieee754_sqrt) (_Mdouble_);
53 extern _Mdouble_ __MSUF (__ieee754_y0) (_Mdouble_);
54 extern _Mdouble_ __MSUF (__ieee754_y1) (_Mdouble_);
55 extern _Mdouble_ __MSUF (__ieee754_yn) (int, _Mdouble_);
56 
57 extern _Mdouble_ __MSUF (__ieee754_scalb) (_Mdouble_, _Mdouble_);
58 extern int __MSUF (__ieee754_ilogb) (_Mdouble_);
59 
60 extern int32_t __MSUF (__ieee754_rem_pio2) (_Mdouble_, _Mdouble_ *);
61 
62 /* fdlibm kernel functions.  */
63 extern _Mdouble_ __MSUF (__kernel_sin) (_Mdouble_, _Mdouble_, int);
64 extern _Mdouble_ __MSUF (__kernel_cos) (_Mdouble_, _Mdouble_);
65 extern _Mdouble_ __MSUF (__kernel_tan) (_Mdouble_, _Mdouble_, int);
66 
67 #if defined __MATH_DECLARING_LONG_DOUBLE || defined __MATH_DECLARING_FLOATN
68 extern void __MSUF (__kernel_sincos) (_Mdouble_, _Mdouble_,
69 				      _Mdouble_ *, _Mdouble_ *, int);
70 #endif
71 
72 #if !defined __MATH_DECLARING_LONG_DOUBLE || defined __MATH_DECLARING_FLOATN
73 extern int __MSUF (__kernel_rem_pio2) (_Mdouble_ *, _Mdouble_ *, int,
74 				       int, int, const int32_t *);
75 #endif
76 
77 /* Internal functions.  */
78 
79 /* Return X^2 + Y^2 - 1, computed without large cancellation error.
80    It is given that 1 > X >= Y >= epsilon / 2, and that X^2 + Y^2 >=
81    0.5.  */
82 extern _Mdouble_ __MSUF (__x2y2m1) (_Mdouble_ x, _Mdouble_ y);
83 
84 /* Compute the product of X + X_EPS, X + X_EPS + 1, ..., X + X_EPS + N
85    - 1, in the form R * (1 + *EPS) where the return value R is an
86    approximation to the product and *EPS is set to indicate the
87    approximate error in the return value.  X is such that all the
88    values X + 1, ..., X + N - 1 are exactly representable, and X_EPS /
89    X is small enough that factors quadratic in it can be
90    neglected.  */
91 extern _Mdouble_ __MSUF (__gamma_product) (_Mdouble_ x, _Mdouble_ x_eps,
92 					   int n, _Mdouble_ *eps);
93 
94 /* Compute lgamma of a negative argument X, if it is in a range
95    (depending on the floating-point format) for which expansion around
96    zeros is used, setting *SIGNGAMP accordingly.  */
97 extern _Mdouble_ __MSUF (__lgamma_neg) (_Mdouble_ x, int *signgamp);
98 
99 /* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS +
100    1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1.  X is such that
101    all the values X + 1, ..., X + N - 1 are exactly representable, and
102    X_EPS / X is small enough that factors quadratic in it can be
103    neglected.  */
104 #if !defined __MATH_DECLARING_FLOAT
105 extern _Mdouble_ __MSUF (__lgamma_product) (_Mdouble_ t, _Mdouble_ x,
106 					    _Mdouble_ x_eps, int n);
107 #endif
108 
109 #undef __MSUF_X
110 #undef __MSUF_S
111 #undef __MSUF
112 
113 #undef __MSUF_R_X
114 #undef __MSUF_R_S
115 #undef __MSUF_R
116