1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * System Control and Management Interface (SCMI) Sensor Protocol
4 *
5 * Copyright (C) 2018-2022 ARM Ltd.
6 */
7
8 #define pr_fmt(fmt) "SCMI Notifications SENSOR - " fmt
9
10 #include <linux/bitfield.h>
11 #include <linux/module.h>
12 #include <linux/scmi_protocol.h>
13
14 #include "protocols.h"
15 #include "notify.h"
16
17 #define SCMI_MAX_NUM_SENSOR_AXIS 63
18 #define SCMIv2_SENSOR_PROTOCOL 0x10000
19
20 enum scmi_sensor_protocol_cmd {
21 SENSOR_DESCRIPTION_GET = 0x3,
22 SENSOR_TRIP_POINT_NOTIFY = 0x4,
23 SENSOR_TRIP_POINT_CONFIG = 0x5,
24 SENSOR_READING_GET = 0x6,
25 SENSOR_AXIS_DESCRIPTION_GET = 0x7,
26 SENSOR_LIST_UPDATE_INTERVALS = 0x8,
27 SENSOR_CONFIG_GET = 0x9,
28 SENSOR_CONFIG_SET = 0xA,
29 SENSOR_CONTINUOUS_UPDATE_NOTIFY = 0xB,
30 SENSOR_NAME_GET = 0xC,
31 SENSOR_AXIS_NAME_GET = 0xD,
32 };
33
34 struct scmi_msg_resp_sensor_attributes {
35 __le16 num_sensors;
36 u8 max_requests;
37 u8 reserved;
38 __le32 reg_addr_low;
39 __le32 reg_addr_high;
40 __le32 reg_size;
41 };
42
43 /* v3 attributes_low macros */
44 #define SUPPORTS_UPDATE_NOTIFY(x) FIELD_GET(BIT(30), (x))
45 #define SENSOR_TSTAMP_EXP(x) FIELD_GET(GENMASK(14, 10), (x))
46 #define SUPPORTS_TIMESTAMP(x) FIELD_GET(BIT(9), (x))
47 #define SUPPORTS_EXTEND_ATTRS(x) FIELD_GET(BIT(8), (x))
48
49 /* v2 attributes_high macros */
50 #define SENSOR_UPDATE_BASE(x) FIELD_GET(GENMASK(31, 27), (x))
51 #define SENSOR_UPDATE_SCALE(x) FIELD_GET(GENMASK(26, 22), (x))
52
53 /* v3 attributes_high macros */
54 #define SENSOR_AXIS_NUMBER(x) FIELD_GET(GENMASK(21, 16), (x))
55 #define SUPPORTS_AXIS(x) FIELD_GET(BIT(8), (x))
56
57 /* v3 resolution macros */
58 #define SENSOR_RES(x) FIELD_GET(GENMASK(26, 0), (x))
59 #define SENSOR_RES_EXP(x) FIELD_GET(GENMASK(31, 27), (x))
60
61 struct scmi_msg_resp_attrs {
62 __le32 min_range_low;
63 __le32 min_range_high;
64 __le32 max_range_low;
65 __le32 max_range_high;
66 };
67
68 struct scmi_msg_sensor_description {
69 __le32 desc_index;
70 };
71
72 struct scmi_msg_resp_sensor_description {
73 __le16 num_returned;
74 __le16 num_remaining;
75 struct scmi_sensor_descriptor {
76 __le32 id;
77 __le32 attributes_low;
78 /* Common attributes_low macros */
79 #define SUPPORTS_ASYNC_READ(x) FIELD_GET(BIT(31), (x))
80 #define SUPPORTS_EXTENDED_NAMES(x) FIELD_GET(BIT(29), (x))
81 #define NUM_TRIP_POINTS(x) FIELD_GET(GENMASK(7, 0), (x))
82 __le32 attributes_high;
83 /* Common attributes_high macros */
84 #define SENSOR_SCALE(x) FIELD_GET(GENMASK(15, 11), (x))
85 #define SENSOR_SCALE_SIGN BIT(4)
86 #define SENSOR_SCALE_EXTEND GENMASK(31, 5)
87 #define SENSOR_TYPE(x) FIELD_GET(GENMASK(7, 0), (x))
88 u8 name[SCMI_SHORT_NAME_MAX_SIZE];
89 /* only for version > 2.0 */
90 __le32 power;
91 __le32 resolution;
92 struct scmi_msg_resp_attrs scalar_attrs;
93 } desc[];
94 };
95
96 /* Base scmi_sensor_descriptor size excluding extended attrs after name */
97 #define SCMI_MSG_RESP_SENS_DESCR_BASE_SZ 28
98
99 /* Sign extend to a full s32 */
100 #define S32_EXT(v) \
101 ({ \
102 int __v = (v); \
103 \
104 if (__v & SENSOR_SCALE_SIGN) \
105 __v |= SENSOR_SCALE_EXTEND; \
106 __v; \
107 })
108
109 struct scmi_msg_sensor_axis_description_get {
110 __le32 id;
111 __le32 axis_desc_index;
112 };
113
114 struct scmi_msg_resp_sensor_axis_description {
115 __le32 num_axis_flags;
116 #define NUM_AXIS_RETURNED(x) FIELD_GET(GENMASK(5, 0), (x))
117 #define NUM_AXIS_REMAINING(x) FIELD_GET(GENMASK(31, 26), (x))
118 struct scmi_axis_descriptor {
119 __le32 id;
120 __le32 attributes_low;
121 #define SUPPORTS_EXTENDED_AXIS_NAMES(x) FIELD_GET(BIT(9), (x))
122 __le32 attributes_high;
123 u8 name[SCMI_SHORT_NAME_MAX_SIZE];
124 __le32 resolution;
125 struct scmi_msg_resp_attrs attrs;
126 } desc[];
127 };
128
129 struct scmi_msg_resp_sensor_axis_names_description {
130 __le32 num_axis_flags;
131 struct scmi_sensor_axis_name_descriptor {
132 __le32 axis_id;
133 u8 name[SCMI_MAX_STR_SIZE];
134 } desc[];
135 };
136
137 /* Base scmi_axis_descriptor size excluding extended attrs after name */
138 #define SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ 28
139
140 struct scmi_msg_sensor_list_update_intervals {
141 __le32 id;
142 __le32 index;
143 };
144
145 struct scmi_msg_resp_sensor_list_update_intervals {
146 __le32 num_intervals_flags;
147 #define NUM_INTERVALS_RETURNED(x) FIELD_GET(GENMASK(11, 0), (x))
148 #define SEGMENTED_INTVL_FORMAT(x) FIELD_GET(BIT(12), (x))
149 #define NUM_INTERVALS_REMAINING(x) FIELD_GET(GENMASK(31, 16), (x))
150 __le32 intervals[];
151 };
152
153 struct scmi_msg_sensor_request_notify {
154 __le32 id;
155 __le32 event_control;
156 #define SENSOR_NOTIFY_ALL BIT(0)
157 };
158
159 struct scmi_msg_set_sensor_trip_point {
160 __le32 id;
161 __le32 event_control;
162 #define SENSOR_TP_EVENT_MASK (0x3)
163 #define SENSOR_TP_DISABLED 0x0
164 #define SENSOR_TP_POSITIVE 0x1
165 #define SENSOR_TP_NEGATIVE 0x2
166 #define SENSOR_TP_BOTH 0x3
167 #define SENSOR_TP_ID(x) (((x) & 0xff) << 4)
168 __le32 value_low;
169 __le32 value_high;
170 };
171
172 struct scmi_msg_sensor_config_set {
173 __le32 id;
174 __le32 sensor_config;
175 };
176
177 struct scmi_msg_sensor_reading_get {
178 __le32 id;
179 __le32 flags;
180 #define SENSOR_READ_ASYNC BIT(0)
181 };
182
183 struct scmi_resp_sensor_reading_complete {
184 __le32 id;
185 __le32 readings_low;
186 __le32 readings_high;
187 };
188
189 struct scmi_sensor_reading_resp {
190 __le32 sensor_value_low;
191 __le32 sensor_value_high;
192 __le32 timestamp_low;
193 __le32 timestamp_high;
194 };
195
196 struct scmi_resp_sensor_reading_complete_v3 {
197 __le32 id;
198 struct scmi_sensor_reading_resp readings[];
199 };
200
201 struct scmi_sensor_trip_notify_payld {
202 __le32 agent_id;
203 __le32 sensor_id;
204 __le32 trip_point_desc;
205 };
206
207 struct scmi_sensor_update_notify_payld {
208 __le32 agent_id;
209 __le32 sensor_id;
210 struct scmi_sensor_reading_resp readings[];
211 };
212
213 struct sensors_info {
214 u32 version;
215 int num_sensors;
216 int max_requests;
217 u64 reg_addr;
218 u32 reg_size;
219 struct scmi_sensor_info *sensors;
220 };
221
scmi_sensor_attributes_get(const struct scmi_protocol_handle * ph,struct sensors_info * si)222 static int scmi_sensor_attributes_get(const struct scmi_protocol_handle *ph,
223 struct sensors_info *si)
224 {
225 int ret;
226 struct scmi_xfer *t;
227 struct scmi_msg_resp_sensor_attributes *attr;
228
229 ret = ph->xops->xfer_get_init(ph, PROTOCOL_ATTRIBUTES,
230 0, sizeof(*attr), &t);
231 if (ret)
232 return ret;
233
234 attr = t->rx.buf;
235
236 ret = ph->xops->do_xfer(ph, t);
237 if (!ret) {
238 si->num_sensors = le16_to_cpu(attr->num_sensors);
239 si->max_requests = attr->max_requests;
240 si->reg_addr = le32_to_cpu(attr->reg_addr_low) |
241 (u64)le32_to_cpu(attr->reg_addr_high) << 32;
242 si->reg_size = le32_to_cpu(attr->reg_size);
243 }
244
245 ph->xops->xfer_put(ph, t);
246 return ret;
247 }
248
scmi_parse_range_attrs(struct scmi_range_attrs * out,const struct scmi_msg_resp_attrs * in)249 static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out,
250 const struct scmi_msg_resp_attrs *in)
251 {
252 out->min_range = get_unaligned_le64((void *)&in->min_range_low);
253 out->max_range = get_unaligned_le64((void *)&in->max_range_low);
254 }
255
256 struct scmi_sens_ipriv {
257 void *priv;
258 struct device *dev;
259 };
260
iter_intervals_prepare_message(void * message,unsigned int desc_index,const void * p)261 static void iter_intervals_prepare_message(void *message,
262 unsigned int desc_index,
263 const void *p)
264 {
265 struct scmi_msg_sensor_list_update_intervals *msg = message;
266 const struct scmi_sensor_info *s;
267
268 s = ((const struct scmi_sens_ipriv *)p)->priv;
269 /* Set the number of sensors to be skipped/already read */
270 msg->id = cpu_to_le32(s->id);
271 msg->index = cpu_to_le32(desc_index);
272 }
273
iter_intervals_update_state(struct scmi_iterator_state * st,const void * response,void * p)274 static int iter_intervals_update_state(struct scmi_iterator_state *st,
275 const void *response, void *p)
276 {
277 u32 flags;
278 struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
279 struct device *dev = ((struct scmi_sens_ipriv *)p)->dev;
280 const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
281
282 flags = le32_to_cpu(r->num_intervals_flags);
283 st->num_returned = NUM_INTERVALS_RETURNED(flags);
284 st->num_remaining = NUM_INTERVALS_REMAINING(flags);
285
286 /*
287 * Max intervals is not declared previously anywhere so we
288 * assume it's returned+remaining on first call.
289 */
290 if (!st->max_resources) {
291 s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags);
292 s->intervals.count = st->num_returned + st->num_remaining;
293 /* segmented intervals are reported in one triplet */
294 if (s->intervals.segmented &&
295 (st->num_remaining || st->num_returned != 3)) {
296 dev_err(dev,
297 "Sensor ID:%d advertises an invalid segmented interval (%d)\n",
298 s->id, s->intervals.count);
299 s->intervals.segmented = false;
300 s->intervals.count = 0;
301 return -EINVAL;
302 }
303 /* Direct allocation when exceeding pre-allocated */
304 if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
305 s->intervals.desc =
306 devm_kcalloc(dev,
307 s->intervals.count,
308 sizeof(*s->intervals.desc),
309 GFP_KERNEL);
310 if (!s->intervals.desc) {
311 s->intervals.segmented = false;
312 s->intervals.count = 0;
313 return -ENOMEM;
314 }
315 }
316
317 st->max_resources = s->intervals.count;
318 }
319
320 return 0;
321 }
322
323 static int
iter_intervals_process_response(const struct scmi_protocol_handle * ph,const void * response,struct scmi_iterator_state * st,void * p)324 iter_intervals_process_response(const struct scmi_protocol_handle *ph,
325 const void *response,
326 struct scmi_iterator_state *st, void *p)
327 {
328 const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
329 struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
330
331 s->intervals.desc[st->desc_index + st->loop_idx] =
332 le32_to_cpu(r->intervals[st->loop_idx]);
333
334 return 0;
335 }
336
scmi_sensor_update_intervals(const struct scmi_protocol_handle * ph,struct scmi_sensor_info * s)337 static int scmi_sensor_update_intervals(const struct scmi_protocol_handle *ph,
338 struct scmi_sensor_info *s)
339 {
340 void *iter;
341 struct scmi_iterator_ops ops = {
342 .prepare_message = iter_intervals_prepare_message,
343 .update_state = iter_intervals_update_state,
344 .process_response = iter_intervals_process_response,
345 };
346 struct scmi_sens_ipriv upriv = {
347 .priv = s,
348 .dev = ph->dev,
349 };
350
351 iter = ph->hops->iter_response_init(ph, &ops, s->intervals.count,
352 SENSOR_LIST_UPDATE_INTERVALS,
353 sizeof(struct scmi_msg_sensor_list_update_intervals),
354 &upriv);
355 if (IS_ERR(iter))
356 return PTR_ERR(iter);
357
358 return ph->hops->iter_response_run(iter);
359 }
360
361 struct scmi_apriv {
362 bool any_axes_support_extended_names;
363 struct scmi_sensor_info *s;
364 };
365
iter_axes_desc_prepare_message(void * message,const unsigned int desc_index,const void * priv)366 static void iter_axes_desc_prepare_message(void *message,
367 const unsigned int desc_index,
368 const void *priv)
369 {
370 struct scmi_msg_sensor_axis_description_get *msg = message;
371 const struct scmi_apriv *apriv = priv;
372
373 /* Set the number of sensors to be skipped/already read */
374 msg->id = cpu_to_le32(apriv->s->id);
375 msg->axis_desc_index = cpu_to_le32(desc_index);
376 }
377
378 static int
iter_axes_desc_update_state(struct scmi_iterator_state * st,const void * response,void * priv)379 iter_axes_desc_update_state(struct scmi_iterator_state *st,
380 const void *response, void *priv)
381 {
382 u32 flags;
383 const struct scmi_msg_resp_sensor_axis_description *r = response;
384
385 flags = le32_to_cpu(r->num_axis_flags);
386 st->num_returned = NUM_AXIS_RETURNED(flags);
387 st->num_remaining = NUM_AXIS_REMAINING(flags);
388 st->priv = (void *)&r->desc[0];
389
390 return 0;
391 }
392
393 static int
iter_axes_desc_process_response(const struct scmi_protocol_handle * ph,const void * response,struct scmi_iterator_state * st,void * priv)394 iter_axes_desc_process_response(const struct scmi_protocol_handle *ph,
395 const void *response,
396 struct scmi_iterator_state *st, void *priv)
397 {
398 u32 attrh, attrl;
399 struct scmi_sensor_axis_info *a;
400 size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;
401 struct scmi_apriv *apriv = priv;
402 const struct scmi_axis_descriptor *adesc = st->priv;
403
404 attrl = le32_to_cpu(adesc->attributes_low);
405 if (SUPPORTS_EXTENDED_AXIS_NAMES(attrl))
406 apriv->any_axes_support_extended_names = true;
407
408 a = &apriv->s->axis[st->desc_index + st->loop_idx];
409 a->id = le32_to_cpu(adesc->id);
410 a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
411
412 attrh = le32_to_cpu(adesc->attributes_high);
413 a->scale = S32_EXT(SENSOR_SCALE(attrh));
414 a->type = SENSOR_TYPE(attrh);
415 strscpy(a->name, adesc->name, SCMI_SHORT_NAME_MAX_SIZE);
416
417 if (a->extended_attrs) {
418 unsigned int ares = le32_to_cpu(adesc->resolution);
419
420 a->resolution = SENSOR_RES(ares);
421 a->exponent = S32_EXT(SENSOR_RES_EXP(ares));
422 dsize += sizeof(adesc->resolution);
423
424 scmi_parse_range_attrs(&a->attrs, &adesc->attrs);
425 dsize += sizeof(adesc->attrs);
426 }
427 st->priv = ((u8 *)adesc + dsize);
428
429 return 0;
430 }
431
432 static int
iter_axes_extended_name_update_state(struct scmi_iterator_state * st,const void * response,void * priv)433 iter_axes_extended_name_update_state(struct scmi_iterator_state *st,
434 const void *response, void *priv)
435 {
436 u32 flags;
437 const struct scmi_msg_resp_sensor_axis_names_description *r = response;
438
439 flags = le32_to_cpu(r->num_axis_flags);
440 st->num_returned = NUM_AXIS_RETURNED(flags);
441 st->num_remaining = NUM_AXIS_REMAINING(flags);
442 st->priv = (void *)&r->desc[0];
443
444 return 0;
445 }
446
447 static int
iter_axes_extended_name_process_response(const struct scmi_protocol_handle * ph,const void * response,struct scmi_iterator_state * st,void * priv)448 iter_axes_extended_name_process_response(const struct scmi_protocol_handle *ph,
449 const void *response,
450 struct scmi_iterator_state *st,
451 void *priv)
452 {
453 struct scmi_sensor_axis_info *a;
454 const struct scmi_apriv *apriv = priv;
455 struct scmi_sensor_axis_name_descriptor *adesc = st->priv;
456 u32 axis_id = le32_to_cpu(adesc->axis_id);
457
458 if (axis_id >= st->max_resources)
459 return -EPROTO;
460
461 /*
462 * Pick the corresponding descriptor based on the axis_id embedded
463 * in the reply since the list of axes supporting extended names
464 * can be a subset of all the axes.
465 */
466 a = &apriv->s->axis[axis_id];
467 strscpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
468 st->priv = ++adesc;
469
470 return 0;
471 }
472
473 static int
scmi_sensor_axis_extended_names_get(const struct scmi_protocol_handle * ph,struct scmi_sensor_info * s)474 scmi_sensor_axis_extended_names_get(const struct scmi_protocol_handle *ph,
475 struct scmi_sensor_info *s)
476 {
477 int ret;
478 void *iter;
479 struct scmi_iterator_ops ops = {
480 .prepare_message = iter_axes_desc_prepare_message,
481 .update_state = iter_axes_extended_name_update_state,
482 .process_response = iter_axes_extended_name_process_response,
483 };
484 struct scmi_apriv apriv = {
485 .any_axes_support_extended_names = false,
486 .s = s,
487 };
488
489 iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
490 SENSOR_AXIS_NAME_GET,
491 sizeof(struct scmi_msg_sensor_axis_description_get),
492 &apriv);
493 if (IS_ERR(iter))
494 return PTR_ERR(iter);
495
496 /*
497 * Do not cause whole protocol initialization failure when failing to
498 * get extended names for axes.
499 */
500 ret = ph->hops->iter_response_run(iter);
501 if (ret)
502 dev_warn(ph->dev,
503 "Failed to get axes extended names for %s (ret:%d).\n",
504 s->name, ret);
505
506 return 0;
507 }
508
scmi_sensor_axis_description(const struct scmi_protocol_handle * ph,struct scmi_sensor_info * s,u32 version)509 static int scmi_sensor_axis_description(const struct scmi_protocol_handle *ph,
510 struct scmi_sensor_info *s,
511 u32 version)
512 {
513 int ret;
514 void *iter;
515 struct scmi_iterator_ops ops = {
516 .prepare_message = iter_axes_desc_prepare_message,
517 .update_state = iter_axes_desc_update_state,
518 .process_response = iter_axes_desc_process_response,
519 };
520 struct scmi_apriv apriv = {
521 .any_axes_support_extended_names = false,
522 .s = s,
523 };
524
525 s->axis = devm_kcalloc(ph->dev, s->num_axis,
526 sizeof(*s->axis), GFP_KERNEL);
527 if (!s->axis)
528 return -ENOMEM;
529
530 iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
531 SENSOR_AXIS_DESCRIPTION_GET,
532 sizeof(struct scmi_msg_sensor_axis_description_get),
533 &apriv);
534 if (IS_ERR(iter))
535 return PTR_ERR(iter);
536
537 ret = ph->hops->iter_response_run(iter);
538 if (ret)
539 return ret;
540
541 if (PROTOCOL_REV_MAJOR(version) >= 0x3 &&
542 apriv.any_axes_support_extended_names)
543 ret = scmi_sensor_axis_extended_names_get(ph, s);
544
545 return ret;
546 }
547
iter_sens_descr_prepare_message(void * message,unsigned int desc_index,const void * priv)548 static void iter_sens_descr_prepare_message(void *message,
549 unsigned int desc_index,
550 const void *priv)
551 {
552 struct scmi_msg_sensor_description *msg = message;
553
554 msg->desc_index = cpu_to_le32(desc_index);
555 }
556
iter_sens_descr_update_state(struct scmi_iterator_state * st,const void * response,void * priv)557 static int iter_sens_descr_update_state(struct scmi_iterator_state *st,
558 const void *response, void *priv)
559 {
560 const struct scmi_msg_resp_sensor_description *r = response;
561
562 st->num_returned = le16_to_cpu(r->num_returned);
563 st->num_remaining = le16_to_cpu(r->num_remaining);
564 st->priv = (void *)&r->desc[0];
565
566 return 0;
567 }
568
569 static int
iter_sens_descr_process_response(const struct scmi_protocol_handle * ph,const void * response,struct scmi_iterator_state * st,void * priv)570 iter_sens_descr_process_response(const struct scmi_protocol_handle *ph,
571 const void *response,
572 struct scmi_iterator_state *st, void *priv)
573
574 {
575 int ret = 0;
576 u32 attrh, attrl;
577 size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;
578 struct scmi_sensor_info *s;
579 struct sensors_info *si = priv;
580 const struct scmi_sensor_descriptor *sdesc = st->priv;
581
582 s = &si->sensors[st->desc_index + st->loop_idx];
583 s->id = le32_to_cpu(sdesc->id);
584
585 attrl = le32_to_cpu(sdesc->attributes_low);
586 /* common bitfields parsing */
587 s->async = SUPPORTS_ASYNC_READ(attrl);
588 s->num_trip_points = NUM_TRIP_POINTS(attrl);
589 /**
590 * only SCMIv3.0 specific bitfield below.
591 * Such bitfields are assumed to be zeroed on non
592 * relevant fw versions...assuming fw not buggy !
593 */
594 s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
595 s->timestamped = SUPPORTS_TIMESTAMP(attrl);
596 if (s->timestamped)
597 s->tstamp_scale = S32_EXT(SENSOR_TSTAMP_EXP(attrl));
598 s->extended_scalar_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
599
600 attrh = le32_to_cpu(sdesc->attributes_high);
601 /* common bitfields parsing */
602 s->scale = S32_EXT(SENSOR_SCALE(attrh));
603 s->type = SENSOR_TYPE(attrh);
604 /* Use pre-allocated pool wherever possible */
605 s->intervals.desc = s->intervals.prealloc_pool;
606 if (si->version == SCMIv2_SENSOR_PROTOCOL) {
607 s->intervals.segmented = false;
608 s->intervals.count = 1;
609 /*
610 * Convert SCMIv2.0 update interval format to
611 * SCMIv3.0 to be used as the common exposed
612 * descriptor, accessible via common macros.
613 */
614 s->intervals.desc[0] = (SENSOR_UPDATE_BASE(attrh) << 5) |
615 SENSOR_UPDATE_SCALE(attrh);
616 } else {
617 /*
618 * From SCMIv3.0 update intervals are retrieved
619 * via a dedicated (optional) command.
620 * Since the command is optional, on error carry
621 * on without any update interval.
622 */
623 if (scmi_sensor_update_intervals(ph, s))
624 dev_dbg(ph->dev,
625 "Update Intervals not available for sensor ID:%d\n",
626 s->id);
627 }
628 /**
629 * only > SCMIv2.0 specific bitfield below.
630 * Such bitfields are assumed to be zeroed on non
631 * relevant fw versions...assuming fw not buggy !
632 */
633 s->num_axis = min_t(unsigned int,
634 SUPPORTS_AXIS(attrh) ?
635 SENSOR_AXIS_NUMBER(attrh) : 0,
636 SCMI_MAX_NUM_SENSOR_AXIS);
637 strscpy(s->name, sdesc->name, SCMI_SHORT_NAME_MAX_SIZE);
638
639 /*
640 * If supported overwrite short name with the extended
641 * one; on error just carry on and use already provided
642 * short name.
643 */
644 if (PROTOCOL_REV_MAJOR(si->version) >= 0x3 &&
645 SUPPORTS_EXTENDED_NAMES(attrl))
646 ph->hops->extended_name_get(ph, SENSOR_NAME_GET, s->id,
647 s->name, SCMI_MAX_STR_SIZE);
648
649 if (s->extended_scalar_attrs) {
650 s->sensor_power = le32_to_cpu(sdesc->power);
651 dsize += sizeof(sdesc->power);
652
653 /* Only for sensors reporting scalar values */
654 if (s->num_axis == 0) {
655 unsigned int sres = le32_to_cpu(sdesc->resolution);
656
657 s->resolution = SENSOR_RES(sres);
658 s->exponent = S32_EXT(SENSOR_RES_EXP(sres));
659 dsize += sizeof(sdesc->resolution);
660
661 scmi_parse_range_attrs(&s->scalar_attrs,
662 &sdesc->scalar_attrs);
663 dsize += sizeof(sdesc->scalar_attrs);
664 }
665 }
666
667 if (s->num_axis > 0)
668 ret = scmi_sensor_axis_description(ph, s, si->version);
669
670 st->priv = ((u8 *)sdesc + dsize);
671
672 return ret;
673 }
674
scmi_sensor_description_get(const struct scmi_protocol_handle * ph,struct sensors_info * si)675 static int scmi_sensor_description_get(const struct scmi_protocol_handle *ph,
676 struct sensors_info *si)
677 {
678 void *iter;
679 struct scmi_iterator_ops ops = {
680 .prepare_message = iter_sens_descr_prepare_message,
681 .update_state = iter_sens_descr_update_state,
682 .process_response = iter_sens_descr_process_response,
683 };
684
685 iter = ph->hops->iter_response_init(ph, &ops, si->num_sensors,
686 SENSOR_DESCRIPTION_GET,
687 sizeof(__le32), si);
688 if (IS_ERR(iter))
689 return PTR_ERR(iter);
690
691 return ph->hops->iter_response_run(iter);
692 }
693
694 static inline int
scmi_sensor_request_notify(const struct scmi_protocol_handle * ph,u32 sensor_id,u8 message_id,bool enable)695 scmi_sensor_request_notify(const struct scmi_protocol_handle *ph, u32 sensor_id,
696 u8 message_id, bool enable)
697 {
698 int ret;
699 u32 evt_cntl = enable ? SENSOR_NOTIFY_ALL : 0;
700 struct scmi_xfer *t;
701 struct scmi_msg_sensor_request_notify *cfg;
702
703 ret = ph->xops->xfer_get_init(ph, message_id, sizeof(*cfg), 0, &t);
704 if (ret)
705 return ret;
706
707 cfg = t->tx.buf;
708 cfg->id = cpu_to_le32(sensor_id);
709 cfg->event_control = cpu_to_le32(evt_cntl);
710
711 ret = ph->xops->do_xfer(ph, t);
712
713 ph->xops->xfer_put(ph, t);
714 return ret;
715 }
716
scmi_sensor_trip_point_notify(const struct scmi_protocol_handle * ph,u32 sensor_id,bool enable)717 static int scmi_sensor_trip_point_notify(const struct scmi_protocol_handle *ph,
718 u32 sensor_id, bool enable)
719 {
720 return scmi_sensor_request_notify(ph, sensor_id,
721 SENSOR_TRIP_POINT_NOTIFY,
722 enable);
723 }
724
725 static int
scmi_sensor_continuous_update_notify(const struct scmi_protocol_handle * ph,u32 sensor_id,bool enable)726 scmi_sensor_continuous_update_notify(const struct scmi_protocol_handle *ph,
727 u32 sensor_id, bool enable)
728 {
729 return scmi_sensor_request_notify(ph, sensor_id,
730 SENSOR_CONTINUOUS_UPDATE_NOTIFY,
731 enable);
732 }
733
734 static int
scmi_sensor_trip_point_config(const struct scmi_protocol_handle * ph,u32 sensor_id,u8 trip_id,u64 trip_value)735 scmi_sensor_trip_point_config(const struct scmi_protocol_handle *ph,
736 u32 sensor_id, u8 trip_id, u64 trip_value)
737 {
738 int ret;
739 u32 evt_cntl = SENSOR_TP_BOTH;
740 struct scmi_xfer *t;
741 struct scmi_msg_set_sensor_trip_point *trip;
742
743 ret = ph->xops->xfer_get_init(ph, SENSOR_TRIP_POINT_CONFIG,
744 sizeof(*trip), 0, &t);
745 if (ret)
746 return ret;
747
748 trip = t->tx.buf;
749 trip->id = cpu_to_le32(sensor_id);
750 trip->event_control = cpu_to_le32(evt_cntl | SENSOR_TP_ID(trip_id));
751 trip->value_low = cpu_to_le32(trip_value & 0xffffffff);
752 trip->value_high = cpu_to_le32(trip_value >> 32);
753
754 ret = ph->xops->do_xfer(ph, t);
755
756 ph->xops->xfer_put(ph, t);
757 return ret;
758 }
759
scmi_sensor_config_get(const struct scmi_protocol_handle * ph,u32 sensor_id,u32 * sensor_config)760 static int scmi_sensor_config_get(const struct scmi_protocol_handle *ph,
761 u32 sensor_id, u32 *sensor_config)
762 {
763 int ret;
764 struct scmi_xfer *t;
765 struct sensors_info *si = ph->get_priv(ph);
766
767 if (sensor_id >= si->num_sensors)
768 return -EINVAL;
769
770 ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_GET,
771 sizeof(__le32), sizeof(__le32), &t);
772 if (ret)
773 return ret;
774
775 put_unaligned_le32(sensor_id, t->tx.buf);
776 ret = ph->xops->do_xfer(ph, t);
777 if (!ret) {
778 struct scmi_sensor_info *s = si->sensors + sensor_id;
779
780 *sensor_config = get_unaligned_le64(t->rx.buf);
781 s->sensor_config = *sensor_config;
782 }
783
784 ph->xops->xfer_put(ph, t);
785 return ret;
786 }
787
scmi_sensor_config_set(const struct scmi_protocol_handle * ph,u32 sensor_id,u32 sensor_config)788 static int scmi_sensor_config_set(const struct scmi_protocol_handle *ph,
789 u32 sensor_id, u32 sensor_config)
790 {
791 int ret;
792 struct scmi_xfer *t;
793 struct scmi_msg_sensor_config_set *msg;
794 struct sensors_info *si = ph->get_priv(ph);
795
796 if (sensor_id >= si->num_sensors)
797 return -EINVAL;
798
799 ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_SET,
800 sizeof(*msg), 0, &t);
801 if (ret)
802 return ret;
803
804 msg = t->tx.buf;
805 msg->id = cpu_to_le32(sensor_id);
806 msg->sensor_config = cpu_to_le32(sensor_config);
807
808 ret = ph->xops->do_xfer(ph, t);
809 if (!ret) {
810 struct scmi_sensor_info *s = si->sensors + sensor_id;
811
812 s->sensor_config = sensor_config;
813 }
814
815 ph->xops->xfer_put(ph, t);
816 return ret;
817 }
818
819 /**
820 * scmi_sensor_reading_get - Read scalar sensor value
821 * @ph: Protocol handle
822 * @sensor_id: Sensor ID
823 * @value: The 64bit value sensor reading
824 *
825 * This function returns a single 64 bit reading value representing the sensor
826 * value; if the platform SCMI Protocol implementation and the sensor support
827 * multiple axis and timestamped-reads, this just returns the first axis while
828 * dropping the timestamp value.
829 * Use instead the @scmi_sensor_reading_get_timestamped to retrieve the array of
830 * timestamped multi-axis values.
831 *
832 * Return: 0 on Success
833 */
scmi_sensor_reading_get(const struct scmi_protocol_handle * ph,u32 sensor_id,u64 * value)834 static int scmi_sensor_reading_get(const struct scmi_protocol_handle *ph,
835 u32 sensor_id, u64 *value)
836 {
837 int ret;
838 struct scmi_xfer *t;
839 struct scmi_msg_sensor_reading_get *sensor;
840 struct scmi_sensor_info *s;
841 struct sensors_info *si = ph->get_priv(ph);
842
843 if (sensor_id >= si->num_sensors)
844 return -EINVAL;
845
846 ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET,
847 sizeof(*sensor), 0, &t);
848 if (ret)
849 return ret;
850
851 sensor = t->tx.buf;
852 sensor->id = cpu_to_le32(sensor_id);
853 s = si->sensors + sensor_id;
854 if (s->async) {
855 sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
856 ret = ph->xops->do_xfer_with_response(ph, t);
857 if (!ret) {
858 struct scmi_resp_sensor_reading_complete *resp;
859
860 resp = t->rx.buf;
861 if (le32_to_cpu(resp->id) == sensor_id)
862 *value =
863 get_unaligned_le64(&resp->readings_low);
864 else
865 ret = -EPROTO;
866 }
867 } else {
868 sensor->flags = cpu_to_le32(0);
869 ret = ph->xops->do_xfer(ph, t);
870 if (!ret)
871 *value = get_unaligned_le64(t->rx.buf);
872 }
873
874 ph->xops->xfer_put(ph, t);
875 return ret;
876 }
877
878 static inline void
scmi_parse_sensor_readings(struct scmi_sensor_reading * out,const struct scmi_sensor_reading_resp * in)879 scmi_parse_sensor_readings(struct scmi_sensor_reading *out,
880 const struct scmi_sensor_reading_resp *in)
881 {
882 out->value = get_unaligned_le64((void *)&in->sensor_value_low);
883 out->timestamp = get_unaligned_le64((void *)&in->timestamp_low);
884 }
885
886 /**
887 * scmi_sensor_reading_get_timestamped - Read multiple-axis timestamped values
888 * @ph: Protocol handle
889 * @sensor_id: Sensor ID
890 * @count: The length of the provided @readings array
891 * @readings: An array of elements each representing a timestamped per-axis
892 * reading of type @struct scmi_sensor_reading.
893 * Returned readings are ordered as the @axis descriptors array
894 * included in @struct scmi_sensor_info and the max number of
895 * returned elements is min(@count, @num_axis); ideally the provided
896 * array should be of length @count equal to @num_axis.
897 *
898 * Return: 0 on Success
899 */
900 static int
scmi_sensor_reading_get_timestamped(const struct scmi_protocol_handle * ph,u32 sensor_id,u8 count,struct scmi_sensor_reading * readings)901 scmi_sensor_reading_get_timestamped(const struct scmi_protocol_handle *ph,
902 u32 sensor_id, u8 count,
903 struct scmi_sensor_reading *readings)
904 {
905 int ret;
906 struct scmi_xfer *t;
907 struct scmi_msg_sensor_reading_get *sensor;
908 struct scmi_sensor_info *s;
909 struct sensors_info *si = ph->get_priv(ph);
910
911 if (sensor_id >= si->num_sensors)
912 return -EINVAL;
913
914 s = si->sensors + sensor_id;
915 if (!count || !readings ||
916 (!s->num_axis && count > 1) || (s->num_axis && count > s->num_axis))
917 return -EINVAL;
918
919 ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET,
920 sizeof(*sensor), 0, &t);
921 if (ret)
922 return ret;
923
924 sensor = t->tx.buf;
925 sensor->id = cpu_to_le32(sensor_id);
926 if (s->async) {
927 sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
928 ret = ph->xops->do_xfer_with_response(ph, t);
929 if (!ret) {
930 int i;
931 struct scmi_resp_sensor_reading_complete_v3 *resp;
932
933 resp = t->rx.buf;
934 /* Retrieve only the number of requested axis anyway */
935 if (le32_to_cpu(resp->id) == sensor_id)
936 for (i = 0; i < count; i++)
937 scmi_parse_sensor_readings(&readings[i],
938 &resp->readings[i]);
939 else
940 ret = -EPROTO;
941 }
942 } else {
943 sensor->flags = cpu_to_le32(0);
944 ret = ph->xops->do_xfer(ph, t);
945 if (!ret) {
946 int i;
947 struct scmi_sensor_reading_resp *resp_readings;
948
949 resp_readings = t->rx.buf;
950 for (i = 0; i < count; i++)
951 scmi_parse_sensor_readings(&readings[i],
952 &resp_readings[i]);
953 }
954 }
955
956 ph->xops->xfer_put(ph, t);
957 return ret;
958 }
959
960 static const struct scmi_sensor_info *
scmi_sensor_info_get(const struct scmi_protocol_handle * ph,u32 sensor_id)961 scmi_sensor_info_get(const struct scmi_protocol_handle *ph, u32 sensor_id)
962 {
963 struct sensors_info *si = ph->get_priv(ph);
964
965 if (sensor_id >= si->num_sensors)
966 return NULL;
967
968 return si->sensors + sensor_id;
969 }
970
scmi_sensor_count_get(const struct scmi_protocol_handle * ph)971 static int scmi_sensor_count_get(const struct scmi_protocol_handle *ph)
972 {
973 struct sensors_info *si = ph->get_priv(ph);
974
975 return si->num_sensors;
976 }
977
978 static const struct scmi_sensor_proto_ops sensor_proto_ops = {
979 .count_get = scmi_sensor_count_get,
980 .info_get = scmi_sensor_info_get,
981 .trip_point_config = scmi_sensor_trip_point_config,
982 .reading_get = scmi_sensor_reading_get,
983 .reading_get_timestamped = scmi_sensor_reading_get_timestamped,
984 .config_get = scmi_sensor_config_get,
985 .config_set = scmi_sensor_config_set,
986 };
987
scmi_sensor_set_notify_enabled(const struct scmi_protocol_handle * ph,u8 evt_id,u32 src_id,bool enable)988 static int scmi_sensor_set_notify_enabled(const struct scmi_protocol_handle *ph,
989 u8 evt_id, u32 src_id, bool enable)
990 {
991 int ret;
992
993 switch (evt_id) {
994 case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
995 ret = scmi_sensor_trip_point_notify(ph, src_id, enable);
996 break;
997 case SCMI_EVENT_SENSOR_UPDATE:
998 ret = scmi_sensor_continuous_update_notify(ph, src_id, enable);
999 break;
1000 default:
1001 ret = -EINVAL;
1002 break;
1003 }
1004
1005 if (ret)
1006 pr_debug("FAIL_ENABLED - evt[%X] dom[%d] - ret:%d\n",
1007 evt_id, src_id, ret);
1008
1009 return ret;
1010 }
1011
1012 static void *
scmi_sensor_fill_custom_report(const struct scmi_protocol_handle * ph,u8 evt_id,ktime_t timestamp,const void * payld,size_t payld_sz,void * report,u32 * src_id)1013 scmi_sensor_fill_custom_report(const struct scmi_protocol_handle *ph,
1014 u8 evt_id, ktime_t timestamp,
1015 const void *payld, size_t payld_sz,
1016 void *report, u32 *src_id)
1017 {
1018 void *rep = NULL;
1019
1020 switch (evt_id) {
1021 case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
1022 {
1023 const struct scmi_sensor_trip_notify_payld *p = payld;
1024 struct scmi_sensor_trip_point_report *r = report;
1025
1026 if (sizeof(*p) != payld_sz)
1027 break;
1028
1029 r->timestamp = timestamp;
1030 r->agent_id = le32_to_cpu(p->agent_id);
1031 r->sensor_id = le32_to_cpu(p->sensor_id);
1032 r->trip_point_desc = le32_to_cpu(p->trip_point_desc);
1033 *src_id = r->sensor_id;
1034 rep = r;
1035 break;
1036 }
1037 case SCMI_EVENT_SENSOR_UPDATE:
1038 {
1039 int i;
1040 struct scmi_sensor_info *s;
1041 const struct scmi_sensor_update_notify_payld *p = payld;
1042 struct scmi_sensor_update_report *r = report;
1043 struct sensors_info *sinfo = ph->get_priv(ph);
1044
1045 /* payld_sz is variable for this event */
1046 r->sensor_id = le32_to_cpu(p->sensor_id);
1047 if (r->sensor_id >= sinfo->num_sensors)
1048 break;
1049 r->timestamp = timestamp;
1050 r->agent_id = le32_to_cpu(p->agent_id);
1051 s = &sinfo->sensors[r->sensor_id];
1052 /*
1053 * The generated report r (@struct scmi_sensor_update_report)
1054 * was pre-allocated to contain up to SCMI_MAX_NUM_SENSOR_AXIS
1055 * readings: here it is filled with the effective @num_axis
1056 * readings defined for this sensor or 1 for scalar sensors.
1057 */
1058 r->readings_count = s->num_axis ?: 1;
1059 for (i = 0; i < r->readings_count; i++)
1060 scmi_parse_sensor_readings(&r->readings[i],
1061 &p->readings[i]);
1062 *src_id = r->sensor_id;
1063 rep = r;
1064 break;
1065 }
1066 default:
1067 break;
1068 }
1069
1070 return rep;
1071 }
1072
scmi_sensor_get_num_sources(const struct scmi_protocol_handle * ph)1073 static int scmi_sensor_get_num_sources(const struct scmi_protocol_handle *ph)
1074 {
1075 struct sensors_info *si = ph->get_priv(ph);
1076
1077 return si->num_sensors;
1078 }
1079
1080 static const struct scmi_event sensor_events[] = {
1081 {
1082 .id = SCMI_EVENT_SENSOR_TRIP_POINT_EVENT,
1083 .max_payld_sz = sizeof(struct scmi_sensor_trip_notify_payld),
1084 .max_report_sz = sizeof(struct scmi_sensor_trip_point_report),
1085 },
1086 {
1087 .id = SCMI_EVENT_SENSOR_UPDATE,
1088 .max_payld_sz =
1089 sizeof(struct scmi_sensor_update_notify_payld) +
1090 SCMI_MAX_NUM_SENSOR_AXIS *
1091 sizeof(struct scmi_sensor_reading_resp),
1092 .max_report_sz = sizeof(struct scmi_sensor_update_report) +
1093 SCMI_MAX_NUM_SENSOR_AXIS *
1094 sizeof(struct scmi_sensor_reading),
1095 },
1096 };
1097
1098 static const struct scmi_event_ops sensor_event_ops = {
1099 .get_num_sources = scmi_sensor_get_num_sources,
1100 .set_notify_enabled = scmi_sensor_set_notify_enabled,
1101 .fill_custom_report = scmi_sensor_fill_custom_report,
1102 };
1103
1104 static const struct scmi_protocol_events sensor_protocol_events = {
1105 .queue_sz = SCMI_PROTO_QUEUE_SZ,
1106 .ops = &sensor_event_ops,
1107 .evts = sensor_events,
1108 .num_events = ARRAY_SIZE(sensor_events),
1109 };
1110
scmi_sensors_protocol_init(const struct scmi_protocol_handle * ph)1111 static int scmi_sensors_protocol_init(const struct scmi_protocol_handle *ph)
1112 {
1113 u32 version;
1114 int ret;
1115 struct sensors_info *sinfo;
1116
1117 ret = ph->xops->version_get(ph, &version);
1118 if (ret)
1119 return ret;
1120
1121 dev_dbg(ph->dev, "Sensor Version %d.%d\n",
1122 PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
1123
1124 sinfo = devm_kzalloc(ph->dev, sizeof(*sinfo), GFP_KERNEL);
1125 if (!sinfo)
1126 return -ENOMEM;
1127 sinfo->version = version;
1128
1129 ret = scmi_sensor_attributes_get(ph, sinfo);
1130 if (ret)
1131 return ret;
1132 sinfo->sensors = devm_kcalloc(ph->dev, sinfo->num_sensors,
1133 sizeof(*sinfo->sensors), GFP_KERNEL);
1134 if (!sinfo->sensors)
1135 return -ENOMEM;
1136
1137 ret = scmi_sensor_description_get(ph, sinfo);
1138 if (ret)
1139 return ret;
1140
1141 return ph->set_priv(ph, sinfo);
1142 }
1143
1144 static const struct scmi_protocol scmi_sensors = {
1145 .id = SCMI_PROTOCOL_SENSOR,
1146 .owner = THIS_MODULE,
1147 .instance_init = &scmi_sensors_protocol_init,
1148 .ops = &sensor_proto_ops,
1149 .events = &sensor_protocol_events,
1150 };
1151
1152 DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(sensors, scmi_sensors)
1153