1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Designware SPI core controller driver (refer pxa2xx_spi.c)
4 *
5 * Copyright (c) 2009, Intel Corporation.
6 */
7
8 #include <linux/bitfield.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/preempt.h>
13 #include <linux/highmem.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18 #include <linux/string.h>
19 #include <linux/of.h>
20
21 #include "spi-dw.h"
22
23 #ifdef CONFIG_DEBUG_FS
24 #include <linux/debugfs.h>
25 #endif
26
27 /* Slave spi_device related */
28 struct dw_spi_chip_data {
29 u32 cr0;
30 u32 rx_sample_dly; /* RX sample delay */
31 };
32
33 #ifdef CONFIG_DEBUG_FS
34
35 #define DW_SPI_DBGFS_REG(_name, _off) \
36 { \
37 .name = _name, \
38 .offset = _off, \
39 }
40
41 static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
42 DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
43 DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
44 DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
45 DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
46 DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
47 DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
48 DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
49 DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
50 DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
51 DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
52 DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
53 DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
54 DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
55 DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
56 DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
57 DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
58 };
59
dw_spi_debugfs_init(struct dw_spi * dws)60 static int dw_spi_debugfs_init(struct dw_spi *dws)
61 {
62 char name[32];
63
64 snprintf(name, 32, "dw_spi%d", dws->master->bus_num);
65 dws->debugfs = debugfs_create_dir(name, NULL);
66 if (!dws->debugfs)
67 return -ENOMEM;
68
69 dws->regset.regs = dw_spi_dbgfs_regs;
70 dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
71 dws->regset.base = dws->regs;
72 debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
73
74 return 0;
75 }
76
dw_spi_debugfs_remove(struct dw_spi * dws)77 static void dw_spi_debugfs_remove(struct dw_spi *dws)
78 {
79 debugfs_remove_recursive(dws->debugfs);
80 }
81
82 #else
dw_spi_debugfs_init(struct dw_spi * dws)83 static inline int dw_spi_debugfs_init(struct dw_spi *dws)
84 {
85 return 0;
86 }
87
dw_spi_debugfs_remove(struct dw_spi * dws)88 static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
89 {
90 }
91 #endif /* CONFIG_DEBUG_FS */
92
dw_spi_set_cs(struct spi_device * spi,bool enable)93 void dw_spi_set_cs(struct spi_device *spi, bool enable)
94 {
95 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
96 bool cs_high = !!(spi->mode & SPI_CS_HIGH);
97
98 /*
99 * DW SPI controller demands any native CS being set in order to
100 * proceed with data transfer. So in order to activate the SPI
101 * communications we must set a corresponding bit in the Slave
102 * Enable register no matter whether the SPI core is configured to
103 * support active-high or active-low CS level.
104 */
105 if (cs_high == enable)
106 dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select));
107 else
108 dw_writel(dws, DW_SPI_SER, 0);
109 }
110 EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, SPI_DW_CORE);
111
112 /* Return the max entries we can fill into tx fifo */
dw_spi_tx_max(struct dw_spi * dws)113 static inline u32 dw_spi_tx_max(struct dw_spi *dws)
114 {
115 u32 tx_room, rxtx_gap;
116
117 tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
118
119 /*
120 * Another concern is about the tx/rx mismatch, we
121 * though to use (dws->fifo_len - rxflr - txflr) as
122 * one maximum value for tx, but it doesn't cover the
123 * data which is out of tx/rx fifo and inside the
124 * shift registers. So a control from sw point of
125 * view is taken.
126 */
127 rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
128
129 return min3((u32)dws->tx_len, tx_room, rxtx_gap);
130 }
131
132 /* Return the max entries we should read out of rx fifo */
dw_spi_rx_max(struct dw_spi * dws)133 static inline u32 dw_spi_rx_max(struct dw_spi *dws)
134 {
135 return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
136 }
137
dw_writer(struct dw_spi * dws)138 static void dw_writer(struct dw_spi *dws)
139 {
140 u32 max = dw_spi_tx_max(dws);
141 u32 txw = 0;
142
143 while (max--) {
144 if (dws->tx) {
145 if (dws->n_bytes == 1)
146 txw = *(u8 *)(dws->tx);
147 else if (dws->n_bytes == 2)
148 txw = *(u16 *)(dws->tx);
149 else
150 txw = *(u32 *)(dws->tx);
151
152 dws->tx += dws->n_bytes;
153 }
154 dw_write_io_reg(dws, DW_SPI_DR, txw);
155 --dws->tx_len;
156 }
157 }
158
dw_reader(struct dw_spi * dws)159 static void dw_reader(struct dw_spi *dws)
160 {
161 u32 max = dw_spi_rx_max(dws);
162 u32 rxw;
163
164 while (max--) {
165 rxw = dw_read_io_reg(dws, DW_SPI_DR);
166 if (dws->rx) {
167 if (dws->n_bytes == 1)
168 *(u8 *)(dws->rx) = rxw;
169 else if (dws->n_bytes == 2)
170 *(u16 *)(dws->rx) = rxw;
171 else
172 *(u32 *)(dws->rx) = rxw;
173
174 dws->rx += dws->n_bytes;
175 }
176 --dws->rx_len;
177 }
178 }
179
dw_spi_check_status(struct dw_spi * dws,bool raw)180 int dw_spi_check_status(struct dw_spi *dws, bool raw)
181 {
182 u32 irq_status;
183 int ret = 0;
184
185 if (raw)
186 irq_status = dw_readl(dws, DW_SPI_RISR);
187 else
188 irq_status = dw_readl(dws, DW_SPI_ISR);
189
190 if (irq_status & DW_SPI_INT_RXOI) {
191 dev_err(&dws->master->dev, "RX FIFO overflow detected\n");
192 ret = -EIO;
193 }
194
195 if (irq_status & DW_SPI_INT_RXUI) {
196 dev_err(&dws->master->dev, "RX FIFO underflow detected\n");
197 ret = -EIO;
198 }
199
200 if (irq_status & DW_SPI_INT_TXOI) {
201 dev_err(&dws->master->dev, "TX FIFO overflow detected\n");
202 ret = -EIO;
203 }
204
205 /* Generically handle the erroneous situation */
206 if (ret) {
207 dw_spi_reset_chip(dws);
208 if (dws->master->cur_msg)
209 dws->master->cur_msg->status = ret;
210 }
211
212 return ret;
213 }
214 EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, SPI_DW_CORE);
215
dw_spi_transfer_handler(struct dw_spi * dws)216 static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
217 {
218 u16 irq_status = dw_readl(dws, DW_SPI_ISR);
219
220 if (dw_spi_check_status(dws, false)) {
221 spi_finalize_current_transfer(dws->master);
222 return IRQ_HANDLED;
223 }
224
225 /*
226 * Read data from the Rx FIFO every time we've got a chance executing
227 * this method. If there is nothing left to receive, terminate the
228 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
229 * final stage of the transfer. By doing so we'll get the next IRQ
230 * right when the leftover incoming data is received.
231 */
232 dw_reader(dws);
233 if (!dws->rx_len) {
234 dw_spi_mask_intr(dws, 0xff);
235 spi_finalize_current_transfer(dws->master);
236 } else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
237 dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
238 }
239
240 /*
241 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
242 * disabled after the data transmission is finished so not to
243 * have the TXE IRQ flood at the final stage of the transfer.
244 */
245 if (irq_status & DW_SPI_INT_TXEI) {
246 dw_writer(dws);
247 if (!dws->tx_len)
248 dw_spi_mask_intr(dws, DW_SPI_INT_TXEI);
249 }
250
251 return IRQ_HANDLED;
252 }
253
dw_spi_irq(int irq,void * dev_id)254 static irqreturn_t dw_spi_irq(int irq, void *dev_id)
255 {
256 struct spi_controller *master = dev_id;
257 struct dw_spi *dws = spi_controller_get_devdata(master);
258 u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK;
259
260 if (!irq_status)
261 return IRQ_NONE;
262
263 if (!master->cur_msg) {
264 dw_spi_mask_intr(dws, 0xff);
265 return IRQ_HANDLED;
266 }
267
268 return dws->transfer_handler(dws);
269 }
270
dw_spi_prepare_cr0(struct dw_spi * dws,struct spi_device * spi)271 static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
272 {
273 u32 cr0 = 0;
274
275 if (dw_spi_ip_is(dws, PSSI)) {
276 /* CTRLR0[ 5: 4] Frame Format */
277 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
278
279 /*
280 * SPI mode (SCPOL|SCPH)
281 * CTRLR0[ 6] Serial Clock Phase
282 * CTRLR0[ 7] Serial Clock Polarity
283 */
284 if (spi->mode & SPI_CPOL)
285 cr0 |= DW_PSSI_CTRLR0_SCPOL;
286 if (spi->mode & SPI_CPHA)
287 cr0 |= DW_PSSI_CTRLR0_SCPHA;
288
289 /* CTRLR0[11] Shift Register Loop */
290 if (spi->mode & SPI_LOOP)
291 cr0 |= DW_PSSI_CTRLR0_SRL;
292 } else {
293 /* CTRLR0[ 7: 6] Frame Format */
294 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
295
296 /*
297 * SPI mode (SCPOL|SCPH)
298 * CTRLR0[ 8] Serial Clock Phase
299 * CTRLR0[ 9] Serial Clock Polarity
300 */
301 if (spi->mode & SPI_CPOL)
302 cr0 |= DW_HSSI_CTRLR0_SCPOL;
303 if (spi->mode & SPI_CPHA)
304 cr0 |= DW_HSSI_CTRLR0_SCPHA;
305
306 /* CTRLR0[13] Shift Register Loop */
307 if (spi->mode & SPI_LOOP)
308 cr0 |= DW_HSSI_CTRLR0_SRL;
309
310 if (dws->caps & DW_SPI_CAP_KEEMBAY_MST)
311 cr0 |= DW_HSSI_CTRLR0_KEEMBAY_MST;
312 }
313
314 return cr0;
315 }
316
dw_spi_update_config(struct dw_spi * dws,struct spi_device * spi,struct dw_spi_cfg * cfg)317 void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
318 struct dw_spi_cfg *cfg)
319 {
320 struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
321 u32 cr0 = chip->cr0;
322 u32 speed_hz;
323 u16 clk_div;
324
325 /* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */
326 cr0 |= (cfg->dfs - 1) << dws->dfs_offset;
327
328 if (dw_spi_ip_is(dws, PSSI))
329 /* CTRLR0[ 9:8] Transfer Mode */
330 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode);
331 else
332 /* CTRLR0[11:10] Transfer Mode */
333 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode);
334
335 dw_writel(dws, DW_SPI_CTRLR0, cr0);
336
337 if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD ||
338 cfg->tmode == DW_SPI_CTRLR0_TMOD_RO)
339 dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
340
341 /* Note DW APB SSI clock divider doesn't support odd numbers */
342 clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
343 speed_hz = dws->max_freq / clk_div;
344
345 if (dws->current_freq != speed_hz) {
346 dw_spi_set_clk(dws, clk_div);
347 dws->current_freq = speed_hz;
348 }
349
350 /* Update RX sample delay if required */
351 if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
352 dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
353 dws->cur_rx_sample_dly = chip->rx_sample_dly;
354 }
355 }
356 EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, SPI_DW_CORE);
357
dw_spi_irq_setup(struct dw_spi * dws)358 static void dw_spi_irq_setup(struct dw_spi *dws)
359 {
360 u16 level;
361 u8 imask;
362
363 /*
364 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
365 * will be adjusted at the final stage of the IRQ-based SPI transfer
366 * execution so not to lose the leftover of the incoming data.
367 */
368 level = min_t(u16, dws->fifo_len / 2, dws->tx_len);
369 dw_writel(dws, DW_SPI_TXFTLR, level);
370 dw_writel(dws, DW_SPI_RXFTLR, level - 1);
371
372 dws->transfer_handler = dw_spi_transfer_handler;
373
374 imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI |
375 DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI;
376 dw_spi_umask_intr(dws, imask);
377 }
378
379 /*
380 * The iterative procedure of the poll-based transfer is simple: write as much
381 * as possible to the Tx FIFO, wait until the pending to receive data is ready
382 * to be read, read it from the Rx FIFO and check whether the performed
383 * procedure has been successful.
384 *
385 * Note this method the same way as the IRQ-based transfer won't work well for
386 * the SPI devices connected to the controller with native CS due to the
387 * automatic CS assertion/de-assertion.
388 */
dw_spi_poll_transfer(struct dw_spi * dws,struct spi_transfer * transfer)389 static int dw_spi_poll_transfer(struct dw_spi *dws,
390 struct spi_transfer *transfer)
391 {
392 struct spi_delay delay;
393 u16 nbits;
394 int ret;
395
396 delay.unit = SPI_DELAY_UNIT_SCK;
397 nbits = dws->n_bytes * BITS_PER_BYTE;
398
399 do {
400 dw_writer(dws);
401
402 delay.value = nbits * (dws->rx_len - dws->tx_len);
403 spi_delay_exec(&delay, transfer);
404
405 dw_reader(dws);
406
407 ret = dw_spi_check_status(dws, true);
408 if (ret)
409 return ret;
410 } while (dws->rx_len);
411
412 return 0;
413 }
414
dw_spi_transfer_one(struct spi_controller * master,struct spi_device * spi,struct spi_transfer * transfer)415 static int dw_spi_transfer_one(struct spi_controller *master,
416 struct spi_device *spi,
417 struct spi_transfer *transfer)
418 {
419 struct dw_spi *dws = spi_controller_get_devdata(master);
420 struct dw_spi_cfg cfg = {
421 .tmode = DW_SPI_CTRLR0_TMOD_TR,
422 .dfs = transfer->bits_per_word,
423 .freq = transfer->speed_hz,
424 };
425 int ret;
426
427 dws->dma_mapped = 0;
428 dws->n_bytes = DIV_ROUND_UP(transfer->bits_per_word, BITS_PER_BYTE);
429 dws->tx = (void *)transfer->tx_buf;
430 dws->tx_len = transfer->len / dws->n_bytes;
431 dws->rx = transfer->rx_buf;
432 dws->rx_len = dws->tx_len;
433
434 /* Ensure the data above is visible for all CPUs */
435 smp_mb();
436
437 dw_spi_enable_chip(dws, 0);
438
439 dw_spi_update_config(dws, spi, &cfg);
440
441 transfer->effective_speed_hz = dws->current_freq;
442
443 /* Check if current transfer is a DMA transaction */
444 if (master->can_dma && master->can_dma(master, spi, transfer))
445 dws->dma_mapped = master->cur_msg_mapped;
446
447 /* For poll mode just disable all interrupts */
448 dw_spi_mask_intr(dws, 0xff);
449
450 if (dws->dma_mapped) {
451 ret = dws->dma_ops->dma_setup(dws, transfer);
452 if (ret)
453 return ret;
454 }
455
456 dw_spi_enable_chip(dws, 1);
457
458 if (dws->dma_mapped)
459 return dws->dma_ops->dma_transfer(dws, transfer);
460 else if (dws->irq == IRQ_NOTCONNECTED)
461 return dw_spi_poll_transfer(dws, transfer);
462
463 dw_spi_irq_setup(dws);
464
465 return 1;
466 }
467
dw_spi_handle_err(struct spi_controller * master,struct spi_message * msg)468 static void dw_spi_handle_err(struct spi_controller *master,
469 struct spi_message *msg)
470 {
471 struct dw_spi *dws = spi_controller_get_devdata(master);
472
473 if (dws->dma_mapped)
474 dws->dma_ops->dma_stop(dws);
475
476 dw_spi_reset_chip(dws);
477 }
478
dw_spi_adjust_mem_op_size(struct spi_mem * mem,struct spi_mem_op * op)479 static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
480 {
481 if (op->data.dir == SPI_MEM_DATA_IN)
482 op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1);
483
484 return 0;
485 }
486
dw_spi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)487 static bool dw_spi_supports_mem_op(struct spi_mem *mem,
488 const struct spi_mem_op *op)
489 {
490 if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
491 op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
492 return false;
493
494 return spi_mem_default_supports_op(mem, op);
495 }
496
dw_spi_init_mem_buf(struct dw_spi * dws,const struct spi_mem_op * op)497 static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
498 {
499 unsigned int i, j, len;
500 u8 *out;
501
502 /*
503 * Calculate the total length of the EEPROM command transfer and
504 * either use the pre-allocated buffer or create a temporary one.
505 */
506 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
507 if (op->data.dir == SPI_MEM_DATA_OUT)
508 len += op->data.nbytes;
509
510 if (len <= DW_SPI_BUF_SIZE) {
511 out = dws->buf;
512 } else {
513 out = kzalloc(len, GFP_KERNEL);
514 if (!out)
515 return -ENOMEM;
516 }
517
518 /*
519 * Collect the operation code, address and dummy bytes into the single
520 * buffer. If it's a transfer with data to be sent, also copy it into the
521 * single buffer in order to speed the data transmission up.
522 */
523 for (i = 0; i < op->cmd.nbytes; ++i)
524 out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
525 for (j = 0; j < op->addr.nbytes; ++i, ++j)
526 out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
527 for (j = 0; j < op->dummy.nbytes; ++i, ++j)
528 out[i] = 0x0;
529
530 if (op->data.dir == SPI_MEM_DATA_OUT)
531 memcpy(&out[i], op->data.buf.out, op->data.nbytes);
532
533 dws->n_bytes = 1;
534 dws->tx = out;
535 dws->tx_len = len;
536 if (op->data.dir == SPI_MEM_DATA_IN) {
537 dws->rx = op->data.buf.in;
538 dws->rx_len = op->data.nbytes;
539 } else {
540 dws->rx = NULL;
541 dws->rx_len = 0;
542 }
543
544 return 0;
545 }
546
dw_spi_free_mem_buf(struct dw_spi * dws)547 static void dw_spi_free_mem_buf(struct dw_spi *dws)
548 {
549 if (dws->tx != dws->buf)
550 kfree(dws->tx);
551 }
552
dw_spi_write_then_read(struct dw_spi * dws,struct spi_device * spi)553 static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
554 {
555 u32 room, entries, sts;
556 unsigned int len;
557 u8 *buf;
558
559 /*
560 * At initial stage we just pre-fill the Tx FIFO in with no rush,
561 * since native CS hasn't been enabled yet and the automatic data
562 * transmission won't start til we do that.
563 */
564 len = min(dws->fifo_len, dws->tx_len);
565 buf = dws->tx;
566 while (len--)
567 dw_write_io_reg(dws, DW_SPI_DR, *buf++);
568
569 /*
570 * After setting any bit in the SER register the transmission will
571 * start automatically. We have to keep up with that procedure
572 * otherwise the CS de-assertion will happen whereupon the memory
573 * operation will be pre-terminated.
574 */
575 len = dws->tx_len - ((void *)buf - dws->tx);
576 dw_spi_set_cs(spi, false);
577 while (len) {
578 entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
579 if (!entries) {
580 dev_err(&dws->master->dev, "CS de-assertion on Tx\n");
581 return -EIO;
582 }
583 room = min(dws->fifo_len - entries, len);
584 for (; room; --room, --len)
585 dw_write_io_reg(dws, DW_SPI_DR, *buf++);
586 }
587
588 /*
589 * Data fetching will start automatically if the EEPROM-read mode is
590 * activated. We have to keep up with the incoming data pace to
591 * prevent the Rx FIFO overflow causing the inbound data loss.
592 */
593 len = dws->rx_len;
594 buf = dws->rx;
595 while (len) {
596 entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
597 if (!entries) {
598 sts = readl_relaxed(dws->regs + DW_SPI_RISR);
599 if (sts & DW_SPI_INT_RXOI) {
600 dev_err(&dws->master->dev, "FIFO overflow on Rx\n");
601 return -EIO;
602 }
603 continue;
604 }
605 entries = min(entries, len);
606 for (; entries; --entries, --len)
607 *buf++ = dw_read_io_reg(dws, DW_SPI_DR);
608 }
609
610 return 0;
611 }
612
dw_spi_ctlr_busy(struct dw_spi * dws)613 static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
614 {
615 return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY;
616 }
617
dw_spi_wait_mem_op_done(struct dw_spi * dws)618 static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
619 {
620 int retry = DW_SPI_WAIT_RETRIES;
621 struct spi_delay delay;
622 unsigned long ns, us;
623 u32 nents;
624
625 nents = dw_readl(dws, DW_SPI_TXFLR);
626 ns = NSEC_PER_SEC / dws->current_freq * nents;
627 ns *= dws->n_bytes * BITS_PER_BYTE;
628 if (ns <= NSEC_PER_USEC) {
629 delay.unit = SPI_DELAY_UNIT_NSECS;
630 delay.value = ns;
631 } else {
632 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
633 delay.unit = SPI_DELAY_UNIT_USECS;
634 delay.value = clamp_val(us, 0, USHRT_MAX);
635 }
636
637 while (dw_spi_ctlr_busy(dws) && retry--)
638 spi_delay_exec(&delay, NULL);
639
640 if (retry < 0) {
641 dev_err(&dws->master->dev, "Mem op hanged up\n");
642 return -EIO;
643 }
644
645 return 0;
646 }
647
dw_spi_stop_mem_op(struct dw_spi * dws,struct spi_device * spi)648 static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
649 {
650 dw_spi_enable_chip(dws, 0);
651 dw_spi_set_cs(spi, true);
652 dw_spi_enable_chip(dws, 1);
653 }
654
655 /*
656 * The SPI memory operation implementation below is the best choice for the
657 * devices, which are selected by the native chip-select lane. It's
658 * specifically developed to workaround the problem with automatic chip-select
659 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
660 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
661 * unavailable.
662 */
dw_spi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)663 static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
664 {
665 struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
666 struct dw_spi_cfg cfg;
667 unsigned long flags;
668 int ret;
669
670 /*
671 * Collect the outbound data into a single buffer to speed the
672 * transmission up at least on the initial stage.
673 */
674 ret = dw_spi_init_mem_buf(dws, op);
675 if (ret)
676 return ret;
677
678 /*
679 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
680 * operation. Transmit-only mode is suitable for the rest of them.
681 */
682 cfg.dfs = 8;
683 cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
684 if (op->data.dir == SPI_MEM_DATA_IN) {
685 cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD;
686 cfg.ndf = op->data.nbytes;
687 } else {
688 cfg.tmode = DW_SPI_CTRLR0_TMOD_TO;
689 }
690
691 dw_spi_enable_chip(dws, 0);
692
693 dw_spi_update_config(dws, mem->spi, &cfg);
694
695 dw_spi_mask_intr(dws, 0xff);
696
697 dw_spi_enable_chip(dws, 1);
698
699 /*
700 * DW APB SSI controller has very nasty peculiarities. First originally
701 * (without any vendor-specific modifications) it doesn't provide a
702 * direct way to set and clear the native chip-select signal. Instead
703 * the controller asserts the CS lane if Tx FIFO isn't empty and a
704 * transmission is going on, and automatically de-asserts it back to
705 * the high level if the Tx FIFO doesn't have anything to be pushed
706 * out. Due to that a multi-tasking or heavy IRQs activity might be
707 * fatal, since the transfer procedure preemption may cause the Tx FIFO
708 * getting empty and sudden CS de-assertion, which in the middle of the
709 * transfer will most likely cause the data loss. Secondly the
710 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
711 * data being automatically pulled in into the Rx FIFO. So if the
712 * driver software is late in fetching the data from the FIFO before
713 * it's overflown, new incoming data will be lost. In order to make
714 * sure the executed memory operations are CS-atomic and to prevent the
715 * Rx FIFO overflow we have to disable the local interrupts so to block
716 * any preemption during the subsequent IO operations.
717 *
718 * Note. At some circumstances disabling IRQs may not help to prevent
719 * the problems described above. The CS de-assertion and Rx FIFO
720 * overflow may still happen due to the relatively slow system bus or
721 * CPU not working fast enough, so the write-then-read algo implemented
722 * here just won't keep up with the SPI bus data transfer. Such
723 * situation is highly platform specific and is supposed to be fixed by
724 * manually restricting the SPI bus frequency using the
725 * dws->max_mem_freq parameter.
726 */
727 local_irq_save(flags);
728 preempt_disable();
729
730 ret = dw_spi_write_then_read(dws, mem->spi);
731
732 local_irq_restore(flags);
733 preempt_enable();
734
735 /*
736 * Wait for the operation being finished and check the controller
737 * status only if there hasn't been any run-time error detected. In the
738 * former case it's just pointless. In the later one to prevent an
739 * additional error message printing since any hw error flag being set
740 * would be due to an error detected on the data transfer.
741 */
742 if (!ret) {
743 ret = dw_spi_wait_mem_op_done(dws);
744 if (!ret)
745 ret = dw_spi_check_status(dws, true);
746 }
747
748 dw_spi_stop_mem_op(dws, mem->spi);
749
750 dw_spi_free_mem_buf(dws);
751
752 return ret;
753 }
754
755 /*
756 * Initialize the default memory operations if a glue layer hasn't specified
757 * custom ones. Direct mapping operations will be preserved anyway since DW SPI
758 * controller doesn't have an embedded dirmap interface. Note the memory
759 * operations implemented in this driver is the best choice only for the DW APB
760 * SSI controller with standard native CS functionality. If a hardware vendor
761 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
762 * be safer to use the normal SPI-messages-based transfers implementation.
763 */
dw_spi_init_mem_ops(struct dw_spi * dws)764 static void dw_spi_init_mem_ops(struct dw_spi *dws)
765 {
766 if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
767 !dws->set_cs) {
768 dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
769 dws->mem_ops.supports_op = dw_spi_supports_mem_op;
770 dws->mem_ops.exec_op = dw_spi_exec_mem_op;
771 if (!dws->max_mem_freq)
772 dws->max_mem_freq = dws->max_freq;
773 }
774 }
775
776 /* This may be called twice for each spi dev */
dw_spi_setup(struct spi_device * spi)777 static int dw_spi_setup(struct spi_device *spi)
778 {
779 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
780 struct dw_spi_chip_data *chip;
781
782 /* Only alloc on first setup */
783 chip = spi_get_ctldata(spi);
784 if (!chip) {
785 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
786 u32 rx_sample_dly_ns;
787
788 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
789 if (!chip)
790 return -ENOMEM;
791 spi_set_ctldata(spi, chip);
792 /* Get specific / default rx-sample-delay */
793 if (device_property_read_u32(&spi->dev,
794 "rx-sample-delay-ns",
795 &rx_sample_dly_ns) != 0)
796 /* Use default controller value */
797 rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
798 chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
799 NSEC_PER_SEC /
800 dws->max_freq);
801 }
802
803 /*
804 * Update CR0 data each time the setup callback is invoked since
805 * the device parameters could have been changed, for instance, by
806 * the MMC SPI driver or something else.
807 */
808 chip->cr0 = dw_spi_prepare_cr0(dws, spi);
809
810 return 0;
811 }
812
dw_spi_cleanup(struct spi_device * spi)813 static void dw_spi_cleanup(struct spi_device *spi)
814 {
815 struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
816
817 kfree(chip);
818 spi_set_ctldata(spi, NULL);
819 }
820
821 /* Restart the controller, disable all interrupts, clean rx fifo */
dw_spi_hw_init(struct device * dev,struct dw_spi * dws)822 static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws)
823 {
824 dw_spi_reset_chip(dws);
825
826 /*
827 * Retrieve the Synopsys component version if it hasn't been specified
828 * by the platform. CoreKit version ID is encoded as a 3-chars ASCII
829 * code enclosed with '*' (typical for the most of Synopsys IP-cores).
830 */
831 if (!dws->ver) {
832 dws->ver = dw_readl(dws, DW_SPI_VERSION);
833
834 dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n",
835 dw_spi_ip_is(dws, PSSI) ? " APB " : " ",
836 DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2),
837 DW_SPI_GET_BYTE(dws->ver, 1));
838 }
839
840 /*
841 * Try to detect the FIFO depth if not set by interface driver,
842 * the depth could be from 2 to 256 from HW spec
843 */
844 if (!dws->fifo_len) {
845 u32 fifo;
846
847 for (fifo = 1; fifo < 256; fifo++) {
848 dw_writel(dws, DW_SPI_TXFTLR, fifo);
849 if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
850 break;
851 }
852 dw_writel(dws, DW_SPI_TXFTLR, 0);
853
854 dws->fifo_len = (fifo == 1) ? 0 : fifo;
855 dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
856 }
857
858 /*
859 * Detect CTRLR0.DFS field size and offset by testing the lowest bits
860 * writability. Note DWC SSI controller also has the extended DFS, but
861 * with zero offset.
862 */
863 if (dw_spi_ip_is(dws, PSSI)) {
864 u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0);
865
866 dw_spi_enable_chip(dws, 0);
867 dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff);
868 cr0 = dw_readl(dws, DW_SPI_CTRLR0);
869 dw_writel(dws, DW_SPI_CTRLR0, tmp);
870 dw_spi_enable_chip(dws, 1);
871
872 if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) {
873 dws->caps |= DW_SPI_CAP_DFS32;
874 dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK);
875 dev_dbg(dev, "Detected 32-bits max data frame size\n");
876 }
877 } else {
878 dws->caps |= DW_SPI_CAP_DFS32;
879 }
880
881 /* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
882 if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
883 dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
884 }
885
dw_spi_add_host(struct device * dev,struct dw_spi * dws)886 int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
887 {
888 struct spi_controller *master;
889 int ret;
890
891 if (!dws)
892 return -EINVAL;
893
894 master = spi_alloc_master(dev, 0);
895 if (!master)
896 return -ENOMEM;
897
898 device_set_node(&master->dev, dev_fwnode(dev));
899
900 dws->master = master;
901 dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
902
903 spi_controller_set_devdata(master, dws);
904
905 /* Basic HW init */
906 dw_spi_hw_init(dev, dws);
907
908 ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
909 master);
910 if (ret < 0 && ret != -ENOTCONN) {
911 dev_err(dev, "can not get IRQ\n");
912 goto err_free_master;
913 }
914
915 dw_spi_init_mem_ops(dws);
916
917 master->use_gpio_descriptors = true;
918 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
919 if (dws->caps & DW_SPI_CAP_DFS32)
920 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
921 else
922 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
923 master->bus_num = dws->bus_num;
924 master->num_chipselect = dws->num_cs;
925 master->setup = dw_spi_setup;
926 master->cleanup = dw_spi_cleanup;
927 if (dws->set_cs)
928 master->set_cs = dws->set_cs;
929 else
930 master->set_cs = dw_spi_set_cs;
931 master->transfer_one = dw_spi_transfer_one;
932 master->handle_err = dw_spi_handle_err;
933 if (dws->mem_ops.exec_op)
934 master->mem_ops = &dws->mem_ops;
935 master->max_speed_hz = dws->max_freq;
936 master->flags = SPI_MASTER_GPIO_SS;
937 master->auto_runtime_pm = true;
938
939 /* Get default rx sample delay */
940 device_property_read_u32(dev, "rx-sample-delay-ns",
941 &dws->def_rx_sample_dly_ns);
942
943 if (dws->dma_ops && dws->dma_ops->dma_init) {
944 ret = dws->dma_ops->dma_init(dev, dws);
945 if (ret) {
946 dev_warn(dev, "DMA init failed\n");
947 } else {
948 master->can_dma = dws->dma_ops->can_dma;
949 master->flags |= SPI_CONTROLLER_MUST_TX;
950 }
951 }
952
953 ret = spi_register_controller(master);
954 if (ret) {
955 dev_err(&master->dev, "problem registering spi master\n");
956 goto err_dma_exit;
957 }
958
959 dw_spi_debugfs_init(dws);
960 return 0;
961
962 err_dma_exit:
963 if (dws->dma_ops && dws->dma_ops->dma_exit)
964 dws->dma_ops->dma_exit(dws);
965 dw_spi_enable_chip(dws, 0);
966 free_irq(dws->irq, master);
967 err_free_master:
968 spi_controller_put(master);
969 return ret;
970 }
971 EXPORT_SYMBOL_NS_GPL(dw_spi_add_host, SPI_DW_CORE);
972
dw_spi_remove_host(struct dw_spi * dws)973 void dw_spi_remove_host(struct dw_spi *dws)
974 {
975 dw_spi_debugfs_remove(dws);
976
977 spi_unregister_controller(dws->master);
978
979 if (dws->dma_ops && dws->dma_ops->dma_exit)
980 dws->dma_ops->dma_exit(dws);
981
982 dw_spi_shutdown_chip(dws);
983
984 free_irq(dws->irq, dws->master);
985 }
986 EXPORT_SYMBOL_NS_GPL(dw_spi_remove_host, SPI_DW_CORE);
987
dw_spi_suspend_host(struct dw_spi * dws)988 int dw_spi_suspend_host(struct dw_spi *dws)
989 {
990 int ret;
991
992 ret = spi_controller_suspend(dws->master);
993 if (ret)
994 return ret;
995
996 dw_spi_shutdown_chip(dws);
997 return 0;
998 }
999 EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_host, SPI_DW_CORE);
1000
dw_spi_resume_host(struct dw_spi * dws)1001 int dw_spi_resume_host(struct dw_spi *dws)
1002 {
1003 dw_spi_hw_init(&dws->master->dev, dws);
1004 return spi_controller_resume(dws->master);
1005 }
1006 EXPORT_SYMBOL_NS_GPL(dw_spi_resume_host, SPI_DW_CORE);
1007
1008 MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
1009 MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
1010 MODULE_LICENSE("GPL v2");
1011